Scattering-dependent transport of SrRuO₃ films: 22a-P01-11 From Weyl fermion transport to hump-like Hall effect anomaly Shingo Kaneta-Takada^{1,2}, Yuki K. Wakabayashi¹, Yoshiharu Krockenberger¹, Hiroshi Irie¹, Shinobu Ohya^{2,3}, Masaaki Tanaka^{2,3}, Yoshitaka Taniyasu¹, and Hideki Yamamoto¹

¹NTT Basic Research Laboratories, ²Department of Electrical Engineering and Information Systems, The University of Tokyo,

³Center for Spintronics Research Network (CSRN), The University of Tokyo

e.g.) Co₃Sn₂S₂, Co₂MnGa, <u>SrRuO</u>₃

K. Takiguchi *et al.*, Nat. Commun. **11**, 4969 (2020). S. K. Takada et al., npj. Quantum. Mater. 7, 102 (2022).

Application : Topoelectrical circuit C. H. Lee et al, Commun. Phys. 1, 39 (2018). S. M. Rafi-Ul-Islam *et al*, Commun. Phys. **1**, 72 (2020). e.g.) MnSi, FeGe, <u>SrRuO₃/SrIrO₃</u>

J. Matsuno et al., Sci. Adv. 2, e1600304 (2016). Q. Qin et al., Adv. Mater. 31, 1807008 (2019).

Application : Racetrack memory R. Tomasello *et al*, Sci. Rep. **4**, 6784 (2014). X. Zhang et al, Sci. Rep. 5, 7643 (2015).

Purpose of this study

due to the difficulty of adjusting the amount of Ru defects.

□ Investigate the scattering dependence on the Weyl fermion transport and hump-like Hall effect anomaly, which is governed by the degree of scattering (*i.e.* Ru-deficiency-, interface-driven-defect, and phonon scatterings), in SrRu_{1-x}O₃ films **D** Reveal the origin of the hump-like Hall effect anomaly

Experiments

Quantum oscillations and linear positive magnetoresistance of Weyl fermions for $t \ge 10$ nm

Sufficiently long quantum scattering time with a low interfacial disorder

S. Kaneta-Takada, Y. K. Wakabayashi et al., Appl. Phys. Lett. 118, 092408 (2021). Y. K. Wakabayashi, S. Kaneta-Takada et al., AIP. Adv. 11, 035226 (2021).

Residual resistivity ratio $(RRR) = \rho(300 \text{ K}) / \rho(T \rightarrow 0 \text{ K})$ Expressing the quality and purity of metallic samples. $\rho(T \rightarrow 0 \text{ K})$ is originated from the extrinsic factors: defects, impurities.

Temperature 7 300 K

 SrRu_{0.7}O₃ No linear positive magnetoresistance with quantum oscillations Scattering due to Ru defects inhibits observation of quantum transport of Weyl fermions 		SrRu _{0.7} O ₃ Humps are found only in the SrRu _{0.7} O ₃ thin films ($t \le 5$ nm) The Ru-defects and interface scattering play an important role in the appearance of the humps.		
Universal scaling of AHE in SrRu	Origins of AHE	in SrRuO ₃		
	1. side jump	L	L. Berger, Phys. Rev. 2 , 4559 (1970).	
	2. skew-scattering J. Smit, Physica 2		J. Smit, Physica 21 , 877 (1955).	
$\int_{-1}^{10} \int_{-1.0}^{10} \int_{-1.5}^{10} \int_{-2.0}^{10} \int_$	3. Karplus-L Fit by following equation $\rho'_{xy.0\ T} = \frac{a_1}{\Delta^2 + a_2(\rho)}$ KL med The dashed fitting or results.	uttinger (KL) modelation $\frac{1}{(xx)^2} (\rho'_{xx})^2 + a_3 (\rho'_{xx})^2$ $\frac{1}{(xx)^2} (\rho'_{xx})^2 + a_3 (\rho'_{xx})^2$ chanismSide jumcurve is well consister	R. Karplus and J. M. Luttinger, Phys. Rev.	. 95 , 1154 (1954). _{(,0 т}) of the AHE
	 ✓ Universal trend in t = 2 and 5 nm. ✓ Only SrRu_{0.7}O₃ film The hump-like mechanisms, 	$\rho_{xy,0 T}$ ' vs ρ_{xx} ' except f ns with $t = 2$ and 5 nr Hall effect anomaly and is derived from th	for the SrRu _{0.7} O ₃ films with n do not follow this trend. does not come from these he multi-channel AHEs.	

disappears with $t \le 5$ nm (ep-n)

Λ ρ_{xy,0 T}

RRR and T dependence of transport phenomena

- \checkmark For the films with RRR higher than ~20, the Weyl fermion transport is observed below ~20 K.
- ✓ For the SrRu_{0.7}O₃ films with $t \le 5$ nm, whose RRRs are below ~3.5, the humplike Hall effect anomaly is observed.

Summary

✓ We have investigated the magnetotransport properties of epitaxial stoichiometric SrRuO₃ and Ru-deficient SrRu_{0.7}O₃ films with various thicknesses (t = 2-60 nm).

- \checkmark The SrRuO₃ films with $t \ge 10$ nm, whose RRR is over ~ 20 , show the Weyl fermion transport at low temperatures below ~20 K. By introducing Ru-defects and/or interface-driven defects, these Weyl fermion transports disappear.
- \checkmark By introducing Ru-defects and interface-driven defects further, the Ru-deficient SrRu_{0.7}O₃ films with $t \le 5$ nm, whose RRRs are below 2.2, show the hump-like Hall effect anomaly.
- \checkmark The hump-like Hall effect anomaly doesn't follow the scaling law incorporating the side-jumps and KL mechanism. This result suggests that the hump-like Hall effect anomaly in the SrRu_{0.7}O₃ thin films is derived from the multi-channel AHEs. S. Kaneta-Takada et al., Phys. Rev. Mater. 7, 054406 (2023).

S.K.T. acknowledges the support from the Japan Society for the Promotion of Science Fellowships for Young Scientists.