SnO2系透明導電膜のグルコン酸水溶液中での還元と、それを利用した新規パターニング法 A new patterning method using reduction of SnO₂-based transparent conductive films in gluconic acid aqueous solution

〇小川大輔1・並木宏允1・宮下惟人1 (地方独立行政法人東京都立産業技術研究センター1)

ODaisuke Ogawa¹, Hiromasa Namiki¹, Yuito Miyashita¹ (Tokyo Metropolitan Industrial Technology Research Institute¹)

≻ SnO₂系透明導電膜は希少金属を含まず、耐薬品性に優れるが、ウェットプロセスでのパターニングが困難である。 ≻グルコン酸水溶液中で電圧印加すると、SnO₂膜の表面から内部に向かってSnへの還元が進行する。 ≻ Snは酸・塩基による溶解等で容易に除去できる。SnO₂膜のウェットプロセスでのパターニングが可能である。

研究背景

透明導電膜は太陽電池・液晶パネル・発光ダイオード等の透明電極に必要不可欠 最も普及しているITOは希少元素のインジウムを含む

⇒ SnO₂系透明導電膜はITOの代替材料として有力

・半世紀以上の実用化の歴史を持つ

・薄膜の成長方位を制御することで物質本来の高移動度(130 cm²V⁻¹s⁻¹)を達成可能[1]

透明導電膜	SnO₂系	ITO (In ₂ O ₃ -SnO ₂)
性能	0	Ô
原料価格	0	× : インジウムを含む
耐薬品性	◎:ETC、屋外監視カメラ、成膜装置の ビューポートなどで実用	×
パターニング	 ×:耐薬品性が高い ウェットプロセス:既報の手法は反応が激しく、制御が困難 ・ 亜鉛粉末と触れた状態で過剰量の塩酸と反応させる。[2] ・ ヨウ化水素酸と反応させる。[3] ドライプロセス:スループットに劣る ・ レーザー加工(高額) ・ サンドブラスト(製品出荷後の割れが懸念される) 	〇 : エッチング液が販売 され、ウェットプロセス でパターニング可能
[1] M. Fukumoto et al., Scientific Reports 10, 6844 (2020). [2] G. Bradshaw and A. J. Hughes, Thin Solid Films 33(2), L5 (1976)		

透明電極として使うにはパターニングが必須。ITOはエッチング液が市販され、 リソグラフィと組み合わせたウェットプロセスで容易にパターニング可能 ⇒ SnO₂は耐薬品性が高く、ウェットプロセスでのパターニングが困難

SnO₂系透明導電膜をウェットプロセスでパターニング できれば、ITOの代替に向けて大きな前進となる

[3] V. K. Gueorguiev et al., Sensors and Actuators A 24(1), 61 (1990).

実験:新たに開発したパターニング法

