In situ/operando分光測定を用いたPt添加SnO2のEtOHガス検知特性と表面中間体との相関性の解明 圭吾¹, Agutaya Jonas², 愼改 豪¹, 猪股 雄介³, 木田 徹也³, ¹ 熊本大学. GSST, ² 熊本大学. IROAST, ³ 熊本大学. FAST **増本**

- 吸着する。
- 2. EtOH吸着によりSnO₂表面上にethoxideが 形成される。
- 3. 200°Cにおいて吸着酸素やSnO₂格子内酸素 (O_{L}) 、OH基によりethoxideが酸化され、 acetateを形成する。
- 1. Ptのスピルオーバー効果によりSnO₂表面上の 吸着酸素量が増大する。
- 2. EtOHガスがPt粒子/L酸点上に吸着し、ethoxide を形成する。
- 3. Ethoxideは、吸着酸素やSnO₂格子内酸素 (O₁) により酸化され、acetateを形成する。

- 結論
- Ptは、ドープ状態及び粒子としてSnO。に添加されたことが確認された。 • 1~10 wt%のPt添加は、SnO₂のEtOHガスに対する応答値及び作動温度を改善した。
- EtOH流通時におけるoperando測定は、Pt-SnO₂の電気抵抗値変化とacetate生成量 との間に相関関係を明らかにした。
- EtOH流通時における*in situ* UV-visスペクトルから、Pt-SnO₂はSnO₂の酸化還元反応 に応じて、電気抵抗値を変化させることが明らかとなった。