シンポ	ポジウム(ノン	テクニカル)/ Symposium (non-technical)		
		体が切り拓く未来社会 ~応用物理への期待~/(Open Sy	ymposium) A Future Opened by Cutting-edge Semic	onductors - Expectations for Applied Physics -
		口頭講演 (Oral Presentation) A24会場 (Room A24)		
13:30	16p-A24-1	シンポジウムの趣旨説明	○染谷 隆夫¹	1. 東京大学大学院工学研究科
13:35	招 16p-A24-2	半導体産業の持続的成長に向けて	○東 哲郎 ^{1,2}	1.Rapidus 株式会社, 2.LSTC
40.50	IT 40 404.0	- 今、何故「最先端半導体」を選択したか? -	0.10***	4 + 1 - 14 - 14 - 14
13:50 14:05	招 16p-A24-3	次世代サイバーインフラの研究開発 積層型 CMOS イメージセンサの開発	○中尾 彰宏¹ ○梅林 拓¹	1.東大工学系研究科 1.SSS
14:05	招 16p-A24-4 招 16p-A24-5	慣暦型CMOSイメーシセンサの開発 半導体量子情報デバイスの開発	○	1.理研
14:35	10p-A24-5	休憩/Break	〇 停木 月 日	1. 建训
	招 E 16p-A24-6	Challenges in Advanced Semiconductor Industry:	○ Meng-Fan Chang ¹	1.TSMC
15:00	招 16p-A24-7	Technology, Design, and Talents 先端半導体分野で輝く研究開発人財	○戸津 健太郎¹	1.東北大学マイクロシステム融合研究開発センター
15:15	2A	休憩/Break		
15:30	16p-A24-8	バネルディスカッション	〇染谷 隆夫 1 ,東 哲郎 2 3 ,中尾 彰宏 4 ,梅林 拓 5 ,梅茶 清悟 6 ,Meng-Fan Chang 7 ,戸津 健太郎 8	1.東京大学大学院工学研究科, 2.Rapidus株式会社, 3.LSTC, 4.東京大学工学系研究科, 5.ソニーセミコンダ クタソリューションズ株式会社, 6.理化学研究所, 7. TSMC, 8.東北大学
【一般公	開】NT2 奮闘する	日本の先端パワー半導体/(Open Symposium) Advanced)	power semiconductor striving in Japan	15000, 6. 未礼八子
		口頭講演 (Oral Presentation) A41会場 (Room A41)		
10:30	17a-A41-1	オープニング	○矢野 裕司 1.2	1. 筑波大学, 2. 先進パワー半導体分科会 副幹事長
10:35	17a-A41-2	会長挨拶	○木本 恒暢 ^{1,2}	1. 京都大学, 2. 応用物理学会会長
10:50		化合物半導体を用いたIPMのゲート駆動技術	〇吉江 徹 1	1. サンケン電気
, ,	,	口頭講演 (Oral Presentation) A41 会場 (Room A41)	O'* 1 *****	
13:00	招 17p-A41-1	今後の半導体戦略について	○清水 英路¹	1.経済産業省 商務情報政策局 情報産業課 デバイス・半 導体戦略室
13:30	招 17p-A41-2	ロームが取り組むワイドバンドギャップ半導体	○喜多川 聖也 ¹	1. ローム
14:00	招 17p-A41-3	パワーデバイスの進化と応用機器の動向	〇西川 和康1	1.三菱電機(株)
14:30	招 17p-A41-4	電動車用パワー半導体の進化と開発動向	○藤原 広和 1	1. ミライズテクノロジーズ
15:00	100	休憩・名刺交換会/Interaction Break		
15:20	招 17p-A41-5	シリコンパワーデバイスの技術動向	〇齋藤 渉¹	1. 九大応力研
15:50	招 17p-A41-6	SiCパワー半導体の現状と今後の展開	〇田中 保宣 ¹	1. 産総研
16:20	招 17p-A41-7	GaN パワーデバイスの現状と今後の展開	○須田 淳 ^{1,2}	1.名大院工, 2.名大未来研
16:50 17:20	招 17p-A41-8 17p-A41-9	WBG 半導体によるパワエレ用途拡大と課題 クロージング	○日下 佳祐 ¹ ○田中 保宣 ^{1,2}	1.長岡技大 1.産業技術総合研究所, 2.先進パワー半導体分科会 前
17:20	11p-A41-9) H = V V V	○四十 体旦	1. 産業技術総合研究所, 2. 先進ハリー半導体分科会 削幹事長
【一般公	·閚】NT3 就活生必	見!未来をあなた自身の手で!~ 半導体が生み出す新しい	、世界 / (Open Symposium) Create the Future by You	
		口頭講演 (Oral Presentation) A22会場 (Room A22)	En / (open en modernin) eroute the rutare en re-	Total Trong Developed 2, Commoditation
9:15	19a-A22-1	はじめに	○木下 啓藏 1.2	1. 応物, 2. アイオーコア
9:20	招 19a-A22-2	エンタテインメントコンピューティング	○久夛良木 健1	1.アセントロボティクス株式会社
10:10	招 19a-A22-3	大判イメージセンサの生み出す世界と半導体デバイス開	〇秋山 健太郎1	1.ソニーセミコンダクタソリューションズ
		発の魅力		
10:20	招 19a-A22-4	半導体露光装置が照らす輝く未来	〇今井 烈士1	1.キヤノン株式会社
10:30	招 19a-A22-5	未来をデザインする - 半導体実装技術とその可能性 -	〇武久翔多1	1.東レエンジニアリング株式会社
10:40	招 19a-A22-6	原子レベルの加工への挑戦 ~米国大学での海外業務研修 を通じて~	〇中谷 侑亮 1	1.日立ハイテク
10:50	招 19a-A22-7	資源は有限、技術は無限	○藤川 雄兵1	1.SCREENセミコンダクターソリューションズ
11:00	招 19a-A22-8	~その装置作り続けられますか?~ 異分野からの半導体業界の発展を支える計測技術への挑	〇三上 康太1	1.株式会社堀場製作所 半導体ソリューション部
		戦	0 mm = 1 = 1	
11:10	招 19a-A22-9	半導体製造装置メーカーにおけるプロセス×検査のコラボレーション	○澤里 旭 '	1.アプライド マテルアルズ
11:20	招 19a-A22-10	露光装置の進化を支えるサブナノ計測技術の最前線	○津久井 宏祐¹	1. (株) ニコン
11:30	招 19a-A22-11	半導体の企業における研究者の働き方 - 基礎研究から事	〇中田 憲吾1	1. キオクシア株式会社
11:40	19a-A22-12	業応用まで〜ときどき失敗、紆余曲折も 関合焼拶	○渡部 潔¹	1.SEAJ
		闭云疾移 繋ぎたい未来ビジョン 〜 創造を生むネットワーキングを応		
		口頭講演 (Oral Presentation) A24 会場(Room A24)	- 1510 115 / (Sport Symposium) Emiling Faculty Visionis	
13:30	20p-A24-1		○吉水 康人¹	1.キアクシア(株)
13:40	招 20p-A24-2		○東 博暢¹	1.株式会社日本総合研究所
13:48	招 20p-A24-3		○坂本 佳史¹	1.IBM リサーチ
13:56	招 20p-A24-4	生態系並びに共生の概念から見た人 - 地球のインタラク	○塚田 周平1	1.株式会社リバネス
44-:	IT of	ションに対する考察と活動	0.155	4.444
14:04	招 20p-A24-5	AIの社会実装で課題解決を	〇土田 安紘1	1.AWL
14:12	招 20p-A24-6	次世代データ活用、集合知で未来を創る	○今林 広樹 ¹ ○塩澤 駿一 ¹	1.EAGLYS株式会社
14:20 14:28	招 20p-A24-7 20p-A24-8	低空経済で世界一を目指す 異分野交流パネルディスカッション~テーマ1~ わたし		1.Terra Drone 株式会社 1. キアクシア (株) 2 (株) 日本総合研究所 3 IRM II
14:28	20p-A24-8	乗分野交流ハネルティスカッション~デーマ1~わたしたちはどんな日本の未来社会を創り、Z世代に残してい		1. キアクシア (株), 2.(株) 日本総合研究所, 3.IBM リ サーチ, 4.(株) リバネス, 5.AWL(株), 6.EAGLYS(株),
		にらはとんな日本の木米社会を削り、Z世代に残してい くのか?応用物理の役割	スツム,フヤバム国,値洋教	テーテ、4.(株)リハネス、5.AWL(株)、6.EAGLYS(株)、7.Terra Drone(株)
15:30		名刺&意見交換会/Interaction & Discussion Break		
15:50	20p-A24-9	異分野交流パネルディスカッション~テーマ2~ 未来の	○吉水 康人¹, 東 博暢², 坂本 佳史³, 塚田 周平⁴. 土田	1. キアクシア(株), 2.(株) 日本総合研究所, 3.IBM リ
-	1	ための国際共創、その中で目指したい日本の役割、ポジ		サーチ, 4.(株) リバネス, 5.AWL(株), 6.EAGLYS(株),
16.20	90 404 10	ションは?		7.Terra Drone(株)
16:30	∠0p-A24-10	クロージングディスカッション ~未来に向けて~ Z 世代 に繋ぎたい未来ビジョン	〇吉水康人',東博暢', 坂本 佳史', 塚田 周平", 土田 安紘 ⁵ , 今林 広樹 ⁶ , 塩澤 駿一 ⁷	 キアクシア(株), 2.(株) 日本総合研究所, 3.IBM リ サーチ, 4.(株) リバネス, 5.AWL(株), 6.EAGLYSL(株),
				7.Terra Drone(株)
16:55	20p-A24-11		○為近 恵美¹	1.横国大
シンオ	ポジウム (テ <u>ク</u>	ニカル) / Symposium (technical)		
6 薄膜・	表面 / Thin Films	and Surfaces		
		ャル成長単結晶薄膜とデバイス応用 / Single crystal thin fi	lms epitaxially grown on silicon substrates and their	device applications
		口頭講演 (Oral Presentation) A23 会場 (Room A23)	O	1/#\0 :
13:30	招 16p-A23-1	マルテンサイト・エピタキシー	○木島 健 ^{1,2} , 關 雅志 ¹ , 木村 勲 ¹ , 田畑 仁 ² , 中尾 健 人 ¹	1.(株)Gaianixx, 2.東大工
14:00	招 16p-A23-2	スパッタリング単独プロセスによるSi上強誘電体エピタ		1.大阪公立大院工
	·	キシャルキャパシタの形成		

14:30				
	招 16p-A23-3	スパッタ法による Si 基板上エピタキシャル PZT 圧電薄膜 の作製	○神野 伊策¹, グォン サンヒョ¹, 譚 ゴオン²	1.神戸大工, 2.大阪公立大
15:00		休憩·名刺交換会/Interaction Break		
l5:15	招 16p-A23-4	ゾルゲル法による Si 基板上のエピタキシャル Pb(Zr,Ti)O $_3$ 薄膜の作製と評価	○譚 賡 ¹, 權 相曉 ², 神野 伊策 ²	1.大阪公立大, 2.神戸大学
.5:45	招 16p-A23-5	巨大圧電性を有する PMN-PT 系単結晶薄膜の Si 基板上へのエピタキシャル成長	○吉田 慎哉 ¹	1. 芝浦工大工
L6:15	招 16p-A23-6	ScAIN および LiNbO₃ エピタキシャル圧電薄膜の BAW フィルタ応用の現状	○柳谷 隆彦 ^{1,2,3,4}	1.早稲田大学, 2.材料技術研究所, 3.JST-CREST, 4. JST-FOREST
		イバーフィジカルシステムの先端技術 - フィジカル空間を動		ョン技術 - / Advanced Technology on the Cyber-
		ociety 5.0 -Connecting with the physical spaces as the te	echnologies of Materials, Devices, Processes, Circui	ts, and Applications-
	, ,	口頭講演 (Oral Presentation) A36 会場 (Room A36)	○ 本匠 独1.2 小服 森井2 括针 阪立2 廃海 山幻フ1	1 京柳工艺维维士学 2 土阪士学
9:30 9:45	16a-A36-1	酸化物ナノ構造とグラフェンを利用した半導体式ハイブ リットガスセンサの可能性 休憩・名刺交換会/Interaction Break	○官原 做 **, 小野 充生 *, 他村 座 又 *, 廣瀬 田和 于 *, 岡西 音哉 ¹	1. 尔郁工云橄雜入子, 2. 入阪入子
0:15	招 16a-A36-2	が思・石刺交換云/Interaction break パーシステントホモロジーを応用した機械学習ポテン シャルの開発	○南谷 英美¹	1. 阪大産研
0:45		CO_2 電解による高選択エチレン生成へ向けた反応場設計	○田巻 孝敬¹	1. 鹿児島大院理工
1:15		休憩·名刺交換会/Interaction Break	O#F 7161	1 77.4WTT
1:30 2:00		準安定物質を創出するための反応場開拓 広域多次元多角的顕微分光解析によるナノ材料デバイス	○藤岡 正弥¹	1. 産総研 1. 物材機構, 2. 東京理科大
2:00	10a-A30-3	の電子状態解析	○水門 直庄 ,按廨 座 ,八口 健太	1. 初州 依悔, 2. 来尔哇什人
9/16(1	(Mon.) 13:30 - 17:35	口頭講演 (Oral Presentation) A36会場 (Room A36)		
3:30		革新的熱制御技術に向けた熱電永久磁石の開発	○安藤 冬希¹, 内田 健一¹,²	1.NIMS, 2.東大新領域
4:00	招 16p-A36-2	折り紙構造や切り紙構造を用いた熱電発電デバイス	○寺嶋 真伍¹, 岩瀬 英治¹	1.早大理工
4:30	奨 16p-A36-3	拡張伝送線モデル(TLM)法を用いた熱電半導体/金属界 面の固有接触抵抗率の精密測定と界面の信頼性評価	○ (M1) 桂 章皓¹, 鶴元 真妃¹, 廣瀬 由紀子¹, Micucci Daniele², 佐藤 峻³³⁴, 岩瀬 英治⁴, 菅原 徹¹⁴	1.京工繊大工, 2.トリノ工科大, 3.産総研, 4.早稲田大
4:45	*	液体金属を用いた電子素子実装が電子デバイスの伸縮耐性へ及ぼす影響の評価	○佐藤 峻¹, 岩瀬 英治²	1. 産総研SSRC, 2. 早大理工
5:00		休憩・名刺交換会/Interaction Break	0.1411.05 1.12	
.5:15	招 16p-A36-5	フレキシブルエレクトロニクスを活用したウェアラブル	○植村 隆文 1.2	1. 阪大産研, 2. 産総研先端フォトバイオ
E.45	±77 1.0- A.0.0 0	生体計測システムの開発	○ E b + ₩1	1 ルナ帝フロ
5:45		仮想匂い地図を介した匂いのデジタル化と価値創造	○長島 一樹¹ ○世界 # # ¹	1.北大電子研
6:15		グラフェンバイオセンサーによる超高感度計測一酵素反応計測から病原体検出・創薬を目指した応用まで一	〇小野 芫生	1. 阪大基礎工
6:45 7:00		休憩・名刺交換会/Interaction Break 【注目講演】日常生活下での生体計測に向けた非接触計測	○和泉 慎太郎 ¹	1.神戸大
o + 1/	104 () 	技術		
		アトロニクス / Organic Molecules and Bioelectronics		
	導体 / Semiconductor			
		phous and Microcrystalline Materials		
		池の新展開 / New direction of perovskite solar cells		
		口頭講演 (Oral Presentation) C41会場 (Room C41)	OT 1 K' - 12 TH 0 34 TH 1116	TICADD III OK A HI OMBOD II
9:00		Greeting Challes goes and Description of Description Color College	O Tsunenobu Kimoto ^{1,2} , Takao Someya ^{3,4} , Todd M. Osman ⁵	4. The Univ. of Tokyo, 5.MRS Executive Director
9:15	招 E 16a-C41-2	Challenges and Perspectives of Perovskite Solar Cells - Lessons from 50 years of thin film solar cell development	○ Makoto Konagai¹	1.Tokyo City Univ.
9:45	招 E 16a-C41-3	Open-Air Spray-Plasma Manufacturing of Large-Area	○ Reinhold H. Dauskardt¹	1.Stanford University
0:15	招 E 16a-C41-4			
		Perovskite Solar Cells and Modules	O Hiroshi Segawa ^{1, 2}	1.Graduate School of Arts and Sciences. The Univ.
		Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules	○ Hiroshi Segawa ^{1,2}	1.Graduate School of Arts and Sciences, The Univ. of Tokyo, 2.RCAST, The Univ. of Tokyo
		Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and	O Kenneth R Graham ¹ , Syed Joy ¹ , Tareq Hossain ¹ , Harindi Atapattu ¹ , Henry Pruett ¹ , Alex Boehm ¹ ,	Tokyo, 2.RCAST, The Univ. of Tokyo
1:00		Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin	O Kenneth R Graham ¹ , Syed Joy ¹ , Tareq Hossain ¹ ,	Tokyo, 2.RCAST, The Univ. of Tokyo
11:00 11:30	招 E 16a-C41-5 招 E 16a-C41-6	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin Improvement of efficiency and stability-	O Kenneth R Graham ¹ , Syed Joy ¹ , Tareq Hossain ¹ , Harindi Atapattu ¹ , Henry Pruett ¹ , Alex Boehm ¹ , Stephen Johnson ²	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ.
11:00 11:30 9/16(I	招 E 16a-C41-5 招 E 16a-C41-6	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin	O Kenneth R Graham ¹ , Syed Joy ¹ , Tareq Hossain ¹ , Harindi Atapattu ¹ , Henry Pruett ¹ , Alex Boehm ¹ , Stephen Johnson ²	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of
1:00	招 E 16a-C41-5 招 E 16a-C41-6 (Mon.) 13:30 - 18:30	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- 口頭講演 (Oral Presentation) C41 会場(Room C41) Materials theory of halide perovskites: defect and	O Kenneth R Graham¹, Syed Joy¹, Tareq Hossain¹, Harindi Atapattu¹, Henry Pruett¹, Alex Boehm¹, Stephen Johnson² O Shuzi Hayase¹	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of
1:00 1:30 9/16(1 3:30	招 E 16a-C41-5 招 E 16a-C41-6 (Mon.) 13:30 - 18:30	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- 口頭講演 (Oral Presentation) C41 会場(Room C41) Materials theory of halide perovskites: defect and	O Kenneth R Graham¹, Syed Joy¹, Tareq Hossain¹, Harindi Atapattu¹, Henry Pruett¹, Alex Boehm¹, Stephen Johnson² O Shuzi Hayase¹	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog
9/16(i 13:30	招 E 16a-C41-5 招 E 16a-C41-6 (Mon.) 13:30 - 18:30 招 E 16p-C41-1	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- 口頭講演 (Oral Presentation) C41 会場(Room C41) Materials theory of halide perovskites: defect and chirality	O Kenneth R Graham ¹ , Syed Joy ¹ , Tareq Hossain ¹ , Harindi Atapattu ¹ , Henry Pruett ¹ , Alex Boehm ¹ , Stephen Johnson ² O Shuzi Hayase ¹	1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands
1:00 1:30 9/16(1 3:30 4:00 4:30	招 E 16a-C41-5 招 E 16a-C41-6 (Mon.) 13:30 - 18:30 招 E 16p-C41-1	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- 口頭講演 (Oral Presentation) C41会場 (Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells 休憩/Break	O Kenneth R Graham ¹ , Syed Joy ¹ , Tareq Hossain ¹ , Harindi Atapattu ¹ , Henry Pruett ¹ , Alex Boehm ¹ , Stephen Johnson ² O Shuzi Hayase ¹ O Shuxia Tao ¹	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST
11:00 11:30 9/16(1 13:30 14:00 14:30	招 E 16a-C41-5 招 E 16a-C41-6 (Mon.) 13:30 - 18:30 招 E 16p-C41-1	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- 口頭講演 (Oral Presentation) C41会場(Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells	O Kenneth R Graham¹, Syed Joy¹, Tareq Hossain¹, Harindi Atapattu¹, Henry Pruett¹, Alex Boehm¹, Stephen Johnson² O Shuzi Hayase¹ O Shuxia Tao¹ O Tetsuhiko Miyadera¹ O Somin Park¹ O Yuko Takeoka¹, Daizo Hishida¹, Hirona Kobayashi¹, Chunqing Li¹, Masahiro Fujita¹,	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST
1:00 1:30 9/16(1 3:30 4:00 4:30 5:15	招 E 16a-C41-5 招 E 16a-C41-6 (Mon.) 13:30 - 18:30 招 E 16p-C41-1 招 E 16p-C41-2 招 E 16p-C41-3	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- □頭講演 (Oral Presentation) C41 会場(Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells 休憩/Break Structural Control of Pb or Sn-based 2D Perovskite	O Kenneth R Graham ¹ , Syed Joy ¹ , Tareq Hossain ¹ , Harindi Atapattu ¹ , Henry Pruett ¹ , Alex Boehm ¹ , Stephen Johnson ² O Shuzi Hayase ¹ O Shuxia Tao ¹ O Tetsuhiko Miyadera ¹ O Somin Park ¹ O Yuko Takeoka ¹ , Daizo Hishida ¹ , Hirona	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST 1.National Univ. of Singapore
1:00 1:30 9/16(1 3:30 4:00 4:30 5:00 5:15	招 E 16a-C41-5 招 E 16a-C41-6 (Mon.) 13:30 - 18:30 招 E 16p-C41-1 招 E 16p-C41-2 招 E 16p-C41-3	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- 口頭講演 (Oral Presentation) C41会場 (Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells 休憩/Break Structural Control of Pb or Sn-based 2D Perovskite Compounds	O Kenneth R Graham ¹ , Syed Joy ¹ , Tareq Hossain ¹ , Harindi Atapattu ¹ , Henry Pruett ¹ , Alex Boehm ¹ , Stephen Johnson ² O Shuzi Hayase ¹ O Shuxia Tao ¹ O Tetsuhiko Miyadera ¹ O Somin Park ¹ O Yuko Takeoka ¹ , Daizo Hishida ¹ , Hirona Kobayashi ¹ , Chunqing Li ¹ , Masahiro Fujita ¹ , Masahiro Rikukawa ¹	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST 1.National Univ. of Singapore 1.Sophia University
1:00 1:30 0/16(0 3:30 4:00 4:30 5:00 5:15 5:45 6:15	招 E 16a-C41-5 招 E 16a-C41-6 (Mon.) 13:30 - 18:30 招 E 16p-C41-1 招 E 16p-C41-2 招 E 16p-C41-3 招 E 16p-C41-4	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- □頭請濱 (Oral Presentation) C41 会場(Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells 休憩/Break Structural Control of Pb or Sn-based 2D Perovskite Compounds Two-Dimensional (2D) Tin Halide Perovskite Semiconductors for Lasing	O Kenneth R Graham ¹ , Syed Joy ¹ , Tareq Hossain ¹ , Harindi Atapattu ¹ , Henry Pruett ¹ , Alex Boehm ¹ , Stephen Johnson ² O Shuzi Hayase ¹ O Shuxia Tao ¹ O Tetsuhiko Miyadera ¹ O Somin Park ¹ O Yuko Takeoka ¹ , Daizo Hishida ¹ , Hirona Kobayashi ¹ , Chunqing Li ¹ , Masahiro Fujita ¹ , Masahiro Rikukawa ¹	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST 1.National Univ. of Singapore 1.Sophia University
1:00 1:30 9/16(1 3:30 4:00 4:30 5:00 5:45 6:15	招 E 16a-C41-5 招 E 16a-C41-6 (Mon.) 13:30 - 18:30 招 E 16p-C41-1 招 E 16p-C41-2 招 E 16p-C41-3 招 E 16p-C41-4	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- 口頭講演 (Oral Presentation) C41会場 (Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells (木憩/Break Structural Control of Pb or Sn-based 2D Perovskite Compounds Two-Dimensional (2D) Tin Halide Perovskite Semiconductors for Lasing (木憩/Break	O Kenneth R Graham ¹ , Syed Joy ¹ , Tareq Hossain ¹ , Harindi Atapattu ¹ , Henry Pruett ¹ , Alex Boehm ¹ , Stephen Johnson ² O Shuzi Hayase ¹ O Shuxia Tao ¹ O Tetsuhiko Miyadera ¹ O Somin Park ¹ O Yuko Takeoka ¹ , Daizo Hishida ¹ , Hirona Kobayashi ¹ , Chunqing Li ¹ , Masahiro Fujita ¹ , Masahiro Rikukawa ¹ O Enzheng Shi ¹	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST 1.National Univ. of Singapore 1.Sophia University 1.Westlake University
11:00 11:30 9/16(i 13:30 14:00 14:30 15:15 15:45 16:15 16:30	招 E 16a-C41-5 招 E 16a-C41-6 (Mon.) 13:30 - 18:30 招 E 16p-C41-1 招 E 16p-C41-2 招 E 16p-C41-3 招 E 16p-C41-4	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- 口頭講演 (Oral Presentation) C41会場(Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells Molecular Control of Pb or Sn-based 2D Perovskite Compounds Two-Dimensional (2D) Tin Halide Perovskite Semiconductors for Lasing 休憩/Break Understanding the stability of perovskite solar cells	O Kenneth R Graham¹, Syed Joy¹, Tareq Hossain¹, Harindi Atapattu¹, Henry Pruett¹, Alex Boehm¹, Stephen Johnson² O Shuzi Hayase¹ O Shuxia Tao¹ O Tetsuhiko Miyadera¹ O Somin Park¹ O Yuko Takeoka¹, Daizo Hishida¹, Hirona Kobayashi³, Chunqing Li², Masahiro Fujita¹, Masahiro Rikukawa¹ O Enzheng Shi¹	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST 1.National Univ. of Singapore 1.Sophia University 1.Westlake University
1:00 1:30	招 E 16a-C41-5 招 E 16a-C41-6 (Mon.) 13:30 - 18:30 招 E 16p-C41-1 招 E 16p-C41-2 招 E 16p-C41-3 招 E 16p-C41-4 招 E 16p-C41-5 E 16p-C41-6 E 16p-C41-7	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- □頭講演 (Oral Presentation) C41 会場(Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells 休憩/Break Structural Control of Pb or Sn-based 2D Perovskite Compounds Two-Dimensional (2D) Tin Halide Perovskite Semiconductors for Lasing 休憩/Break Understanding the stability of perovskite solar cells through an adlayer of FAPbI₃ quantum dots. Rapid PbI₂ Precursor Evaporation toward Industrial	O Kenneth R Graham¹, Syed Joy¹, Tareq Hossain¹, Harindi Atapattu¹, Henry Pruett¹, Alex Boehm¹, Stephen Johnson² O Shuzi Hayase¹ O Shuxia Tao¹ O Tetsuhiko Miyadera¹ O Somin Park¹ O Yuko Takeoka¹, Daizo Hishida¹, Hirona Kobayashi¹, Chunqing Li¹, Masahiro Fujita¹, Masahiro Rikukawa¹ O Enzheng Shi¹ O Svrcek Vladimir¹, Bruno Alessi¹, Zhihao Xu¹, Calum McDonald¹, Takuya Matsui¹ O (P) Abduheber Mirzehmet¹, Calum McDonald¹,	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST 1.National Univ. of Singapore 1.Sophia University 1.Westlake University 1.AIST Tsukuba 1.AIST
1:00 1:30 9/16(1 3:30 4:00 4:30 5:00 5:15 5:45 6:15 6:30 6:45	招E 16a-C41-5 招E 16a-C41-6 (Mon.) 13:30 - 18:30 招E 16p-C41-1 招E 16p-C41-2 招E 16p-C41-3 招E 16p-C41-4 招E 16p-C41-5 E 16p-C41-7	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- 口頭講演 (Oral Presentation) C41会場(Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells 休憩/Break Structural Control of Pb or Sn-based 2D Perovskite Compounds Two-Dimensional (2D) Tin Halide Perovskite Semiconductors for Lasing 休憩/Break Understanding the stability of perovskite solar cells through an adlayer of FAPbI ₃ quantum dots. Rapid PbI ₂ Precursor Evaporation toward Industrial Perovskite Solar Cells PbS-CQD Incorporated Perovskite (MASnI ₃) Solar Cell with s-SWCNT as HTL	O Kenneth R Graham¹, Syed Joy¹, Tareq Hossain¹, Harindi Atapattu¹, Henry Pruett¹, Alex Boehm¹, Stephen Johnson² O Shuzi Hayase¹ O Shuxia Tao¹ O Tetsuhiko Miyadera¹ O Somin Park¹ O Yuko Takeoka¹, Daizo Hishida¹, Hirona Kobayashi¹, Chunqing Li¹, Masahiro Fujita¹, Masahiro Rikukawa¹ O Enzheng Shi¹ O Svrcek Vladimir¹, Bruno Alessi¹, Zhihao Xu¹, Calum McDonald¹, Takuya Matsui¹ O (P) Abduheber Mirzehmet¹, Calum McDonald¹, Takuya Matsui¹ O (M2) Md. Faiaad Rahman¹, Ahmed Zubair¹	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST 1.National Univ. of Singapore 1.Sophia University 1.Westlake University 1.AIST Tsukuba 1.AIST 1.Bangladesh University of Engineering and Technolog
11:00 11:30 9/16(1 13:30 14:00 14:30	招 E 16a-C41-5 招 E 16a-C41-6 (Mon.) 13:30 - 18:30 招 E 16p-C41-1 招 E 16p-C41-2 招 E 16p-C41-3 招 E 16p-C41-4 招 E 16p-C41-5 E 16p-C41-6 E 16p-C41-7	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- □頭講演 (Oral Presentation) C41会場 (Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells 休憩/Break Structural Control of Pb or Sn-based 2D Perovskite Compounds Two-Dimensional (2D) Tin Halide Perovskite Semiconductors for Lasing 休憩/Break Understanding the stability of perovskite solar cells through an adlayer of FAPbl₃ quantum dots. Rapid Pbl₂ Precursor Evaporation toward Industrial Perovskite Solar Cells PbS-CQD Incorporated Perovskite (MASnI₃) Solar Cell with s-SWCNT as HTL Organic and Perovskite Solar Cells Utilizing Carbon Nanotubes Thin-film Electrode	O Kenneth R Graham¹, Syed Joy¹, Tareq Hossain¹, Harindi Atapattu¹, Henry Pruett¹, Alex Boehm¹, Stephen Johnson² O Shuzi Hayase¹ O Shuxia Tao¹ O Tetsuhiko Miyadera¹ O Somin Park¹ O Yuko Takeoka¹, Daizo Hishida¹, Hirona Kobayashi¹, Chunqing Li¹, Masahiro Fujita¹, Masahiro Rikukawa¹ O Enzheng Shi¹ O Svrcek Vladimir¹, Bruno Alessi¹, Zhihao Xu¹, Calum McDonald¹, Takuya Matsui¹ O (P) Abduheber Mirzehmet¹, Calum McDonald¹, Vladimir Svrcek¹, Hitoshi Sai¹, Takurou Murakami¹, Takuya Matsui¹	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST 1.National Univ. of Singapore 1.Sophia University 1.Westlake University
1:00 1:30 1:30 1:30 3:30 4:00 4:30 5:00 5:15 5:45 6:15 6:30 7:00 7:15	招E 16a-C41-5 招E 16a-C41-6 (Mon.) 13:30 - 18:30 招E 16p-C41-1 招E 16p-C41-3 招E 16p-C41-4 招E 16p-C41-5 E 16p-C41-7 E 16p-C41-7	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- □頭講演 (Oral Presentation) C41 会場 (Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells 休憩/Break Structural Control of Pb or Sn-based 2D Perovskite Compounds Two-Dimensional (2D) Tin Halide Perovskite Semiconductors for Lasing 休憩/Break Understanding the stability of perovskite solar cells through an adlayer of FAPbI₃ quantum dots. Rapid PbI₂ Precursor Evaporation toward Industrial Perovskite Solar Cells PbS-CQD Incorporated Perovskite (MASnI₃) Solar Cell with s-SWCNT as HTL Organic and Perovskite Solar Cells Utilizing Carbon Nanotubes Thin-film Electrode 休憩/Break Electronic and Optical Properties and Defect Investigation of MASnX₃ (X = CI, Br, and I) Perovskite	O Kenneth R Graham¹, Syed Joy¹, Tareq Hossain¹, Harindi Atapattu¹, Henry Pruett¹, Alex Boehm¹, Stephen Johnson² O Shuzi Hayase¹ O Shuxia Tao¹ O Tetsuhiko Miyadera¹ O Somin Park¹ O Yuko Takeoka¹, Daizo Hishida¹, Hirona Kobayashi¹, Chunqing Li¹, Masahiro Fujita¹, Masahiro Rikukawa¹ O Enzheng Shi¹ O Svrcek Vladimir¹, Bruno Alessi¹, Zhihao Xu¹, Calum McDonald¹, Takuya Matsui¹ O (P) Abduheber Mirzehmet¹, Calum McDonald¹, Takuya Matsui¹ O (M2) Md. Faiaad Rahman¹, Ahmed Zubair¹	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST 1.National Univ. of Singapore 1.Sophia University 1.Westlake University 1.AIST Tsukuba 1.AIST 1.Bangladesh University of Engineering and Technolog
11:00 9/16(1 14:00 14:00 14:30 15:00 15:15 16:30 17:00 17:15 17:30 17:45	招E 16a-C41-5 招E 16a-C41-6 (Mon.) 13:30 - 18:30 招E 16p-C41-1 招E 16p-C41-2 招E 16p-C41-3 招E 16p-C41-4 招E 16p-C41-5 E 16p-C41-7 E 16p-C41-7 E 16p-C41-8 E 16p-C41-9 E 16p-C41-10	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- □頭講演 (Oral Presentation) C41 会場(Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells 休憩/Break Structural Control of Pb or Sn-based 2D Perovskite Compounds Two-Dimensional (2D) Tin Halide Perovskite Semiconductors for Lasing 休憩/Break Understanding the stability of perovskite solar cells through an adlayer of FAPbl₃ quantum dots. Rapid Pbl₂ Precursor Evaporation toward Industrial Perovskite Solar Cells PbS-CQD Incorporated Perovskite (MASnI₃) Solar Cell with s-SWCNT as HTL Organic and Perovskite Solar Cells Utilizing Carbon Nanotubes Thin-film Electrode 休憩/Break Electronic and Optical Properties and Defect	O Kenneth R Graham¹, Syed Joy¹, Tareq Hossain¹, Harindi Atapattu¹, Henry Pruett¹, Alex Boehm¹, Stephen Johnson² O Shuzi Hayase¹ O Shuxia Tao¹ O Tetsuhiko Miyadera¹ O Somin Park¹ O Yuko Takeoka¹, Daizo Hishida¹, Hirona Kobayashi¹, Chunqing Li¹, Masahiro Fujita¹, Masahiro Rikukawa¹ O Enzheng Shi¹ O Svrcek Vladimir¹, Bruno Alessi¹, Zhihao Xu¹, Calum McDonald¹, Takuya Matsui¹ O (P) Abduheber Mirzehmet¹, Calum McDonald¹, Vladimir Svrcek¹, Hitoshi Sai¹, Takurou Murakami¹, Takuya Matsui¹ O (M2) Md. Faiaad Rahman¹, Ahmed Zubair¹ O Yutaka Matsuo¹¹²	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST 1.National Univ. of Singapore 1.Sophia University 1.Westlake University 1.AIST Tsukuba 1.AIST 1.Bangladesh University of Engineering and Technolog The Netherlands 1.Nagoya Univ., 2.i-MI, Nagoya Univ.
11:00 11:30 99/16(13:30 14:00 14:30 15:00 15:15 15:45 16:15 16:45 17:00	招E 16a-C41-5 招E 16a-C41-6 (Mon.) 13:30 - 18:30 招E 16p-C41-1 招E 16p-C41-2 招E 16p-C41-3 招E 16p-C41-4 招E 16p-C41-5 E 16p-C41-7 E 16p-C41-7 E 16p-C41-8 E 16p-C41-9 E 16p-C41-10	Perovskite Solar Cells and Modules Technological Advances of Perovskite Solar Cells and Modules 休憩/Break Stability of Tin Halide Perovskites – from Additives through Two-Dimensional Materials Perovskite solar cells consisting of tin -Improvement of efficiency and stability- □頭講演 (Oral Presentation) C41 会場 (Room C41) Materials theory of halide perovskites: defect and chirality Crystal growth in perovskite solar cells Molecular engineering of interfaces for efficient and stable perovskite solar cells 休憩/Break Structural Control of Pb or Sn-based 2D Perovskite Compounds Two-Dimensional (2D) Tin Halide Perovskite Semiconductors for Lasing 休憩/Break Understanding the stability of perovskite solar cells through an adlayer of FAPbl₃ quantum dots. Rapid Pbl₂ Precursor Evaporation toward Industrial Perovskite Solar Cells PbS-CQD Incorporated Perovskite (MASnI₃) Solar Cell with s-SWCNT as HTL Organic and Perovskite Solar Cells Utilizing Carbon Nanotubes Thin-film Electrode ★憩/Break Electronic and Optical Properties and Defect Investigation of MASnX₃ (X = Cl, Br, and I) Perovskite Structures as Solar Cell Absorber	O Kenneth R Graham¹, Syed Joy¹, Tareq Hossain¹, Harindi Atapattu¹, Henry Pruett¹, Alex Boehm¹, Stephen Johnson² O Shuzi Hayase¹ O Shuxia Tao¹ O Tetsuhiko Miyadera¹ O Somin Park¹ O Yuko Takeoka¹, Daizo Hishida¹, Hirona Kobayashi¹, Chunqing Li¹, Masahiro Fujita¹, Masahiro Rikukawa¹ O Enzheng Shi¹ O Svrcek Vladimir¹, Bruno Alessi¹, Zhihao Xu¹, Calum McDonald¹, Takuya Matsui¹ O (P) Abduheber Mirzehmet¹, Calum McDonald¹, Vladimir Svrcek¹, Hitoshi Sai¹, Takurou Murakami¹, Takuya Matsui¹ O (M2) Md. Faiaad Rahman¹, Ahmed Zubair¹ O Yutaka Matsuo¹¹² O Qing Wang¹, Aimi Hiratsuka², Satoshi Iikubo¹	Tokyo, 2.RCAST, The Univ. of Tokyo 1.Univ. of Kentucky, 2.Transylvania Univ. 1.Univ. Electro-Comm 1.Materials Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technolog The Netherlands 1.AIST 1.National Univ. of Singapore 1.Sophia University 1.Westlake University 1.AIST Tsukuba 1.AIST 1.Bangladesh University of Engineering and Technolog The Netherlands 1.Nagoya Univ., 2.i-MI, Nagoya Univ.

E 16p-C41-12 Resolving the Light and the Thermal Stability Issues in the Tin-Lead Perovskite Solar Cells by Manipulating the Garrier Selective Layers with Dopant and/or Passivation

18:15

○ (PC)Shahrir Razey Sahamir¹, Takeru Bessho²,

1.Univ. of Electro-Com, 2.Univ. of Tokyo

10 左繼/	\ ユ ・バノナエレカ	Carrier Selective Layers with Dopant and/or Passivation		
		ッチャブルエレクトロニクスのフロンティア / Frontier of	flexible and stretchable electronics	
		口頭講演 (Oral Presentation) C42会場 (Room C42)	O lesses de Late l	
10:00 10:05	16a-C42-1 招 16a-C42-2	オープニング 伸縮性エレクトロニクスの技術トレンドと電子皮膚	○福田 憲二郎 ¹ ○染谷 隆夫 ^{1,2}	1. 理研 1. 東大工, 2. 理研
10:50	招 16a-C42-3		〇大野 雄高 ¹	1.名大未来研
		トロニクス		
11:20	招 16a-C42-4	有機強塩基を用いた低仕事関数電極の開発とフレキシブルOLEDへの応用	〇深川 弘彦 1 , 佐々木 翼 2 , 大野 拓 2 , 岡田 拓也 2 , 清水 貴央 2 , 長谷川 宗弘 3 , 桒田 健二 3 , 森井 克行 3,4	1.千葉大先進, 2.NHK技研, 3.日本触媒, 4.大阪大学
13:30	が.) 13:30 - 18:25 招 16p-C42-1	口頭講演 (Oral Presentation) C42 会場 (Room C42) 瞬時解析脳を搭載したフレキシブルエッジシステム	○竹井 邦晴 ¹	1.北海道大学
14:00		共役高分子を用いた伸縮性半導体	〇芦沢 実 ^{1,2} , Yu Zheng ² , Song Zhang ² , Jiheong Kang ² , Shayla Nikzad ² , Zhiao Yu ² , 落合 優登 ² , Hung-Chin Wu ² , Helen Tran ² , Jaewan Mun ² , Yu-Qing Zheng ² , Jeffrey BH. Tok ² , Xiaodan Gu ³ , Zhenan Bao ²	1.東工大物質理工, 2.スタンフォード大学, 3.サザンミシシッピ大学
14:30	招 16p-C42-3	有機薄膜トランジスタ型化学センサによる実サンプル分 析	O南豪 ¹	1. 東大生研
15:00 15:30	招 16p-C42-4 E 16p-C42-5	データベースと AI を活用した有機半導体デバイス開発 Phase Segregation-Induced Highly Sensitive Printed Stretchable Strain Sensor Using PDMS/PEDOT-CB Composite 休憩/Break	○松井 弘之 ¹ ○ Yifei Wang ¹ , Junya Yoshida ² , Ayako Yoshida ¹ , Yasunori Takeda ¹ , Tomohito Sekine ² , Daisuke Kumaki ¹ , Shizuo Tokito ¹	1. 山形大ROEL 1.INOEL, Yamagata Univ., 2.Grad. School of Organic Materials Science, Yamagata Univ.
16:15	招 16p-C42-6	ハイドロゲル製イオントロニック医用デバイスの開発	○西澤 松彦 ¹	1.東北大工
16:45	16p-C42-7	ポリビニルアルコール・ポリウレタン混合ナノファイバー	\bigcirc (M2) 三室 真帆 1 , 山岸 健人 1 , 李 成薫 1 , 横田 知之 1 ,	
17:00	16p-C42-8	を用いた耐水性と伸縮性を有する皮膚電極 生体組織に機械的に適合する超柔軟・伸縮性液体金属ア		1.東大院工, 2.シンガポール工科デザイン大
17:15	奨 16p-C42-9	ンテナ 光線力学療法に向けた薄膜状発光デバイスの開発と抗腫	ファンシャオウィン ² , 橋本 道尚 ²	1 市工七生会研工 9 市上陸総合立ル 9 丰尚土四エ
17:15		瘍能評価 植物葉面に貼付可能な透明超薄膜電極の開発と生体電位	野本 貴大 2.5, 藤枝 俊宣 1.6	4. 東工大工, 5. 東工大化生研, 6. 東工大ASMat
17:45	切 165 0/2 11	応答の計測 エラストスピンデバイスとナノ・エラストロニクス	〇千葉 大地1,2,3,4	1. 東北大 SRIS, 2. 阪大産研, 3. 阪大 CSRN, 4. 阪大 OTRI
18:15		クロージング	○ ○ 公 公 松 久 直 司 1.2	1. 東北大 SRIS, 2. 阪大産研, 3. 阪大 CSRN, 4. 阪大 OTRI 1. 東大先端研, 2. 東大生研
【一般公開 Processe	開】T18 最先端ロシ es, and Packaging	s ジック半導体と連携・協働する材料・プロセス・実装技術の Technologies Collaborating with State-of-the-Art Logic 口頭講演 (Oral Presentation) A41会場(Room A41)		$2\sim$ / (Open Symposium) The Frontline of Materials,
13:30	16p-A41-1	古頭神典 (Oral Presentation) A41 云場 (Room A41) オープニング	○井田 次郎 ^{1,2}	1. 金沢工業大学, 2. シリコンテクノロジー分科会 幹事長
13:35		Al・コンピューティング・半導体戦略について	○金指 壽¹	1.経済産業省
14:05	招 16p-A41-3	先端ロジックデバイスの技術トレンドー過去, 現在, 未 来一	○平本 俊郎¹	1.東大生研
14:35 15:05	招 16p-A41-4	後工程の新しい幕開け:革新的チップレット技術の未来 休憩・名刺交換会/Interaction Break	○折井 靖光¹	1.Rapidus株式会社
15:25	招 16p-A41-5	最先端Logic半導体を支えるウエーハ技術	〇松川 和人1	1.SUMCO
15:55 16:25	招 16p-A41-6 招 16p-A41-7	先端ロジックデバイスにおけるプラズマエッチング技術 先端ロジックと連携する実装技術 ~有機インターポーザ		1.日立ハイテク 1.新光電気工業株式会社
10.23	10p-A41-7	を用いた基板開発~		1.利力电对工未体及工工
16:55 17:25	招 16p-A41-8 16p-A41-9	高度化するAIと協同する車載チップレット技術 クロージング	○岩城 隆雄 ¹ ○宮下 桂 ^{1,2} , 中塚 理 ^{3,2}	1. ミライズ 1. 東芝デバイス&ストレージ株式会社, 2. シリコンテク ノロジー分科会・副幹事長, 3. 名古屋大学
	/ Ionizing Radiatio k放射線絵出器の最	on 是新動向 / Recent developments in semiconductor radiati	on detectors	
		口頭講演 (Oral Presentation) A35 会場 (Room A35)	on detectors	
13:30 指	召 E 17p-A35-1	4H-SiC epitaxial radiation detectors for harsh environments	○ Krishna C. Mandal¹	1.University of South Carolina
14:00 14:30	招 17p-A35-2 招 17p-A35-3	ペロプスカイト半導体を用いた放射線検出器開発の動向 ハライドペロプスカイト半導体による放射線検出器の開 発		1. 九大基 1. 元 京都医療科学大
15:00		休憩/Break		
15:15	招 17p-A35-4	TIBr半導体検出器の結晶性及びキャリア輸送特性評価	〇渡辺 賢 -1 , 長谷川 創大 1 , 須貝 優 n , 田中 清志 朗 1 , 野上 光博 1 , 人見 啓太朗 1	1. 九大工, 2. 東北大
15:45 指	召 E 17p-A35-5	Advancements in High-Resolution Detector Development for High Energy Instrumentation for	Olrfan Kuvvetli ^{1,2,3} , Selina Howalt Owe ^{1,2,3} , Carl Budtz-Joergensen ^{1,2,3}	1.DTU Space, Technical Univ. of Denmark, 2.Department of Space Research and Technology,
16:15	招 17p-A35-6	Space Telescopes 大面積CdTe フォトンカウンティング X 線イメージャーの 開発	○青木 徹 ^{1,2} , 西澤 潤一 ¹ , 加瀬 裕貴 ¹ , 都木 克之 ^{1,2}	3.Astrophysics and Atmospheric Physics 1.静岡大電子研, 2.ANSeeN
		ス / Plasma Electronics		
		イス製造に向けたプラズマ直接接合技術 / Plasma direct l 口頭講演 (Oral Presentation) C41 会場 (Room C41)	bonding technology for next-generation semiconduc	tor and new device manufacturing
13:30	17p-C41-1	山坝講演 (Oral Presentation) C41 会場 (Room C41) オープニング	○田中 宏昌 1	1.名古屋大
13:35	招 17p-C41-2	プラズマ表面活性化による基板接合技術の動向	○高橋 健司 ¹	1. 産総研
14:05 14:35	招 17p-C41-3 奨 17p-C41-4	表面活性化接合のメカニズム 3D集積応用へ向けた接合絶縁膜の低温接合メカニズム解 ***	○須賀 唯知 ^{1,2} ! ○北川 颯人¹, 佐藤 亮輔¹, 井上 史大¹	1. 東京大学, 2. 明星大学 1. 横浜国大
14:50		析 休憩/Break		
15:00	招 17p-C41-5	大口径基板接合に向けた高速原子ビーム源	○秦 誠一¹	1.名大院
15:30	招 17p-C41-6	大気圧プラズマジェットによる異種基板の直接接合	○竹中 弘祐¹, 内田 儀一郎², 節原 裕一¹	1. 阪大接合研, 2. 名城大理工
16:00		パワーデバイスの接合技術 1インチ多結晶ダイヤモンド上 GaN HEMT	直輝1	 1.大阪公大院工, 2.東北大金研 1.大阪公大工, 2.エア・ウォーター(株), 3.東北大金研
16:45	× 11 h-041-0	体態/Break	野裕3,井上耕治3,永井康介3,重川直輝1,梁剣波1	ハハEハムハ上, 4.一/ フォーク 「(怀), J. 米北人並切
16:45	招 17p-C41-9	TUP DECAR	○高桑 聖仁 1,2	1.東大工, 2.理研

17:25 17:55	招 17p-C41-10	表面活性化接合のフォトニクスデバイスへの展開 休憩/Break	〇日暮 栄治1	1.東北大
18:00	•	パネルディスカッション		1.SCREEN HD, 2.名大低温プラズマ, 3.産総研, 4.東大院工, 5.名大院工, 6.阪大院工, 7.大阪公立大院工, 8.東北大院工
		プネティクス / Spintronics and Magnetics	sh satisity valated to light magnetican and asintyoni	
	ue.) 13:30 - 16:55	ニクスに関わる最新の研究動向 / Recent trends in resear 口頭講演 (Oral Presentation) A22会場(Room A22) オープニング:光と磁気、スピントロニクスに関わる最		1.東京農工大工
13:40 14:10	招 17p-A22-2 招 17p-A22-3	新の研究動向 光導波路を用いた光磁気記録デバイスとAI応用 磁気光学効果のセンサ応用とスピンプラズモニクスへの	〇庄司 雄哉¹, 高木 岳¹, 矢島 駿¹ 〇山根 治起¹, 長谷川 崇², 小林 政信³, 安川 雪子³	1.東工大 1.秋田産技センター, 2.秋田大, 3.千葉工大
14:40	招 17p-A22-4	展開 熱アシスト磁気記録 (HAMR) 技術開発と製品化およびそ の実用化	〇横山 智弘 ¹, 岩田 太郎 ¹	1.日本シーゲイト (株)
15:10 15:25	招 17p-A22-5	休憩/Break 磁性メタマテリアルを用いた光スピン流制御:メタ光ス ピントロニクス	○松原 正和 ^{1,2,3}	1.東北大理, 2.東北大CSIS, 3.JST さきがけ
15:55		光を用いた超高速磁化制御	○塚本 新¹	1.日大理工
16:25 12 有機·		反強磁性マグノン伝播の時間分解イメージング アトロニクス / Organic Molecules and Bioelectronics	○佐藤 琢哉¹	1.東工大理
13 半導位	体 / Semiconducto	rs		
		: 薄膜太陽電池バトルロワイアル / Organic vs Inorganic 口頭講演 (Oral Presentation) A21 会場(Room A21)	Compound Materials, Thin-film Solar Cell Battle Ro	yale
9:30	17a-A21-1	有機系vs無機化合物系 薄膜太陽電池バトルロワイアルはじめに	○今泉 充², 仁木 栄¹	1.NEDO, 2. 三条市大
10:00	招 17a-A21-2	有機薄膜太陽電池の将来展望	〇尾坂 格1	1. 広大院先進理工
10:30 11:00	招 17a-A21-3 招 17a-A21-4	III-V 化合物薄膜太陽電池シートの開発 ガラス建材一体型ペロブスカイト太陽電池の開発	〇高本 達也 ¹ , 山口 洋司 ¹ , 十楚 博行 ¹ , 鷲尾 英俊 ¹ 〇松井 太佑 ¹	1.シャープ SESJ 1.パナソニックホールディングス株式会社
11:30	招 17a-A21-5	Siタンデム太陽電池の高効率化と車載応用	〇山口真史 1 ,中村京太郎 1 ,尾崎亮 1 ,小島信晃 1 ,大下祥雄 1	
9/17(T 13:30	ue.) 13:30 - 17:15 17p-A21-1	口頭講演 (Oral Presentation) A21 会場(Room A21) Spalling工程による薄膜タンデム太陽電池の作製と評価	○宮下 直也¹, 庄司 靖², 菅谷 武芳², 曽我部 東馬¹, 山 口浩一¹, 岡田 至崇³	1. 電通大, 2. 産総研, 3. 東大先端研
13:45	17p-A21-2	高効率・高耐久性全ペロブスカイト3接合太陽電池モ ジュール:電圧整合 vs. 電流整合	○竹田 康彦¹, 山中 健一¹, 加藤 直彦¹	1. 豊田中研
14:00 14:30	招 17p-A21-3 招 17p-A21-4	界面の分子工学で進化するペロプスカイト太陽電池 HVPE及びスマートスタックによるIII – V族多接合太陽 電池の低コスト作製技術	○宮坂 力¹ ○菅谷 武芳¹	1. 桐蔭横浜大学 1. 産総研
15:00	17p-A21-5	太陽電池素子を応用した放射線センシング技術開発	○奥野 泰希 ^{1.5} , 小林 知洋 ¹ , 大竹 淑恵 ¹ , 今泉 充 ² , 上 川 由紀子 ³ , 岡本 保 ⁴ , 栗本 裕司 ⁴ , 陣場 優貴 ⁵ , 荻野 靖 之 ⁵ , 笠田 竜太 ⁴ , 中村 徹哉 ⁶	1.理研光量子センター, $2.$ 三条市大, $3.$ 産総研, $4.$ 木更津高専, $5.$ 東北大, $6.$ 宇宙機構
15:15 15:30	17p-A21-6	異種太陽電池の耐放射線性比較法 休憩・名刺交換会/Interaction Break	○中村 徹哉¹, 秋山 英文², 岡田 至崇³	1.宇宙機構, 2.東大物性研, 3.東大先端研
15:45 16:15	招 17p-A21-7 招 17p-A21-8	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とペロブスカイト太陽電池の得	○杉本 広紀 ¹ ○根上 卓之 ¹	1. 懒 PXP 1. 立命館大
15:45 16:15 16:45	招 17p-A21-8 招 17p-A21-9	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とペロプスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか?		
15:45 16:15 16:45 12 有機	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とペロプスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronics	○根上 卓之 ¹ ○金光 義彦 ¹	1.立命館大
15:45 16:15 16:45 12 有機 T17 有機	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク 後・イオン熱電変換	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とペロプスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? アトロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24)	○根上 卓之 ¹ ○金光 義彦 ¹ cetric materials and devices	1. 立命館大 1. 京大化研
15:45 16:15 16:45 12 有機 T17 有機	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク 後・イオン熱電変換	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とペロプスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? アトロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele	〇根上卓之 1 〇金光義彦 1 sctric materials and devices $^{\circ}$	1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研
15:45 16:15 16:45 12 有機 T17 有機 9/17(7 9:00	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク 銭・イオン熱電変換 「ue.) 9:00 - 11:40 17a-A24-1	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? アトロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24) オーブニング 有機半導体における巨大ゼーベック効果	○根上卓之 ¹ ○金光義彦 ¹ cetric materials and devices ○堀家匠平 ¹ , 衛 慶碩 ²	1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研
15:45 16:15 16:45 12 有機 T17 有機 9/17(7 9:00 9:10	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク も・イオン 熱電 変 Fue.) 9:00 - 11:40 17a-A24-1 招 17a-A24-2	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とペロプスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24) オープニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会/Interaction Break キャリアドーピング技術を駆使したカーボンナノチュー	〇根上 卓之 1 〇金光 義彦 1 ctric materials and devices ○堀家 匠平 1 , 衛 慶碩 2 〇中村 雅 $^{-1}$, 阿部 竜 1 , 小島 広孝 1,2 , 林 正太郎 3 , 平本昌宏 1	1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大
15:45 16:15 16:45 12 有機 T17 有機 9/17(7 9:00 9:10 9:40 10:10	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク 後・イオン熱電変換 Fue.) 9:00 - 11:40 17a-A24-1 招 17a-A24-2 招 17a-A24-3	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24) オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会/Interaction Break キャリアドーピング技術を駆使したカーボンナノチュー ブ熱電材料の開発 ジビラニリデン誘導体を基盤とする n型分子ドーバント	〇根上 卓之 1 〇金光 義彦 1 ctric materials and devices ○堀家 匠平 1 , 衛 慶碩 2 〇中村 雅 $^{-1}$, 阿部 竜 1 , 小島 広孝 1,2 , 林 正太郎 3 , 平本昌宏 1	1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工
15:45 16:15 16:45 12 有機 717 有機 9:10 9:10 9:40 10:10 10:25	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク ・イオン熱電変換 fue.) 9:00 - 11:40 17a-A24-1 招 17a-A24-2 招 17a-A24-3 招 17a-A24-4	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロプスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? アトロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24) オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会 / Interaction Break キャリアドービング技術を駆使したカーボンナノチュー ブ熱電材料の開発 ジビラニリデン誘導体を基盤とする n型分子ドーパント の開発 クロスリンク型有機超塩基ドーバントによる高安定性 n	○根上卓之 ¹ ○金光義彦 ¹ **Ctric materials and devices ○堀家 匠平 ¹ , 衛 慶碩 ² ○中村 雅一 ¹ , 阿部 竜 ¹ , 小島 広孝 ^{1,2} , 林 正太郎 ³ , 平本昌宏 ¹ ○村田 理尚 ¹ ○藤ヶ谷 剛彦 ^{1,2,3} , 田中 直樹 ^{1,3,2} ○瀧宮 和男 ^{1,2,3} , 松尾 崇也 ² ○西中 茉佑子 ¹ , 小柴 康子 ^{1,2} , 衛 慶碩 ^{3,4} , 舟橋 正	 1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大 I2CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材,
15:45 16:15 16:45 12 有機 9/17(1 9:00 9:10 9:40 10:10 10:25 10:55	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク シ・イオン熱電変換 Fue.) 9:00 - 11:40 招 17a-A24-1 招 17a-A24-2 招 17a-A24-3 招 17a-A24-4 野 17a-A24-5 奨 17a-A24-6	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロプスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? アトロニクス / Organic Molecules and Bioelectronic M材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24会場(Room A24)オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会/Interaction Break キャリアドーピング技術を駆使したカーボンナノチュー ブ熱電材料の開発 ジビラニリデン誘導体を基盤とする n型分子ドーパント の開発	○根上卓之 ¹ ○金光義彦 ¹ setric materials and devices ○堀家 匠平 ¹ , 衛 慶碩 ² ○中村 雅一 ¹ , 阿部 竜 ¹ , 小島 広孝 ^{1,2} , 林 正太郎 ³ , 平本昌宏 ¹ ○村田 理尚 ¹ ○藤ヶ谷 剛彦 ^{1,2,3} , 田中 直樹 ^{1,3,2} ○瀧宮 和男 ^{1,2,3} , 松尾 崇也 ²	1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大 I2CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR
15:45 16:15 16:45 12 有機 9/17(1 9:00 9:10 9:40 10:10 10:25 10:55	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク シ・イオン熱電変換 Fue.) 9:00 - 11:40 招 17a-A24-1 招 17a-A24-2 招 17a-A24-3 招 17a-A24-4 野 17a-A24-5 奨 17a-A24-6	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24) オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会/Interaction Break キャリアドーピング技術を駆使したカーボンナノチュー ブ熱電材料の開発 ジビラニリデン誘導体を基盤とする n型分子ドーバント の開発 クロスリンク型有機超塩基ドーバントによる高安定性 n 型カーボンナノチューブの創出と熱電モジュール応用	○根上卓之 ¹ ○金光義彦 ¹ **Ctric materials and devices ○堀家 匠平 ¹ , 衛 慶碩 ² ○中村 雅一 ¹ , 阿部 竜 ¹ , 小島 広孝 ^{1,2} , 林 正太郎 ³ , 平本昌宏 ¹ ○村田 理尚 ¹ ○藤ヶ谷 剛彦 ^{1,2,3} , 田中 直樹 ^{1,3,2} ○瀧宮 和男 ^{1,2,3} , 松尾 崇也 ² ○西中 茉佑子 ¹ , 小柴 康子 ^{1,2} , 衛 慶碩 ^{3,4} , 舟橋 正	 1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大 I2CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材,
15:45 16:15 16:45 12 有機 9/17(1 9:00 9:10 9:40 10:10 10:25 10:55 11:25 9/17(T 13:30 14:00	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク 分子・バイオエレク (Tue.) 9:00 - 11:40 17a-A24-1 招 17a-A24-2 招 17a-A24-4 招 17a-A24-4 招 17a-A24-6 世e.) 13:30 - 16:25 招 17p-A24-1 招 17p-A24-2	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronic M材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24)オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会/Interaction Break キャリアドーピング技術を駆使したカーボンナノチュー ブ熱電材料の開発 ジピラニリデン誘導体を基盤とする n型分子ドーパントの開発 クロスリンク型有機超塩基ドーバントによる高安定性 n型カーボンナノチューブの創出と熱電モジュール応用 口頭講演(Oral Presentation)A24 会場(Room A24) CNT 熱電材料に求められる要素技術の開発 カーボンナノチューブー高分子複合熱電材料の π型モジュール化に関する研究 休憩・名刺交換会/Interaction Break	○根上卓之 ¹ ○金光義彦 ¹ **Ctric materials and devices ○堀家 匠平 ¹ , 衛 慶碩 ² ○中村 雅一 ¹ , 阿部 竜 ¹ , 小島 広孝 ^{1,2} , 林 正太郎 ³ , 平本昌宏 ¹ ○村田 理尚 ¹ ○藤ヶ谷 剛彦 ^{1,2,3} , 田中 直樹 ^{1,3,2} ○瀧宮 和男 ^{1,2,3} , 松尾 崇也 ² ○西中 茉佑子 ¹ , 小柴 康子 ^{1,2} , 衛 慶碩 ^{3,4} , 舟橋 正 浩 ^{1,2} , 堀家 匠平 ^{1,2,3,5} ○野々口 斐之 ¹ ○末森 浩司 ¹	 1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大 I2CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材, 4. 筑波大院理, 5. 神戸大環境セ 1. 京都工繊大 1. 京都工繊大 1. 産総研
15:45 16:15 16:45 12 有機 9/17(1 9:00 9:10 9:40 10:10 10:25 10:55 11:25 9/17(T 13:30 14:00	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク ディースクリー 11:40 17a-A24-1 招 17a-A24-2 招 17a-A24-3 招 17a-A24-4 招 17a-A24-5 獎 17a-A24-6 ue.) 13:30 - 16:25 招 17p-A24-1 招 17p-A24-2	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24) オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会/Interaction Break キャリアドーピング技術を駆使したカーボンナノチュー ブ熱電材料の開発 ジビラニリデン誘導体を基盤とする n型分子ドーパント の開発 クロスリンク型有機超塩基ドーバントによる高安定性 n 型カーボンナノチューブの創出と熱電モジュール応用 口頭請演(Oral Presentation)A24 会場(Room A24) CNT 熱電材料に求められる要素技術の開発 カーボンナノチューブー高分子複合熱電材料の π型モジュール化に関する研究 休憩・名刺交換会/Interaction Break 導電性高分子熱電デバイスのIoT電源応用	○根上卓之 ¹ ○金光義彦 ¹ **Ctric materials and devices ○堀家 匠平 ¹ , 衛 慶碩 ² ○中村 雅一 ¹ , 阿部 竜 ¹ , 小島 広孝 ^{1,2} , 林 正太郎 ³ , 平本昌宏 ¹ ○村田 理尚 ¹ ○藤ヶ谷 剛彦 ^{1,2,3} , 田中 直樹 ^{1,3,2} ○瀧宮 和男 ^{1,2,3} , 松尾 崇也 ² ○西中 茉佑子 ¹ , 小柴 康子 ^{1,2} , 衛 慶碩 ^{3,4} , 舟橋 正 浩 ^{1,2} , 堀家 匠平 ^{1,2,3,5} ○野々口 斐之 ¹ ○末森 浩司 ¹	1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大12CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材, 4. 筑波大院理, 5. 神戸大環境セ 1. 京都工繊大 1. 産総研 1. 産総研
15:45 16:15 16:45 12 有機 9/17(1 9:00 9:10 9:40 10:10 10:25 10:55 11:25 9/17(T 13:30 14:00	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク 分子・バイオエレク (Tue.) 9:00 - 11:40 17a-A24-1 招 17a-A24-2 招 17a-A24-4 招 17a-A24-4 招 17a-A24-6 世e.) 13:30 - 16:25 招 17p-A24-1 招 17p-A24-2	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronic M材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24)オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会/Interaction Break キャリアドーピング技術を駆使したカーボンナノチュー ブ熱電材料の開発 ジピラニリデン誘導体を基盤とする n型分子ドーパントの開発 クロスリンク型有機超塩基ドーバントによる高安定性 n型カーボンナノチューブの創出と熱電モジュール応用 口頭講演(Oral Presentation)A24 会場(Room A24) CNT 熱電材料に求められる要素技術の開発 カーボンナノチューブー高分子複合熱電材料の π型モジュール化に関する研究 休憩・名刺交換会/Interaction Break	○根上卓之 ¹ ○金光義彦 ¹ **Ctric materials and devices ○堀家 匠平 ¹ , 衛 慶碩 ² ○中村 雅一 ¹ , 阿部 竜 ¹ , 小島 広孝 ^{1,2} , 林 正太郎 ³ , 平本昌宏 ¹ ○村田 理尚 ¹ ○藤ヶ谷 剛彦 ^{1,2,3} , 田中 直樹 ^{1,3,2} ○瀧宮 和男 ^{1,2,3} , 松尾 崇也 ² ○西中 茉佑子 ¹ , 小柴 康子 ^{1,2} , 衛 慶碩 ^{3,4} , 舟橋 正 浩 ^{1,2} , 堀家 匠平 ^{1,2,3,5} ○野々口 斐之 ¹ ○末森 浩司 ¹	 1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大 I2CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材, 4. 筑波大院理, 5. 神戸大環境セ 1. 京都工繊大 1. 京都工繊大 1. 産総研
15:45 16:15 16:45 12 有機 9/17(1 9:00 9:10 9:40 10:10 10:25 10:55 11:25 9/17(T 13:30 14:00 14:30 14:30 14:51 15:45 16:00 16:15	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク を・イオン熱電変換 Fue.) 9:00 - 11 ² -A24-1 招 17a-A24-2 招 17a-A24-3 招 17a-A24-4 招 17a-A24-5 奨 17a-A24-6 ue.) 13:30 - 16:25 招 17p-A24-1 招 17p-A24-2 居 17p-A24-2	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24) オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会 / Interaction Break キャリアドーピング技術を駆使したカーボンナノチューブ熱電材料の開発 ジピラニリデン誘導体を基盤とする n型分子ドーパントの開発 クロスリンク型有機超塩基ドーパントによる高安定性 n型カーボンナノチューブの創出と熱電モジュール応用 口頭講演 (Oral Presentation) A24 会場(Room A24) CNT 熱電材料に求められる要素技術の開発 カーボンナノチューブー高分子複合熱電材料の π型モジュール化に関する研究 休憩・名刺交換会 / Interaction Break 導電性高分子熱電デバイスの loT 電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換会 / Interaction Break Self-Powered Sensors Utilizing Thermocells	○根上卓之 ¹ ○金光義彦 ¹ **Ctric materials and devices ○堀家 匠平 ¹ , 衛 慶碩 ² ○中村 雅一 ¹ , 阿部 竜 ¹ , 小島 広孝 ^{1,2} , 林 正太郎 ³ , 平本昌宏 ¹ ○村田 理尚 ¹ ○藤ヶ谷 剛彦 ^{1,2,3} , 田中 直樹 ^{1,3,2} ○瀧宮 和男 ^{1,2,3} , 松尾 崇也 ² ○西中 茉佑子 ¹ , 小柴 康子 ^{1,2} , 衛 慶碩 ^{3,4} , 舟橋 正 浩 ^{1,2} , 堀家 匠平 ^{1,2,3,5} ○野々口 斐之 ¹ ○末森 浩司 ¹	1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大12CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材, 4. 筑波大院理, 5. 神戸大環境セ 1. 京都工繊大 1. 産総研 1. 産総研
15:45 16:15 16:45 12 有機 9/17(1 9:00 9:10 9:40 10:10 10:25 10:55 11:25 9/17(T 13:30 14:00 14:45 15:15 15:45 16:00 16:15 13 半導	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク シーイナン熱・電グ Tue.) 9:00 - 11:40 17a-A24-1 招 17a-A24-2 招 17a-A24-4 招 17a-A24-4 招 17a-A24-5 奨 17a-A24-6 ue.) 13:30 - 16:25 招 17p-A24-1 招 17p-A24-2 居 17p-A24-3 招 17p-A24-4 E 17p-A24-5 「17p-A24-6 体/ Semiconducto	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24) オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会 / Interaction Break キャリアドーピング技術を駆使したカーボンナノチューブ熱電材料の開発 ジピラニリデン誘導体を基盤とする n型分子ドーパントの開発 クロスリンク型有機超塩基ドーパントによる高安定性 n型カーボンナノチューブの創出と熱電モジュール応用 口頭講演 (Oral Presentation) A24 会場(Room A24) CNT 熱電材料に求められる要素技術の開発 カーボンナノチューブー高分子複合熱電材料の π型モジュール化に関する研究 休憩・名刺交換会 / Interaction Break 導電性高分子熱電デバイスの loT 電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換会 / Interaction Break Self-Powered Sensors Utilizing Thermocells	○根上卓之 ¹ ○金光義彦 ¹ **Ctric materials and devices ○堀家 匠平 ¹ , 衛 慶碩 ² ○中村 雅一 ¹ , 阿部 竜 ¹ , 小島 広孝 ^{1,2} , 林 正太郎 ³ , 平本昌宏 ¹ ○村田 理尚 ¹ ○藤ヶ谷 剛彦 ^{1,2,3} , 田中 直樹 ^{1,3,2} ○瀧宮 和男 ^{1,2,3} , 松尾 崇也 ² ○西中 茉佑子 ¹ , 小柴 康子 ^{1,2} , 衛 慶碩 ^{3,4} , 舟橋 正 浩 ^{1,2} , 堀家 匠平 ^{1,2,3,5} ○野々口 斐之 ¹ ○末森 浩司 ¹ ○向田 雅一 ¹ ○山田 鉄兵 ¹ ○Lixian Jiang ¹ , Shohei Horike ² , Qingshuo Wei ^{1,3} ○衛 慶碩 ¹ , 堀家 匠平 ²	 1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大 I2CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材, 4. 筑波大院理, 5. 神戸大環境セ 1. 京都工織大 1. 産総研 1. 産総研 1. 東大院理 1. AIST, 2. Kobe Univ., 3. Univ. Tsukuba
16:45 16:45 12有機 717有機 9:40 9:40 10:10 10:25 10:55 11:25 9/17(T 13:30 14:40 14:45 15:15 16:00 16:15 13 半導 19/17(T	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク ディースクリー 11:40 17a-A24-1 招 17a-A24-2 招 17a-A24-3 招 17a-A24-4 招 17a-A24-5 奨 17a-A24-6 ue.) 13:30 - 16:25 招 17p-A24-1 招 17p-A24-2 ピ 17p-A24-2	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24) オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会/Interaction Break キャリアドーピング技術を駆使したカーボンナノチュー ブ熱電材料の開発 ジビラニリデン誘導体を基盤とする n型分子ドーパント の開発 クロスリンク型有機超塩基ドーバントによる高安定性 n型カーボンナノチューブの創出と熱電モジュール応用 口頭講演(Oral Presentation)A24 会場(Room A24) CNT 熱電材料に求められる要素技術の開発 カーボンナノチューブー高分子複合熱電材料の π型モジュール化に関する研究 休憩・名刺交換会/Interaction Break 導電性高分子熱電デバイスのIoT電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換会/Interaction Break 導電性高分子熱電デバイスのIoT電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換会/Interaction Break 多にFrowered Sensors Utilizing Thermocells クロージング TS アル半導体製造に貢献する材料 / Materials for Green & S 口頭講演 (Oral Presentation) C302会場(Room C302)	○根上卓之 ¹ ○金光義彦 ¹ ○左tric materials and devices ○堀家 匠平 ¹ , 衛 慶碩 ² ○中村 雅一 ¹ , 阿部 竜 ¹ , 小島 広孝 ^{1,2} , 林 正太郎 ³ , 平本昌宏 ¹ ○村田 理尚 ¹ ○藤ヶ谷 剛彦 ^{1,2,3} , 田中 直樹 ^{1,3,2} ○瀧宮 和男 ^{1,2,3} , 松尾 崇也 ² ○西中 茉佑子 ¹ , 小柴 康子 ^{1,2} , 衛 慶碩 ^{3,4} , 舟橋 正浩 ^{1,2} , 堀家 匠平 ^{1,2,3,5} ○野々口 斐之 ¹ ○未森浩司 ¹ ○向田 雅一 ¹ ○山田 鉄兵 ¹ ○Lixian Jiang ¹ , Shohei Horike ² , Qingshuo Wei ^{1,3} ○衛 慶碩 ¹ , 堀家 匠平 ² ustainable Semiconductor Manufacturing	1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大I2CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材, 4. 筑波大院理, 5. 神戸大環境セ 1. 京都工繊大 1. 産総研 1. 産総研 1. 東大院理 1. AIST, 2. Kobe Univ., 3. Univ. Tsukuba 1. 産総研, 2. 神戸大
15:45 16:15 16:45 12 有機 9/17(1 9:00 9:10 9:40 10:10 10:25 10:55 11:25 9/17(T 13:30 14:40 14:45 15:15 15:45 16:00 16:15 13 半導 T19 グリ	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク ディースクー 17a-A24-1 招 17a-A24-2 招 17a-A24-3 招 17a-A24-4 招 17a-A24-5 奨 17a-A24-6 ue.) 13:30 - 16:25 招 17p-A24-1 招 17p-A24-2 格 17p-A24-3 佑 17p-A24-6 体 / Semiconducto 1 - シ・サスティナ ue.) 13:30 - 17:30 17p-C302-1	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24) オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会/Interaction Break キャリアドーピング技術を駆使したカーボンナノチュー ブ熱電材料の開発 ジピラニリデン誘導体を基盤とする n型分子ドーパントの開発 クロスリンク型有機超塩基ドーパントによる高安定性 n型カーボンナノチューブの創出と熱電モジュール応用 口頭講演(Oral Presentation)A24 会場(Room A24) CNT 熱電材料に求められる要素技術の開発 カーボンナノチューブー高分子複合熱電材料の π型モジュール化に関する研究 休憩・名刺交換会/Interaction Break 導電性高分子熱電デバイスのIoT電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換会/Interaction Break 導電性高分子熱電デバイスのIoT電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換会/Interaction Break 多世に高分子熱電デバイスのIoT電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換会/Interaction Break 多目に高いている機能を対象を関係のでは1250円の表では1250円の表ででは1250円の表では125	○根上卓之 ¹ ○金光義彦 ¹ ○在大義彦 ¹ ○ 本光義彦 ¹ ○ 根家 匠平 ¹ , 衛 慶碩 ² ○中村雅一 ¹ , 阿部竜 ¹ , 小島 広孝 ^{1,2} , 林 正太郎 ³ , 平本昌宏 ¹ ○村田理尚 ¹ ○藤ヶ谷 剛彦 ^{1,2,3} , 田中 直樹 ^{1,3,2} ○瀧宮 和男 ^{1,2,3} , 松尾 崇也 ² ○西中 茉佑子 ¹ , 小柴康子 ^{1,2} , 衛 慶碩 ^{3,4} , 舟橋 正浩 ^{1,2} , 堀家 匠平 ^{1,2,3,5} ○野々口 斐之 ¹ ○未森浩司 ¹ ○向田雅一 ¹ ○山田鉄兵 ¹ ○ Lixian Jiang ¹ , Shohei Horike ² , Qingshuo Wei ^{1,3} ○衛 慶碩 ¹ , 堀家 匠平 ² ustainable Semiconductor Manufacturing ○内田紀行 ¹	 1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大 I2CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材, 4. 筑波大院理, 5. 神戸大環境セ 1. 京都工織大 1. 産総研 1. 産総研 1. 東大院理 1. AIST, 2. Kobe Univ., 3. Univ. Tsukuba
15:45 16:15 16:45 12 有機 9/17(1 9:00 9:10 9:40 10:10 10:25 10:55 11:25 9/17(T 13:30 14:45 15:15 15:45 16:00 16:15 13 半導 719 グリ 9/17(T 13:30	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク シ・イオン熱電楽で Tue.) 9:00 - 11:40 17a-A24-1 招 17a-A24-2 招 17a-A24-3 招 17a-A24-4 招 17a-A24-5 奨 17a-A24-6 ue.) 13:30 - 16:25 招 17p-A24-2 招 17p-A24-2 居 17p-A24-3 招 17p-A24-4 E 17p-A24-5 17p-A24-6 体/Semiconducto 1-ン・サスティナ ue.) 13:30 - 17:30 17p-C302-1 招 17p-C302-2	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24会場(Room A24) オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 体憩・名刺交換会 / Interaction Break キャリアドーピング技術を駆使したカーボンナノチューブ熱電材料の開発 ジビラニリデン誘導体を基盤とする n型分子ドーパントの開発 クロスリンク型有機超塩基ドーバントによる高安定性 n型カーボンナノチューブの創出と熱電モジュール応用 口頭講演 (Oral Presentation) A24会場(Room A24) CNT 熱電材料に求められる要素技術の開発 カーボンナノチューブー高分子複合熱電材料の π型モジュール化に関する研究 体憩・名刺交換会 / Interaction Break 導電性高分子熱電デバイスのIoT電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 体憩・名刺交換会 / Interaction Break Self-Powered Sensors Utilizing Thermocells クロージング 「S アル半導体製造に貢献する材料 / Materials for Green & S 口頭講演 (Oral Presentation) C302会場(Room C302)は は じめに 三井化学における半導体製造のサステナビリティへの貢献に向けて	○根上卓之 ¹ ○金光義彦 ¹ ***Ctric materials and devices ○堀家 匠平 ¹ , 简 慶碩 ² ○中村 雅一 ¹ , 阿部 竜 ¹ , 小島 広孝 ^{1,2} , 林 正太郎 ³ , 平本昌宏 ¹ ○村田 理尚 ¹ ○藤ヶ谷 剛彦 ^{1,2,3} , 田中 直樹 ^{1,3,2} ○瀧宮 和男 ^{1,2,3} , 松尾 崇也 ² ○西中 茉佑子 ¹ , 小柴 康子 ^{1,2} , 衛 慶碩 ^{3,4} , 舟橋 正浩 ^{1,2} , 堀家 匠平 ^{1,2,3,5} ○野々口 斐之 ¹ ○末森浩司 ¹ ○向田 雅一 ¹ ○山田 鉄兵 ¹ ○Lixian Jiang ¹ , Shohei Horike ² , Qingshuo Wei ^{1,3} ○衛 慶碩 ¹ , 堀家 匠平 ² ustainable Semiconductor Manufacturing ○内田 紀行 ¹ ○小野 昇子 ¹ ○高橋 宏明 ¹	1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大 I2CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材, 4. 筑波大院理, 5. 神戸大環境セ 1. 京都工繊大 1. 産総研 1. 産総研 1. 産総研 1. 産総研 1. 直総研, 2. 神戸大
15:45 16:15 16:45 12 有機 9/17(1 9:00 9:10 9:40 10:10 10:25 10:55 11:25 9/17(T 13:30 14:00 14:45 15:15 15:45 16:00 16:15 13 半導 T19 グリ 9/17(T 13:30 13:40	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク 分子・バイオエレク (シーイナン科画を Tue.) 9:00 - 11:40 17a-A24-1 招 17a-A24-2 招 17a-A24-4 招 17a-A24-5 奨 17a-A24-6 ue.) 13:30 - 16:25 招 17p-A24-1 招 17p-A24-2 招 17p-A24-2 任 17p-A24-6 体/Semiconducto コーン・サスティナ ue.) 13:30 - 17:30 17p-C302-1 招 17p-C302-3 招 17p-C302-3 招 17p-C302-3	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronic N材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24会場(Room A24)オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会/Interaction Break キャリアドーピング技術を駆使したカーボンナノチューブ熱電材料の開発 ジピラニリデン誘導体を基盤とする n型分子ドーパントの開発 クロスリンク型有機超塩基ドーバントによる高安定性 n型カーボンナノチューブの創出と熱電モジュール応用 口頭講演 (Oral Presentation) A24会場(Room A24) CNT 熱電材料に求められる要素技術の開発 カーボンナノチューブー高分子複合熱電材料の π型モジュール化に関する研究 休憩・名刺交換会/Interaction Break 導電性高分子熱電デバイスの1oT電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換会/Interaction Break 多に指子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換会/Interaction Break Self-Powered Sensors Utilizing Thermocells クロージング TS アル半導体製造に貢献する材料 / Materials for Green & S 口頭講演 (Oral Presentation) C302 会場(Room C302)はじめに 三井化学における半導体製造のサステナビリティへの貢献に向けて グリーン・サステナブルに貢献するレゾナックの取組みシリカを原料とするケイ素化学基幹原料の直接合成	○根上卓之 ¹ ○金光義彦 ¹ ○在大義彦 ¹ ○在大義彦 ¹ ○中村雅一 ¹ , 简度碩 ² ○中村雅一 ¹ , 阿部竜 ¹ , 小島広孝 ^{1,2} , 林正太郎 ³ , 平本昌宏 ¹ ○村田理尚 ¹ ○藤ヶ谷剛彦 ^{1,2,3} , 田中直樹 ^{1,3,2} ○瀧宮和男 ^{1,2,3} , 松尾崇也 ² ○西中茉佑子 ¹ , 小柴康子 ^{1,2} , 衛慶碩 ^{3,4} , 舟橋正浩 ^{1,2} , 堀家匠平 ^{1,2,3,5} ○野々口斐之 ¹ ○末森浩司 ¹ ○向田雅一 ¹ ○山田鉄兵 ¹ ○山田鉄兵 ¹ ○Lixian Jiang ¹ , Shohei Horike ² , Qingshuo Wei ^{1,3} ○衛慶碩 ¹ , 堀家匠平 ² ustainable Semiconductor Manufacturing ○内田紀行 ¹ ○小野昇子 ¹ ○高橋宏明 ¹ ○深谷訓久 ¹	1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大 I2CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材, 4. 筑波大院理, 5. 神戸大環境セ 1. 京都工繊大 1. 産総研 1. 産総研 1. 産総研 1. 連続研 1. 連続研 1. 連続研 1. 連続研 1. 正総研
15:45 16:15 16:45 12 有機 9/17(1 9:00 9:10 9:40 10:10 10:25 10:55 11:25 9/17(T 13:30 14:00 14:30 14:45 15:15 15:45 16:00 16:15 13 半導 T19 夕り 9/17(T 13:30 13:40	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク 分子・バイオエレク (シーイナン科画を Tue.) 9:00 - 11:40 17a-A24-1 招 17a-A24-2 招 17a-A24-4 招 17a-A24-5 奨 17a-A24-6 ue.) 13:30 - 16:25 招 17p-A24-1 招 17p-A24-2 招 17p-A24-2 任 17p-A24-6 体/Semiconducto コーン・サスティナ ue.) 13:30 - 17:30 17p-C302-1 招 17p-C302-3 招 17p-C302-3 招 17p-C302-3	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronics 材料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24会場(Room A24) オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 体憩・名刺交換会 / Interaction Break キャリアドーピング技術を駆使したカーボンナノチューブ熱電材料の開発 ジビラニリデン誘導体を基盤とする n型分子ドーパントの開発 クロスリンク型有機超塩基ドーバントによる高安定性 n型カーボンナノチューブの創出と熱電モジュール応用 口頭講演 (Oral Presentation) A24会場(Room A24) CNT 熱電材料に求められる要素技術の開発 カーボンナノチューブー高分子複合熱電材料の π型モジュール化に関する研究 体憩・名刺交換会 / Interaction Break 導電性高分子熱電デバイスのIoT電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 体憩・名刺交換会 / Interaction Break Self-Powered Sensors Utilizing Thermocells クロージング 「S アル半導体製造に貢献する材料 / Materials for Green & S 口頭講演 (Oral Presentation) C302会場(Room C302)は は じめに 三井化学における半導体製造のサステナビリティへの貢献に向けて	○根上卓之 ¹ ○金光義彦 ¹ ○在大義彦 ¹ ○在大義彦 ¹ ○中村雅一 ¹ , 简度碩 ² ○中村雅一 ¹ , 阿部竜 ¹ , 小島広孝 ^{1,2} , 林正太郎 ³ , 平本昌宏 ¹ ○村田理尚 ¹ ○藤ヶ谷剛彦 ^{1,2,3} , 田中直樹 ^{1,3,2} ○瀧宮和男 ^{1,2,3} , 松尾崇也 ² ○西中茉佑子 ¹ , 小柴康子 ^{1,2} , 衛慶碩 ^{3,4} , 舟橋正浩 ^{1,2} , 堀家匠平 ^{1,2,3,5} ○野々口斐之 ¹ ○末森浩司 ¹ ○向田雅一 ¹ ○山田鉄兵 ¹ ○山田鉄兵 ¹ ○Lixian Jiang ¹ , Shohei Horike ² , Qingshuo Wei ^{1,3} ○衛慶碩 ¹ , 堀家匠平 ² ustainable Semiconductor Manufacturing ○内田紀行 ¹ ○小野昇子 ¹ ○高橋宏明 ¹ ○深谷訓久 ¹	1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大 I2CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材, 4. 筑波大院理, 5. 神戸大環境セ 1. 京都工繊大 1. 産総研 1. 産総研 1. 産総研 1. 産総研 1. 直総研, 2. 神戸大
15:45 16:15 16:45 12 有機 9/17(1 9:00 9:10 9:40 10:10 10:25 10:55 11:25 9/17(T 13:30 14:00 14:45 15:15 15:45 16:00 16:15 13 半導 T19 グリ 9/17(T 13:30 13:40 14:40	招 17p-A21-8 招 17p-A21-9 分子・バイオエレク ・イオン素電変換 「ue.) 9:00 - 11:40 17a-A24-1 招 17a-A24-2 招 17a-A24-3 招 17a-A24-4 招 17a-A24-5 奨 17a-A24-6 ue.) 13:30 - 16:25 招 17p-A24-1 招 17p-A24-2 招 17p-A24-3 招 17p-A24-4 E 17p-A24-5 17p-A24-6 体 / Semiconducto フーン・サスティナ ue.) 13:30 - 17:30 17p-C302-1 招 17p-C302-2 招 17p-C302-3 招 17p-C302-4 招 17p-C302-5	薄膜太陽電池三兄弟は敵か味方か? 無機化合物薄膜太陽電池とベロブスカイト太陽電池の得 手、不得手 薄膜太陽電池のキャリア挙動は理解できているのか? トロニクス / Organic Molecules and Bioelectronic M料の開発とデバイス応用 / Organic and ionic thermoele 口頭講演 (Oral Presentation) A24 会場(Room A24)オーブニング 有機半導体における巨大ゼーベック効果 有機金属半導体を用いた n型熱電フィルムの開発 休憩・名刺交換会/Interaction Break ジピラニリデン誘導体を基盤とする n型分子ドーパントの開発 クロスリンク型有機超塩基ドーバントによる高安定性 n型カーボンナノチューブの創出と熱電モジュール応用 口頭講演(Oral Presentation)A24 会場(Room A24) CNT 熱電材料に求められる要素技術の開発 カーボンナノチューブー高分子複合熱電材料の π型モジュール化に関する研究 休憩・名刺交換会/Interaction Break 導電性高分子熱電デバイスのIoT電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換会/Interaction Break 導電性高分子熱電デバイスのIoT電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換会/Interaction Break 導電性高分子熱電デバイスのIoT電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換会/Interaction Break 導電性高分子熱電デバイスのIoT電源応用 分子の熱応答性を利用した熱化学電池による熱電変換 休憩・名刺交換ら/Interaction Break 高ピーの熱に高性を利用した熱化学電池による熱電変換 休憩・名刺交換ら/Interaction Break に見いまするが表化学基準原料の直接合成 ロ頭講演(Oral Presentation)C302 会場(Room C302)はじめに ニ井化学における半導体製造のサステナビリティへの貢献に向けて グリーン・サステナブルに貢献するレゾナックの取組みシリカを原料とするケイ素化学基幹原料の直接合成 自己治癒セラミックスの基礎と応用 ー半導体製造での応	○根上 卓之 ¹ ○金光 義彦 ¹ **Ctric materials and devices ○堀家 匠平 ¹ , 衛 慶碩 ² ○中村 雅一 ¹ , 阿部 竜 ¹ , 小島 広孝 ^{1,2} , 林 正太郎 ³ , 平本昌宏 ¹ ○村田 理尚 ¹ ○藤ヶ谷 剛彦 ^{1,2,3} , 田中 直樹 ^{1,3,2} ○瀧宮 和男 ^{1,2,3} , 松尾 崇也 ² ○西中 茉佑子 ¹ , 小柴 康子 ^{1,2} , 衛 慶碩 ^{3,4} , 舟橋 正浩 ^{1,2} , 堀家 匠平 ^{1,2,3,5} ○野々口 斐之 ¹ ○末森 浩司 ¹ ○向田 雅一 ¹ ○山田 鉄兵 ¹ ○ Lixian Jiang ¹ , Shohei Horike ² , Qingshuo Wei ^{1,3} ○衛 慶碩 ¹ , 堀家 匠平 ² **Ustainable Semiconductor Manufacturing ○内田 紀行 ¹ ○小野 昇子 ¹ ○高橋 宏明 ¹ ○高橋 宏明 ¹ ○高橋 宏明 ¹ ○高橋 宏明 ¹ ○南口 誠 ¹	1. 立命館大 1. 京大化研 1. 神戸大院工, 2. 産総研 1. 奈良先端大, 2. 舞鶴高専, 3. 高知工科大 1. 阪工大工 1. 九大院工, 2. 九大 I2CNER, 3. 九大 CMS 1. 理研 CEMS, 2. 東北大院理, 3. 東北大 AIMR 1. 神戸大院工, 2. 神戸大先端膜工学セ, 3. 産総研ナノ材, 4. 筑波大院理, 5. 神戸大環境セ 1. 京都工繊大 1. 産総研 1. 産総研 1. 産総研 1. 連続研 1. 連続研 1. 連続研 1. 連続研 1. 正総研

16:50	招 E 17p-C302-8	The embodied environmental impact of integrated circuit manufacturing	O Lars-Ake Ragnarsson ¹	1.imec
17:20	17p-C302-9	クロージング	○金山 敏彦¹	1.産総研
	計工学 / Crystal Engi			
		詩造における新規機能発現 / Emergence of Novel Function 口頭講演 (Oral Presentation) C42会場(Room C42)	s in Nitride and III/V Group Compound Semiconduct	or Nanostructures
	招 E 17p-C42-1	[Fellow International 2024 Special Lecture] Insights on GaN bulk crystal growth and GaN-on-GaN technology.	○ Michal Stanislaw Bockowski ¹	1.Institute of High Pressure Physics (IHPP) of the Polish Academy of Sciences (PAS)
14:15	招 17p-C42-2	ワイドギャップ半導体多層構造のマルチスケール評価	〇谷川 智之 1 , 石井 由也 1 , 山崎 順 2 , 田中 敦之 3 , 本田 善央 3 , 上向井 正裕 1 , 片山 竜二 1	1. 阪大院工, 2. 阪大電顕センター, 3. 名大 IMaSS
14:45	17p-C42-3	GaN基板上に成長した Ga _{1×} In _* N/GaN五重量子殼とその 単一化した量子殼に対する X線ナノビームによる局所構 造解析		
15:00 15:15	招 17p-C42-4	休憩・名刺交換会/Interaction Break マルチスケールなIII/V族ナノ構造の創成	〇石川 史太郎1	1.北大量集センター
15:45	授 17p-C42-5	III-V/Si集積に向けた SOI (001) 基板上 InP 横方向 MOVPE選択成長 (3)	○本間 寛弥¹, 杉山 弘樹¹, 開 達郎¹, 佐藤 具就¹, 松尾 慎治¹	
16:00 16:15	奨 17p-C42-6 招 17p-C42-7	MOVPE選択成長法によるAlInPフィン成長と評価 新規機能発現に向けた低温成長Bi系III-V族半導体混晶	○東 佑樹¹, 鄭 子ヨゥ¹, 本久 順一¹, 冨岡 克広¹ ○富永 依里子¹, 石川 史太郎², 池永 訓昭³, 上田 修⁴	1.北海道大学 1.広大先進理工, 2.北大量集セ, 3.金沢工大, 4.明治大
16:45		休憩・名刺交換会/Interaction Break	0.1.451.41.451.110.4571	- 6101 W
17:00 17:30	招 17p-C42-8 17p-C42-9	GaN系ナノ結晶の成長と発光デバイスへの応用 2層極性反転 AIN 導波路を用いた CW 半導体レーザ励起 による 230 nm 帯遠紫外第二高調波発生	○上山智¹,竹内哲也¹,岩谷素顕¹ ○本田啓人¹,浅井昭典²,當銘賢人²,森下桂嗣²,加藤伸藤²,藤原弘康²,正直花奈子³.⁴,三宅秀人³,上向井正裕¹,谷川智之¹,片山竜二¹	1. 名城大学 1. 阪大院工, 2. 浜松ホトニクス, 3. 三重大院工, 4. 京大院 エ
17:45	奨 17p-C42-10	AlGaN系UV-B LDの注入効率向上に向けた高Al組成差のヘテロ界面形成技術	〇齊藤 巧夢', 三宅 倫太郎', 山田 凌矢', 井本 圭紀', 丸山 竣大', 佐々木 祐輔', 狩野 祥吾', 岩山 章', 三宅 秀人², 竹内 哲也¹, 岩谷 素顕'	1.名城大理工, 2.三重大院工
18:00	招 17p-C42-11	分布型分極ドーピングを用いた AlGaN 系縦型 p-n ダイオードの特性評価	〇本田 善央 ^{1,2,3} , 隈部 岳瑠 ⁴ , 久志本 真希 ⁴ , 天野 浩 ^{1,2,3}	1.名大未来研, 2.名大 D センター, 3.名大 IAR, 4.名大院 エ
		才料 / Nanocarbon and Two-Dimensional Materials		
		での物性・応用研究の最新動向 / Recent research progress 口頭講演 (Oral Presentation) A23 会場(Room A23)	in properties and applications of carbon nanotubes	
13:30	17p-A23-1	はじめに	○丸山 隆浩¹	1.名城大学
13:35	招 17p-A23-2	カーボンナノチューブの熱光物性	○宮内 雄平¹	1.京大エネ研
14:05	招 17p-A23-3	単層カーボンナノチューブのデバイス応用と1次元へテロ構造		1.東大工
14:35 15:05	招 17p-A23-4 招 17p-A23-5	ナノチューブのらせん度に依存した光物性 in-situ 電子顕微鏡法によるカーボンナノチューブ単一界 面の熱動態計測	○齋藤 理一郎 ^{1,2,3} ○平原 佳織 ¹	1. 台湾師範大学, 2. 東北大学, 3. 都立大学 1. 千葉大工
	招 E 17p-A23-6	Tip-enhanced Raman spectroscopy and nanoimaging of carbon nanotube	○ Prabhat Verma¹	1.Osaka Univ.
16:05 16:20	招 17p-A23-7	休憩/Break マテリアルリザバー演算素子:ナノカーボンを用いたAI 演算素子とインセンサ演算応用	○田中 啓文 ^{1,2}	1.九工大生命体工, 2.九工大 Neumorph センター
16:50 17:20	招 17p-A23-8 招 17p-A23-9	CNTを用いた次世代電池の開発と展開 カーボンナノチューブを利用した赤外線イメージセンサ	○周 英 ¹ ○弓削 亮太 ^{1,2} , 田中 朋 ^{1,2} , 佐野 雅彦 ¹ , 殿内 規之 ^{1,2} , 渋谷 明信 ^{1,2} , 澁谷 泰蔵 ^{1,2} , 小坂 眞由美 ^{1,2} , 野口 将 高 ^{1,2} , 宮崎 孝 ^{1,2} , 宮本 俊江 ^{2,1} , 小田 直樹 ¹	1. 産総研 1. NEC, 2. AIST
17:50	招 17p-A23-10	住友電工におけるカーボンナノチューブ線材の研究開発 -変遷と展望について-		1.住友電工(株)
18:20	17p-A23-11	おわりに	○井ノ上 泰輝 1	1.大阪大学
	フォトニクス / Optio			- Al T L A P O
		- ティングと Al のクロスオーバー 〜新潮流から応用まで〜 口頭講演 (Oral Presentation) C302会場(Room C302)	/ Crossover between Photonic Computing and Al: F	rom New Trends to Applications
10:00	18a-C302-1	はじめに	○片山 郁文1	1.横浜国大工
10:05		光量子コンピュータで何ができるか ナノファイバー共振器 OED による光・原子ハイブリッド	〇高瀬 寛 ^{1,2}	1.東大工, 2. 理研 RQC
10:35		量子コンピュータの開発		1.早大理工
11:05		コヒーレントイジングマシンの最近の進展	〇武居 弘樹 1 , 稲垣 卓弘 1 , 稲葉 謙 1 , 生田 拓也 1 , 山田 康博 1 , 米津 佑哉 1 , 本庄 利守 1	I.NII 物性研
13:00		口頭講演 (Oral Presentation) C302会場(Room C302) 光多重化を用いた空間フォトニックイジングマシンの機 能拡張	○下村 優 1	1.阪大情報
13:30		空間光変調に基づく深層ニューラルネットワークハード ウェアの実装方法と応用		1.九工大情報工, 2.九工大 Neumorph センター
14:00	招 18p-C302-3	磁気光学回折型ニューラルネットワークデバイスの開発	〇石橋 隆幸 1 , 坂口 穂貴 1 , 本間 拓真 1 , 赤川 怜央 1 , 池田 朱莉 1 , 張 健 1 , Zahra Chafi Fatima 1 , 鷲見 聡 2 , 栗 野 博之 2 , 野中 尋史 3	1. 長岡技科大, 2. 豊田工大, 3. 愛知工大
14:30	招 18p-C302-4	マイクロコムを使った光アクセラレーター	○久世 直也¹	1. 徳大ポスト LED
15:00 15:15	招 18n-C302-E	休憩・名刺交換会/Interaction Break 集積光技術を活用した光情報信号処理デバイス	○瀧口 浩一¹	1.立命館大理工
15:45		異種材料集積を用いたAI用光回路		1.東大院工, 2.玉川大, 3.産総研, 4.STマイクロエレク
16:15		写像式フォトニクスニューラルネットワークの最新展開	〇コン グアンウエイ 1 , 山本 宗継 1 , 高 磊 1 , 前神 有里子 1 , 並木 周 1 , 山田 浩治 1	
16:45		高速アナログ電子回路の光コンピューティングへの適用	かをり ²	
17:15	18p-C302-9	クロージング	○内田 淳史¹	1.埼玉大

6 薄膜	・表面 / Thin Films	and Surfaces		
T8 2次	元材料とその集積回	路・電子デバイス応用 / 2D materials and their integrated	d circuit and electronic device applications	
		口頭講演 (Oral Presentation) C42会場 (Room C42)		
13:30	招 18p-C42-1	3D-Stacked FET 向け 2D 材料・デバイス技術	○若林 整 ¹	1.東工大研究院
14:00	招 18p-C42-2	2次元材料のウエハスケール集積回路技術の基盤構築に	○長汐 晃輔¹	1.東京大学
		向けて		
14:30	招 E 18p-C42-3	【注目講演】Possible applications of 2D material	○ Tom Schram ¹	1.imec
		devices and related integration challenges		
15:00		休憩・名刺交換会/Interaction Break		
15:15	招 18p-C42-4	新規 MO原料を用いた TMD 成膜	〇小椋 厚志 ^{1,2} , 町田 英明 ³	1. 明治大 理工, 2. 明治大 MREL, 3. 気相成長(株)
15:45	招 18p-C42-5	二次元ヘテロ構造を舞台とした量子マテリアル・機能創	〇北浦 良 ¹	1.物材機構
		出		
16:15	招 18p-C42-6	ファンデルワールス複合原子層の自在配列と素子応用に	〇町田 友樹 '	1.東大生研
		向けて	0	
16:45	招 18p-C42-7	オプティカルデバイスに向けた光応答分子・溶液と2D	〇 Komeda Tadahiro*, 高崗 毅*	1.東北大多元研
7.1*	, + □ / □ = 1	物質との複合材料		
		nology and Nanofabrication 鏡技術のナノスケール材料・デバイスへの応用展開 / Appli	igation of Advanged Ian/Floatron Migrogaphy for Fu	tura Nanasaala Matariala and Davisaa
		口頭講演 (Oral Presentation) A36会場 (Room A36)	cation of Advanced fon/ Electron Microscopy for Fd	ture ivalioscale iviaterials and Devices
13:30	E 18p-A36-1	Application of Advanced ion / electron microscopy for	○ Shinichi Ogawa¹, Jun Taniguchi²	1.AIST, 2.TUS
13.30	Б Тор-Изо-1	future nano scale materials and devices -Introduction to	Similem Ogawa , Jun Tamguem	1.71131, 2.103
		the Symposium-		
12.//5	招 E 18p-A36-2	From Dual Damascene to Semi-Damascene and new	○Zsolt Tokei¹	1.IMEC
13.43	10h-W20-5	materials: opportunities for characterization in	O ZSOIT TOKET	1.IIVIEC
1/1-15	招 E 18p-A36-3	interconnects Evaluation of hydrogen-gas-field-ionization ion source	O Shinichi Matsuhara ¹ Hirovasu Shiahi ¹ Tamihira	1 Hitachi Ltd CDS 2 Hitachi Ltd CED
14:15	1□ ⊏ 10h-₩20-2	evaluation of hydrogen-gas-field-ionization ion source and its application	Hashizume ²	T. macin, Eta. CDS, Z.Milacin, Eta. CEK
14.45	招 E 18p-A36-4	Nanoscale High-Transition Temperature Josephson	○ Shane Cybart¹	1.UC Riverside
17.40	1H F 10h-V30-4	Junctions and SQUIDs	O Shalle Oybart	1.00 Alverside
15.15	招 E 18p-A36-5	Nanosized quantum sensor spots in hexagonal boron	○ Kento Sasaki¹	1.UTokyo
10.10	1H ⊏ 10h-V20-2	nitride created using helium ion microscopy	C Notice Susuki	1.0 longo
15:45		休憩/Break		
16:00	E 18p-A36-6	Charge trap memory based on MoS ₂ with He ⁺ -irradiated	○ Mahito Yamamoto¹ Takuya Iwasaki² Kejij Heno³	1.Kansai Univ., 2.NIMS, 3.Saitama Univ., 4.AIST, 5.
20100	2 10p 1100 0	h-BN as a trapping layer	Takashi Taniguchi ² , Kenji Watanabe ² , Yukinori	Tokyo Univ. Tech.
		ii biv as a trapping layer	Morita ⁴ , Shinichi Ogawa ⁴ , Yutaka Wakayama ² , Shu	Tokyo Oliv. Teeli.
			Nakaharai ⁵	
16:15	招 E 18p-A36-7	Graphene phononic devices for thermal rectification	O Fayong Liu ¹ , Kaidi Sun ¹ , Qianyu Jia ¹ , Haiyong	1.Ocean Univ. of China, 2.JAIST
10.15	1H E 10P 730 7	with He lon beam technology	Zheng ¹ , Manoharan Muruganathan ² , Hiroshi	1.occur only. of online, 2.5/101
		with the foll boain teelinology	Mizuta ²	
16:45	E 18p-A36-8	Direct Patterning in Ultrathin Silicon Nanosheets	O Yukinori Morita ¹ , Kensuke Inoue ² , Ryuichi Sugie ² ,	1.AIST, 2.TRC
10110	2 10p 1100 0	Utilizing Helium Ion Beam Irradiation	Shinichi Ogawa ¹	Time I, all III
17:00	招 E 18p-A36-9	In-situ and precise atomic-scale transmission electron	-	1.Kumamoto Univ.
	7A	microscopy for electronic materials		
17:30	E 18p-A36-10	Mapping Dielectric Response of Materials by Time-	○ Yoh Iwasaki¹, Toshiaki Tanigaki², Keiko Shimada¹,	1.RIKEN, 2.Hitachi, Ltd.
		Resolved Electron Holography	Ken Harada ¹ , Daisuke Shindo ¹	,,,
17:45	招 E 18p-A36-11	Characterization of monolayer film with an advanced	O Takaya Nakamura ¹ , Masayasu Nagoshi ¹ , Kaoru	1.JFE Techno-Research Corp., 2.Faculty of
		ULV-SEM	Sato ¹ , Hiroki Ago ²	Engineering Sciences, Kyushu University
13 半導	事体 / Semiconducto	rs		
T20 ど	うなるEVシフト -	その現状と課題 - / The strategic direction of EV shift - It	s current status and challenges -	
9/18(\	Wed.) 13:30 - 17:05	口頭講演 (Oral Presentation) A41会場 (Room A41)		
13:30	18p-A41-1	オープニング・趣旨説明	○小島 淳 1.2	1.名古屋大学, 2.応用物理学会 インダストリアルチャ
				プター
13:35	招 18p-A41-2	自動車業界の未来 - どうなる EV シフトと車載半導体市場	○杉山 和弘1	1.オムディア
		の牽引		
14:25	招 18p-A41-3	EVシフト狂騒はやはり間違えだった	○藤村 俊夫¹	1.Touson 自動車戦略研究所 代表
15:15		休憩・名刺交換会/Interaction Break		
15:30	招 18p-A41-4	電気自動車用蓄電池の現在地	○小林 弘典¹	1.産総研
16:00	招 18p-A41-5	EV/HEV/PHV用インバータの小型化・高性能化に貢献す	〇高橋 良和¹, 鈴木 慧太¹, 遠藤 哲郎¹	1.東北大 CIES
		る次世代パワー半導体/パワーモジュール	1	
16:30		ライフサイクルでの自動車環境負荷 ― Well to Wheel ―		1. 産総研
17:00	18p-A41-7	クロージング	○中川 聰子 ^{1,2}	1. グローバルウェーハズ・ジャパン株式会社, 2. 応用物
				理学会 インダストリアルチャプター
		: Atomic Layer Process) の基礎と最新技術動向 / Fundar	mentals and Latest Technology Trends of Atomic La	yer Process (ALP)
		口頭講演 (Oral Presentation) A23 会場 (Room A23)	○ 生しエゾ ¹	1 1 78 0 74
13:30	招 18p-A23-1	高反応性原料を用いたALDプロセスの検討	○清水 秀治¹	1. 大陽日酸
14:00	18p-A23-2	汎用機械学習力場によるALD precursorの反応解析と分	○茂野 俗介・	1. ブリファードコンピューテーショナルケミストリー
141-	+77 10 400 0	子設計	〇度塔 + 辛 l	1 .1.1%上炉中田 〒
14:15	招 18p-A23-3	室温原子層堆積法の開発と複合酸化物堆積への展開 空温原子層堆積法を思いた連結照差式であれる。DMZ	○廣瀬 文彦 ¹	1.山形大院理工
14:45	18p-A23-4	室温原子層堆積法を用いた連続吸着方式におけるDMZ	○鈴木 晴登¹, 宮澤 諒¹, 洲崎 慧¹, 三浦 正範¹, 廣瀬 文	1. 山形天
15.00	10- 400 5	とTMAの競合吸着反応の観察	彦¹ 巴宁紅¹山口淵¹ 佐藤 &¹ 祭祖 新引¹ ○雲石 去	1 亩十工
15:00	18p-A23-5	QCMによるALD吸着・反応過程の高精度その場観察	呉 宇軒¹, 山口 潤¹, 佐藤 登¹, 筑根 敦弘¹, ○霜垣 幸 浩¹	1. 朱八上
15:15	10m A22 6	COSMO-SAC 法による ALD 用金属錯体の蒸気圧推算	○佐藤 登¹, 呉 宇軒¹, 山口 潤¹, 筑根 敦弘¹, 霜垣 幸	1 東大陰工
15:15	18p-A23-6	COMO GMCよるALD用並周珀Pの然以圧推昇	○佐藤 豆,只于軒,山口 椢,巩胶 敦弘,箱坦 辛 浩 ¹	1. 水八四上
15:30		休憩・名刺交換会/Interaction Break	114	
15:45	招 18p-A23-7	体思・名刺交換会/Interaction Break 原子層エッチングにおける反応素過程の評価	○唐橋 一浩¹, 伊藤 智子¹, 浜口 智志¹	1. 阪大院工
16:15	fn 16р-A23-7 18р-A23-8	原丁暦エッテングにわりる及心系型性の計画 ヘキサフルオロアセチルアセトンと酸素プラズマの交互		
	10p 1120 0	サイクルを用いた銅の原子層エッチング	前田 賢治 ¹ , Sumit Agarwal ²	, a. solotado oction of milico
16:30	招 18p-A23-9	HFを含むプラズマによる絶縁膜の低温原子層エッチング		1.名大低温プラズマ
17:00	授 18p-A23-10	リモート酸素プラズマによるNiO ₂ 上の単層グラフェンの		1. 名人民温フノスマ 1. 名古屋大工, 2. 名大低温プラズマ
11.00	₹ 10p-1123-10	選択的除去	Nguyen ² , 蕭 世男 ² , 堀 勝 ²	いロロ生ハー, 5・ロハト価ノノハヾ
17:15	18n-A23-11	成長空間における RF プラズマの評価と β -Ga $_2$ O $_3$ 薄膜の		1.大阪公立大工
11.13	10p 1123-11	ALD成長	藤村 紀文1	**/ NUM == / N ==
17:30	18n-A23-12	GaCp*を用いた多結晶GaN薄膜の原子層堆積	○水谷 文一¹, 高橋 伸尚¹	1. 高純度化学研
	-op 1100 10	休憩·名刺交換会/Interaction Break		
17:45				
17:45 18:00	招 18p-A23-13	ALDと ALEを併用した高選択性 Co 薄膜形成プロセス	○山口 潤¹, 佐藤 登¹, 筑根 敦弘¹, 百瀬 健¹, 霜垣 幸	1.東大院工
	招 18p-A23-13	ALDと ALEを併用した高選択性 Co 薄膜形成プロセス	○山口 潤¹, 佐藤 登¹, 筑根 敦弘¹, 百瀬 健¹, 霜垣 幸 浩¹	1.東大院工

18:30		18p-A23-14	Co-ALD 初期成長過程の反射光分光その場観察	○玉置 直樹¹,木村 俊介¹,吉田 幸希¹,山口 潤¹,佐藤 登¹,筑根 敦弘¹,百瀬 健¹,霜垣 幸浩¹	1. 東大院工
18:45		18p-A23-15	HfO_2/ZrO_2 界面が HfO_2/ZrO_2 ナノラミネート薄膜の強誘電相出現に与える影響の考察		1. 東大院新領域
19:00 19:15			ALD法で作製した Ga_2O_3 薄膜の成長機構 β - Ga_2O_3 上の HfO_2 系極薄膜成長の結晶方位依存性	○(M1)古川 勝裕¹, 市川 龍斗¹, 阿多 翔大¹, 吉村 武¹,	1.大阪公立大工 1.大阪公立大院工
			ノ電子化学 〜最先端半導体からバイオサイエンスまで〜	藤村 紀文 ¹ - / Interdisciplinary Expansion of Interfacial Nano-E	lectrochemistry -From Advanced Semiconductors to
Bioscier 9/18(W			口頭講演 (Oral Presentation) C41会場 (Room C41)		
13:30			洗浄乾燥時の微細構造倒壊メカニズム	〇小出 辰彦1	1.キオクシア
14:00	招	18p-C41-2	表面極近傍に移動するナノ粒子の三次元挙動観測	○カチョーンルンルアン パナート¹	1.九工大
14:30		18p-C41-3	枚葉スピン式洗浄のリンス処理における薬液排出過程の 三次元数値計算	○神保 佳典¹,真田 俊之¹	1.静大工
14:45	177	10 041 4	休憩/Break	OFF (= (= 1	1 1911
15:00 15:30		18p-C41-4 18p-C41-5	多彩な液体と気体のインタラクションで見るバイオ界面 nm サイズの狭所内 SiO_2 エッチングにおけるシリコンの 疎水性及び表面電位の効果		1.理研 1.株式会社SCREENホールディングス, 2.株式会社 SCREENセミコンダクターソリューションズ, 3.京大院
10.00	±77	10- 041 0		〇共上 原×1 法 十份2 が井 曲フ1	I
16:00 16:30			FM-AFMによるナノスコピックなぬれのその場観察 純水噴霧の誘導帯電メカニズムの解析	○荒木 優希¹, 湊 丈俊², 新井 豊子¹ ○渡部 一哲¹, 伊藤 康生¹, 森 竜雄¹, 一野 祐亮¹, 田岡 紀之¹. 清家 善之¹	1. 金沢大, 2.分子研 1. 愛知工大
16:45	奨	18p-C41-8	二流体スプレー時の飛行液滴の電荷特性とSiO ₂ ウェハの表面電位の関係性		1.愛知工大
KS3 半道	単体ク	ブリーンファブ	研究会 / Green Transition of Fabrication Group	山岡 札之 , 佰水 音之	
【一般公	開】1		D醍醐味 ~ モノづくりシステムの現場で応用物理は何がで	きるか? \sim / (Open Symposium) The real thrill of p	roduction technologies: What can "Applied Physics"
9/18(W	ed.)	13:30 - 18:50	口頭講演 (Oral Presentation) A21 会場 (Room A21)		
13:30			オープニングアドレス/生産技術の醍醐味	○秋永 広幸¹	1.産総研デバイス技術
13:40	招	18p-A21-2	【注目講演】 コーポレート・トランスフォーメーションを 支える生産技術	○君田 英之。	1.AGC株式会社
14:30	招	18p-A21-3	生産現場の知識体系を技術者が構築するための IT 活用法	○藤岡 聡太¹.²	1.シングス合同会社, 2.実際の設計研究会
15:10	招	18p-A21-4	半導体工場における水利用のグリーン移行技術	○飯野 秀章 1	1. 栗田工業株式会社
15:50			休憩・名刺交換会/Interaction Break		
16:10			反応性プラズマを用いた金属表面改質プロセスのその場 インピーダンス分光計測		1. 京大院工, 2. 学振特別研究員 DC
16:25		18p-A21-6	物理リザバー―体化 MEMS 加速度センサを用いた振動判別		1.京大院工
16:40		18p-A21-7	機械学習アルゴリズム・AIチップ統合開発システム	〇竹内 健 ¹	1.東大工
17:20 18:00		18p-A21-8 18p-A21-9	AIチップ設計拠点と設計プラットフォーム 半導体モノづくりを加速する NVIDIA Computing	○内山 邦男¹ ○丹 愛彦¹	 1. 産総研 1. エヌビディア
10.00	111	10p-A21-3	Platform	0/1 &/2	1.1.2.2.7.4.7
18:40		18p-A21-10	クロージングリマーク/モノづくりシステムの現場で応 田物理は何ができるか?	○三河 巧¹	1.SCREENセミコンダクターソリューションズ
		•	用物理は何ができるか?		1.SCREEN セミコンダクターソリューションズ
1 応用物 T1 科学)理学 教育の	- -一般 / Interdi の人材育成お』		hnology	
1 応用物 T1 科学	理学 教育の u Reg	一般 / Interdi の人材育成お 』 gion-	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec はび教育の取り組みとその活性化一北陸・信越地区一/Hur 	hnology	
1 応用物 T1 科学	理学 教育の u Reg hu.):	一般 / Interdi の人材育成お 』 gion-	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec な び教育の取り組みとその活性化一北陸・信越地区一 / Hur 口頭講演 (Oral Presentation) A36 会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取	hnology man Resource Development and Education Initiative	
1 応用物 T1 科学: /Shineti 9/19(T	理学 教育 a u Reg hu.): 招	一般 / Interdi の人材育成およ gion- 13:30 - 17:00	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec はび教育の取り組みとその活性化一北陸・信越地区一/Hur 口頭講演 (Oral Presentation) A36会場(Room A36)	hnology man Resource Development and Education Initiative ○馬場 暁 1 , 上孝 和孝 1 , 中野 祥子 1 ○本田 光典 1 , 森本 章治 1 , 山本 茂 1 , 松原 道男 1 , 酒寄	s in Science Education and its Revitalization -Hokuriku 1.新潟大工
1 応用物 T1 科学: /Shineti 9/19(T 13:30	7理学 教育の u Reg hu.) 1 招 招	・一般 / Interdi の人材育成お』 gion- 13:30 - 17:00 19p-A36-1	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec は び教育の取り組みとその活性化一北陸・信越地区-/ Hur 「回頭講演 (Oral Presentation) A36 会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取り組み 金沢大学 STELLA プログラム 一未来の科学技術イノベーターを指向した小中高生の育成 ファーマ・メディカルエンジニア養成プログラム~理工	hnology man Resource Development and Education Initiative 〇馬場 暁 1 , 上孝 和孝 1 , 中野 祥子 1 〇本田 光典 1 , 森本 章治 1 , 山本 茂 1 , 松原 道男 1 , 酒寄淳史 1 , 本所 恵 1 , 中村 聡 1 , 窪田 陽子 1	s in Science Education and its Revitalization -Hokuriku 1.新潟大工
1 応用物 T1 科学 /Shinetr 9/19(T 13:30 14:00	7理学 教育の u Reg hu.) 1 招 招	一般 / Interdi の人材育成およ gion- 13:30 - 17:00 19p-A36-1 19p-A36-2	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec はび教育の取り組みとその活性化一北陸・信越地区-/ Hur 「回頭講演 (Oral Presentation) A36 会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取り組み を沢大学STELLAプログラム ー未来の科学技術イノベーターを指向した小中高生の育成一 ファーマ・メディカルエンジニア養成プログラム~理工 系学生の学際的産業分野への誘い	hnology man Resource Development and Education Initiative 〇馬場 暁 1 , 上孝 和孝 1 , 中野 祥子 1 〇本田 光典 1 , 森本 章治 1 , 山本 茂 1 , 松原 道男 1 , 酒寄淳史 1 , 本所 恵 1 , 中村 聡 1 , 窪田 陽子 1	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大
1 応用物 T1 科学: /Shinete 9/19(T 13:30	p理学 教育 cu Reg hu.): 招 招	一般 / Interdi の人材育成およ gion- 13:30 - 17:00 19p-A36-1 19p-A36-2	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Teck び教育の取り組みとその活性化一北陸・信越地区 / Hurl 口頭講演 (Oral Presentation) A36 会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取り組み 金沢大学STELLA プログラム - 未来の科学技術イノベーターを指向した小中高生の育成 - ファーマ・メディカルエンジニア養成プログラム〜理工系学生の学際的産業分野への誘い 休憩/Break 長岡高専での実践的技術者教育の試み ~AI/loTリテラ	hnology man Resource Development and Education Initiative	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大
1 応用物 T1 科学 /Shinetr 9/19(T 13:30 14:00 14:30 15:00 15:15	p理学 教育 ou Reg hu.) : 招 招 招	一般 / Interdi の人材育成お。 gion- 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Teck び教育の取り組みとその活性化一北陸・信越地区-/ Hur 口頭講演 (Oral Presentation) A36会場(Room A36)新潟大学工学部におけるグローバル理工系人材育成の取り組み金沢大学STELLAプログラムー未来の科学技術イノベーターを指向した小中高生の育成一ファーマ・メディカルエンジニア養成プログラム〜理工系学生の学際的産業分野への誘い体態/Break長岡高専での実践的技術者教育の試み〜AI/IoTリテラシー教育およびエンジニアリングデザイン教育〜	hnology man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大 1. 富山大工 1. 長岡高専
1 応用物 T1 科学 /Shinetr 9/19(T 13:30 14:00 14:30	TE T	一般 / Interdi の人材育成お。 gion- 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Teck び教育の取り組みとその活性化一北陸・信越地区 / Hurl 口頭講演 (Oral Presentation) A36 会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取り組み 金沢大学STELLA プログラム - 未来の科学技術イノベーターを指向した小中高生の育成 - ファーマ・メディカルエンジニア養成プログラム〜理工系学生の学際的産業分野への誘い 休憩/Break 長岡高専での実践的技術者教育の試み ~AI/loTリテラ	hnology man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小鍛治 優¹, 橋場 隆¹	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大 1. 富山大工
1 応用物 T1 科学 /Shinetr 9/19(T 13:30 14:00 15:00 15:15	理学育の u Reg hu.): 招 招 招 招 招 招 招	一般 / Interdi の人材育成お。 gion- 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec はび教育の取り組みとその活性化一北陸・信越地区-/ Hur 口頭講演 (Oral Presentation) A36 会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取り組み 金沢大学STELLA プログラム ー未来の科学技術イノベーターを指向した小中高生の育成 ーファーマ・メディカルエンジニア養成プログラム〜理工 系学生の学際的産業分野への誘い 休憩/Break 長岡高専での実践的技術者教育の試み ~AI/IoTリテラシー教育およびエンジニアリングデザイン教育〜エネルギー環境教育体験館「きいばす」での実践紹介 備長炭を用いた空気電池製作とそれを利用した理科教育 の事例紹介 内核の逆立ちコマ現象による地磁気逆転のメカニズム解	hnology man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小鍛冶 優¹, 橋場 隆¹ ○小川 賢¹	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大 1. 富山大工 1. 長岡高専 1. 美浜町きいばす
1 応用物 T1 科学 /Shinett 9/19(T 13:30 14:00 15:00 15:15 15:45 16:15	TETE TO THE TETE	一般 / Interdi の人材育成およ gion- 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3 19p-A36-4 19p-A36-5 19p-A36-6	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec はび教育の取り組みとその活性化一北陸・信越地区 / Hur 口頭講演 (Oral Presentation) A36 会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取り組み 金沢大学STELLA プログラム 一未来の科学技術イノベーターを指向した小中高生の育成 一ファーマ・メディカルエンジニア養成プログラム〜理工 系学生の学際的産業分野への誘い 休憩/Break 長岡高専での実践的技術者教育の試み ~Al/loTリテラシー教育およびエンジニアリングデザイン教育〜 エネルギー環境教育体験館「きいばす」での実践紹介 備長炭を用いた空気電池製作とそれを利用した理科教育 の事例紹介 内核の逆立ちコマ現象による地磁気逆転のメカニズム解 明	hnology man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小鍛治 優¹, 橋場 隆¹ ○小川 賢¹ ○石井 義哲¹, 廣田 恵¹	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大 1. 富山大工 1. 長岡高専 1. 美浜町きいばす 1. 公立諏訪東理大
1 応用物 T1 科学 /Shinett 9/19(T 13:30 14:00 14:30 15:00 15:15 15:45 16:15 16:45	理学育。 u Reginul 招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招	一般 / Interdi の人材育成およ gion- 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3 19p-A36-4 19p-A36-5 19p-A36-6 19p-A36-7 一般 / Interdi	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec はび教育の取り組みとその活性化一北陸・信越地区-/ Hur 口頭講演 (Oral Presentation) A36 会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取り組み 金沢大学STELLA プログラム ー未来の科学技術イノベーターを指向した小中高生の育成 ーファーマ・メディカルエンジニア養成プログラム〜理工 系学生の学際的産業分野への誘い 休憩/Break 長岡高専での実践的技術者教育の試み ~AI/IoTリテラシー教育およびエンジニアリングデザイン教育〜エネルギー環境教育体験館「きいばす」での実践紹介 備長炭を用いた空気電池製作とそれを利用した理科教育 の事例紹介 内核の逆立ちコマ現象による地磁気逆転のメカニズム解	hnology man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小鍛治 優¹, 橋場 隆¹ ○小川 賢¹ ○石井 義哲¹, 廣田 恵¹	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大 1. 富山大工 1. 長岡高専 1. 美浜町きいばす 1. 公立諏訪東理大
1 応用物 T1 科学/Shinetr 9/19(T 13:30 14:00 15:00 15:15 15:45 16:45 1 応用物 8 プラス	理学育の 現代 現代 現代 の の の の の の の の の の の の の	一般 / Interdi の人材育成お。 gion- 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3 19p-A36-4 19p-A36-5 19p-A36-6 19p-A36-7 一般 / Interdi レクトロニク	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec はび教育の取り組みとその活性化一北陸・信越地区 / Hur 「回頭講演 (Oral Presentation) A36 会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取り組み を沢大学STELLA プログラム 一未来の科学技術イノベーターを指向した小中高生の育成 「ファーマ・メディカルエンジニア養成プログラム〜理工 系学生の学際的産業分野への誘い 体想/Break 長岡高専での実践的技術者教育の試み ~Al/loTリテラシー教育およびエンジニアリングデザイン教育〜 エネルギー環境教育体験館「きいばす」での実践紹介 備長炭を用いた空気電池製作とそれを利用した理科教育 の事例紹介 内核の遊立ちコマ現象による地磁気逆転のメカニズム解 明 sciplinary Physics and Related Areas of Science and Tec	hnology man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小銀治 優¹, 橋場 隆¹ ○小川 賢¹ ○石井 義哲¹, 廣田 恵¹	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大 1. 富山大工 1. 長岡高専 1. 美浜町きいばす 1. 公立諏訪東理大 1. 艦磁研
1 応用物 T1 科学/Shinetr 9/19(T 13:30 14:00 14:30 15:00 15:15 16:45 1 応用物 8 プラス T2 地球 9/19(T	理学育 Regeration Head Regerati	一般 / Interdi の人材育成およ gion- 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3 19p-A36-4 19p-A36-5 19p-A36-6 19p-A36-7 一般 / Interdi レクトロニク 界?ブラネタリ 13:30 - 17:30	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec はび教育の取り組みとその活性化一北陸・信越地区 — / Hur 「回頭講演 (Oral Presentation) A36会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取り組み 金沢大学STELLA プログラム 一未来の科学技術イノベーターを指向した小中高生の育成 一ファーマ・メディカルエンジニア養成プログラム〜理工 系学生の学際的産業分野への誘い 休憩/Break 長岡高専での実践的技術者教育の試み ~ AI/loTリテラシー教育およびエンジニアリングデザイン教育〜 エネルギー環境教育体験館「きいばす」での実践紹介 備長炭を用いた空気電池製作とそれを利用した理科教育 の事例紹介 内核の逆立ちコマ現象による地磁気逆転のメカニズム解 明 sciplinary Physics and Related Areas of Science and Tec ス/Plasma Electronics バウンダリにおけるプラズマとエネルギーシステムによる 「ロ頭講演 (Oral Presentation) A22 会場(Room A22)	hnology man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小베 賢¹ ○石井 義哲¹, 廣田 恵¹ hnology 3.危機回避 / Earth's limits? Crisis Avoidance with Place	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大 1. 富山大工 1. 長岡高専 1. 美浜町きいばす 1. 公立諏訪東理大 1. 艦磁研 asma and Energy Systems in Planetary Boundaries
1 応用物 T1 科学/Shinetr 9/19(T 13:30 14:00 14:30 15:00 15:15 16:45 1 応用物 8 プラス T2 地球 9/19(T 13:30	p理等の hu.) : 知数 Reg phu.) : 知数 招 招 招招 理で限.) : nhu.) :	ー般 / Interdi の人材育成およ gion- 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3 19p-A36-4 19p-A36-5 19p-A36-6 19p-A36-7 一般 / Interdi レクトロニク アプラネタリ 13:30 - 17:30 19p-A22-1	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec はび教育の取り組みとその活性化一北陸・信越地区 — / Hur 「回頭講演 (Oral Presentation) A36会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取り組み 金沢大学STELLA プログラム 一未来の科学技術イノベーターを指向した小中高生の育成 ファーマ・メディカルエンジニア養成プログラム〜理工 系学生の学際的産業分野への誘い 休憩/Break 長岡高専での実践的技術者教育の試み ~AI/IoTリテラシー教育およびエンジニアリングデザイン教育〜 エネルギー環境教育体験館「きいばす」での実践紹介 備長炭を用いた空気電池製作とそれを利用した理科教育 の事例紹介 内核の逆立ちコマ現象による地磁気逆転のメカニズム解明 sciplinary Physics and Related Areas of Science and Tec ス/Plasma Electronics バウンダリにおけるプラズマとエネルギーシステムによる 口頭講演 (Oral Presentation) A22会場(Room A22) 空気プラズマを用いた CO₂直接排出のない窒素肥料生成	hnology man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小明 賢¹ ○石井 義哲¹, 廣田 恵¹ hnology 6危機回選 / Earth's limits? Crisis Avoidance with Plate ○田中 学¹, 渡邉 隆行¹, 奥村 賢直², Attri Pankaj², 古 開一憲², 白谷 正治², 竹內 希³, 高橋 克幸⁴	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大 1. 富山大工 1. 長岡高専 1. 美浜町きいばす 1. 公立諏訪東理大 1. 艦磁研 asma and Energy Systems in Planetary Boundaries 1. 九大院工、2. 九大院シス情、3. 東工大工、4. 岩手大理工
1 応用物 T1 科学/Shinetr 9/19(T 13:30 14:00 14:30 15:00 15:15 16:45 1 応用物 8 プラス T2 地球 9/19(T	p理等の hu.) : 紹子 招 招 招 招 招 理 で Region Hu.) : のhu.) : のhu.) :	ー般 / Interdi の人材育成およ gion- 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3 19p-A36-4 19p-A36-5 19p-A36-6 19p-A36-7 一般 / Interdi レクトロニク アプラネタリ 13:30 - 17:30 19p-A22-1	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Teck び教育の取り組みとその活性化一北陸・信越地区一/Hur 口頭講演 (Oral Presentation) A36会場(Room A36)新潟大学工学部におけるグローバル理工系人材育成の取り組み金沢大学STELLA プログラムー未来の科学技術イノベーターを指向した小中高生の育成一ファーマ・メディカルエンジニア養成プログラム〜理工系学生の学際的産業分野への誘い体態/Break 長岡高専での実践的技術者教育の試み〜AI/IoTリテラシー教育およびエンジニアリングデザイン教育〜エネルギー環境教育体験館「きいばす」での実践紹介備長炭を用いた空気電池製作とそれを利用した理科教育の事例紹介内核の逆立ちコマ現象による地磁気逆転のメカニズム解明 sciplinary Physics and Related Areas of Science and Tec ス/Plasma Electronics プログタリにおけるプラズマとエネルギーシステムによる口頭講演 (Oral Presentation) A22会場(Room A22)空気プラズマを用いたCO2直接排出のない窒素肥料生成大気圧パルス放電の発生と農業への応用海産性光合成生物を利用した新しいアクアポニクスと物	hnology man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小銀治 優¹, 橋場 隆¹ ○小川 賢¹ ○石井 義哲¹, 廣田 恵¹ hnology 3 危機回選 / Earth's limits? Crisis Avoidance with Pla ©田中 学¹, 渡邉 隆行¹, 奥村 賢直², Attri Pankaj², 古 関一憲², 白谷 正治², 竹内 希³, 高橋 克幸⁴ ○高橋 克幸¹, 高木 浩一¹	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大 1. 富山大工 1. 長岡高専 1. 美浜町きいばす 1. 公立諏訪東理大 1. 艦磁研 asma and Energy Systems in Planetary Boundaries
1 応用物 T1 科学/Shinetr 9/19(T 13:30 14:00 15:00 15:15 15:45 16:15 1 応用物 8 プラス T2 地球 9/19(T 13:30 14:00 14:15	p理育の hu N招 招 招 招招 理マ限) でのhu 招 招	一般 / Interdip 人材育成およった。	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Teck び教育の取り組みとその活性化一北陸・信越地区一/Hur 口頭講演 (Oral Presentation) A36会場(Room A36)新潟大学工学部におけるグローバル理工系人材育成の取り組み金沢大学STELLAプログラムー未来の科学技術イノベーターを指向した小中高生の育成一ファーマ・メディカルエンジニア養成プログラム〜理工系学生の学際的産業分野への誘い体想/Break 展岡高専での実践的技術者教育の試み〜AI/IoTリテラシー教育およびエンジニアリングデザイン教育〜エネルギー環境教育体験館「きいばす」での実践紹介備長炭を用いた空気電池製作とそれを利用した理科教育の事例紹介内核の逆立ちコマ現象による地磁気逆転のメカニズム解明 sciplinary Physics and Related Areas of Science and Teck / Plasma Electronics / バウンダリにおけるプラズマとエネルギーシステムによる口頭講演 (Oral Presentation) A22会場(Room A22)空気プラズマを用いた CO₂直接排出のない窒素肥料生成大気圧パルス放電の発生と農業への応用海産性光合成生物を利用した新しいアクアポニクスと物質循環 食資源循環による「美ら島」実現プロジェクト	hnology man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小銀治 優¹, 橋場 隆¹ ○小川 賢¹ ○石井 義哲¹, 廣田 恵¹ hnology 3 危機回選 / Earth's limits? Crisis Avoidance with Pla ©田中 学¹, 渡邉 隆行¹, 奥村 賢直², Attri Pankaj², 古 関一憲², 白谷 正治², 竹内 希³, 高橋 克幸⁴ ○高橋 克幸¹, 高木 浩一¹	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大 1. 富山大工 1. 長岡高専 1. 美浜町きいばす 1. 公立諏訪東理大 1. 艦磁研 asma and Energy Systems in Planetary Boundaries 1. 九大院工、2. 九大院シス情、3. 東工大工、4. 岩手大理工 1. 岩手大学
1 応用物T1 科学/Shinet 9/19(T 13:30 14:00 15:15 15:45 16:15 1 応用物 8 プラズ T2 地球 9/19(T 13:30 14:00 14:15	理教 u Reginate in Annual Regination in Annual Regi	一般 / Interdiの人材育成お。 gion- 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3 19p-A36-4 19p-A36-5 19p-A36-6 19p-A36-7 一般 / Interdi レクトロニク ア ア ブラネタリ 13:30 - 17:30 19p-A22-1 19p-A22-2 19p-A22-3	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec t び教育の取り組みとその活性化一北陸・信越地区一/Hur 口頭講演 (Oral Presentation) A36会場(Room A36)新潟大学工学部におけるグローバル理工系人材育成の取り組み金沢大学STELLA プログラムー未来の科学技術イノベーターを指向した小中高生の育成一ファーマ・メディカルエンジニア養成プログラム〜理工系学生の学際的産業分野への誘い体想/Break 長岡高専での実践的技術者教育の試み〜AI/loTリテラシー教育およびエンジニアリングデザイン教育〜エネルギー環境教育体験館「きいばす」での実践紹介備長炭を用いた空気電池製作とそれを利用した理科教育の事例紹介内核の逆立ちコマ現象による地磁気逆転のメカニズム解明のいて、Plasma Electronics バウンダリにおけるプラズマとエネルギーシステムによる頭講演 (Oral Presentation) A22会場(Room A22)空気プラズマを用いたCO₂直接排出のない窒素肥料生成大気圧パルス放電の発生と農業への応用海産性光合成生物を利用した新しいアクアポニクスと物質循環 食資源循環による「美ら島」実現プロジェクト体憩/Breakプラズマによる新しい炭素循環・エネルギー利用システ	man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小側 賢¹ ○石井 義哲¹, 廣田 恵¹ hnology 5 危機回避 / Earth's limits? Crisis Avoidance with Pla 図田中 学¹, 渡邉 隆行¹, 奥村 賢直², Attri Pankaj², 古関一憲², 白谷 正治², 竹内 希³, 高橋 克幸⁴ ○高橋 克幸¹, 高木 浩一¹ ○河野 智謙¹ ○平良 東紀¹	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大 1. 富山大工 1. 長岡高専 1. 美浜町きいばす 1. 公立諏訪東理大 1. 艦磁研 asma and Energy Systems in Planetary Boundaries 1. 九大院工, 2. 九大院シス情, 3. 東工大工, 4. 岩手大理工 1. 岩手大学 1. 北九州市大
1 応用物 T1 科学/Shinet 9/19(T 13:30 14:00 14:30 15:00 15:15 16:45 1 応用物 8 プラス アク/19(T 13:30 14:00 14:15 14:45 15:15 15:30	理教 Regehu.):招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招	一般 / Interdip 人材育成およっています。 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3 19p-A36-4 19p-A36-5 19p-A36-6 19p-A36-7 一般 / Interdip 人 / トロニクス・フラネタリ 13:30 - 17:30 19p-A22-1 19p-A22-2 19p-A22-3 19p-A22-4 19p-A22-5	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec はび教育の取り組みとその活性化一北陸・信越地区一/Hur 口頭講演 (Oral Presentation) A36会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取り組み 金沢大学STELLA プログラム ー未来の科学技術イノベーターを指向した小中高生の育成一ファーマ・メディカルエンジニア養成プログラム〜理工系学生の学際的産業分野への誘い 休憩/Break 長岡高専での実践的技術者教育の試み 〜AI/IoTリテラシー教育およびエンジニアリングデザイン教育〜エネルギー環境教育体験館「きいばす」での実践紹介備長炭を用いた空気電池製作とそれを利用した理科教育の事例紹介 内核の逆立ちコマ現象による地磁気逆転のメカニズム解明 sciplinary Physics and Related Areas of Science and Tec ス/Plasma Electronics バワンダリにおけるプラスマとエネルギーシステムによる 口頭講演 (Oral Presentation) A22会場(Room A22)空気プラズマを用いた CO₂直接排出のない窒素肥料生成大気圧バルス放電の発生と農業への応用 海産性光合成生物を利用した新しいアクアポニクスと物質循環 循環による「美ら島」実現プロジェクト 休憩/Break プラズマによる新しい炭素循環・エネルギー利用システム	man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小側 賢¹ ○石井 義哲¹, 廣田 恵¹ hnology 5 危機回避 / Earth's limits? Crisis Avoidance with Plate 〇田中 学¹, 渡邉 隆行¹, 奥村 賢直², Attri Pankaj², 古 関一憲², 白谷 正治², 竹内 希³, 高橋 克幸⁴ ○高橋 克幸¹, 高木 浩一¹ ○河野 智謙¹ ○平良 東紀¹	s in Science Education and its Revitalization - Hokuriku 1. 新潟大工 1. 金沢大 1. 金沢大 1. 長岡高専 1. 美浜町きいぱす 1. 公立諏訪東理大 1. 艦磁研 1. 監磁研 1. 監磁研 1. 監球・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1 応用物T1 科学/Shinetr 9/19(T 13:30 14:00 15:15 15:45 16:15 16:45 1た用物 3プラス T2 地球 9/19(T 13:30 14:00 14:15 15:15 16:45 16:45 16:	理教 u Regulation Hand Hand Hand Hand Hand Hand Hand Han	一般 / Interdip 人材育成およっています。 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3 19p-A36-4 19p-A36-5 19p-A36-6 19p-A36-7 一般 / Interdip 人 レクトロニク ア・ブラネタリ 13:30 - 17:30 19p-A22-1 19p-A22-2 19p-A22-3 19p-A22-4	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Teck び教育の取り組みとその活性化一北陸・信越地区一/Hur 口頭講演 (Oral Presentation) A36会場(Room A36)新潟大学工学部におけるグローバル理工系人材育成の取り組み金沢大学STELLA プログラムー未来の科学技術イノベーターを指向した小中高生の育成一ファーマ・メディカルエンジニア養成プログラム〜理工系学生の学際的産業分野への誘い体想/Break 長岡高専での実践的技術者教育の試み〜AI/IoTリテラシー教育およびエンジニアリングデザイン教育〜エネルギー環境教育体験館「きいばす」での実践紹介備長炭を用いた空気電池製作とそれを利用した理科教育の事例紹介内核の逆立ちコマ現象による地磁気逆転のメカニズム解明 sciplinary Physics and Related Areas of Science and Tec ス/Plasma Electronics アウメダリにおけるプラズマとエネルギーシステムによる口頭講演 (Oral Presentation) A22会場(Room A22)空気プラズマを用いたCO。直接排出のない窒素肥料生成大気圧パルス放電の発生と農業への応用海産性光合成生物を利用した新しいアクアポニクスと物質循環 食資源循環による「美ら島」実現プロジェクト 休憩/Break プラズマによる新しい炭素循環・エネルギー利用システム 地下圏微生物を活用したエネルギー生産資源循環型共生社会実現に向けた農水ー体型サステイナ	man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小郎 餐¹, 橋場 隆¹ ○小川 賢¹ ○石井 義哲¹, 廣田 恵¹ hnology 6危機回選 / Earth's limits? Crisis Avoidance with Plate ○田中 学¹, 渡邉 隆行¹, 奥村 賢直², Attri Pankaj², 古 用一憲², 白谷 正治², 竹内 希³, 高橋 克幸⁴ ○高橋 克幸¹, 高木 浩一¹ ○河野 智謙¹ ○平良 東紀¹ ○野崎 智洋¹ ○柳川 勝紀¹	s in Science Education and its Revitalization -Hokuriku 1. 新潟大工 1. 金沢大 1. 金沢大 1. 長岡高専 1. 美浜町きいばす 1. 公立諏訪東理大 1. 艦磁研 asma and Energy Systems in Planetary Boundaries 1. 九大院エ, 2. 九大院シス情, 3. 東エ大エ, 4. 岩手大理エ 1. 岩手大学 1. 北九州市大 1. 琉球大農
1 応用物 T1 科学/Shinetr 9/19(T 13:30 14:00 14:30 15:00 15:15 16:45 1 応用物 8 プラス T2 地球 9/19(T 13:30 14:00 14:15 14:45 15:15 16:00	理教 u Reginul 招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招招	一般 / Interdiの人材育成お。 gion- 13:30 - 17:00 19p-A36-1 19p-A36-2 19p-A36-3 19p-A36-3 19p-A36-5 19p-A36-6 19p-A36-7 一般 / Interdi レクトロニク 界? ブラネタリ 13:30 - 17:30 19p-A22-1 19p-A22-3 19p-A22-3 19p-A22-4 19p-A22-5 19p-A22-6 19p-A22-7	用物理は何ができるか? sciplinary Physics and Related Areas of Science and Tec はび教育の取り組みとその活性化一北陸・信越地区一/Hur 口頭講演 (Oral Presentation) A36会場(Room A36) 新潟大学工学部におけるグローバル理工系人材育成の取り組み 金沢大学STELLA プログラム 一未来の科学技術イノベーターを指向した小中高生の育成一 ファーマ・メディカルエンジニア養成プログラム〜理工 系学生の学際的産業分野への誘い 休憩/Break 長岡高専での実践的技術者教育の試み 〜AI/IoTリテラシー教育およびエンジニアリングデザイン教育〜エネルギー環境教育体験館「きいばす」での実践紹介 備長炭を用いた空気電池製作とそれを利用した理科教育の事例紹介 内核の逆立ちコマ現象による地磁気逆転のメカニズム解明 sciplinary Physics and Related Areas of Science and Tec ス/Plasma Electronics バウンダリにおけるプラズマとエネルギーシステムによる 「口頭講演(Oral Presentation)A22会場(Room A22)空気プラズマを用いた CO。直接排出のない窒素肥料生成 大気圧バルス放電の発生と農業への応用 海産性光合成生物を利用した新しいアクアボニクスと物質循環 食資源循環による「美ら島」実現プロジェクト 休憩/Break プラズマによる新しい炭素循環・エネルギー利用システム 地下圏微生物を活用したエネルギー生産	man Resource Development and Education Initiative ○馬場 暁¹, 上孝 和孝¹, 中野 祥子¹ ○本田 光典¹, 森本 章治¹, 山本 茂¹, 松原 道男¹, 酒寄淳史¹, 本所 恵¹, 中村 聡¹, 窪田 陽子¹ ○田端 俊英¹ ○酒井 一樹¹ ○小銀 爰², 橋場 隆¹ ○小川 賢¹ ○石井 義哲¹, 廣田 恵¹ hnology 3. ○機回選 / Earth's limits? Crisis Avoidance with Pla ○田中 学¹, 渡邉 隆行¹, 奥村 賢直², Attri Pankaj², 古 関 一憲², 白谷 正治², 竹內 希³, 高橋 克幸⁴ ○高橋 克幸¹, 高木 浩一¹ ○河野 智謙¹ ○平良 東紀¹ ○柳川 勝紀¹ ○羽賀 史浩¹ ○瀬田 耕佑¹, 江口 定夫², 平野 七恵², 朝田 景², 岡	s in Science Education and its Revitalization -Hokur 1. 新潟大工 1. 金沢大 1. 富山大工 1. 長岡高専 1. 美浜町きいばす 1. 公立諏訪東理大 1. 艦磁研 asma and Energy Systems in Planetary Boundaries 1. 九大院工, 2. 九大院シス情, 3. 東工大工, 4. 岩手大理 1. 岩手大学 1. 北九州市大 1. 琉球大農 1. 東工大工 1. 北九州市立大 1. 琉球大共創

		/ Thin Films a			
			AIエレクトロニクス」/ Focused Session "Al Electronics" た物理リザバーコンピューティングの社会応用に向けて /		amounting using a surprotocials and assuranting in last
			た物理リサハーコンピューティングの社会応用に同じて / 口頭講演 (Oral Presentation) A41 会場 (Room A41)	Towards social applications of physical reservoir co	omputing using new materials and new principles
9:30		19a-A41-1	オープニング 〜開催趣旨〜	○神吉 輝夫 1	1. 阪大産研
9:40	招		物理リザバー計算能力向上のための有機無機複合材料の 材料設計技術	〇西田 三博 ¹ , 窪田 智之 ² , 中嶋 浩平 ²	1.㈱ブリヂストン, 2.東大情報理工
10:20	招		分子ネットワークによるインマテリアルリザバー演算	○松本 卓也¹	1. 阪大院理
11:00	招	19a-A41-4	イオン・電子・スピンの時空間ダイナミクスを利用する 物理リザバーコンピューティング	〇土屋 敬志 1 , 並木 航 1 , 西岡 大貴 1 , 新ヶ谷 義隆 1 , 寺 部 一弥 1	1.物質・材料研究機構
9/19(Thu.) :	13:30 - 17:10	口頭講演 (Oral Presentation) A41会場 (Room A41)	Hb 23.	
13:30	招	19p-A41-1	絶縁性磁性体膜を連続媒質型リザバーに利用した機械学 習コンピューティング	○中根 了昌 ^{1,2}	1.東大 d.lab, 2.東大電気系
14:10	招		スピン波による物理リザバー計算の理論的解析	〇義永 那津人 1,3,5 , 飯浜 賢志 2 , 小池 雄也 4 , 水上 成 美 3	1.はこだて未来大情報, 2.名古屋大工, 3.東北大AIM 4.東北大工, 5.産総研MathAM-OIL
14:50 15:00	+77		休憩・名刺交換会/Interaction Break シリコン CMOS 物理リザバーコンピューティング	○浅井 哲也¹	1.北大情科院
15:40			リザバーコンピューティングによる複雑時系列パターン		1.名工大工
6.20	+72	19p-A41-5	認識 社会応用が期待されるマテリアルリザバー演算素子	○田中 啓文 ^{1,2}	1. 九工大生命体工、2. 九工大 Neumorph センター
l6:20 l7:00		19p-A41-5		○葛西 誠也¹	1.北大 1.北大
		/ Thin Films			
			トロニクス / Organic Molecules and Bioelectronics 有機・生体システム計測の技術的進歩と未来展望 / Techn	ological Advances and Future Prospects in Measure	ement of Organic and Biological Systems by Atomic
orce I					
9/19(⁻ 13:30			口頭講演 (Oral Presentation) A24 会場 (Room A24) 原子間力顕微鏡:有機・バイオ計測の現状と今後の展開	〇山田 啓文1.2.3	1. 京都技術科学センター, 2. 龍谷大, 3. 京都大
14:25			SPM技術の進歩と有機・バイオ試料観察	○繁野 雅次¹	1.株式会社日立ハイテク
5:15 5:30	+77	19p-A24-3	休憩/Break 液中FM-AFMによる有機・生体分子の構造・物性・機能	O4) ** ± 1	1.京大工
15:50	fii	19p-A24-5	松中FMI-AFMによる有機・主体が上の構造・初性・機能 計測	○小州 主	1. 永入工
16:00 16:30	招	19p-A24-4	有機分子・バイオシステムの液中3次元AFM解析 休憩/Break	○福間 剛士¹	1.金沢大
16:45	招	19p-A24-5	高速原子間力顕微鏡の技術革新と応用展開	○内橋 貴之 ^{1,2}	1.名大理, 2.ExCELLS
l7:15 3坐道		19p-A24-6 Semiconductor	原子間力顕微鏡を用いた高分子ナノメカニクスの進展 s	O中嶋 健 ¹	1.東工大物質
			s ン集積回路の展開:過去、現在、未来 / Advancements in	Junction Technologies and Cutting-Edge Si-LSIs: Pa	ast, Present, and Future
			口頭講演 (Oral Presentation) A23会場 (Room A23)	O METH TIME	4.03.0
9:00 9:10			オープニング 接合技術と半導体デバイスの発展	〇柴田 聡 ¹ 〇岩井 洋 ¹	 パナソニック 陽明交大
9:30			最先端 Logic LSI における接合技術	〇若林 整1	1.東工大研究院
L0:25	招	19a-A23-4	シリコン中に導入された高濃度ドーパントの活性化と不	○水島 一郎1	1.ニューフレアテクノロジー
11:10	招	19a-A23-5	活性化 イオン注入・プラズマドーピング技術の歴史とその現状・ 問題点	〇丹上 正安1	1.元日新イオン
			口頭講演 (Oral Presentation) A23会場 (Room A23) Evolution of CMOS S/D Stressor Technology from Planar to 3-D Stacked Devices	○ John Ogawa Borland ¹	1.J.O.B. Technologies
14:15	招	19p-A23-2	最先端集積回路における金属/IV族半導体界面物性制御の課題と展開	〇中塚 理 1.2, 柴山 茂久 1, 坂下 満男 1, 黒澤 昌志 1	1.名大院工, 2.名大未来研
l5:00 l5:10	±22	19p-A23-3	休憩・名刺交換会/Interaction Break パネルディスカッション:接合技術と先端シリコン集積	○ 水野 立一¹ 岩井 洋² 芋林 敕³ 水皂 —郎⁴ 囚 L	111117 ラボ 2 陽明卒士 3 東工士研究院 4
13.10	111	130 7/23 3	回路:未来	正安 ⁵ , ジョン ボーランド ⁶ , 中塚 理 ^{7,8} , 高山 和良 ⁹	アテクノロジー, 5.元日新イオン, 6.J.O.B. Technologies, 7.名大院工, 8.名大未来研, 9.kind of
15:50	招	19p-A23-4	半導体技術エコシステム涵養のために、学会ができることは何か?~『異分野間ミスコミュニケーション削減』	〇高山 和良1	happy 1.kind of happy
			の取り組みを提言		
16:15		19p-A23-5	クロージング ニップフ京田 / Cwatallization and Applications of This F	○筒井 一生 ¹	1.東工大 IIR
			デバイス応用 / Crystallization and Applications of Thin F 口頭講演 (Oral Presentation) A35 会場(Room A35)		
3:30		19p-A35-1	オープニング	○岡田 竜弥¹, 曲 勇作²	1. 琉大工, 2. 北大電子研
3:40	招	19p-A35-2	絶縁膜上におけるIV族、III-V族半導体多結晶薄膜の高品 位形成	橋本 \mathbf{k}^1 , 梶原 隆司 1 , 茂藤 健太 2 , 山本 圭介 2 , 〇佐道 泰造 1	1. 九大システム情報, 2. 九大総理工
4:10			高機能半導体薄膜の固相成長とデバイス応用	○都甲 薫 ¹	1.筑波大
4:40	招	19p-A35-4	超急速熱処理における IV 族半導体薄膜の結晶成長とデバイス応用	○東 清一郎¹	1. 広大院先進理工
5:10	招	19p-A35-5	エキシマレーザー結晶化におけるSi膜中の水素の効果	○部家 彰¹, 住友 弘二¹, 松尾 直人¹	1. 兵庫県立大工
5:40 5:55	招	19p-A35-6	休憩/Break 光結晶化技術によるフレキシブル高移動度透明導電膜の	○ 野本 淳一 ¹	1. 産総研
.6:25			実現とそのデバイス応用 OLED Displayの最先端バックプレーン技術 ~LTPS、	○津吹 将志¹, 渡壁 創¹, 佐々木 俊成¹, 田丸 尊也¹, 望	
ن∡.د.	10	±2h-U30-1	ULED Display の最先端パックプレーク技術 ~LTPS、 LTPOからHMO(高移動度酸化物半導体)~~	〇洋吹 付志,波笙 剧,佐々木 俊成,田丸 尊也,室 月 真里奈 ¹	2001
16:55	奨	19p-A35-8	高信頼性ボトムゲート型水素添加多結晶酸化インジウム 薄膜トランジスタ	○岡本 直樹¹, Wang Xiaoqian¹, 古田 守¹	1.高知工大
7:10	奨 E	19p-A35-9	得膜トランジスタ Highly Reliable Self-Aligned Top-Gate Thin-Film Transistors with Hydrogen-Doped Poly-InO _x (InO _x :H)	○ (DC)Mir Mutakabbir Alom¹, Motoki Ando¹, Mamoru Furuta¹	1.Kochi Univ. of Tech.
7:25		19p-A35-10	channel クロージング	○野口隆 ¹ , 古田守 ²	1. 琉球大学, 2. 高知工科大
合同セ	ッショ	ンN「インファ	+マティクス応用」/ Joint Session N "Informatics"		and the properties of the second
			聿駆動型研究がもたらす研究パラダイムシフト / Research 口頭講演 (Oral Presentation) A21 会場(Room A21)	n paradigm shift by AI and robotics	
9:30			AI・ロボットによる研究開発プロセス革新の現状と課題	○竹内一郎1,2	1.名大, 2.理研
10:10 10:30	1 77	19a-A21-2	休憩・名刺交換会/Interaction Break サイバーとリアルが融合した研究開発環境の世界的潮流	○一杉 大郎 1,2	1. 東大理, 2. 東工大
.0.50	10	130 ML1-C	と将来展望		

11:10	招 19a-A21-3	ハイスループットフラックス法スクリーニングシステム による結晶材料開発 ~アースポジティブな社会に資する 信大クリスタル~		1.信大ARG, 2.信大RISM, 3.信大工, 4.ヴェルヌクリス タル
		口頭講演 (Oral Presentation) A21 会場 (Room A21)	0 t my 1	
13:30	招 19p-A21-1	万物のあらゆる物性を予測するマルチモーダルAI技術と 産総研内33テーマへの水平展開	〇畠 賢治・	1. 産業技術総合研究所
14:10	招 19p-A21-2	反応経路ネットワークの構築と情報学的解析: 有機合成 反応開発への展開	○原渕 祐 1,2	1.北大WPI-ICReDD, 2.JST-ERATO
14:50	招 19p-A21-3	教示デバイスと模倣学習によるフレキシブル・ラボオー トメーション	○松原 崇充¹	1. 奈良先端大
15:30	+71 10 - A01 A	休憩·名刺交換会/Interaction Break	Om++ ±1	1 NIMO
15:45 16:25	招 19p-A21-4 招 19p-A21-5	自律駆動型材料開発のための汎用ソフトフェアNIMO 日本語で思考可能な大規模言語モデルの開発と実験研究 への展開可能性	○田村 亮 ¹ ○畠山 歓 ¹	1.NIMS 1.東工大
3 光・	フォトニクス / Optio			
		るスペースフォトニクス / Space photonics for the new sp 口頭講演 (Oral Presentation) C42会場(Room C42)	ace age	
9:00	20a-C42-1	オープニング	○高橋 和¹	1.大阪公大
9:05	招 20a-C42-2	レーザーを利用した宇宙事業―レーザーアブレーション によるスペースデブリ除去と衛星高度計ライダーによる 地球観測	〇丸山 真幸 ¹ , 福島 忠徳 ¹	1.Orbital Lasers
9:25	招 20a-C42-3	超短パルス宇宙用レーザーをもちいた宇宙デブリの除去		1. 理化学研究所
9:50 10:15	招 20a-C42-4 20a-C42-5	光通信等の衛星コンステレーション基盤技術のご紹介 フォトニック帯電センサを用いた宇宙機の電位測定の提	○門脇 亮太¹ ○(M2)+握 豆具¹ 直滚 洗¹ 北地 陸 ↓² 茹⊋ 和此³	1.アクセルスペース 1. ナ阪ハナ陸エ 2.カエナ陸エ 2.産総庫
	20a-C42-3	案	豊田和弘 ² ,高橋和 ¹	1. 八敗五八四上,2. 7上二八四上,3. 7上年6回
10:30 10:45	招 20a-C42-6	休憩・名刺交換会/Interaction Break 衛星間光通信の最新動向とフォトニクス技術	○原口 英介¹, 尾野 仁深¹	1. 三菱電機(株)
11:10	招 20a-C42-7	衛星地上間光通信の最新動向と光照射の安定化技術	○高山 佳久 ¹	1. 東海大情通
11:35	招 20a-C42-8	光デバイスの迅速な宇宙実証を行うCubeSatの技術	○青柳 賢英¹ ○丌區 ㅛ¹ 由販 素类² 宜海 ㅛ¹ 土堰 豆貝¹ 直绣	1.福井大
12:00	20a-C42-9	中性子線照射が高 Q 値シリコンナノ共振器に与える吸収 損失の評価	〇	1.大阪公立大学, 2.理化学研究所
		ンエンジニアリング」 / Joint Session M "Phonon Enginee rsport science of vibrations in solid	ring"	
		口頭講演 (Oral Presentation) A23会場(Room A23)		
9:30	E 20a-A23-1	Opening	○ Masahiro Nomura ¹	1.Univ. of Tokyo
9:35	招 E 20a-A23-2	Easy Measurement of Phonon Dispersion at SPring-8	O Alfred Q. R. BARON ^{1, 2} , Daisuke ISHIKAWA ^{1, 2} , Hiroshi FUKUI ^{2, 1} , Taishun MANJO ^{2, 1}	1.Materials Dynamics Laboratory, RIKEN SPring-8 Center, 2.Precision Spectroscopy Division, SPring-8/ JASRI
	招 E 20a-A23-3	Phonon transport of group IV semiconductor alloys	O Ryo Yokogawa ^{1, 2} , Atsushi Ogura ^{1, 2}	1.Meiji Univ., 2.MREL
10:35	招 E 20a-A23-4	Interaction Break Elucidating the Correlation between Thermal	○ Emi Minamitani¹	1.SANKEN, Osaka Univ.
		Conductivity and Nanoscale Structures through Topological Data Analysis		,
11:20	招 E 20a-A23-5	Vibration transport at topological edges of mechanical metamaterials	○ Motonobu Tomoda¹	1.Hokkaido Univ.
	(Fri.) 13:15 - 16:05 招 E 20p-A23-1	口頭講演 (Oral Presentation) A23会場(Room A23) Material design for thermal conductivity modulation	○ Takayoshi Katase ¹	1.MDX ES, Tokyo Tech.
13:45	招 E 20p-A23-2	using nonequilibrium phase boundary Understanding heat transport in organic materials in	○ Takanori Fukushima¹	1.Tokyo Tech
		terms of structural elements including intermolecular interactions		
	招 E 20p-A23-3	Nonlinear thermoelectric effects in low-symmetry systems	○ Hiroki Arisawa ^{1, 2} , Eiji Saitoh ^{1, 2, 3, 4}	1.Univ. Tokyo, 2.RIKEN CEMS, 3.BAI Univ. Tokyo, 4. AIMR Tohoku Univ.
14:45 15:00	招 E 20p-A23-4	Interaction Break Surface acoustic wave-spin wave interactions in	○ Ryusuke Hisatomi ^{1, 2}	1.ICR, Kyoto Univ., 2.CSRN, Kyoto Univ.
15:30	招 E 20p-A23-5	magnetic thin films Electron-phonon interactions and nonequilibrium	○ Ken Uchida¹	1.Univ. Tokyo
		transport at the semiconductor-insulator interface in cryo-CMOS		
16:00	E 20p-A23-6	Closing	OKoji Takahashi ¹	1.Kyushu Univ.
		ョン「AI エレクトロニクス」/ Focused Ses はプログラム冒頭にございます。	SION AI Electronics	
		ポスター講演 (Poster Presentation) P会場(Room P)		
	18p-P06-1	バイナリニューラルネットのための可変精度重みを用いた学習の解析	○楠瀬 黎¹, 丸亀 孝生¹, 安藤 洸太¹, 浅井 哲也¹	1.北大院情報
	18p-P06-2	た学習の解析 圧縮センシングにおける量子アニーリングの応用	○山口 晋平 ¹ , ロガ ヴォイチェフ ¹ , 武岡 正裕 ¹	1. 慶大理工
	18p-P06-3	EOポリマー/Siハイブリッド変調器を用いた光畳み込み	○新屋 暁斗¹,呂 国偉²,喜田 浩二³,佐藤 洸²,横山 士	
		ニューラルネットワークと光リザバーコンピューティングの性能比較	口,燦刀 但	
	18p-P06-4	$Ag ext{-}Ta_2O_5$ 薄膜を用いた物理リザバーが示す特異な温度特性	○(B) 奥田 莉央¹, 遠藤 明衣¹, 福田 峻大¹, 西川 翼¹, 長谷川 剛¹	1.早大先進理工
	18p-P06-5	色素増感太陽電池を用いた自己発電型人工光電子シナプ		1. 東理大先進工
	18p-P06-6	ス素子の作製と光強度によるシナプス応答制御 ZnO薄膜における光電流の時定数が物理リザバの記憶容	○河野上 稔也¹, 小松 裕明¹, 髙梨 皓太郎¹, 生野 孝¹	1. 東理大先進工
	18p-P06-7	量に与える影響 CNT/POM ネットワークを有する紙デバイス実装に向け	○渡邉 隼弥¹, 大矢 剛嗣 ^{1,2}	1. 横国大院理工, 2. 横国大 IMS
	18p-P06-8	た多電子系シミュレーション 磁気光学回折型ディープニューラルネットワークにおけ		1. 長岡技科大, 2. 豊田工大, 3. 愛知工大
		る空間並列演算に関するシミュレーション	Zahra Chafi¹, 石橋 隆幸¹	
	18p-P06-9	磁気光学回折型ディープニューラルネットワークによる 画像処理に関するシミュレーション	チャフィ ファティマ ザーハラ¹,石橋 隆幸¹	1.長岡技科大, 2.愛知工大, 3.豊田工大
	18p-P06-10	磁気光学回折型ディープニューラルネットワークと光路		1. 長岡技科大, 2. 愛知工大, 3. 豊田工大

差を利用した光回折型ディープニューラルネットワーク チャフィ ファティマ ザーハラ 1 , 石橋 隆幸 1

○ FatimaZahra Chafi¹, Hotaka Sakaguchi¹, Hirofumi 1.Nagaoka Univ. Tech., 2.Aichi Inst. Tech., 3.Toyota

Tech. Inst.

Nonaka², Hiroyuki Awano³, Takayuki Ishibashi¹

の比較

E 18p-P06-11

Magneto-Optical diffractive deep neural Networks by Monte Carlo Method

		AIエレクトロニクス」/ Focused Session "AI Electronics" 口頭講演 (Oral Presentation) A33 会場(Room A33)		
9:00	16a-A33-1	ナノ抵抗変化メモリ素子を用いたニューラルネットワークのスケールアウトへの展望	○丸亀 孝生¹, 楠瀬 黎¹, 川合 遼一², 三谷 祐一郎²	1.北大院情報, 2.東京都市大
:15	16a-A33-2	アナログメモリスタの線形・多段階抵抗レベル制御	○DIAO ZHUO¹, Meng Zijie¹, 山本 遼平¹, 藤平 哲也¹. 酒井 朗¹	1. 阪大院基礎工
:30	奨 E 16a-A33-3	Online training of the energy harvester by using extreme		1.Kyushu Univ.
:45	16a-A33-4	learning machine ハイブリッドナノドットフローティングゲートメモリの	○ (M2) 白 鍾銀¹, 田岡 紀之², 牧原 克典¹	1.名大院工, 2.愛知工大
0:00	16a-A33-5	短期記憶特性 Cuイオン含有 PVA を抵抗変化層に用いた ReRAM の溶液 濃度依存性	〇岩澤 侑司 1 , 小林 亮太 1 , 永井 裕己 1 , 相川 槙也 1	1.工学院大工
0:15 0:30	招 E 16a-A33-6	休憩/Break [The 56th Young Scientist Presentation Award Speech] Study on correlation between GCMS mapping and OCM		1.Eng., The Univ. of Tokyo, 2.Mi-6 Ltd, 3.IMCE, Kyus Univ.
0:45	16a-A33-7	sensing signals for ternary gas mixtures. 量子リザバーによる MNIST 分類性能の複数 NISQ デバイ	Tsunaki Takahashi ¹ , Takeshi Yanagida ^{1, 3}	
J. 10	100 100 1	ス間での網羅的評価	智行 ¹ , 飯山 悠太郎 ² , 永野 廉人 ² , 澤田 龍 ² , 田中 純 $-^2$, 寺師 弘二 ²	究センター
1:00	奨 16a-A33-8	密度行列と最大混合状態の類似度による量子リザバー回 路の性能判定法	〇大羽 秀明¹, 境隆二¹, 上松 和樹¹, 中川 英之¹, 武口 智行¹, 飯山 悠太郎², 永野 廉人², 澤田 龍², 田中 純一², 寺師 弘二²	1. 東芝 研究開発センター, 2. 東京大学 素粒子物理国際 研究センター
1:15	16a-A33-9	第一量子化ハミルトニアン計算に向けた局在軌道の振幅 エンコード	○西 紘史 ^{1,2} , 小杉 太一 ^{1,2} , 大門 俊介 ³ , 松下 雄一郎 ^{2,1,3}	1.Qumiex, 2. 東大, 3. 量研
1:30	E 16a-A33-10	Robustness enhancement of spin-wave Ising machine via interference asymmetry	O Zhiqiang Liao ¹ , Md Shamim Sarker ¹ , Siyi Tang ¹ , Hiroyasu Yamahara ¹ , Munetoshi Seki ¹ , Hitoshi Tabata ¹	1.Univ. of Tokyo
l:45 /16(16a-A33-11 Mon.) 13:30 - 18:00	量子アニーリングマシンを用いた複数移動体の制御 口頭講演 (Oral Presentation) A33会場 (Room A33)	○庄司尚斗¹, 牛坂紀英¹, 江澤遥¹, 白樫淳一¹	1. 東京農工大
3:30	招 16p-A33-1	「分科内招待講演」 生物の神経回路に学ぶ省エネIoT技術	○矢嶋 赳彬¹	1. 九大シス情
1:00	16p-A33-2	FPGA実装したスパイキングリザバーによるリアルタイム筆跡異常検知	○井上悠 ¹ , 田村 浩人 ² , 鬼頭 愛 ¹ , チェン シャンユ ³ , ビャムバドルジゾルボー ³ , 矢嶋 赳彬 ⁴ , 堀田 育志 ⁵ , 飯塚 哲也 ³ , 田中 剛平 ^{2.6} , 井上 公 ¹	1.産総研, 2.東大IRCN, 3.東大工, 4.九大シス情, 5.兵庫県立大工, 6.名工大情
1:15	16p-A33-3	液晶分子の配向変化を利用した物理リザバー動作	○水野 敦浩¹, 長谷川 剛¹, 永野 修作²	1.早大先進理工,2.立教大理
:30	16p-A33-4	【注目講演】Ag₂Sリザバーを用いた物体認識と異常検知 に関する研究	○吉村 海輝¹, 長谷川 剛¹	1.早大院先進理工
:45	16p-A33-5	3次元硫化銀物理リザバーによる光文字認識	○大野 悠生¹, 長谷川 剛¹	1.早大先進理工
:00	16p-A33-6	Cu -doped Ta_2O_5 リザバーを用いた光照射パターンの分類		1.早大先進理工
5:15	16p-A33-7	多段階コロイド液浸法で作製した金ナノ粒子集合体の液体窒素温度での物理リザバー動作		1.電通大基盤理工
5:30 5:45	16p-A33-8	クーロン閉塞を利用する金ナノ粒子リザバーの並列化に よる性能向上 休憩/Break	○(M2)杯 優生', 小杯 海斗', 島田 宏', 水柿 義直'	1. 電通大基盤理工
6:00	奨 16p-A33-9	イオン液体物理リザバーデバイスの出力電流波形、データ次元、および機械学習性能の間にある潜在的関係性の主成分分析 (PCA) による定量化		1. 東理大先進工, 2. 産総研, 3. 鳥取大工
5:15	16p-A33-10	三電極微小電気化学セルを利用したイオン液体物理リザ バーデバイスの情報処理性能の起源解明	〇久保 祐樹 ^{1,2} , 宮本 峻佑 ³ , 島 久 ² , 野上 敏材 ³ , 内藤 泰久 ² , 秋永 広幸 ² , 鄭 雨萌 ¹ , 木下 健太郎 ¹	1. 東理大先進工, 2. 産総研, 3. 鳥取大工
5:30	16p-A33-11	イオン液体物理リザバーデバイスの動作電流揺らぎと非 理想的入力信号への耐性	〇島 久 1 , 久保 祐樹 1,2 , 宮本 峻佑 3 , 野上 敏材 3 , 内藤 泰久 1 , 秋永 広幸 1 , 鄭 雨萌 2 , 木下 健太郎 2	1. 産総研, 2. 東理大先進工, 3. 鳥取大工
5:45	16p-A33-12	スピン波のカオス的干渉のその場制御を用いた高精度カ オス時系列予測	〇並木 航 1 , 西岡 大貴 1 , 野村 優貴 2 , 山本 和生 2 , 寺部 一弥 1 , 土屋 敬志 1	1.物質・材料研究機構, 2.ファインセラミックスセンター
7:00	奨 16p-A33-13	スピン波干渉リザバーコンピューティングによる高精度 カオス時系列予測	○(B)日笠 壮太 1,2 ,並木 航 1 ,西岡 大貴 1 ,樋口 透 2 , 寺部 一 1 ,土屋 敬志 1,2	1.物質・材料研究機構, 2.東理大理
7:15	奨 16p-A33-14	グラフェン/イオンゲル界面の電気二重層効果を利用す る超高速動作イオンゲーティングリザバーの開発	〇西岡 大貴 1 , 北野 比菜 1,2 , 並木 航 1 , 寺部 一弥 1 , 土屋 敬志 1	1.NIMS, 2. 東理大
7:30	奨 16p-A33-15	グラフェンチャネルを用いた固体電気二重層トランジス タによる物理リザバーコンピューティング	○ (M2) 北野 比菜 ^{1,2} , 西岡 大貴 ¹ , 並木 航 ¹ , 寺部 一 弥 ¹ , 土屋 敬志 ¹	1.物質・材料研究機構, 2. 東理大
7:45	16p-A33-16	グラフェン/ダイヤモンド接合型リザバーを用いた手書 き数字認識	岩根 東輝¹, ○植田 研二¹	1.早大情シス
9/17 :00	7(Tue.) 9:00 - 12:00 17a-A33-1	口頭講演 (Oral Presentation) A33 会場 (Room A33) 高忠実度なプログラマブル光ユニタリ変換回路と長距離		1.NTT 先デ研, 2.NTT 未来研, 3.NTT 物性研
:15	17a-A33-2	空間多重光伝送における信号処理アシストへの応用 サブキャリア信号変調時の相互変調歪の光エクストリー ム学習器への適用	孝行², 宮本 裕², 橋本 俊和¹ ○田中 英明¹, 管 貴志¹, 高橋 英憲¹	1.KDDI総合研究所
:30	奨 17a-A33-3	リードアウト層を集積化した全光リザバー計算回路によるリアルタイム予測演算の実証	○(M2)高林 奎吾¹, 丸山 武男¹, 新山 友暁¹, 砂田 哲¹	1. 金沢大学
:45	奨 17a-A33-4	ナノ秒現象を可視化する高速イメージングに向けた光 ハードウェア及び再構成アルゴリズムの開発	\bigcirc (M1) 本岡 眞 1 , 山口 智也, 新山 友暁 1 , 砂田 哲 1	1. 金沢大
):00):15	奨 17a-A33-5	超高次元コンピューティングに基づく光センシング 休憩/Break	○(M1)Hong Jiseon¹, 北川 慧, 新山 友暁¹, 砂田 哲¹	1.金沢大
0:30	奨 17a-A33-6	リザーバーコンピューティングによるノイズが付加され たレーザダイナミクスの複製	○加瀬 圭佑¹,川上 敦也¹,內田 淳史¹	1.埼玉大
0:45	17a-A33-7	リザバー計算の枠組みを利用した表面筋電信号解析と動 作推論	○星加 悠介¹, 葛西 誠也¹	1.北大量集センター
1:00	17a-A33-8	粘菌型自律ロボットの行動発達に向けた身体感覚に基づ く歩行移動距離推定と精度向上	○(M2)松田 一希 ¹ , 葛西 誠也 ¹	1.北大量集センター
1:15	17a-A33-9	圧電MEMSリザバー素子における結合重みと計算性能と の関係	〇吉村 武 1 , 芳賀 大樹 1 , 藤村 紀文 1 , 神田 健介 2 , 神野 伊策 3	1.大阪公立大工, 2.兵庫県大工, 3.神戸大工
1:30		圧電共振子リザバーにおける非線形性と学習性能の関係		1. 阪公大工 1. 大阪公立大院工
11:30 11:45		圧電共振子リザバーにおける非線形性と学習性能の関係 圧電振動子電流センサを用いた物理リザバーコンピュー ティング		

		口頭講演 (Oral Presentation) A33会場(Room A33)	O+E A#1 A4 #41 +11 #31 VII + VI	1 + 4 6 2 7 # + 6 4
13:30	招 17p-A33-1	「分科内招待講演」 強誘電メモリにおける多彩な現象と信頼性	〇市原 玲華 1 , 鈴木 都文 1 , 吉村 瑶子 1 , 浜井 貴将 1 , シリュコワ ビクトリア 1 , 松尾 和展 1 , 鈴木 正道 1 , 齋藤 真澄 1	1.キオクシア株式会社
14:00	17p-A33-2	FeFET リザバーコンピューティングの信頼性における強誘電体分極量の影響	〇名幸 瑛心 1 , トープラサートポン カシディット 1 , 中根 了昌 1 , 竹中 充 1 , 高木 信 $^{-1}$	1.東大工
14:15	17p-A33-3	FeFETソースフォロワーを用いた電圧動作リザバーコン ビューティングの実証	○鈴木 陸央¹,トープラサートポン カシディット¹,名幸 瑛心¹,中根 了昌¹,竹中 充¹,高木 信一¹	1.東大工
14:30	奨 E 17p-A33-4	Experimental Demonstration of Reservoir Computing Using Anti-ferroelectric HZO Capacitors	\bigcirc (D)SHINYI MIN¹, Kasidit Toprasertpong¹, Eishin Nako¹, Ryosho Nakane¹, Mitsuru Takenaka¹, Shinichi Takagi¹	
14:45	E 17p-A33-5	Reservoir Computing Using Dynamic Polarization and Charge Coupling of Anti-ferroelectric HZO/Si FETs	\bigcirc (D)SHINYI MIN¹, Kasidit Toprasertpong¹, Eishin Nako¹, Ryosho Nakane¹, Mitsuru Takenaka¹, Shinichi Takagi¹	-
15:00 15:15	17p-A33-6	{Mo _{154/152} }-ring を用いた情報処理への応用の検討 休憩/Break	\bigcirc (M1) 佐々木 蒼人 1 , 大山 浩 1 , 松本 卓也 1 , 木元 克 1	1.大阪大理
15:30 15:45	奨 17p-A33-7 奨 17p-A33-8	電気化学反応による物理リザバーコンピューティング 導電性高分子ワイヤーを用いた物理リザバーコンピュー ティング	○ (M2) 谷口 瞬生¹,渡部 誠也¹,加藤 浩之¹,赤井 恵¹ ○ (M2) 中島 涼介¹,渡部 誠也¹,加藤 浩之¹,赤井 恵¹	
16:00	奨 E 17p-A33-9	Physics-Guided Clustered Echo State Network for Prediction of Large spatiotemporally chaotic Dynamics	○ Kuei-Jan Chu¹, Nozomi Akashi¹, Akihiro Yamamoto¹	1.Kyoto Univ.
16:15	奨 17p-A33-10	多次元入力リカレントニューラルネットワークにおける 記憶容量	○東 青空¹, 明石 望洋¹, 山本 章博¹	1. 京大情報
16:30	奨 17p-A33-11	色素増感太陽電池を用いた自己発電型マルチタイムス ケール人工光電子シナプス素子の創製と物理リザバ応用	\bigcirc (D) 小松 裕明 1 , 細田 乃梨花 1 , 生野 孝 1	1. 東理大先進工
16:45	17p-A33-12	色素増感太陽電池を用いた可視光入力リザバー素子: 多 出力化による性能向上	〇中川 元真 1 ,廣岡 正太郎 1 ,山田 亮 1 ,夛田 博一 1	1. 阪大院基礎工
		/ Sessions organized by JSAP's Profession	onal Group	
		はプログラム冒頭にございます。 ポスター講演 (Poster Presentation) P会場(Room P)		
(101	16p-P08-1	{111}面逆ピラミッド型ホール上CVD成長で生成した高配向NVセンターの特性評価	○(M1)伊牟田 航基 ^{1,2} ,及川 耀平 ^{1,2} ,徳田 規夫 ³ ,早 瀬 潤子 ^{1,2}	1. 慶大理工, 2. 慶大 CSRN, 3. 金沢大ナノマリ
	16p-P08-2		(M2) 青木 悠真 ¹, Wang Yifei¹, 林 都隆 ¹, Prananto Dwi¹, Ma Yingshu¹, 金 聖祐 ², 小山 浩司 ², 赤堀 誠志 ¹, 安 東秀 ¹	1.北陸先端大, 2.Orbray(株)
	16p-P08-3	NVセンタを用いた量子計測における最尤法の活用	〇 (B) 小林 由佳 ¹, Chanuntranont Akirabha¹, 太田 智 基 ¹, 齋藤 大樹 ¹, 三宅 悠斗 ¹, 関口 顕 ¹, 品田 高宏 ², 川 原田 洋 ¹, 谷井 孝至 ¹	1.早大理工, 2.東北大CIES
	E 16p-P08-4	Relaxometry Imaging of Conducting Magnetite Layers on a Core-Shell Superparamagnetic Particle Using Ensemble Nitrogen-Vacancy in Diamond	$\bigcirc(D)$ Thitinun Gasosoth $^{\rm l}$, Kunitaka Hayashi $^{\rm l}$, Dwi	1.JAIST
	16p-P08-5	NV センターを用いたニトロキシドラジカルとP1センターの電子二重共鳴計測	○織田有唉¹,関口顕¹,臼井俊太郎¹,齋藤大樹¹,三 宅悠斗¹,田中学²,品田高宏³,寺地徳之⁴,小野田 忍⁵,安東秀⁵,川原田洋¹,谷井孝至¹	1.早大理工, 2.都立大都市環境, 3.東北大CIES, 4.物材機構, 5.量研, 6.北陸先端大
	E 16p-P08-6	Bubble domain imaging via scanning NV center probe microscope	○ Ekihi Ou¹, Prananto Dwi¹, Kunitaka Hayashi¹, Toshu An¹	1.JAIST
		会 / Solid State Quantum Sensor Group 口頭講演 (Oral Presentation) A24会場 (Room A24)		
9:00	招 19a-A24-1	「分科内招待講演」 NV中心の超高密度化とその相互作用	〇川原田 洋1.2, 早坂 京祐1, 浅野 雄大1, 小野田 忍3	1.早大理工, 2.早大材研, 3.量研機構
9:30	19a-A24-2	ダイヤモンド NV 中心マイクロ波強 RF 波同時照射下での バルス光学検出磁気共鳴スペクトルの線幅について	〇小野寺 駿太 1 , 大久保 義克 1 , 東 勇佑 1 , 塙 和真 1 , 渡 邊 幸志 2 , 柏谷 聡 3 , 野村 晋太郎 1	1. 筑波大数理物質, 2. 産総研, 3. 名古屋大工
9:45	奨 19a-A24-3	スピン位相緩和がもつれNV対量子センサの感度に与える影響		
10:00 10:15	奨 19a-A24-4	ダイヤモンド量子センサの高感度化に向けたバイアス磁 場の均一性の向上 休憩/Break		1.東工大工
10:30	奨 19a-A24-5	¹⁴ N核スピンを考慮したダイヤモンド電子スピン二重共 鳴信号の解析	○(M2)鈴木 琉生 ^{1,2} ,見川 巧弥 ^{1,2} ,岡庭 龍聖 ^{1,2} ,松崎 雄一郎 ³ ,徳田 規夫 ⁴ ,早瀬 潤子 ^{1,2}	1. 慶大理工, 2. 慶大 CSRN, 3. 中大理工, 4. 金大ナノマリ
10:45	奨 19a-A24-6	ダイヤモンドリング構造による高分解能・高感度量子磁 気センシング		1. 豊橋技科大, 2. 東大
11:00	奨 19a-A24-7	ドライファントムを用いた高感度ダイヤモンド量子セン サの評価	○ (P) 貝沼 雄太¹, 伏見 幹史², 関口 直太¹, 真榮 力⁴, 宮川 仁³, 谷口尚³, 寺地 德之³, 阿部 浩之⁵, 小野田 忍⁵, 大鳥 武⁵, 関野 正樹², 岩崎 孝之¹, 波多野 睦子¹	1. 東工大, 2. 東大, 3.NIMS, 4. 筑波大, 5. 量研
11:15	19a-A24-8	量子センシングに向けたメタサーフェスによる光学フィルターの設計		1. 豊橋技科大, 2. 東大院工
11:30	19a-A24-9	ダイヤモンド NV センターを用いたコンパクトでポータ ブルなパルス量子センサ による磁界計測	〇出口 洋成 $^{1.2}$, 林 司 1 , 済藤 紘矢 1 , 西林 良樹 1 , 小林 豊 1 , 藤原 正規 2 , 森下 弘樹 3 , 水落 憲和 2 , 辰巳 夏生 1	1.住友電工(株), 2.京大化研, 3.東北大学
11:45	奨 19a-A24-10	ナノスケール高周波交流磁場イメージングに向けた走査 ダイヤモンド NV センター顕微鏡の開発	〇大倉 和真 $^{1.2}$, 小室 俊太郎 $^{1.2}$, 林 都隆 3 , 安 東秀 3 , 早 瀬 潤子 $^{1.2}$	1. 慶大理工, 2. 慶大 CSRN, 3. 北陸先端大
9/20(F 13:30	Fri.) 13:30 - 15:45 奨 20p-A41-1	口頭講演 (Oral Presentation) A41 会場(Room A41) エアギャップ付き磁性体コアおよびダイヤモンド量子セ ンサを用いた電流計測の原理実証	○村松秀和 ^{1,2} , 貝沼 雄太 ² , 波多野 雄治 ² , 天谷 康孝 ¹ , 加藤 宙光 ¹ , 坂本 憲彦 ¹ , 山田 達司 ¹ , 浦野 千春 ¹ , 金子 晋久 ¹ , 阿部 浩之 ³ , 小野田 忍 ³ , 大島 武 ³ , 波多野	1. 産総研, 2. 東工大, 3. 量研
13:45	E 20p-A41-2	Using the standard deviation for robust quantum sensing	睦子², 岩﨑 孝之²	1.Kyoto Univ., 2.UC Berkeley, 3.LBNL, 4.QUP/KEK, 5.IPNS, 6.JAXA/ISAS, 7.Kavli IPMU/WPI, 8. SOKENDAI, 9.Tohoku Univ., 10.CSRN
			Mizuochi ^{1, 10, 4}	
14:00	奨 20p-A41-3	ダイヤモンド中の鉛ー空孔センターからの同一光子生成	〇阿部 椋太郎', 汪鵬', 谷口尚', 小野田 忍', 波多野睦子 ¹ , 岩崎 孝之 ¹	1.東工大, 2.NIMS, 3.QST

14:45	20p-A41-5	ダイヤモンド中の鉛 - 空孔センターの非共鳴レーザによる電荷状態遷移	○陳 溢暘¹,阿部 椋太郎¹,谷口 尚²,小野田 忍³,波多野 睦子¹. 岩﨑 孝之¹	1.東工大, 2.NIMS, 3.QST
15:00	奨 20p-A41-6	ダイヤモンド中の鉛ー空孔センターにおけるコヒーレン トポピュレーショントラッピング		1. 東工大, 2.NIMS
15:15	20p-A41-7	炭化ケイ素シリコン空孔荷電状態安定性の定量的解析	〇山崎 雄一¹,明石 遼介¹,花輪 雅史²,村田 晃一²,佐藤 真一郎¹,宮脇 信正¹,風谷 志郎¹,增山 雄太¹,西谷 侑将³.4,松下 雄一郎¹.³.4,土田 秀一²,好田 誠¹.⁵,大鳥 武¹.⁵	
15:30	奨 20p-A41-8	室温における 4H-SiC 中 V2 中心蛍光の偏光特性	\bigcirc (P) 西川 哲理 1 , 森岡 直也 $^{1.2}$, 阿部 浩之 3 , 大島 武 $^{3.4}$, 水落 憲和 $^{1.2.5}$	1. 京大化研, 2. 京大スピンセンター, 3. 量研, 4. 東北大, 5.QUP KEK
		に、KS.1 固体量子センサ研究会のコードシェア / Code-sha	ring Session of 6.2 & KS.1	
9:00	-ri.) 9:00 - 12:00 招 20a-A41-1	口頭講演 (Oral Presentation) A41 会場 (Room A41) 「分科内招待講演」	〇五十嵐 龍治 1,2,3,4	1.OST 量子生命, 2. 東工大生命理工, 3. 千葉大院融合理
5.00)H 200 A41 1	ナノダイヤモンド量子センサの材料設計・制御と生命計測への応用	OH I MI HE/H	工,4.東北大院医
9:30	20a-A41-2	生体量子センサ用ナノダイヤモンドへの電子線照射NV センター形成2	○阿部 浩之 1,2, 神長 輝一², 五十嵐 龍治², 大島 武 1	1.QST 量子機能創製研究センター, 2.QST 量子生命科学 研究所
9:45	奨 20a-A41-3	ナノダイヤモンド中の NV 中心を用いた高感度磁気セン シング	〇神山 直也 1 , 藤原 正規 1 , 森岡 直也 $^{1.2}$, 西川 哲理 1 , 鈴木 智達 3 , 神長 輝 3 , 五十嵐 龍治 3 , 水落 憲和 $^{1.2}$	1.京大化研, 2.京大スピンセンター, 3.量研
10:00	奨 20a-A41-4	3次元マイクロ波共振器を用いたナノダイヤモンド温度 計測とその応用	○中島 大夢¹, 押味 佳裕¹, 藤原 正澄¹	1. 岡大環自
10:15		休憩/Break		
10:30	奨 20a-A41-5	水素終端ダイヤモンド表面下で生じるバンドベンディン グのNVセンターを利用した律速要因解析	〇蔭浦 泰資 1,2 , 笹間 陽介 1 , 山田 圭介 3 , 木村 晃介 3,4 , 小野田 \mathbb{Z}^{3} , 山口 尚秀 1,5	1.物材機構, 2. 産総研, 3. 量研, 4. 群馬大, 5. 筑波大
10:45	20a-A41-6	アンサンブルNVによる低周波交流磁界計測	○済藤 紘矢¹, 林 司¹, 近藤 巧¹, 出口 洋成¹, 西林 良 樹¹, 小林 豊¹, 藤原 正規², 森下 弘樹³, 水落 憲和², 辰 巳 夏生¹	1. 住友電気工業(株), 2. 京大化研, 3. 東北大
11:00	20a-A41-7	ダイヤモンド量子センサによる交流磁場位相の連続的変 化イメージング	〇大坪 楓季 $^{1.2}$, 見川 巧弥 $^{1.2}$, 松崎 雄一郎 3 , 徳田 規 夫 4 , 早瀬 潤子 $^{1.2}$	1. 慶大理工, 2. 慶大 CSRN, 3. 中大理工, 4. 金大ナノマリ
11:15	奨 20a-A41-8	脳磁計測に向けたフラックスコンセントレーターによる ダイヤモンド量子センサの高感度化		1.東工大
11:30	20a-A41-9	脳機能磁場測定用ダイアモンドマイクロ NV センターアレー素子の開発	○黒瀬 範子¹, 小幡 孝太郎¹, 野村 晋太郎², 杉岡 幸 次¹, 和田 智之¹, 青柳 克信¹	1. 理化学研究所 光量子, 2. 筑波大学
11:45	20a-A41-10	ダイヤモンド量子センサによるミリメートル間隔での同 時多点磁場測定法の開発		
KS.2 量-	子情報工学研究会,	Quantum Information Engineering Group	呵 圣之,仅少打 咗 1	
9/17(T		口頭講演 (Oral Presentation) A22 会場 (Room A22)		
9:00	17a-A22-1	誘電体を用いた光-マイクロ波ハイブリッド共振器の極	濱元 樹¹, Bhunia Amit¹, Bhattacharya Rupak¹, 高橋	1.沖縄科技大
9:15	奨 17a-A22-2	低温動作 共振器型超伝導増幅器の低消費電力化に向けた新規構造	優樹¹, ○久保 結丸¹ ○森 俊祐¹, 沓間 弘樹¹.², 岸本 康宏³, 山下 太郎¹	1. 東北大院工 , 2.JST さきがけ , 3. 東北大 RCNS
9:30	17a-A22-3	の提案と検証 積層基板構造における量子ビット集積系の設計	○田渕豊¹,玉手修平¹,政岡文平¹,萬伸一¹	1.理研
9:45	17a-A22-4	通電極の開発	原 賢英 ¹ , 梅原 幹裕 ¹	
10:00	17a-A22-5	超伝導transmon型量子ビットの集積化における周波数衝突解析	Li Rui ² , 玉手 修平 ² , 野口 篤史 ^{2,3,4} , 中村 泰信 ^{1,2}	
10:15	奨 17a-A22-6	量子ビット応用に向けた sidewall spacer 構造を有する NbN/AlN/NbN ジョセフソン接合	○本田 浩輝¹, 栗原 大輝¹, Duong Pham¹, 沓間 弘 樹¹², 寺井 弘高³, 山下 太郎¹ ○寺井 弘高¹, 高木 佳寿代¹, 瀬戸浦 真衣¹, 美馬 覚¹,	1.東北大院工, 2.JST さきがけ, 3. 情通機構
10:30	17a-A22-7	TiN/MgO/TiN接合の10 mKにおける特性評価	〇寸升 弘尚,尚不 住寿代,瀬戸湘 县农,夫馬 見, 三木 茂人 ¹	1. 肎理懷舊
10:45		休憩/Break		
11:00	E 17a-A22-8	Construction of Adaptive Quantum Circuit for Enhanced VQAs	○ Shanchuan Li¹, Daisuke Tsukayama¹, Jun-ichi Shirakashi¹, Tetsuo Shibuya², Hiroshi Imai²	1.Tokyo Univ. Agr. & Tech., 2.Univ. Tokyo
11:15	E 17a-A22-9	Higher Order Binary Optimization: Advanced Encoding for Larger Scale Traveling Salesperson Problems through Variational Quantum Eigensolver	○ Juncheng Wang¹, Daisuke Tsukayama¹, Takumi Kanezashi¹, Jun-ichi Shirakashi¹, Tetsuo Shibuya², Hiroshi Imai²	1.Tokyo Univ. Agr. & Tech., 2.Univ. Tokyo
11:30	奨 17a-A22-10	Parallel-VQEにおける量子ビットスケーリングと並列度の検討	○津嘉山 大輔 1 ,李 山川 1 ,汪 俊誠 1 ,白樫 淳 $^{-1}$,渋谷 哲朗 2 ,今井 浩 2	1. 東京農工大, 2. 東京大
11:45	17a-A22-11	Conditional Value at Riskを用いた変分量子固有値法による Au 原子接合作製における実験パラメータ最適化		1. 東京農工大, 2. 東京大
12:00	17a-A22-12	SGD-QAOAによる量子フィードバックアルゴリズムの 効率化	○草 孝祐¹, 津嘉山 大輔¹, 白樫 淳一¹, 渋谷 哲朗², 今 井浩²	1.東京農工大, 2.東京大
9/18(W	/ed.) 9:00 - 12:00	口頭講演 (Oral Presentation) A32会場(Room A32)		
9:00	招 18a-A32-1	「分科内招待講演」	〇山本 倫久 ^{1, 2}	1.理研CEMS, 2.東大工
9:30	招 18a-A32-2	電子量子光学に基づく新しい量子計算 「第56回講演奨励賞受賞記念講演」	○太田 俊輔 ¹ , 近藤 知宏 ¹ , 土屋 龍太 ² , 峰 利之 ² , 久本	1.東工大, 2.日立研開
		バイポーラ型シリコン量子ドットの高周波反射測定	大 ² , 水野 弘之 ² , 溝口 来成 ¹ , 米田 淳 ¹ , 小寺 哲夫 ¹	
9:45	奨 18a-A32-3	並列量子ドットチャネルの電流同時測定に基づく電荷ノ イズの相関評価	〇松田達也 ¹ , 松岡竜太郎 ¹ , 高橋一斗 ¹ , 土屋龍太 ² , 峰利之 ² , 久本大 ² , 水野弘之 ² , 溝口来成 ¹ , 小寺哲	1.東工大, 2.日立研開
10:00	18a-A32-4	二重量子ドットを流れる電流を用いた隣接シリコン量子	夫¹, 米田 淳¹ ○松岡 竜太郎¹, 松田 達也¹, 高橋 一斗¹, 土屋 龍太²,	1.東工大, 2.日立研開
		ビット間の電荷ノイズ相関測定	峰利之 2 , 久本 大 2 , 水野 弘之 2 , 溝口 来成 1 , 小寺 哲 夫 1 , 米田 淳 1	
10:15		休憩/Break	,	
10:30	奨 18a-A32-5	発光吸収型ダイヤモンド量子中継器の実現に向けた中継 動作の実証	大輔1,藤原太朔1,渡辺幹成1,加藤宙光2,4,牧野俊	1. 横国大院理工, 2. 横国大 QIC, 3. 横国大 IAS, 4. 産総研5. 古河電工
10:45	奨 18a-A32-6	量子インターフェースの実現に向けたダイヤモンドオブ	晴 ^{2,4} , 味村 裕 ^{2,5} , 小坂 英男 ^{1,2,3} ○(DC)山本 萌生 ¹ , 佐藤 清貴 ¹ , 黒川 穂高 ^{2,3} , 石田	1. 横国大院理工, 2. 横国大 QIC, 3. 横国大 IAS, 4. 東大生
		トメカニカル結晶の評価	悟己 4 , 松清 秀次 4 , 飯嶋 航大 4 , 池 尚玫 4 , 大槻 秀夫 4 , 四岡 政雄 4 , 関口 雄平 $^{2.3}$, 小野田 $\mathbb{Z}^{2.5}$, 岩本 敏 $^{2.4}$, 小坂 英男 $^{1.2.3}$	
11:00	18a-A32-7	ファイバー接続型ダイヤモンドブルズアイ共振器の設計	○JI SANGMIN¹, 岩本 敏¹.²	1. 東大生産研, 2. 東大先端研
11:15	18a-A32-8	SiN エッチングマスクを用いたエアブリッジ型ダイヤモ	○JI SANGMIN¹, 石田 悟己², 松清 秀次¹, 西岡 政	1. 東大生産研, 2. 東大先端研
11:30	奨 18a-A32-9	ンドフォトニック結晶共振器の作製及び光学評価 ダイヤモンド量子系の任意磁場下での核スピン偏極	雄¹, 飯嶋 航大², 岩本 敏¹.² ○木村 詠吉¹, Lee Junghyun², 荒井 慧悟¹	1. 東工大工, 2. 韓国科学技術研究院

11:45 獎 18a-A32-10 損失のある通信路における量子ネットワークセンシング 〇上田 悦大 1 , 石原 誠 1 , ロガ ヴォイチェフ 1 , 武岡 正 1 . 慶大理工 $\stackrel{}{\mathrm{ac}}$ 1

	nterdisciplinary Physics and Related Areas はプログラム冒頭にございます。	s of Science and Technology	
	まノログラム盲頭にこさいます。 ポスター講演 (Poster Presentation) P会場(Room P)		
	タングステン合金の電気輸送特性に関する第一原理計算	○河野 翔也¹, 栗下 裕明², 牧村 俊助²	1.九工大, 2.高エネ研
16p-P07-2	多結晶材料の熱伝導過程における結晶粒径依存性の熱回 路網法によるモデル化		
	放射光X線による吸放熱材料HASClayの構造評価		1.岩手大院総合, 2.産総研, 3.東日本機電開発(株), 4 州シンクロトロン
16n P07 4	画像センサーに関連した負性抵抗回路網の理論解析と物	米山 明男 4, 廣沢 一郎 4, 吉本 則之 1	
•	理系への応用		1.群馬大学
•	パリティ時間対称性を用いたワイヤレス給電モーター駆動 システム	男¹	
	マスクレスフォトリソグラフィを用いた微細加工と半導 体教育の実践	○羽渕 仁恵 ¹ , Timothé Foreau ² , ゴーシャン ワイ ¹ , 英二 白木 ¹ , 民夫 飯田 ¹	1. 岐阜高専, 2.UIT of Blois
	初年次導入科目における物理学編5回の取組みとその教育成果	〇重松 利信 $^{1.2}$,稲垣 祐次 1 ,中山 紘之 1 ,野間川内 一 樹 $^{1.2}$,山口 一裕 2	1. 岡山理大・基盤, 2. 岡山理大・教育開発
16p-P07-8	地磁気逆転現象の展示実験その7		1.艦磁研
	太陽光の照射による白色LEDの発電特性		1. 九共大
	ブレッドボードを用いた難しい合成コンデンサーの学習		1. 福井大教
	マルチチャンネル式光検出器を用いた簡易分光器の試作		1.マツモト精密工業
	4		
16p-P07-12	越前焼を題材にした色の理解に関する検討	○長谷川 智晴¹	1. 福井工業高等専門学校
	人工現実感と複合現実感を組み合わせた教育システム - 熱気球のしくみへの応用 -	\bigcirc (M2) 平塚 心太朗 1 , 田中 宇宙 1 , 酒井 大輔 1 , 原田 建治 1	1.北見工大
16p-P07-14	液体金属を電極に用いたpn接合ダイオードの基礎的検討	西村 \mathbb{G}^1 , 田邉 真子 1 , \bigcirc 内海 淳志 1 , 石川 $-$ 平 1 , 清原 修二 1	1.舞鶴高專
	プラスチックを用いた放射線教育実験における発熱剤利		1.舞鶴高専
	用モデルの提案 紫外線表面改質による放射線教育用プラスチックの開発	○(P) 近韓 韓松 ¹ 万田 □ □ 1 注度 ㎏ − 1 由海 塩+1	1 無賴官市
16p-P07-17	Spin On Glass を用いた教育効果の高いpn接合デバイス		1. 釧路工業高等専門学校
	作製 自然放射線源による Si 半導体検出器の作製	○小林 奈和¹, 井戸川 槙之介¹	1.釧路工業高等專門学校
	MOD法によるBSCCO/n型半導体へテロ接合の試作		1.小山高専
	ガス/電気化学複合システムによるパラジウムおよびパラジウム基合金円筒の水素透過特性評価		
16p-P07-21	超薄膜への非破壊可逆電気コンタクトプローブ		1.物材機構, 2.鈴鹿高専, 3.山梨大
16p-P07-22	マイクロレンズとしての酵母細胞の集光特性と屈折率の		1.東工大OFCマイクロ
	測定		
	ヴィオラの周波数特応答と駒の関係 バイポーラ電気分解による金のアルカリハライド水溶液	○松谷 晃宏¹ ○吉澤 深玖¹, 高見 知秀²	1.東工大 1.工学院大学応用学専攻, 2.工学院大教養
	への抽出法の改良		
	High Nickel Extraction From Indonesian Nickel Laterite Ore by Atmospheric Microwave Roasting-Leaching Method	○ MUHAMMAD ALJALALI¹, Kohei Nakagawa¹, I Putu Abdi Karya⁵, Alsan Ndita², La ode Muhammad Darusman³, I Nyoman Sudiana², La Agusu², Fumihiro Nishimura⁴, Toyohiko Nishiumi⁵, Takayuki Asano⁵, Seitaro Mitsudo⁵	Oleo, 3.Dep. of Chemistry, Univ. of Halu Oleo, 4. HISAC, Univ. of Fukui, 5.Dep. of Applied Physic, Un
•	マイクロ波減圧蒸留法を用いた福井梅酢の再資源化への 検討	〇鶴尾未*,大久保 柾¹,岩本 拓馬¹,片山 大和¹,照 井 大和¹,山口 光男³,仲川 晃平³,西海 豐彦¹,浅野 費 行¹,光藤 誠太郎¹	
	マイクロ波加熱により生成した廃棄物由来粗水素を用いたメタネーション		1.福井大工, 2.福井大遠赤セ
16p-P07-28	水素雰囲気中におけるNi担持CaCO₃単結晶基板からの メタン生成		1.東海大工, 2.マイクロナノ研
	触媒金属/炭酸化物 複合粉末を用いた CH4生成の繰り返	○吉田 有章 1.2, 岡本 陽佑 1, 源馬 龍太 1.2	1. 東海大工, 2. 東海大 MNTC
47 705 00	L性能	(10) + 17 11+1 mm 180 m 2 3 mm m m 1 1	4 The Libbarra of Marks Libbarra of the Warr
16p-P07-31	BaTiO ₃ のボールミリングによるCO ₂ のメタン化 Mg水酸化物のボールミリングによる水素生成と分解挙	○ (M2) 布瀬 小枝 ¹ , 澤原 馨登 ^{2.3} , 源馬 龍太 ¹ ○ (M2) 遠田 和大 ¹ , 源馬 龍太 ^{1.2}	1. 東海大院工, 2. 筑波大院理工, 3. 産総研 1. 東海大工, 2. 東海ナノ研
	動 Alvomとなった。ルングにとる水素生成の絵社	○	1 南海十工 9 南海十一ノクロナ・7世
16p-P07-33	Al水酸化物のボールミリングによる水素生成の検討 ボールミルから作成した Ca-Mg 系水素吸蔵材料の反応性		1.東海大工, 2.東海大マイクロナノ研 1.東海大工, 2.東海大マイクロナノ研
	- 添加物の影響 - フェムト秒レーザーを用いた超純水からの水素生成量の		1. 静大工, 2. 芝浦工大工
	F値依存性 人工被膜を形成したリチウムイオン電池用Si 負極の高温	暢之¹, 松井 信¹ ○(M1C)園田 真由¹, 春田 正和¹	1.近大
•	下充放電特性 Li ₃ Fe ₂ (PO ₄) ₃ 正極活物質を用いた透明全固体電池の作製		
16p-P07-37	高酸化状態の鉄を含有したバナジン酸塩ガラスにおける	\bigcirc (M1) 峯越 大輝 1 , 山内 里沙 1 , 林田 航輝 1 , 西田 哲	1.近大産業理工 1.近畿大学, 2.環境材料研究所
	殺菌能評価 バナジン酸塩ガラスを正極活物質としたリチウムイオン	明 2 , 岡 伸人 1 林田 航輝 1 , \bigcirc (M1) 峯越 大輝 1 , 西田 哲明 2 , 岡 伸人 1	1.近畿大学, 2.環境材料研究所
	電池の高容量化 酸素含有ガス流通下で動作可能なMn錯体によるCO2還	○西 哲平¹, 坂本 直柔¹, 関澤 佳太¹, 森川 健志¹, 佐藤	1. 豊田中研
·	元反応 - 資源量豊富な元素で構成される高効率人工光合成システ ムの実現 -	俊介 ¹	
	InAsSbダイオードを用いた夜間光発電	○松浦 徹¹,清水 陸¹,吉松 歩輝¹	1.福井高専
	ま合金層をコートしたルチル型TiO₂基板上への鉄シリサ		1.神奈川県立産技総研
16p-P07-40 16p-P07-41	11. 少年日出日		
16p-P07-40 16p-P07-41	イドの結晶成長 Duty制御安定化C波紫外線(UVC)LED光源の評価	斉藤 水波¹,吉田 知生¹,吉田 知生¹,小森 葉月¹,小島	1.東洋大理工, 2.マツモト精密
16p-P07-40 16p-P07-41 16p-P07-42		斉藤 水波¹, 吉田 知生¹, 吉田 知生¹, 小森 葉月¹, 小島 愛弥加¹, ○勝亦 徹¹, 相沢 宏明¹, 松元 健² 小森 葉月¹, 吉田 知生¹, 六島 愛弥加¹, 斉	

	16p-P07-46	弾性表面波を用いた霧化現象の応用 超音波速度変化法における超音波ジェルによる冷却の影 響	- 1 / 1 - 1 - 1 / 1 - 1 / 1 - 1 / 1 - 1 / 1	1. 静岡大工 1. 阪公大工, 2. 阪公大研究推進, 3.TU技術研究所
		域 / Interdisciplinary and General Physics		
		口頭講演 (Oral Presentation) C43会場 (Room C43)		
9:00 9:15	18a-C43-1 18a-C43-2	万有引力は慣性力 基底エネルギー理論	○山内 健 ○山内 健	
9:30	18a-C43-3	1次元Rice-Mele格子における実空間トポロジカル不変量		1. 阪大院基礎工
9:30	18a-C43-4	プランクトンにより生じたバイオスペックルに基づくマ		1. 版入阮峚暶工
7.43	104-045-4	イクロバイオアッセイ	○(MZ)/小怀相牌,Devimit,门到 每文	1.河上八丁
		一重金属(銅)に対する毒性評価一		
10:00	18a-C43-5	第糸類を用いたマイクロバイオアッセイを目指したバイ	○(M1) 由杉 修士朗¹ Dovi Arti¹ 門竪 捕由¹	1. 埼玉大学
10.00	104 043 3	オスペックルの特性評価	O(MI) TO KAM, Deville, THE HE	1.利亚八丁
10:15		休憩/Break		
10:30	18a-C43-6	弦楽器のサブハーモニクス奏法による低次低調波発生の	○川野 将大郎1 伊知地 直樹2.3 小林 研仁3 鈴木 琢	1 東大陸理 2 東大生産研 3 筑波大陸
10.00	104 0 10 0	数値シミュレーション	矢 ³	1. 水入りに上、2. 水入工上には、5. かしん入りに
10:45	18a-C43-7	PT 対称性を用いた SiC MOSFET のリンギングノイズ抑		1. 豊田中研
10.10	100 010 1	all		1. 2. 11 11
11:00	E 18a-C43-8	Spectroscopic assessment of an edible oil for quality	○ (B)Hazel Mendonca¹, Sharmila Sajankila	1.MSLS, MAHE
11.00	D 100 C 10 C	determination	Nadumane ¹ , Nirmal Mazumder ¹	THOSE, WITH
11:15	奨 18a-C43-9	ブルーライトカットレンズを用いた時の色認識特性の検		1. 東海大院工
11.15	× 10a C43 /	討4	○(M2)相出 共刊/7,主任 旧心	1. 木体人凡工
12	/ Education	u) #		
		口頭講演 (Oral Presentation) C43会場 (Room C43)		
9:00	19a-C43-1	安価なカーボン系導電性塗料によるフレキシブルな発熱	○松木 空一郎 1 古田 個大 1 伊藤 业母 1 白蝦 這 2	1 釧数真恵 2 亩京農工士
2.00	17a-C45-1	女価なガーボン系導電性室科による プレキンブルな発熱 素子の検討	○四本 小 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	1. 则时间寻, 4. 不小股上八
9:15	19a-C43-2	素子の検討 透写紙上に描かれた Pencil-Trace によるフレキシブルエ	○伊藤 光樹 1 袖公 優大 1 白椒 淖— 2	1.釧路高専, 2.東京農工大
2.10	17a-C45-4	返与似上に佃かれたPencii-Trace によるプレキシノルエレクトロニクスの検討	○レ゙ハネダル肉,ヤヤ゚ロ 俊本,口性 仔一	1. 列四问号, 4. 不水辰二八
0.20	10- C42 2		○井井 浄土1 パニュフト ブェラト2 フロニソカフ	1.(株)ハナムラオプティクス, 2. 自然科学研究機構 分
9:30	19a-C43-3	初心者教育のためのマイクロチップレーザーワーク ショップ	〇化村 諭志 ', バティスト フルネト', フロフン カス レ ² , 佐藤 庸一 ³ , 平等 拓範 ^{2,3}	, , , , , , , , , , , , , , , , , , , ,
		ンヨッノ	レ , 佐藤 庯一 , 半寺 拘軋	子科学研究所, 3. 理化学研究所 放射光科学研究セン
0.45	10 040 4	工業科教育職員免許状取得のための科目「職業指導」	O#4-4-1	9- 1 = 1 - 1 - 1
9:45	19a-C43-4		〇葛生 伸 ¹	1. 福井大工
10:00	19a-C43-5	光速度不変と走行電子の質量増加理論の破綻の考察	○土田 成能¹	1. ダビンチ研
		Novel technologies and interdisciplinary engineering		
		口頭講演 (Oral Presentation) C43会場 (Room C43)	O+3 *7 Fm #3	4 db_1_1_100_1tt
9:30	17a-C43-1	マテリアルキュレーション®支援システムの利用tips	〇吉武道子 ¹ ,長田貴弘 ¹	1. 物材機構
9:45	17a-C43-2	金属有機構造体とカーボンナノチューブ複合体のカーボ	〇田甲 直倒 ,田甲 机俱,相果 懷又,膝ヶ谷 剛 彦 ^{1,2,4}	1. 九大院工, 2. 九大 WPI-I2CNER, 3. 九大シス情, 4. 九
10.00	15 040 0	ン界面制御によるCO2センシングの最適化	12	大CMS
10:00	17a-C43-3	カーボンナノチューブを用いた湿式表面処理により形成		1.ハイ / ール / シ / R&D, 2.山一ハガネ
10.15		される被膜の耐霜特性評価	宰², 田島 秀春²	1 T 1
10:15	E 17a-C43-4	A Meta Surface Material Based Patch Antenna For Future	rentapani vanitnarani	1.Vellore Institute of Technology Andhra Pradesh
	E 17a-C43-4	Wireless Sensor Space Craft 5G Systems	rentapani vanitnarani	University
10:30		Wireless Sensor Space Craft 5G Systems 休憩/Break	•	University
	E 17a-C43-4	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルブローブリソグラフィを用いたナノスケール精	•	
10:30 10:45	17a-C43-5	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルブローブリソグラフィを用いたナノスケール精 度描画	○青木 画奈¹, 赤羽 浩一¹	University 1.情報通信研究機構
10:30		Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精 度描画 高密度・高均一量子ドット構造の低温 20K における蛍光	○青木 画奈 1 , 赤羽 浩一 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4	University 1.情報通信研究機構
10:30 10:45 11:00	17a-C43-5 17a-C43-6	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルブローブリソグラフィを用いたナノスケール精 度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価	○青木 画奈 1 , 赤羽 浩一 1 \bigcirc (M2) 伊佐早 祐大 1 , 板谷 太郎 2 , 菅谷 武芳 2 , 前田 譲治 1 , 天野 建 2	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研
10:30 10:45 11:00	17a-C43-5 17a-C43-6 17a-C43-7	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルブローブリソグラフィを用いたナノスケール精 度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザのIL 特性の温度依存性についての研究	 ○青木 画奈¹,赤羽 浩一¹ ○(M2) 伊佐早 祐大¹,板谷 太郎²,菅谷 武芳²,前田 譲治¹,天野建² ○(M1) 谷口 清人¹,板谷 太郎²,前田 譲治¹,天野 建² 	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研
10:30 10:45 11:00	17a-C43-5 17a-C43-6	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルブローブリソグラフィを用いたナノスケール精 度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価	○青木 画奈¹, 赤羽 浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田 讓治¹, 天野 建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田 讓治¹, 天野 建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研
10:30 10:45 11:00 11:15 11:30	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精 度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作	○青木 画宗¹, 赤羽 浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田 譲治¹, 天野 建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田 譲治¹, 天野 建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好 伸¹	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研
10:30 10:45 11:00 11:15 11:30	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精 度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境 / Energy conversion, storage, resources and	○青木 画宗¹, 赤羽 浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田 譲治¹, 天野 建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田 譲治¹, 天野 建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好 伸¹	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研
10:30 10:45 11:00 11:15 11:30 1.4 エネノ 9/18(We	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精 度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境 / Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場 (Room C43)	○青木 画奈¹, 赤羽 浩一¹ ○ (M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田 譲治¹, 天野 建² ○ (M1) 谷口 清人¹, 板谷 太郎², 前田 譲治¹, 天野 建² ○ (M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好 伸¹ □ environment	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研
10:30 10:45 11:00 11:15 11:30	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素ガ	 ○青木 画奈¹, 赤羽 浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田 譲治¹, 天野 建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田 譲治¹, 天野 建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好伸¹ I environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al 	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研
10:30 10:45 11:00 11:15 11:30 1.4 エネノ 9/18(We	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精 度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境 / Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場 (Room C43)	○青木 画奈¹, 赤羽 浩一¹ ○ (M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田 譲治¹, 天野 建² ○ (M1) 谷口 清人¹, 板谷 太郎², 前田 譲治¹, 天野 建² ○ (M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好 伸¹ l environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山 陽大², 西海 豊彦², 西村 文宏³, 浅野 貴	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研
10:30 10:45 11:00 11:15 11:30 1.4 ± \(\frac{1}{2}\) 9/18(We 13:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザのIL特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性	○青木 画奈¹, 赤羽 浩一¹ ○ (M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田 讓治¹, 天野 建² ○ (M1) 谷口 清人¹, 板谷 太郎², 前田 讓治¹, 天野 建² ○ (M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好 伸¹ l environment ○仲川 杲平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山 陽大², 西海 豊彦², 西村 文宏³, 浅野 貴 行², 光藤 誠太郎²	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官
10:30 10:45 11:00 11:15 11:30 1.4 エネノ 9/18(We	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温20Kにおける蛍光評価 薄膜化レーザのIL特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関す	・	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官
10:30 10:45 11:00 11:15 11:30 1.4 ± \$\tilde{x}\$, 9/18(We 13:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプロープリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価	○青木 画宗¹, 赤羽 浩一¹ ○ (M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○ (M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野 建² ○ (M1) 菊地 奎人¹², 板谷 太郎², 所田譲治¹, 天野 建² ○ (M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好伸¹ □ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山 陽大², 西海 豊彦², 西村 文宏³, 浅野 貴行², 光藤 誠太郎² ○ (M2) 秋田 いつか¹¹², 藤井 克司², 小川 貴代², 和田智之², 小椋 厚志¹³	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官 1. 明大理工, 2. 理研RAP, 3. 明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 ± \(\frac{1}{2}\), \(\frac{9}{18}\)(We 13:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプロープリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO₂還元に使用される陰イオン交換膜におけ	・	University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東理大理工, 2.産総研 1.東京都市総合理工, 2.産総研 1.福井大遠赤セ, 2.福井大工, 3.福井大産学官 1.明大理工, 2.理研RAP, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 工法, 9/18(We 13:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO2還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価	・	University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東理大理工, 2.産総研 1.東京都市総合理工, 2.産総研 1.福井大遠赤セ, 2.福井大工, 3.福井大産学官 1.明大理工, 2.理研RAP, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 ± \$\tilde{x}\$, 9/18(We 13:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO₂還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO₂還元の長期運転における	○青木 画奈¹, 赤羽 浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野 建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野 建² ○(M1) 菊地 奎人¹², 板谷 太郎², 所田譲治¹, 天野 建² 中¹ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山 陽大², 西海 豊彦², 西村 文宏³, 浅野 貴行², 光藤 誠太郎² ○(M2) 秋田 いつか¹², 藤井 克司², 小川 貴代², 和田智之², 小椋 厚志¹³ ○(M1) 井上 堅太郎¹, 小池 一輝¹², 村上 武晴², 森下圭², 小川 貴代², 藤井 克司², 和田智之², 小椋 厚志¹³	University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東理大理工, 2.産総研 1.東京都市総合理工, 2.産総研 1.福井大遠赤セ, 2.福井大工, 3.福井大産学官 1.明大理工, 2.理研RAP, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 ± \$\times\$, 9/18(We 13:00 13:15 13:30	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20Kにおける蛍光評価 薄膜化レーザのIL特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43)マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO₂ 還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO₂ 還元の長期運転における還元生成物の変化	○青木 画奈¹, 赤羽 浩一¹ ○ (M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野 建² ○ (M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野 建² ○ (M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好伸¹ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalal², 影山陽大², 西海 豊彦², 西村 文宏³, 浅野貴行², 光藤 誠太郎² ○ (M2) 秋田 いつか¹², 藤井克司², 小川貴代², 和田智之², 小椋厚志¹³ ○ (M1) 井上 堅太郎¹, 小池一輝¹², 村上 武晴², 森下圭², 小川貴代², 藤井克司², 和田智之², 小椋厚志¹³	University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東理大理工, 2.産総研 1.東京都市総合理工, 2.産総研 1.福井大遠赤セ, 2.福井大工, 3.福井大産学官 1.明大理工, 2.理研RAP, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 エネ/ 9/18(We 13:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43)マイクロ波加熱により生成されるセルロース由来水素がスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価電気化学的CO2還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO2還元の長期運転における還元生成物の変化 ゼロギャップ (MEA) 型セルを用いた CO2還元反応にお	○青木画宗¹,赤羽浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野健², 岡野好伸¹ □ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山陽大², 西海 豊彦², 西村 文宏³, 浅野貴行², 光藤 誠太郎² ○(M2) 秋田 いつか¹², 藤井 克司², 小川 貴代², 和田智之², 小椋 厚志¹³ ○(M1) 井上 堅太郎¹, 小池一輝¹², 村上 武晴², 森下圭², 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(D) 小池一輝¹², 村上 武晴², 井上 堅太郎¹, 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹³	University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東理大理工, 2.産総研 1.東京都市総合理工, 2.産総研 1.福井大遠赤セ, 2.福井大工, 3.福井大産学官 1.明大理工, 2.理研RAP, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 ± \(\frac{2}{3}\) \(\frac{9}{18}\)(We 13:00 13:15 13:30 13:45	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルブローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43)マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO2 還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO2 還元の長期運転における環体とは、などは、などは、などは、などは、などは、などは、などは、などは、などは、など	○青木 画奈¹, 赤羽 浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野 建² ○(M1) 菊地 奎人¹², 板谷 太郎², 前田譲治¹, 天野 建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好伸¹ □ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山陽大², 西海 豊彦², 西村 文宏³, 浅野 貴行², 光藤 誠太郎² ○(M2) 秋田 いつか¹², 藤井 克司², 小川 貴代², 和田智之², 小椋 厚志¹³ ○(M1) 井上 堅太郎¹, 小池 一輝¹², 村上 武晴², 森下圭², 小川 貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(D) 小池 一輝¹², 村上 武晴², 井上 堅太郎¹, 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹³	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官 1. 明大理工, 2. 理研RAP, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 ± \$\times\$, 9/18(We 13:00 13:15 13:30	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3	Wireless Sensor Space Craft 5G Systems (木憩/Break サーマルプロープリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・ 資源・環境 / Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場 (Room C43) マイクロ波加熱により生成されるセルロース由来水素が スのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO₂還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO₂還元の長期運転における 還生成物の変化 ゼロギャップ (MEA) 型セルを用いた CO₂還元反応にお けるアノライト濃度とフラッディングの関係 CO₂還元リアクターのフラッディングにおけるアニオン	○青木 画宗¹, 赤羽 浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好伸¹ □ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山 陽大², 西海 豊彦², 西村 文宏³, 浅野 貴行², 光藤 誠太郎² ○(M2) 秋田 いつか¹², 藤井 克司², 小川 貴代², 和田智之², 小椋 厚志¹³ ○(M1) 井上 堅太郎¹, 小池 一輝¹², 村上 武晴², 森下圭², 小川 貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(D) 小池 一輝¹², 村上 武晴², 非上 堅太郎¹, 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(D) 小池 一輝¹², 村上 武晴², 井上 堅太郎¹, 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹³	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官 1. 明大理工, 2. 理研RAP, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 ± \(\frac{2}{3}\) \(\frac{9}{18}\)(We 13:00 13:15 13:30 13:45	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルブローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43)マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO2 還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO2 還元の長期運転における環体とは、などは、などは、などは、などは、などは、などは、などは、などは、などは、など	○青木画宗¹, 赤羽浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野 建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野 建² ○(M1) 菊地 奎人¹², 板谷 太郎², 所田譲治¹, 天野 建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好 伸¹ □ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山 陽大², 西海 豊彦², 西村 文宏³, 浅野 貴 行², 光籐 誠太郎² ○(M2) 秋田 いつか¹¹², 藤井 克司², 小川 貴代², 和田智之², 小椋 厚志¹³ ○(M1) 井上 堅太郎¹, 小池 一輝¹², 村上 武晴², 森下圭², 小川 貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(加) 井上 配井 克司², 和田智之², 小椋 厚志¹³ ○(加) 井上 町², 木上 武晴², 井上 堅太郎¹, 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹³	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官 1. 明大理工, 2. 理研RAP, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 ± \$\tilde{x}\$, 9/18(We 13:00 13:15 13:30 13:45 14:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 満膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43会場(Room C43)マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO₂還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO₂還元の長期運転における 還元生成物の変化 ゼロギャップ (MEA) 型セルを用いた CO₂還元反応におけるアノライト濃度とフラッディングの関係 CO₂還元リアクターのフラッディングにおけるアニオン交換膜の役割	○青木 画宗¹, 赤羽 浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野 健², 岡野 好伸¹ □ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山 陽大², 西海 豊彦², 西村 文宏³, 浅野 貴行², 光藤 誠太郎² ○(M2) 秋田 いつか¹², 藤井 克司², 小川 貴代², 和田智之², 小椋 厚志¹³ ○(M1) 井上 堅太郎¹, 小池 一輝¹², 村上 武晴², 森下圭², 小川 貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(D) 小池 一輝¹², 村上 武晴², 非上 堅太郎¹, 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(D) 小池 一輝¹², 村上 武晴², 井上 堅太郎¹, 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹³	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官 1. 明大理工, 2. 理研RAP, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 エネ/ 9/18(We 13:00 13:15 13:30 13:45 14:00 14:15	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4 18p-C43-5	Wireless Sensor Space Craft 5G Systems	○青木 画宗¹, 赤羽 浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野健², 岡野 好伸¹ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalal², 影山 陽大², 西海 豊彦², 西村 文宏³, 浅野 貴行², 光藤 誠太郎² ○(M2) 秋田 いつか¹², 藤井 克司², 小川 貴代², 和田智之², 小椋 厚志¹³ ○(M1) 井上 堅太郎¹, 小池一輝¹², 村上 武晴², 森下圭², 小川 貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(D) 小池 一輝¹², 村上 武晴², 井上 堅太郎¹, 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(本下圭¹, 村上武晴¹, 松本健¹, 小川貴代¹, 藤井 克司¹, 和田智之² ○林上武晴¹, 森下圭¹, 小地一輝¹², 井上 堅太郎¹², 松本健¹, 小川貴代¹, 藤井 克司¹, 小椋 厚志²³, 和田智之¹	University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東理大理工, 2.産総研 1.東京都市総合理工, 2.産総研 1.福井大遠赤セ, 2.福井大工, 3.福井大産学官 1.明大理工, 2.理研RAP, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.理化学研究所 1.理研光量子, 2.明治大学, 3.明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 ± \$\tilde{x}\$, 9/18(We 13:00 13:15 13:30 13:45 14:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4	Wireless Sensor Space Craft 5G Systems (木憩/Break) サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO2還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO2還元の長期運転における還元生成物の変化 ゼロギャップ (MEA) 型セルを用いた CO2還元反応におけるアノライト濃度とフラッディングの関係 CO2還元リアクターのフラッディングにおけるアニオン 交換膜の役割 休憩/Break デュアルアルカリ-金属-イオン共存する正極材料の開発	○青木 画宗¹, 赤羽 浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野健², 岡野 好伸¹ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalal², 影山 陽大², 西海 豊彦², 西村 文宏³, 浅野 貴行², 光藤 誠太郎² ○(M2) 秋田 いつか¹², 藤井 克司², 小川 貴代², 和田智之², 小椋 厚志¹³ ○(M1) 井上 堅太郎¹, 小池一輝¹², 村上 武晴², 森下圭², 小川 貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(D) 小池 一輝¹², 村上 武晴², 井上 堅太郎¹, 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(本下圭¹, 村上武晴¹, 松本健¹, 小川貴代¹, 藤井 克司¹, 和田智之² ○林上武晴¹, 森下圭¹, 小地一輝¹², 井上 堅太郎¹², 松本健¹, 小川貴代¹, 藤井 克司¹, 小椋 厚志²³, 和田智之¹	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官 1. 明大理工, 2. 理研RAP, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 ± \$\frac{1}{2}\$, 9/18(We 13:00 13:15 13:30 13:45 14:00 14:15	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4 18p-C43-5 18p-C43-6	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境 / Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43)マイクロ波加熱により生成されるセルロース由来水素がスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO2 還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 鋼電極を用いた電気化学的 CO2 還元の長期運転における還元生成物の変化 ゼロギャップ (MEA) 型セルを用いた CO2 還元反応におけるアノライト濃度とフラッディングの関係 CC2 還元リアクターのフラッディングにおけるアニオン交換膜の役割 休憩/Break デュアルアルカリ・金属・イオン共存する正極材料の開発及びナトリウムイオン電池への応用	○青木画宗¹,赤羽浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野健², 岡野好伸¹ □ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山陽大², 西海豊彦², 西村文宏³, 浅野貴行², 光藤誠太郎² ○(M2) 秋田 いつか¹², 藤井克司², 小川貴代², 和田智之², 小椋厚志¹³ ○(M1) 井上 堅太郎¹, 小池一輝¹², 村上武晴², 森下圭², 小川貴代², 藤井克司², 和田智之², 小椋厚志¹³ ○(D) 小池一輝¹², 村上武晴², 井上堅太郎¹, 小川貴代², 藤井克司², 和田智之², 小椋厚志¹³ ○森下圭¹, 村上武晴¹, 松本健¹, 小川貴代¹, 藤井克司¹, 和田智之¹ ○村上武晴¹, 森下圭¹, 小池一輝¹², 井上堅太郎¹², 松本健¹, 小川貴代¹, 藤井克司¹, 小椋厚志²³, 和田智之¹ ○村上武晴¹, 森下圭¹, 小池一輝¹², 井上堅太郎¹², 松本健¹, 小川貴代¹, 藤井克司¹, 小椋厚志²³, 和田智之¹	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官 1. 明大理工, 2. 理研RAP, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 理化学研究所 1. 理研光量子, 2. 明治大学, 3. 明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 エネ/ 9/18(We 13:00 13:15 13:30 13:45 14:00 14:15	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4 18p-C43-5	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素が スのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO2 還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO2 還元の長期運転における電圧成物の変化 ゼロギャップ (MEA) 型セルを用いた CO2 還元反応におけるアノライト濃度とフラッディングの関係 CO2 還元リアクターのフラッディングにおけるアニオン 交換膜の役割 休憩/Break デュアルアルカリ・金属・イオン共存する正極材料の開発 及びナトリウムイオン電池への応用 Mg二次電池正極材料 Mg1+x V2xy,Mn,O4 の第一原理計算を	○青木画宗¹,赤羽浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野健², 岡野好伸¹ □ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山陽大², 西海豊彦², 西村文宏³, 浅野貴行², 光藤誠太郎² ○(M2) 秋田 いつか¹², 藤井克司², 小川貴代², 和田智之², 小椋厚志¹³ ○(M1) 井上 堅太郎¹, 小池一輝¹², 村上武晴², 森下圭², 小川貴代², 藤井克司², 和田智之², 小椋厚志¹³ ○(D) 小池一輝¹², 村上武晴², 井上堅太郎¹, 小川貴代², 藤井克司², 和田智之², 小椋厚志¹³ ○森下圭¹, 村上武晴¹, 松本健¹, 小川貴代¹, 藤井克司¹, 和田智之¹ ○村上武晴¹, 森下圭¹, 小池一輝¹², 井上堅太郎¹², 松本健¹, 小川貴代¹, 藤井克司¹, 小椋厚志²³, 和田智之¹ ○村上武晴¹, 森下圭¹, 小池一輝¹², 井上堅太郎¹², 松本健¹, 小川貴代¹, 藤井克司¹, 小椋厚志²³, 和田智之¹	University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東理大理工, 2.産総研 1.東京都市総合理工, 2.産総研 1.福井大遠赤セ, 2.福井大工, 3.福井大産学官 1.明大理工, 2.理研RAP, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.理化学研究所 1.理研光量子, 2.明治大学, 3.明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 ± \$\frac{1}{2}\$, 9/18(We 13:00 13:15 13:30 13:45 14:00 14:15	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4 18p-C43-5 18p-C43-6	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルブローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素が スのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO2 還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO2 還元の長期運転における環行と成物の変化 ゼロギャップ (MEA) 型セルを用いた CO2 還元反応におけるアノライト濃度とフラッディングの関係 CO2 還元リアクターのフラッディングの関係 CO2 還元リアクターのフラッディングにおけるアニオン 交換膜の役割 休憩/Break デュアルアルカリ・金属・イオン共存する正極材料の開発 及びナトリウムイオン電池への応用 Mg二次電池正極材料 Mg1+xV2xy,Mn3O4の第一原理計算を用いた放電後の安定構造の検討および置換原子の影響の	○青木画宗¹,赤羽浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野健², 岡野好伸¹ □ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山陽大², 西海豊彦², 西村文宏³, 浅野貴行², 光藤誠太郎² ○(M2) 秋田 いつか¹², 藤井克司², 小川貴代², 和田智之², 小椋厚志¹³ ○(M1) 井上 堅太郎¹, 小池一輝¹², 村上武晴², 森下圭², 小川貴代², 藤井克司², 和田智之², 小椋厚志¹³ ○(D) 小池一輝¹², 村上武晴², 井上堅太郎¹, 小川貴代², 藤井克司², 和田智之², 小椋厚志¹³ ○森下圭¹, 村上武晴¹, 松本健¹, 小川貴代¹, 藤井克司¹, 和田智之¹ ○村上武晴¹, 森下圭¹, 小池一輝¹², 井上堅太郎¹², 松本健¹, 小川貴代¹, 藤井克司¹, 小椋厚志²³, 和田智之¹ ○村上武晴¹, 森下圭¹, 小池一輝¹², 井上堅太郎¹², 松本健¹, 小川貴代¹, 藤井克司¹, 小椋厚志²³, 和田智之¹	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官 1. 明大理工, 2. 理研RAP, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 理化学研究所 1. 理研光量子, 2. 明治大学, 3. 明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 ± \$\overline{x}\$, \begin{array}{c} 9/18(We) 13:00 \end{array} 13:15 13:30 13:45 14:00 14:15 14:30 14:45 15:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4 18p-C43-5 18p-C43-6	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO2 還元に使用される陰イオン交換膜における 還元生成物の変化 プロギャップ (MEA)型セルを用いた CO2 還元反応におけるアノライト濃度とフラッディングの関係 CO2 還元リアクターのフラッディングの関係 CO2 還元リアクターのフラッディングの関係 CO2 還元アルアルカリ・金属・イオン共存する正極材料の開発 及びナトリウムイオン電池への応用 Mg二次電池正極材料 Mg1+xV-x-yMn,O4の第一原理計算を用いた放電後の安定構造の検討および置換原子の影響の解明	 ○青木画宗¹,赤羽浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野健², 岡野好伸¹ I environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山 陽大², 西海 豊彦², 西村 文宏³, 浅野貴行², 光膝 誠太郎² ○(M2) 秋田 いつか¹¹², 藤井 克司², 小川 貴代², 和田智之², 小椋 厚志¹³ ○(M1) 井上 堅太郎¹, 小池 一輝¹², 村上 武晴², 森下圭², 小川 貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(D) 小池 一輝¹², 村上 武晴², 非上 堅太郎¹, 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(本下圭¹, 村上 武晴¹, 松本健¹, 小川貴代¹, 藤井 克司¹, 和田智之¹ ○村上 武晴¹, 森下 圭¹, 小池 一輝¹², 井上 堅太郎¹², 松本健¹, 小川貴代¹, 藤井 克司¹, 小椋 厚志²³, 和田智之¹ ○「村上 武晴¹, 森下 圭¹, 小池 一輝¹², 井上 堅太郎¹², 松本健¹, 小川貴代¹, 藤井 克司¹, 小椋 厚志²³, 和田智之¹ ○馬 廷麗¹, 孫 嘉澤¹ ○伊美 龍志¹, 石橋 千晶¹, 北村尚人¹, 井手本康¹ 	University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東理大理工, 2.産総研 1.東京都市総合理工, 2.産総研 1.福井大遠赤セ, 2.福井大工, 3.福井大産学官 1.明大理工, 2.理研RAP, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.理化学研究所 1.理研光量子, 2.明治大学, 3.明大MREL 1.九工大 1.東理大創域理工
10:30 10:45 11:00 11:15 11:30 1.4 ± \$\frac{1}{2}\$, 9/18(We 13:00 13:15 13:30 13:45 14:00 14:15	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4 18p-C43-5 18p-C43-6	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素が スのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO₂還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO₂還元の長期運転における 還元生成物の変化 ゼロギャップ (MEA)型セルを用いた CO₂還元反応におけるアノライト濃度とフラッディングの関係 CO₂還元リアクターのフラッディングの関係 CO₂還元リアクターのフラッディングにおけるアニオン 交換膜の役割 休憩/Break デュアルアルカリ・金属・イオン共存する正極材料の開発 及びナトリウムイオン電池への応用 Mg二次電池正極材料 Mg1+xV2+x→Mn,O4の第一原理計算を 解明 波長分散型軟 X線吸収分光法による酸素発生触媒電極と	 ○青木画宗¹,赤羽浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野健², 岡野好伸¹ I environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山 陽大², 西海 豊彦², 西村 文宏³, 浅野貴行², 光膝 誠太郎² ○(M2) 秋田 いつか¹¹², 藤井 克司², 小川 貴代², 和田智之², 小椋 厚志¹³ ○(M1) 井上 堅太郎¹, 小池 一輝¹², 村上 武晴², 森下圭², 小川 貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(D) 小池 一輝¹², 村上 武晴², 非上 堅太郎¹, 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹³ ○(本下圭¹, 村上 武晴¹, 松本健¹, 小川貴代¹, 藤井 克司¹, 和田智之¹ ○村上 武晴¹, 森下 圭¹, 小池 一輝¹², 井上 堅太郎¹², 松本健¹, 小川貴代¹, 藤井 克司¹, 小椋 厚志²³, 和田智之¹ ○「村上 武晴¹, 森下 圭¹, 小池 一輝¹², 井上 堅太郎¹², 松本健¹, 小川貴代¹, 藤井 克司¹, 小椋 厚志²³, 和田智之¹ ○馬 廷麗¹, 孫 嘉澤¹ ○伊美 龍志¹, 石橋 千晶¹, 北村尚人¹, 井手本康¹ 	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東理大理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官 1. 明大理工, 2. 理研RAP, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 理化学研究所 1. 理研光量子, 2. 明治大学, 3. 明大MREL
10:30 10:45 11:00 11:15 11:30 1.4 ± \$\frac{1}{2}\$, 9/18(We 13:00 13:15 13:30 14:45 14:00 14:15	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ロレギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4 18p-C43-5 18p-C43-6	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO2還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO2還元の長期運転における還元生成物の変化 ゼロギャップ (MEA)型セルを用いた CO2還元反応におけるアノライト濃度とフラッディングの関係 CO2還元リアクターのフラッディングにおけるアニオン交換膜の役割 休憩/Break デュアルアルカリ・金属・イオン共存する正極材料の開発 及びナトリウムイオン電池への応用 Mg 二次電池正極材料 Mg1+x V2+y Mn,O4 の第一原理計算を解明 放長分散型軟 X 線吸収分光法による酸素発生触媒電極と電解波界面近傍のリアルタイム・オペランド観察	 ○青木画宗¹, 赤羽浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野健², 岡野 好伸¹ Invironment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalal², 影山 陽大², 西海 豊彦², 西村 文宏³, 浅野貴行², 光藤 誠太郎² ○(M2) 秋田 いつか¹¹², 藤井 克司², 小川 貴代², 和田智之², 小椋 厚志¹¹³ ○(M1) 井上 堅太郎¹, 小池一輝¹², 村上 武晴², 森下圭², 小川 貴代², 藤井 克司², 和田智之², 小椋 厚志¹¹³ ○(D) 小池一輝¹², 村上 武晴², 井上 堅太郎¹, 小川貴代², 藤井 克司², 和田智之², 小椋 厚志¹¹³ ○森下圭¹, 村上武晴¹, 松本健¹, 小川貴代¹, 藤井克司¹, 和田智之¹ ○林本健¹, 小川貴代¹, 藤井克司¹, 小椋 厚志²³, 和田智之¹ ○居廷健¹, 孫嘉澤¹ ○伊美龍志¹, 石橋 千晶¹, 北村尚人¹, 井手本康¹ ○阪田薫穂¹, 雨宮健太¹ 	University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東理大理工, 2.産総研 1.東京都市総合理工, 2.産総研 1.福井大遠赤セ, 2.福井大工, 3.福井大産学官 1.明大理工, 2.理研RAP, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.理化学研究所 1.理研光量子, 2.明治大学, 3.明大MREL 1.九工大 1.東理大創域理工 1.KEK 物構研
10:30 10:45 11:00 11:15 11:30 1.4 ± \$\overline{x}\$, \begin{array}{c} 9/18(We) 13:00 \end{array} 13:15 13:30 13:45 14:00 14:15 14:30 14:45 15:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ロレギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4 18p-C43-5 18p-C43-6	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講漢 (Oral Presentation) C43会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO₂還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO₂還元の長期運転における 還元生成物の変化 ゼロギャップ (MEA) 型セルを用いた CO₂還元反応におけるアノライト濃度とフラッディングの関係 CO₂還元リアクターのフラッディングにおけるアニオン 交換膜の役割 休憩/Break デュアルアルカリ・金属・イオン共存する正極材料の開発 及びナトリウムイオン電池への応用 Mg二次電池正極材料 Mg1+xV2+yMn₁O4の第一原理計算を 用いた放電後の安定構造の検討および置換原子の影響の解明 放長分散型軟 X 線吸収分光法による酸素発生触媒電極と電解波界面近傍のリアルタイム・オペランド観察 雰囲気遮断システム用いた硫化物系全固体電池の解析ソ	 ○青木画宗¹,赤羽浩一¹ ○(M2) 伊佐早 祐大¹,板谷 太郎²,菅谷 武芳²,前田譲治¹,天野建² ○(M1) 谷口清人¹,板谷太郎²,前田譲治¹,天野建² ○(M1) 菊地 奎人¹²,板谷太郎²,天野健²,岡野好伸¹ I environment ○仲川 晃平¹,Abdi Karya I Putu², Muhammad Al Jalal²,影山陽大²,西海豊彦²,西村文宏³,浅野貴行²,光藤誠太郎² ○(M2) 秋田 いつか¹²,藤井 克司²,小川貴代²,和田智之²,小椋厚志¹³ ○(M1) 井上 堅太郎¹,小池一輝¹²,村上武晴²,森下圭²,小川貴代²,藤井克司²,和田智之²,小椋厚志¹³ ○(D) 小池一輝¹²,村上武晴²,井上 堅太郎¹,小川貴代²,藤井克司²,和田智之²,小椋厚志¹³ ○森下圭¹,村上武晴¹,松本健¹,小川貴代¹,藤井克司¹,和田智之¹ ○本下圭¹,村上武晴¹,松本健¹,小川貴代¹,藤井克司¹,和田智之¹ ○太本健¹,小川貴代¹,藤井克司¹,小椋厚志²³,和田智之¹ ○馬廷麗¹,孫高澤¹ ○伊美龍志¹,石橋千晶¹,北村尚人¹,井手本康¹ ○阪田薫穂¹,雨宮健太¹ ○仲野靖孝¹,五十嵐啓介¹,伊藤勝治¹,稲木由紀¹, 	University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東理大理工, 2.産総研 1. 東京都市総合理工, 2.産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官 1. 明大理工, 2.理研RAP, 3. 明大MREL 1. 明治大学理工, 2.理研光量子, 3. 明大MREL 1. 明治大学理工, 2.理研光量子, 3. 明大MREL 1. 理化学研究所 1. 理研光量子, 2. 明治大学, 3. 明大MREL 1. 九工大 1. 東理大創域理工 1. KEK 物構研
10:30 10:45 11:00 11:15 11:30 1.4 エネ/ 9/18(We 13:00 13:15 13:30 14:45 14:00 14:15 15:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4 18p-C43-5 18p-C43-6	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境 / Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素が スのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO2 還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO2 還元の長期運転における 電元生成物の変化 ゼロギャップ (MEA) 型セルを用いた CO2 還元反応におけるアノライト濃度とフラッディングの関係 CO2 還元リアクターのフラッディングの関係 CO2 還元リアクターのフラッディングにおけるアニオン 交換膜の役割 体憩/Break デュアルアルカリ・金属・イオン共存する正極材料の開発 及びナトリウムイオン電池への応用 Mg二次電池正極材料 Mg1・xV2・xyMn,O4の第一原理計算を用いた放電後の安定構造の検討および置換原子の影響の解明 波長分散型軟X線吸収分光法による酸素発生触媒電極と電解波界面近傍のリアルタイム・オペランド観察 雰囲気遮断システム用いた硫化物系全固体電池の解析ソリューション	○青木画宗¹,赤羽浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 所田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野健², 岡野好伸¹ □ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山陽大², 西海 豊彦², 西村 文宏³, 浅野貴行², 光藤 誠太郎² ○(M2) 秋田 いつか¹², 藤井 克司², 小川貴代², 和田智之², 小椋厚志¹³ ○(M1) 井上 堅太郎¹, 小池一輝¹², 村上 武晴², 森下圭², 小川貴代², 藤井克司², 和田智之², 小椋厚志¹³ ○(D) 小池一輝¹², 村上武晴², 井上 堅太郎¹, 小川貴代², 藤井克司², 和田智之², 小椋厚志¹³ ○(本下圭¹, 村上武晴¹, 松本健¹, 小川貴代¹, 藤井克司¹, 和田智之¹ ○村上武晴¹, 森下圭¹, 小池一輝¹², 井上堅太郎¹², 松本健¹, 小川貴代¹, 藤井克司¹, 和田智之¹ ○馬廷麗¹, 孫高澤¹ ○馬廷麗¹, 孫高澤¹ ○(四) 葉龍¹, 不屬千晶¹, 北村尚人¹, 井手本康¹ ○阪田薫穂¹, 雨宮健太¹ ○(本下華², 五十嵐 啓介¹, 伊藤 勝治¹, 稲木由紀¹, 相蘇亨¹, 浅倉浩之¹, 佐藤岳志¹	University 1. 情報通信研究機構 1. 東理大 創域理工, 2. 産総研 1. 東京都市総合理工, 2. 産総研 1. 福井大遠赤セ, 2. 福井大工, 3. 福井大産学官 1. 明大理工, 2. 理研RAP, 3. 明大MREL 1. 明治大学理工, 2. 理研光量子, 3. 明大MREL 1. 理化学研究所 1. 理研光量子, 2. 明治大学, 3. 明大MREL 1. 九工大 1. 東理大創域理工 1. KEK 物構研 1. (株) 日立ハイテク
10:30 10:45 11:00 11:15 11:30 1.4 エネッ 9/18(We 13:00 13:15 13:30 14:45 14:30 14:45 15:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-2 18p-C43-3 18p-C43-4 18p-C43-5 18p-C43-6	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光評価 薄膜化レーザのIL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講漢 (Oral Presentation) C43会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素ガスのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO₂還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO₂還元の長期運転における 還元生成物の変化 ゼロギャップ (MEA) 型セルを用いた CO₂還元反応におけるアノライト濃度とフラッディングの関係 CO₂還元リアクターのフラッディングにおけるアニオン 交換膜の役割 休憩/Break デュアルアルカリ・金属・イオン共存する正極材料の開発 及びナトリウムイオン電池への応用 Mg二次電池正極材料 Mg1+xV2+yMn₁O4の第一原理計算を 用いた放電後の安定構造の検討および置換原子の影響の解明 放長分散型軟 X 線吸収分光法による酸素発生触媒電極と電解波界面近傍のリアルタイム・オペランド観察 雰囲気遮断システム用いた硫化物系全固体電池の解析ソ	 ○青木画宗¹,赤羽浩一¹ ○(M2) 伊佐早 祐大¹,板谷 太郎²,菅谷 武芳²,前田譲治¹,天野建² ○(M1) 谷口清人¹,板谷太郎²,前田譲治¹,天野建² ○(M1) 菊地 奎人¹²,板谷太郎²,天野健²,岡野好伸¹ I environment ○仲川 晃平¹,Abdi Karya I Putu², Muhammad Al Jalal²,影山陽大²,西海豊彦²,西村文宏³,浅野貴行²,光藤誠太郎² ○(M2) 秋田 いつか¹²,藤井 克司²,小川貴代²,和田智之²,小椋厚志¹³ ○(M1) 井上 堅太郎¹,小池一輝¹²,村上武晴²,森下圭²,小川貴代²,藤井克司²,和田智之²,小椋厚志¹³ ○(D) 小池一輝¹²,村上武晴²,井上 堅太郎¹,小川貴代²,藤井克司²,和田智之²,小椋厚志¹³ ○森下圭¹,村上武晴¹,松本健¹,小川貴代¹,藤井克司¹,和田智之¹ ○本下圭¹,村上武晴¹,松本健¹,小川貴代¹,藤井克司¹,和田智之¹ ○太本健¹,小川貴代¹,藤井克司¹,小椋厚志²³,和田智之¹ ○馬廷麗¹,孫高澤¹ ○伊美龍志¹,石橋千晶¹,北村尚人¹,井手本康¹ ○阪田薫穂¹,雨宮健太¹ ○仲野靖孝¹,五十嵐啓介¹,伊藤勝治¹,稲木由紀¹, 	 University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東東大理工, 2.産総研 1.東京都市総合理工, 2.産総研 1.福井大遠赤セ, 2.福井大工, 3.福井大産学官 1.明大理工, 2.理研RAP, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.理化学研究所 1.理研光量子, 2.明治大学, 3.明大MREL 1.九工大 1.東理大創域理工 1.KEK 物構研 1.(株)日立ハイテク 1.MAS, 2.小山高専, 3.NPO法人エナジーエデュケー
10:30 10:45 11:00 11:15 11:30 1.4 エネ. 9/18(We 13:00 13:45 14:00 14:15 14:30 14:45 15:00 15:15	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-3 18p-C43-4 18p-C43-5 18p-C43-6 18p-C43-7 18p-C43-8 18p-C43-9 18p-C43-10 18p-C43-11	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルブローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境/Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素が スのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO₂還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO₂還元の長期運転における環行実成物の変化 ゼロギャップ (MEA) 型セルを用いた CO₂還元反応におけるアノライト濃度とフラッディングの関係 CO₂還元リアクターのフラッディングの関係 CO₂還元リアクターのフラッディングにおけるアニオン 交換膜の役割 休憩/Break デュアルアルカリ・金属・イオン共存する正極材料の開発 及びナトリウムイオン電池への応用 Mg二次電池正極材料 Mg1+xV2+yMn₁O4の第一原理計算を用いた放電後の安定構造の検討および置換原子の影響の解明 波長分散型軟X線吸収分光法による酸素発生触媒電極と電解液界面近傍のリアルタイム・オペランド観察 雰囲気遮断システム用いた硫化物系全固体電池の解析ソリューション 金属・有機複合太陽電池の新規発電メカニズムの考察	・	 University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東理大理工, 2.産総研 1.東京都市総合理工, 2.産総研 1.福井大遠赤セ, 2.福井大工, 3.福井大産学官 1.明大理工, 2.理研RAP, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.理化学研究所 1.理研光量子, 2.明治大学, 3.明大MREL 1.九工大 1.東理大創域理工 1.KEK 物構研 1.(株)日立ハイテク 1.MAS, 2.小山高専, 3.NPO法人エナジーエデュケーション
10:30 10:45 11:00 11:15 11:30 1.4 エネ/ 9/18(We 13:00 13:15 13:30 14:45 14:00 14:15 15:00	17a-C43-5 17a-C43-6 17a-C43-7 17a-C43-8 ルギー変換・貯蔵 ed.) 13:00 - 17:45 18p-C43-1 18p-C43-3 18p-C43-4 18p-C43-5 18p-C43-6 18p-C43-7 18p-C43-8 18p-C43-9 18p-C43-10 18p-C43-11	Wireless Sensor Space Craft 5G Systems 休憩/Break サーマルプローブリソグラフィを用いたナノスケール精度描画 高密度・高均一量子ドット構造の低温 20K における蛍光 評価 薄膜化レーザの IL 特性の温度依存性についての研究 3次元光配線に向けたマイクロレンズ構造の試作 ・資源・環境 / Energy conversion, storage, resources and 口頭講演 (Oral Presentation) C43 会場(Room C43) マイクロ波加熱により生成されるセルロース由来水素が スのサイクル依存性 水素生成固体高分子型水電解セルの効率と安定性に関する評価 電気化学的 CO2 還元に使用される陰イオン交換膜における電気泳動に付随する水輸送の評価 銅電極を用いた電気化学的 CO2 還元の長期運転における 電元生成物の変化 ゼロギャップ (MEA) 型セルを用いた CO2 還元反応におけるアノライト濃度とフラッディングの関係 CO2 還元リアクターのフラッディングの関係 CO2 還元リアクターのフラッディングにおけるアニオン 交換膜の役割 体憩/Break デュアルアルカリ・金属・イオン共存する正極材料の開発 及びナトリウムイオン電池への応用 Mg二次電池正極材料 Mg1・xV2・xyMn,O4の第一原理計算を用いた放電後の安定構造の検討および置換原子の影響の解明 波長分散型軟X線吸収分光法による酸素発生触媒電極と電解波界面近傍のリアルタイム・オペランド観察 雰囲気遮断システム用いた硫化物系全固体電池の解析ソリューション	○青木画宗¹,赤羽浩一¹ ○(M2) 伊佐早 祐大¹, 板谷 太郎², 菅谷 武芳², 前田譲治¹, 天野建² ○(M1) 谷口 清人¹, 板谷 太郎², 前田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 所田譲治¹, 天野建² ○(M1) 菊地 奎人¹², 板谷 太郎², 天野健², 岡野好伸¹ □ environment ○仲川 晃平¹, Abdi Karya I Putu², Muhammad Al Jalali², 影山陽大², 西海 豊彦², 西村 文宏³, 浅野貴行², 光藤 誠太郎² ○(M2) 秋田 いつか¹², 藤井 克司², 小川貴代², 和田智之², 小椋厚志¹³ ○(M1) 井上 堅太郎¹, 小池一輝¹², 村上 武晴², 森下圭², 小川貴代², 藤井克司², 和田智之², 小椋厚志¹³ ○(D) 小池一輝¹², 村上武晴², 井上 堅太郎¹, 小川貴代², 藤井克司², 和田智之², 小椋厚志¹³ ○(本下圭¹, 村上武晴¹, 松本健¹, 小川貴代¹, 藤井克司¹, 和田智之¹ ○村上武晴¹, 森下圭¹, 小池一輝¹², 井上堅太郎¹², 松本健¹, 小川貴代¹, 藤井克司¹, 和田智之¹ ○馬廷麗¹, 孫高澤¹ ○馬廷麗¹, 孫高澤¹ ○(四) 葉龍¹, 不屬千晶¹, 北村尚人¹, 井手本康¹ ○阪田薫穂¹, 雨宮健太¹ ○(本下華², 五十嵐 啓介¹, 伊藤 勝治¹, 稲木由紀¹, 相蘇亨¹, 浅倉浩之¹, 佐藤岳志¹	 University 1.情報通信研究機構 1.東理大 創域理工, 2.産総研 1.東東大理工, 2.産総研 1.東京都市総合理工, 2.産総研 1.福井大遠赤セ, 2.福井大工, 3.福井大産学官 1.明大理工, 2.理研RAP, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.明治大学理工, 2.理研光量子, 3.明大MREL 1.理化学研究所 1.理研光量子, 2.明治大学, 3.明大MREL 1.九工大 1.東理大創域理工 1.KEK 物構研 1.(株)日立ハイテク 1.MAS, 2.小山高専, 3.NPO法人エナジーエデュケー

16:30	18p-C43-13	福島の汚染土壌中の放射能低減を特別処理水で実施した 結果、大きなエネルギーを加えずに、放射能セシウムを 安定なバリウムへ変化させ、放射能減少を達成した。ま た太平洋の海水に100MPa以上の圧力を加え、元素変	○ (PC) 杉原 淳¹, Sugihara Sunao²	1.Shonan Institute of Tech., 2.Gen. Assoc. Inc. Green Earth Again
		換を確認した。理論的に水素結合を切った水中の仮想粒		
		子である陽子と電子のペアを考え、2粒子の核スピンに		
		焦点を当て、粒子の弱いエネルギーによって元素変換が		
16:45	19n C42 14	起き、タンク中のトリチウム減少計画を提案する。 ファイバー導入による高分子ゲルの熱運動抑制とイオン	○山形 古實」河殿 草和」口草 茶樹」 乙田 瀬司」 岡	1 ++除工
10.45	10p-C45-14	吸着特性に与える影響	部弘高 ¹	1.76/7961
17:00	奨 18p-C43-15	空中放電を用いたマイクロ熱エンジンの検討	〇松尾 一馬¹, 杉岡 秀行¹	1.信州大工
17:15		水中放電による回転デバイスの検討	〇松尾 一馬¹, 住田 大輔¹, 杉岡 秀行¹	1.信州大工
17:30	18p-C43-17	オーバーハング構造型流体輸送デバイスの検討	○杉岡 秀行¹, 宮内 惇¹, 大城 敦史¹	1.信州大工
		nstrumentation, measurement and Metrology		
		口頭講演 (Oral Presentation) C43 会場 (Room C43)	〇中公 仁] 燕玉 庄宣]	1 (件) 根根制 佐哉
13:00 13:15	16p-C43-1 16p-C43-2	分光エリプソメトリーにおける複素屈折率の直接推定 基板中の微小欠陥深さ推定技術の開発	○中谷 仁¹, 藪下 広高¹ ○山浦 大地¹, 坂田 義太朗¹, 寺崎 正¹	1.(株)堀場製作所 1.産業技術総合研究所
13:30	16p-C43-2	液中微細材料の粒子径・密度分布評価	○加藤 晴久¹,中村 文子¹	1. 産総研
13:45	16p-C43-4	試験槽における気体温度計校正の不確かさ評価の研究	○石渡 尚也¹, 阿部 恒¹	1. 産総研
14:00	16p-C43-5	過熱水蒸気混合法と二圧力法を併用した広域湿度発生装		1. 阪公大院, 2. 産総研/計測標準
		置の開発	田中秀幸²,阿部恒²	
14:15	奨 16p-C43-6	波長可変半導体レーザ吸収分光法による高温下での湿度 測定装置の開発	○山本 靖登¹, 伊與田 浩志¹, 増田 勇人¹, 阿部 恒²	1. 阪公大院, 2. 産総研/計測標準
14:30	奨 16p-C43-7	磁気力顕微鏡を用いた非磁性体抵抗率計測の試料加振に	○岡本 一真¹, 大徳 慎也¹, 居村 拓弥¹, 若家 冨士男¹,	1. 阪大基礎工, 2. 産総研
		よる感度の向上	阿保智 ¹ , 村上 勝久 ² , 長尾 昌善 ²	
14:45		インデンテーション法を用いた樹脂材料の機械特性評価	○齋藤 彩有花¹, 森 湧真¹	1. 三菱電機株式会社
15:00	16p-C43-9	動き・温度・光を同時計測可能なマルチモーダルインタフェースの開発	○鈴木 大地¹, 寺崎 正¹	1. 産総研 SSRC
15:15	16p-C43-10	有機圧電体を用いた共振型圧力・加速度センサの開発	○野田 祐樹¹, 松原 州宏², 豊嶋 尚美¹, 関谷 毅¹	1. 阪大 産研, 2. 山本電機製作所
15:30	16p-C43-11	接着剤硬化過程の非破壊二次元モニタリング手法の開発	○藤巻 康人¹, 古杉 美幸¹, 井上 潤¹, 富山 真一¹	1. 都産技研
15:45		静電気発光材料を用いた静電気除電経路の可視化	○寺崎 正¹, 坂田 義太朗¹, 山浦 大地¹, 菊永 和也¹	1. 産総研 センシング
	i波 / Ultrasonics	ETERNO (O. L.D) OAO A IR (D OAO)		
		口頭講演 (Oral Presentation) C43 会場 (Room C43) 頚動脈波計測による動脈硬化スクリーニング手法の検討	○(M1C) 孙田 知卦 [秋士 桓瘫] 松田 喜美]	1 同志弘上期子
13:00 13:15	奨 17p-C43-1 奨 17p-C43-2	大工血管中の動脈瘤モデル近傍での血流速度評価	○(M1C) 秘古 恒輝¹, 池田 智哉¹, 松川 真美	1.同志社大理工 1.同志社大理工
13:30	奨 17p-C43-2 奨 17p-C43-3		○ (MTC) 秋日 巨輝 , 池田 自成 , 松川 真美 ○ (DC) 原田 裕生 ¹ , 石河 睦生 ² , 松川 真美 ¹ , 小山 大	
10.00	X 1.1p 010 0	折率場中の光伝搬解析	介 ¹	11 170 E. V. 1 = 1 11 12 13 14 14 15 15 15 15 15 15
13:45	17p-C43-4	弾性波による液滴搬送の制御に関する検討	○(M2)長尾 匠真¹, 近藤 淳¹	1.静岡大
14:00	奨 17p-C43-5	小型ベクトルネットワークアナライザを用いた横波型弾	○柴田 慶一郎¹, 近藤 淳¹	1.静岡大
		性表面波センサの信号処理手法の検討	Code attended to the control of	
14:15	17p-C43-6	レーザ超音波法とレーザ誘起ブレークダウン分光法によ	○李 英根¹, 北澤 聡¹	1. 日立研開
14:30	奨 17p-C43-7	る物質推定技術の検討(2) 高繰返しエキシマレーザ用吸音材の吸音率シミュレー	○小川 拓也¹, 佐々木 陽一¹, 田中 誠¹, 堀 司¹, 柿崎 弘	1 だおつ・1 ン (姓) 2 工学院士学
14:50	英 17p-C43-7	ションの開発	○小川 拓也,佐々木 陽一,田中 誠,堀 司,仰崎 弘 司 ¹ , 山本 崇史 ²	1. イガノオトン(株), 2. 工子阮八子
14:45	17p-C43-8	圧電振動子のインピーダンス変化を利用した流速測定法		1. 同志社大理工
15:00	奨 17p-C43-9	超音波パルスエコー法を用いた ScAlN、AlN、ZnO膜の		1.早大先進理工, 2.材料技術研究所
		機械的Qm值評価手法		
15:15		休憩/Break		
15:30	17p-C43-10	直線集東ビーム超音波材料解析システムによるScAIN薄暗の製炉		1. 果北大, 2. 早稲田大, 3.GEOMATEC
15:45	蜓 17n-C43-11	膜の評価 ScAINとSiAINの積層による2層分極反転薄膜の形成と	勝又 彩馨 ² , 柳谷 隆彦 ² , 竹野 広晃 ³ , 伊東 孝洋 ³ ○ (M2) 福永 慶 ¹ , 鈴木 雅視 ¹ , 垣尾 省司 ¹	1.山梨大学
10.10	× 11p 010 11	BAW特性評価	(四周) 图 发 , 即 八	1. H.A.A.1
16:00	奨 17p-C43-12	ScAlN薄膜を用いた分極反転多層構造SMRによる二重	○(M1)松村 桃佳 ^{1,2} ,柴田 真之 ^{1,2} ,柳谷 隆彦 ^{1,2}	1.早大先進理工, 2.材料技術研究所
		モード型BAWフィルタ (DMB)		
16:15	奨 17p-C43-13	RFスパッタリングにより成膜された一軸配向(K,Na)	○(M2)中山 雄太¹, 鈴木 雅視¹, 垣尾 省司¹	1.山梨大
		NbO ₃ 膜の不活性層に関する検討		
16:30	17p-C43-14	LiTaO3薄板/低抵抗SiC構造におけるSH1モード板波共	○渡邉 紀之¹, 垣尾 省司¹	1.山梨大
16:45	奨 17p-C43-15	振特性の解析 $\text{LiNbO}_3/\text{SiO}_2/\text{SiC}$ 構造上の縦型漏洩弾性表面波特性の解	〇武居 諒¹, 鈴木 雅視¹, 垣尾 省司¹, 山本 泰司²	1. 山梨大, 2. 山本エイデック
15.00	No. 15 010 1	析	O(26) 14 444) AA - WARI FEE 45-31	1 July 1. 0 D C T.
17:00	樊 17p-C43-16	LiNbO ₃ /Ca ₃ TaGa ₃ Si ₂ O ₁₄ 接合構造上の縦型漏洩弾性表面 波共振特性の解析	○(M1)小林 祐哉',鈴木 雅視',垣尾 省司',木村 悟 利 ²	1. 山架大, 2.Piezo Studio
17:15	奨 17p-C43-17	周期的空隙を有する圧電基板上のA ₁ モードラム波共振特	○(M1) 小林 駿平¹, 鈴木 雅視¹, 垣尾 省司¹	1.山梨大
		性の解析		
	対線 ∕ Ionizing F			
		はプログラム冒頭にございます。		
	ved) 13:30 - 15:30	ポスター講演 (Poster Presentation) P会場(Room P)		

// / / / / / / / / / / / / /	はノロノノム自域にこといるす。		
9/18(Wed.) 13:30 - 15:30	ポスター講演 (Poster Presentation) P会場(Room P)		
18p-P01-1	光分解反応が TlBr 検出器に与える影響	〇坂脇 翔馬 1 , 土井 浩 Λ^1 , 矢口 愛斗 1 , 小野寺 敏幸 1 , 野島 太郎 2 , 人見 啓太朗 3	1.東北工大工, 2.タロスラボ(株), 3.東北大工
18p-P01-2	四塩化ケイ素ガスを用いた溌液化垂直ブリッジマン法で 作製したテルル化カドミウムバルク結晶の発光	〇平井 豪 ¹, 藤元 章 ², 原田 義之 ², 中田 博保 ³, 櫻木 史 郎 ⁴	1.立命館大理工, 2.大阪工大ナノ材研, 3.大教大, 4.ユニオンマテリアル
18p-P01-3	レーザーパルスを用いた CdTe 放射線検出器スペクトル のキャリア注入位置依存性と評価	〇庄子 朋秀 1 , 榊原 彩花 1 , 冨板 大輝 1 , 青木 徹 1,2 , 伊藤 哲 1,2	1. 静岡大院, 2. 静大電研
18p-P01-4	電子ビーム熱拡散ドーピングによるpn接合型 CdTe検出 器の作製	〇新村 勇奏 1 , 稲葉 影光 2 , 西澤 潤一 $^{3.4}$, 都木 克之 3 , 加瀬 裕貴 $^{1.3}$, 中村 和正 4 , 青木 徹 $^{1.2.3.4}$	1. 静岡大情, 2. 静岡大院総合科学技術, 3. 静岡大電子研, 4. 浜松医大 Nx-CEC
18p-P01-5	真空蒸着法で形成した TIBr 多結晶膜の評価	\bigcirc (D) 豊田 耕平 ^{1,2} , 西澤 潤一 ^{1,3,4} , 都木 克之 ^{2,3} , 加瀬 裕貴 ³ , 青木 徽 ^{1,2,3}	1. 静岡大光医工,2. 株式会社 ANSeeN,3. 静岡大電子研,4. 浜松医大 Nx-CEC
18p-P01-6	光励起法をもちいた電荷捕獲準位評価装置の開発とCVD ダイヤモンド単結晶に対する評価の試み	〇高橋 正樹 1 ,金子 純一 1 ,織田 堅吾 1 ,明石 悠宇斗 1 , 星川 尚久 2 ,梅沢 仁 3	1.北大院工, 2.大熊ダイヤモンドデバイス, 3.産総研
18p-P01-7	原子炉起動用中性子源のスペクトル測定に関する研究	〇大和田 $\bar{\mu}^1$, 若林 源一郎 2 , 塙 和鷹 1 , 木浦 滉太 1 , 井 谷 豪人 1 , 外崎 裕也 1	1.近大院総理工, 2.近大原研
18p-P01-8	CLLB(Ce)シンチレーション検出器の放射化に関する研究	〇木浦 滉太 ¹, 若林 源一郎 ², 大和田 蓮 ¹, 塙 和鷹 ¹, 外 崎 裕也 ¹, 井谷 豪人 ¹	1. 近大院総理工, 2. 近大原研
18p-P01-9	中性子イメージング装置の開発に向けた小型中性子源に 関する研究	〇南金山 圭吾¹, 新村 勇奏¹, 西澤 潤一²³, 加瀬 裕 貴¹², 都木 克之², 青木 徹¹²³, 谷 重喜³, 中村 和正³	1. 静岡大情, 2. 静岡大電子研, 3. 浜松医大 Nx-CEC
18p-P01-10	ポリエチレンナフタレートシンチレータにおける α / β 線に対する発光量測定	○(M1)添田 悠也¹, 山田 崇裕¹.²	1. 近畿大・院総理工, 2. 近畿大・原子力研

	18p-P01-11	イオン注入Si検出器を用いた医用核種α線スペクトル測定	○大塚 聖也¹, 山田 崇裕¹.²	1. 近畿大学・院総合理工, 2. 近畿大・原子力研究所
	18p-P01-12	コンバクトマイクロビームシステムの開発	○丸田 京華¹, 小島 健太郎¹, 三輪 美沙子¹, 遠山 翔¹, 加田 涉¹, 菊池 洋平¹, 松山 成男¹	1. 東北大量子
	18p-P01-13	生体機能・微量元素同時分析を目的としたイオンビーム 誘起発光(IBIL)分光イメージングを実現させるための顕 微光学系の開発	○(M1)中妻愛友美¹,大塚勇輝¹,西澤諒¹,三輪美	1. 東北大工
	18p-P01-14	小型Si 半導体素子を用いた診断用X線のリアルタイム計 測の試み	\bigcirc (D) 松本 卓己 1 , 稲葉 洋平 2 , 松本 真之介 3 , 加田 3	1. 東北大量子, 2. 東北大医, 3. 東京都立大
	18p-P01-15	PHITSによるポリエチレンコンバータとBeOセラミック ス板を用いた高速中性子測定法の検討	\bigcirc (M1) 高橋 玲央 1 , 松本 真之 Ω (M1) 高橋 玲央 1 , 松本 真之 Ω (M1) 高橋 玲央 1 , 槇正 浄光 1	1.都立大, 2.京都大, 3.近畿大
	18p-P01-16	OSL素子BeOセラミックス板のプレ加熱処理と線量応答性		1. 東京都立大学, 2. 金沢工業大学
	18p-P01-17	動態イメージングに向けた 1024ch 2次元 MPPC based PC-CT システムの開発と性能評価	○ (M1) 大島 美礼 ¹ , 有元 誠 ¹ , 供田 崇弘 ¹ , Fitri Lucyana ¹ , 古田 優 ¹ , 片岡 淳 ² , 皆川 遼太郎 ² , 寺澤 慎 祐 ³ , 塩田 諭 ³	1. 金沢大, 2. 早稲田大, 3. ブロテリアル
	18p-P01-18	ガンマ・X線検出用Tl 添加Al(PO ₃) ₃ -Mg(PO ₃) ₂ -CsPO ₃ ガラスシンチレータの開発	○森田 千恵¹, 長谷川 洸¹, 中林 優輔¹, 渡邊 晶斗¹, 川 本 弘樹¹, 藤本 裕¹, 浅井 圭介¹	1. 東北大工
	18p-P01-19	Ce添加Cs ₂ NaScCl ₆ エルパソライト単結晶シンチレータの開発		1. 東北大院工
	18p-P01-20	Tl ₂ NaScCl ₆ 結晶におけるシンチレーション機構の解明	○石田 未夢¹, 渡邊 晶斗¹, 川本 弘樹¹, 藤本 裕¹, 浅井 圭介¹	1. 東北大院工
	18p-P01-21	昇温結晶化法により作製した無添加および賦活剤添加 CsI単結晶のシンチレーション特性	○権田樹¹,藤本裕¹,川本弘樹¹,浅井圭介¹	1.東北大学
	18p-P01-22	可視光領域において優れた透明性を示す ${\bf ZrO_2}$ ナノ粒子分散液の開発		1. 東北大院工, 2. 東北大 SRIS, 3. 東北大 AIMR, 4.Univ. Suwon, 5. 東北大 FRIS, 6. 静岡大電子研
		BaFCl:Eu結晶におけるシンチレーション性能評価 Ce添加LiPO ₃ -Al(PO ₃) ₃ -CsPO ₃ ガラスシンチレータの発 光特性におけるCe濃度依存性	○田村 飛翔¹,川本 弘樹¹,藤本 裕¹,浅井 圭介¹ ○長谷川 洸¹,渡邊 晶斗¹,川本 弘樹¹,藤本 裕¹,浅井 圭介¹	1. 東北大工 1. 東北大院工
	18p-P01-25	溶媒蒸発法による Sb ³⁺ 添加 Rb ₂ HfCl ₆ 結晶シンチレータ の合成および性能評価		1. 東北大院工
	18p-P01-26	CsPO ₃ -Al(PO ₃) ₃ -NdCl ₃ 系ガラスの蛍光及びシンチレーション特性	○藤本 裕¹, 中林 優輔¹, 川本 弘樹¹, 浅井 圭介¹	1. 東北大院工
	18p-P01-27	ソルボサーマル法により作製したYF ₃ :Ce ³⁺ 蛍光体の生成相と発光特性の関係	○定盛 智紀 1 , 吉村 成生 1 , 小南 裕子 1 , 原 和彦 1 , 都木 克之 1 , 青木 徹 1	1.静大工
	18p-P01-28	銀添加リン酸塩ガラスにおけるラジオフォトルミネッセ ンス能の起源解明を企図した銀リン酸塩ガラスにおける 光学特性調査		1. 東北大工
	18p-P01-29	銀添加Li-Alホウ酸塩ガラスへのX線照射時のラジオフォトルミネッセンス	○森下 諒一¹, 川本 弘樹¹, 藤本 裕¹, 浅井 圭介¹	1.東北大学
	18p-P01-30	中性子線照射による Sn ²⁺ 添加 CaO-Al ₂ O ₃ -B ₂ O ₃ ガラスの 熱蛍光	○高津匠吾¹,山口寬人¹,川本弘樹¹,藤本裕¹,越水 正典²,若林源一郎³,浅井圭介¹	1. 東北大学工, 2. 静岡大電子研, 3. 近大原研
		Bi添加Li ₂ O-Al ₂ O ₃ -P ₂ O ₅ ガラスにおけるRPL特性評価 CaO-P ₂ O ₅ 系セラミックスによる合成条件の検討及び	○(B) 猪股 諒太¹, 岡田 豪¹, 南戸 秀仁¹ ○青木 美歩¹, 岡田 豪¹, 南戸 秀仁¹	1. 金沢工大 1. 金沢工大
	·	RPL特性評価 Analysis of Luminescent Characteristics in Silver-Doped		1. Univ. Sao Paulo, 2.KIT, 3.Fed. Univ. Sao Paulo
		Sodium Borate	Tatumi ¹ , Rocca Rene ³	
		Mn 添加 BCNO の蛍光および熱蛍光特性 P-ベンゾキノン及びフルオレセイン共添加ポリマーフィ ルムによる放射線応答を用いた有機線量計の開発	○(B)亀山優人¹,越水正典¹○矢代智章¹,越水正典¹	1. 静岡大工 1. 静岡大工
	18p-P01-36	中性子照射による Mg, Pr共添加 LiTaO ₃ セラミックスの 熱蛍光特性	○平松 祐汰¹, 若林 源一郎², 越水 正典¹	1. 静岡大, 2. 近大原研
	E 18p-P01-37	Effect of Composition on Scintillation Light Yield of	OpalithaRuwan Abewardana PinnalandeGedara ¹ ,	1.Shizuoka University
	18p-P01-38	Ce-doped Gd ₃ Al _{5-y} Ga _y O ₁₂ Nanoparticle Scintillators 発光中心添加Ca ₂ B ₂ O ₅ 熱蛍光体におけるLET特性の制御	Masanori Koshimizu¹ ○越水 正典¹, 小宮 基², 古場 裕介³, 藤本 裕², 浅井 圭介²	1. 静大電子研, 2. 東北大院工, 3.QST
	18p-P01-39	エネルギー移動の効率化を目指したプラスチックシンチ		1.静岡大工
	18p-P01-40	レータの開発 量子ドット含有量が異なる有機無機ハイブリッドシンチ	○麻生 一樹¹,越水 正典¹	1. 静岡大工
	18p-P01-41	レータの開発 組成の異なる赤色発光 Eu 添加 TAGG ナノ粒子シンチ	○(M1) 高橋 悠真¹, 越水 正典¹	1.静岡大
	18p-P01-42		○林 南瑠¹, 越水 正典¹	1.静岡大
	18p-P01-43	タの開発 トリメトキシフェニルシラン修飾 LiGaO₂ナノ粒子添加 中性子検出用プラスチックシンチレータの開発	○塚原 悠久¹, 越水 正典¹	1. 静岡大
		Detection Devices		
9/19(T 9:00	19a-D61-1	口頭講演 (Oral Presentation) D61 会場(Room D61) 宇宙線ミューオンの角度再構成による到来方向測定用 DSSD二枚積層モジュールの評価	○(M1)佐藤 丞¹,幸村 孝由¹,内田 悠介¹,渡邉 雄気¹, 永松 愛子²,玉川 徹¾,中村 吏一朗³,内山 慶祐⁴,大 田 尚享⁴,武田 朋志⁴,高橋 忠幸⁵,武田 伸一郎⁵,萩野 浩一⁵,長澤 俊作²	
9:15	19a-D61-2	月探査機搭載用チェレンコフ検出器 Lunar-RICheS のエネルギー測定下限調査		•
9:30	19a-D61-3	1 mm厚CdTe-DSDの性能評価	○古川 湧基¹, 高橋 忠幸², 武田 伸一郎².6, 桂川 美穂¹, 南 喬博³.². 渡辺 伸⁵, 幸村 孝由¹, 内田 悠介¹	1.東理大創域理工, 2.Kavli IPMU, 3.東大理, 4.京大理, 5.ISAS/JAXA, 6.iMAGINE-X
9:45	19a-D61-4	Cu電極を用いたショットキー型CdTe検出器の諸特性		1. 静岡大電子研, 2. 静岡大院光医工, 3. 浜松医大 Nx-CEC

10:00	19a-D61-5	X線天文衛星搭載用SOIピクセル検出器に対する放射線	○(M1)藤田 紗弓¹, 志賀 文哉¹, 幸村 孝由¹, 内田 悠	1. 東理大創域理工, 2. 京大理, 3. 宮崎大工, 4. 近大理工,
		耐性の評価	暉 2 , 上村 悠介 2 , 森 浩 3 , 武田 彩 3 , 西岡 祐介 3 , 行元 雅貴 3 , 木村 明愉 3 , 塩川 朝日 3 , 三谷 美輝 3 , 角谷 昂 亮 3 , 鎌田 信 \overline{e}^3 , 黒木 瑛介 3 , 信川 久実 4 , 岸本 拓 海 4 , 来野 慧 4 , 萩野 浩 $^-$ 5, 松橋 裕洋 5 5, 鈴木 寛大 6 5, 田中 孝明 7 , 上ノ町 水紀 8 5, 新井 康夫 9 5, 倉知 郁夫 10 7, 齊藤悠人 サイトウ ユウト Saito Yuto 3 3、佐々木悠任 ササキ ユウト Sasaki Yuto 3 3、	5.東大理, 6.JAXA, 7.甲南大理工, 8.東工大科創研, 9. KEK, 10.D&S
			渕田悠太 フチタ ユウタ Fuchita Yuta ³ 、吉田大雅 ヨ シダ タイガ Yoshida Taiga ³	
10:15	19a-D61-6	ガンマ線検出用位置検出型TES型マイクロカロリメータ の雑音と多重散乱を含めた位置分解能シミュレーション	○(M2)田河 佑規¹, 伊豫本 直子¹, 松見 勇輔¹, 藤田	1. 九大院工, 2. 宇宙科学研究所, 3. 国立天文台, 4. 立教大, 5. 産総研
10:30 10:45	19a-D61-7	休憩/Break Glass Gas Electron Multiplier イメージングシステムの開	○宣播 述力』Mak Hamdan』 # 藤 衛土』 二油公 右	1 市十丁
10:45	19a-D01-7	発	貴 ¹	
11:00	19a-D61-8	SX-STED: 軟X線撮像のための顕微鏡開発とその応用の紹介		1. 東北大NICHe, 2. 阪大レーザー研, 3. 高知工科大システム工, 4. 埼玉医科大医, 5. 宇都宮大工, 6. 徳島大 pLED 研
11:15	奨 E 19a-D61-9	DOI identification in HR-GAGG and GAGG phoswich detector using a new PSD method using dTOT and TOT.	(PC)Donghwan Kim ¹ , Moh Hamdan ¹ , Kenji	1.The Univ. of Tokyo
11:30	19a-D61-10	detector using a new PSD method using a TOT and TOT. ビンホール開口コリメータを用いた広帯域・高感度 SPECT の提案	○越川七星 ¹ , 菊池 優花 ¹ , 田中 香津生 ¹ , 片岡 淳 ¹	1.早大理工
11:45		小動物用高解像度ガンマカメラの開発と性能評価 口頭講演 (Oral Presentation) D61 会場 (Room D61)	○菊池 優花¹, 越川 七星¹, 田中 香津生¹, 片岡 淳¹	1.早大理工
13:00	19p-D61-1	ラジオフォトルミネッセンスによる飛跡検出技術の開発	○岡田豪 ¹ ,越水正典 ² ,南戸秀仁 ¹	1. 金沢工大, 2. 静岡大
13:15	19p-D61-2	高線量率場における Nd 添加 Lu ₂ O ₃ 近赤外発光シンチ レータの応答特性	\bigcirc (PC) 石澤 倫 ^{1,2} , 黒澤 俊介 ^{1,3,4} , 山路 晃広 ^{1,3} , 吉川 彰 ^{1,3,4,5} , 高田 卓志 ⁶ , 田中 浩基 ⁶	1. 東北大 NICHe, 2. 日本学術振興会 PD, 3. 東北大金研, 4. 阪大レーザー研, 5.(株) C&A, 6. 京都大複合研
13:30	E 19p-D61-3	Rare earth luminescence in ternary fluorides: role of crystal field splitting	(P)Vojtech Vanecek ^{1,2,3} , Masao Yoshino ⁴ , Takahiko Horiai ⁴ , Akihiro Yamaji ⁴ , Shunsuke Kurosawa ⁴ , Akira Yoshikawa ^{1,4,5}	1.IMR, Tohoku Univ., 2.JSPS Fellow, 3.Inst. of Phys. AVCR, 4.NICHe, Tohoku Univ., 5.C&A corporation
13:45	奨 19p-D61-4	高分解能 X 線イメージングに向けた Ce 添加 (Gd , Tb) ${}_3Al_2Ga_3O_{12}$ 単結晶シンチレータの開発	$(M2)$ 大室 和也 12 , 吉野 将生 $^{2.3}$, Gushchina Liudmila', 山本 誠一 6 , 中西 恒平 7 , 鎌田 \pm $^{2.3}$, 4 全 敏 \cancel{g}^{2} , 堀合 毅彦 $^{2.3}$, 村上 力輝 2 , 山路 晃広 $^{2.3}$, 花田 貴 2 , 横田 有為 2 , 黑澤 俊介 $^{2.3.5}$, 大橋 雄二 $^{2.3}$, 佐藤 浩	1. 東北大工, 2. 東北大金研, 3. 東北大 NICHe, 4.C&A, 5. 阪大, 6. 早大, 7. 名大
14:00	19p-D61-5	二重ベータ崩壊実験のための $(Ca, Mg)I_2$ 系シンチレータ の育成と特性評価	樹 $^{2.3}$, 吉川 彰 $^{2.3.4}$ 〇川畑 諒輔 $^{1.2}$, 吉野 将生 $^{3.4}$, 鎌田 圭 $^{2.3.4}$, 飯田 崇史 5 , 堀合 毅彦 $^{3.4}$, 金 敬鎭 $^{2.3.4}$, 沓澤 直子 4 , 村上 力輝斗 $^{2.4}$,	1. 東北大工, 2. 東北大金研, 3. 東北大NICHe, 4. 株式会社C&A, 5. 筑波大学
			山路 晃弘 $^{2.3}$, 黒澤 俊介 $^{2.3}$, 横田 有為 $^{2.3}$, 大橋 雄二 $^{2.3}$, 佐藤 浩樹 $^{2.3}$, 花田 貴 2 , 吉川 彰 $^{2.3,4}$	
14:15	19p-D61-6	球形シンチレータを用いた光ファイバ型中性子検出器の 基礎研究	○(B) 齋藤 優太郎¹, 大島 裕也¹, 渡辺 賢一¹	1. 九大工
14:30	19p-D61-7	光ファイバ型中性子検出器におけるLiガラスの自己吸収 の評価	○(D)大島 裕也¹, 齋藤 優太郎¹, 渡辺 賢一¹	1. 九大工
14:45	19p-D61-8	太陽電池型中性子線量計におけるコンバータ膜および太 陽電池の影響	〇岡本 保 1 , 小林 步人 1 , 栗本 祐司 1 , 上川 由紀子 2 , 奥野 泰希 3 , 小林 知洋 3	1.木更津高專, 2.産総研, 3.理研
15:00 15:15	19p-D61-9	休憩/Break TlBrウエハの結晶性評価	○小野寺 敏幸 ¹ , 野上 光博 ² , 人見 啓太朗 ² , 豊川 秀	1.東北工大, 2.東北大, 3.高輝度光科学研究センター
15:30	19n-D61-10	TI 電極 TIBr 放射線検出器の暗電流に影響する要因につ	訓 ³ ○野島 太郎 ^{1,3} , 野上 光博 ¹ , 小野寺 敏幸 ² , 人見 啓太	1 東北大工 2 東北工大工 3 タロスラボ㈱
	•	いて	朗¹	
15:45	19p-D61-11	TlBr半導体の二次元キャリア輸送特性評価可能範囲に関する検討	○須貝 優介', 渡辺 賢一', 長谷川 創大', 田中 清志 郎¹, 野上 光博², 人見 啓太郎²	1. 九大工, 2. 東北大工
16:00	19p-D61-12	TlBr半導体検出器の多変量解析による信号処理	○(B)田中 清志朗¹,渡辺 賢一¹,長谷川 創大¹,須貝 優介¹,人見 啓太朗²,野上 光博²	1. 九州大工, 2. 東北大工
16:15	E 19p-D61-13	Direct Conversion Flat Panel Detectors Using 25 μm Thick TlBr Film for X-ray Imaging		1.The University of Tokyo, 2.Tohoku University, 3.Japan Display Inc.
16:30 16:45	19p-D61-14	休憩/Break レーザ駆動イオン加速実験用水素御クラスターターゲッ	○ 農永 改大 1 尾崎 玲於為 1 山内 知和 1 短田 サー2	1 袖大院海事 2 量研閱而研 3 株式会社 FV-Fusion
	*	トの特性解析	杉本 拓也3, 金崎 真聡1	
17:00	奨 19p-D61-15	高強度レーザーと水素クラスターターゲットの相互作用 におけるレーザープレバルスが陽子線加速に及ぼす効果- II		1. 神大院海事, 2. 量研関西研
17:15	19p-D61-16	レーザー加速アルゴンイオンのビンホールイメージング	○(M1) 苺谷 有哉¹, 尾崎 玲於奈¹, 豊永 啓太¹, 前川 馨¹, 合原 輔佑太¹, 山内 知也¹, 福田 裕仁², 金崎 真 聡¹	1. 神大院海事, 2. 量研関西研
17:30	19p-D61-17	固体飛跡検出器を用いたレーザー加速陽子線及び重イオンのエネルギースペクトロメータの開発	·-	1. 神大院海事, 2. 量研関西研
17:45		Cu,Ni,Zr試料中にトラップされたHe-3検出手法の開発	○東 柊斗¹, 勢一 隼人¹, 山内 知也¹, 金崎 真聡¹	1.神大院海事
		線応用・発生装置・新技術 / Radiation physics fundament □頭講演 (Oral Presentation) D62 会場(Room D62)	tals & applications, radiation generators, new techno	ology
9:00 9:15	奨 20a-D62-1 20a-D62-2	TOF-SIMSを用いたヌクレオチドの照射後解析 超音波エコーを利用した水中における重粒子線飛跡可視		
9:30	20a-D62-3	化の研究 フォトンカウンティング CT を用いて測定した H, C, O	聡 ⁴ , 岡田 長也 ⁵ ○長橋 龍河 ¹ , 古川 修平 ¹ , 星 和志 ¹ , 長谷部 有希 ¹ , 鈴	研,5.本多電子株式会社 1.群馬大理工,2.量研
9:45	20a-D62-4	の線減弱係数 PHITSシミュレーションを用いたフォトンカウンティン	木 宏輔 1, 取越 正己 2, 櫻井 浩 1	
10:00	20a-D62-5	グCT画像の解析 3DX線CTによるアルミダイキャスト内部構造の複合現	彰彦 ² , 取越 正己 ³ , 櫻井 浩 ¹	1.静岡大情, 2.静岡大電子研, 3.静岡大光医工, 4.中央発
10:00	20a-D62-5 20a-D62-6	実化 検出器応答パターンに基づくイメージング手法における	Bandarad ⁴ , 潟永 裕介 ⁴ , 曽我 夏人 ^{3, 4} , 青木 徹 ^{1, 2, 3}	1. 时间入闱, 2. 时间入电子研, 3. 时间入元区上, 4. 中央宪明研究所, 5. 浜松医大Nx-CEC 1. 原子力機構, 2. 東北大工
		イメージャーのジオメトリの最適化検討		

10:30		休憩/Break		
10:45	20a-D62-7	超重元素実験用シリコン半導体検出器の開発	○門叶冬樹¹,森本幸司²,加治大哉²,ビエールブリョッテ²,武山美麗¹,倉本紘大¹,加藤紘大¹,小杉和正³,間嶋拓也⁴,安田啓介⁵	1.山形大理, 2.理研仁科加速器研究センター, 3.浜松ホトニクス, 4.京大院工, 5.京府大
11:00	20a-D62-8	重金属中に隠匿された核物質の現場検知技術に関する研究		1.科警研, 2.JAEA, 3.京大, 4.東工大
11:15	20a-D62-9	J-PARC リニアック L3BT におけるビームロスの研究	\bigcirc 中野 秀仁 1 ,守屋 克洋 1 ,宫尾 智章 2 ,不破 康裕 1 ,劉 勇 2 ,大谷 将士 2 ,森下 卓俊 1	1.原子力機構, 2.高エネ研
11:30	奨 20a-D62-10		○大上 楓真¹, 阿保 智¹, 若家 冨士男¹, 増澤 智昭², 三	1. 阪大院基礎工, 2. 静大電研
11:45	20a-D62-11	のためのシミュレータ開発 ⁵⁰ Sr分析に向けた酸化ストロンチウムの赤外域振動回転 遷移の観測	村秀典 ² ○寺林 稜平 ¹ , 宮部 昌文 ² , 望月 拓海 ³ , 富田 英生 ³ , 島 添 健次 ¹ , 長谷川 秀一 ¹	1. 東大, 2.JAEA, 3. 名大
[CS.1]	2.3 加速器質量分析	・加速器ビーム分析、7.4 イオンビーム一般のコードシェブ		
		口頭講演 (Oral Presentation) D62会場 (Room D62)		
13:30	18p-D62-1	Au ナノ粒子を内包する $\mathrm{SiO_2}$ フリースタンディング膜の 作製と特性評価	○久保田 真歩¹,一宮 正義²,番 貴彦²,柳澤 淳一²	1. 滋賀県立大院工, 2. 滋賀県立大工
13:45	18p-D62-2	反応性ガス雰囲気下 GCIB 照射によるエッチングのガス 分圧および基板温度依存性	○(M1C)伊藤 汰一¹, 竹内 雅耶¹, 豊田 紀章¹	1. 兵庫県立大学工
14:00	奨 18p-D62-3	中性ガスクラスタービームを用いたCu膜のドライエッチ ング	○ (M1) 池田 圭佑¹, 田中 秀幸¹, 竹内 雅耶¹, 豊田 紀章¹	1. 兵庫県立大工
14:15	18p-D62-4	X-ray PEEM測定用液体セルに向けたGCIB照射による極 薄SiNxメンプレンの応力制御	○竹内 雅耶¹, 豊田 亜里紗¹, 豊田 紀章¹	1.兵庫県立大工
14:30	18p-D62-5	自立グラフェン膜への水クラスターイオンビーム照射効 果	○(M1C)諸葛 亮佑¹, 盛谷 浩右¹, 持地 広造², 乾 徳 夫¹	1. 兵県大工, 2.NPO分析産業人ネット
14:45 15:00	奨 18p-D62-6	CID における有機分子解離メカニズムに関する研究 休憩/Break	○(M1)西坂 光貴¹, 瀬木 利夫¹, 松尾 二郎¹	1. 京大院工
15:15	18p-D62-7	THz加速のための狭線幅差周波光源開発	○竹家 暋 ^{1,2} , Yahia Vincent ^{1,2} , 石月 秀貴 ^{2,1} , 平等 拓 範 ^{2,1}	1. 分子研, 2. 理研
15:30	18p-D62-8	LiF 蒸着フォイルを用いた透過型検出器の検出効率向上	○ (M1) 仙田 敬¹, 藤井 晴也¹, 中溝 珠里², 間嶋 拓也², 安田 啓介¹	1. 京府大生命環, 2. 京大院工
15:45	18p-D62-9	JAEA-AMS-TONOにおける加速器質量分析装置に関する研究開発; 2024年秋	○藤田奈津子¹,神野智史¹,南谷史菜¹,三宅正恭¹, 松原章浩²,前田祐輔¹,木田福香¹,小川由美¹,西尾智博²,大前昭臣³,宇野定則³,渡邊隆広¹,木村健二¹,島田耕史¹	1. 原子力機構, 2. ベスコ, 3. ビームオベレーション
16:00	18p-D62-10	微量放射性炭素測定のための前処理技術の開発	○(P)南谷 史菜¹,藤田 奈津子¹,神野 智史¹,西尾 智博²,渡邊 隆広¹	1.原子力機構, 2.ペスコ
16:15 16:30		都市大タンデムの現状 〜分析用ビームラインの状況〜 東京大学 MALT の現状 ー2024 秋ー	○羽倉尚人 ¹ ○山形武靖 ¹ ,德山裕憲 ¹ ,土屋陽子 ¹ ,戸谷美和子 ¹ , 斉遠志 ¹ ,松崎浩之 ¹	1. 都市大 1. 東大MALT
16:45 17:00	18p-D62-13	休憩/Break ³⁶ Clの加速器質量分析における妨害同重体 ³⁶ Sのイオン源 での抑制		1. 筑波大応用加速器, 2. 筑波大数物
17:15	18p-D62-14	ハイマツ試料中放射性炭素濃度の年変動に関する研究VI	〇武山 美麗 1,2 , 森谷 透 1,2 , 櫻井 敬久 2 , 宮原 ひろ子 3 , 門叶 冬樹 1,2	1. 山形大AMS センター, 2. 山形大理, 3. 武蔵美
17:30	18p-D62-15	自然環境におけるヨウ素同位体システムの研究3	○松崎 浩之¹, 戸谷 美和子¹, 斉 遠志¹, 山形 武靖¹	1.東大MALT
17:45	奨 E 18p-D62-16	Temporal Changes of Iodine-129 in the Canada Basin Over the Past Decade	○ (P)Yuanzhi Qi¹, Takeyasu Yamagata¹, Hiroyuki Matsuzaki¹, Hisao Nagai², Yuichiro Kumamoto³, Qiuyu Yang¹, Xinru Xu¹	1.The Univ. of Tokyo, 2.Nihon Univ., 3.JAMSTEC
18:00	奨 E 18p-D62-17	Vertical distributions of ¹²⁹ I and insight of current in the Southern Canada Basin	Qiuyu Tang , Ainru Au ○ (M1)Xinru Xu ¹ , Yuanzhi Qi ¹ , Takeyasu Yamagata ¹ , Hiroyuki Matsuzaki ¹ , Yuichiro Kumamoto ²	1.Univ. of Tokyo, 2.JAMSTEC
2.4 医月	用応用 / Medical app		Hiroyuki Matsuzaki , Tulchiro Kumamoto	
		口頭講演 (Oral Presentation) D62会場 (Room D62)		
10:00	17a-D62-1	コンプトンカメラを用いた ¹⁷⁷ Lu オキソドトレオチドに 含まれる ^{177m} Lu の同定	〇溝口 孝大¹, 渡辺 宝¹, 加納 大輔², 榎本 良治¹, 片桐 秀明³, 加賀谷 美佳 4 , 塚本 ひかり 1 , 福本 仁也 1 , 村石 浩 1	1.北里大院医, 2.国がん東病院, 3. 茨城大, 4.仙台高専
10:15	17a-D62-2	回転型全方向コンプトンカメラにおけるML-EM画像再 構成:広がった線源のイメージング		1.北里大院医, $2. 茨城大理$, $3.仙台高専$, $4. 東海大病院$ $5. 国がん東病院$
10:30	17a-D62-3	Lu-177 放射能汚染イメージングのための高感度コンプト ンカメラの開発		
10:45	奨 17a-D62-4	ゲル線量計を用いた4次元線量分布評価の予備的実験	価本 1. 也 ', 渡逢 布介' ○ (DC) 成田 亮介 ¹ , 神戸 正雄 ² , 林 慎一郎 ³ , 櫻井 良 憲 ⁴	1.京大院工, 2. 阪大産研, 3. 広国大, 4. 京大複合研
11:00	奨 17a-D62-5	【注目講演】肝疾患評価を目指したフォトンカウンティングCTによる脂肪肝ラットの生体外イメージング		1. 金沢大学, 2. 東北大学, 3. 早大理工, 4. プロテリアル
11:15	奨 17a-D62-6	MPPCを用いたフォトンカウンティング CT によるブラチナ系抗がん剤評価		1. 金沢大, 2. 岡山大, 3. 早稲田大, 4. 東北大, 5. ブロテリアル
11:30	奨E 17a-D62-7	Preliminary evaluation of dynamic imaging results of contrast agent sample using a 2-dimensional MPPC-based photon counting CT detector system	○ (M2)Fitri Lucyana¹, Makoto Arimoto¹, Takahiro	1.Kanazawa Univ., 2.Waseda Univ., 3.Tohoku Univ., 4.Proterial Ltd.

9/18(W 10:00	/ed.) 10:00 - 11:45 招 18a-D62-1	口頭講演 (Oral Presentation) D62会場(Room D62) 「第56回講演奨励賞受賞記念講演」 薄膜型ダイヤモンド検出器を用いたマルチイオン照射の	〇青木 勝海 1 , 米内 俊祐 1 , 武居 秀行 1 , 松本 卓己 2 , 牧野 高紘 1 , 松本 真之介 3 , 加田 涉 2	1.量研機構, 2.東北大, 3.東京都立大
10:15	E 18a-D62-2	線エネルギー付与分布測定 Evaluating Radiation Modulation Capabilities of 3D Printed PLA, ABS, and TPU with Different In-fill Densities and Phase Angles for Nuclear Medicine Applications	(D)ToniBeth Guatato Lopez ^{1, 2, 4} , James Harold Cabalhug ² , Emmanuel Arriola ^{1, 2, 4} , Marynella Laica Afable ² , Ranier Jude Wendell Lorenzo ² , Alvie Asuncion Astronomo ³ , Fred Liza ² , Robert Dizon ² , Gil Nonato Santos ⁴	1.Department of Science and Technology, 2.Metals Industry Research and Development Center, 3.Philippine Nuclear Research Institute, 4.De La Salle University
10:30	18a-D62-3	直交積層型PET検出器によるスケーラブルTOF-DOI検 出器の提案		1.浜ホト中研
10:45	18a-D62-4	重粒子線治療の飛程検証PETによる腫瘍診断の可能性: ラット実証実験	○寅松 千枝¹, 田島 英朗¹, 脇坂 秀克¹, 須藤 仁美¹, 関 千江¹, 生駒 洋子¹, 菅野 巌¹, 山谷 泰賀¹	1. 量子科学技術研究開発機構
11:00	E 18a-D62-5	Design of a sub-0.5 mm resolution mouse brain PET	○ (P)HanGyu Kang¹, Hideaki Tashima¹, Taiga Yamaya¹	1.QST
11:15	招 18a-D62-6	「第30回放射線賞受賞記念講演」 「核医学応用物理」の実践:革新的PET装置のBench-to- Clinical 研究	〇山谷 泰賀 ¹ , 高橋 美和子 ¹ , 田島 英朗 ¹ , 吉田 英治 ¹ ,	1.量研機構, 2.東北大, 3.千葉大, 4.日本医大, 5.獨協医 大
		diation-induced phosphors		
10:00	16a-D62-1	口頭講演 (Oral Presentation) D62 会場(Room D62) Eu添加NaGd(WO ₄) ₂ 単結晶の放射線誘起蛍光特性に対す	○牧野 滉大¹,木村 大海²,市場 賢政³,白鳥 大毅¹,藤	1.東京理科大学, 2. 産総研, 3. 奈良先端大
10.15	17 7000	る Eu 濃度の影響	原 健 ² , 加藤 英俊 ² , 福地 裕 ¹ , 柳田 健之 ³	4 Thru Library of the Wall L.
10:15	16a-D62-2	$(OHC_nH_{2n}NH_3)_2$ PbBr $_4$ $(n=2,3,4)$ の放射線応答性	○(M1)坪川虎ノ介¹,河野直樹¹,岡崎魁²,市場賢政²,加藤匠²,中内大介²,國方俊彰²,西川晃弘²,宮崎慧一郎²,柳田健之²	1. 秋田大阮建工, 2. 奈良先端天
10:30	16a-D62-3	${ m Nd}^{3+}$ 添加 ${ m BaO-BaCl_2-TeO_2}$ ガラスの放射線応答性	() (M1) 鈴木 翼¹, 宗田 駿太朗¹, 河野 直樹¹, 中内 大介², 加藤 匠², 岡崎 魁², 市場 賢政², 西川 晃弘², 宮崎 慧一郎², 篠崎 健二², 柳田 健之²	1. 秋田大院理工, 2. 奈良先端大, 3. 産総研
10:45	16a-D62-4	Er_2O_3 — TeO_2 — TiO_2 — La_2O_3 結晶化ガラスの放射線応答特性		1.秋田大, 2.奈良先端大, 3.産総研
11:00	16a-D62-5	ラジオフォトルミネッセンスを用いたリアルタイム中性 子測定技術の開発	〇岡田 豪 1 , 越水 正典 2 , 眞正 浄光 3 , 渡辺 賢一 4 , 南戸 秀仁 1	1.金沢工大, 2.静岡大, 3.東京都立大, 4.九州大
11:15	16a-D62-6	Tb添加SrTa $_2$ O。単結晶のシンチレーション特性	〇冨永 雄太 1,2 , 加藤 匠 2 , 西川 晃弘 2 , 宮崎 慧一郎 2 , 中内 大介 2 , 河口 範明 2 , 柳田 健之 2	1.福岡大工, 2.奈良先端大
9/16(M 13:00	lon.) 13:00 - 17:45 奨 16p-D62-1	口頭講演 (Oral Presentation) D62会場 (Room D62) 波動方程式を用いた固体飛跡検出器中エッチビット成長 挙動についての新しいシミュレーション		1. 神大院海事
13:15	奨 16p-D62-2	PADC検出器の紫外線及びプロトン等の照射効果	〇木本 敦 1 ,勢一 隼人 1 ,山田 怜央 1 ,小日向 大輔 1 ,貞 光 俊斗 1 ,山内 知也 1 ,金崎 真聡 1 ,楠本 多聞 2 ,小平 聡 2 石川 一平 3	1. 神大院海事, 2. 量研, 3. 舞鶴高専
13:30	16p-D62-3	ガンマ線照射による PADC 飛跡検出器の構造変化	〇小日向 大輔¹, 貞光 俊斗¹, 木本 敦¹, 勢一 隼人¹, 山 田怜央¹, 楠本 多聞², 金崎 真聡¹, 小平 聡², 藤乗 幸 子³, 誉田 義英³, 山内 知也¹	1. 神大院海事, 2. 量研, 3. 阪大産研
13:45	16p-D62-4	PADC 検出器中に形成される放射線損傷における エーテル基損失量とヒドロキシル基生成量との関係		1. 神大院海事, 2. 量研, 3. 阪大産研
14:00	16p-D62-5	極低温照射後のアニーリング過程におけるPADC中ヒドロキシル基の生成	〇貞光 俊斗 1 ,小日向 大輔 1 ,木本 敦 1 ,勢一 隼人 1 ,山 田 怜央 1 ,金崎 真聡 1 ,小平 聡 2 ,山内 知也 1 ,Ngono-Ravache Yvette 3 ,楠本 多聞 2	1. 神大院海事 , 2. 量研 , 3.CIMAP-GANIL
14:15 14:30	16p-D62-6	休憩/Break Eu添加BaFCl透光性セラミックスの作製と放射線応答特		1.奈良先端大
14:45	16p-D62-7	性の評価 Tb添加CaHfO₃単結晶シンチレータのMg置換による発		1. 奈良先端大, 2. 九州大
15:00	16p-D62-8	光量向上 SrCl ₂ :Eu透明セラミックスのシンチレーション特性にお		1.奈良先端大
15:15	16p-D62-9	けるEu濃度依存性 Nd添加BaO-Bi ₂ O ₃ -P ₂ O ₅ ガラスの放射線誘起蛍光特性	範明¹, 柳田 健之¹ ○宮島 渓太¹, 西川 晃弘¹, 加藤 匠¹, 中内 大介¹, 河口	1.奈良先端大
15:30	Î	Tm添加Ca ₃ TaGa ₃ Si ₂ O ₁₄ 単結晶シンチレータのTm濃度依	範明¹,柳田健之¹ ○高橋遼成¹,岡崎魁¹,中内大介¹,加藤匠¹,河口範	1. 奈良先端大
15:45	•	存性 Mn添加Y ₂ Al ₅ O ₂ , 単結晶の光学及びシンチレーション特	明¹,柳田健之¹	
16:00	r 202 II	性 休憩/Break	範明 ² , 尾身 博雄 ¹ , 柳田 健之 ²	,
16:15	16p-D62-12	下思/Joreak Eu添加 $\mathrm{Gd_3(Al,Ga)_5O_{12}}$ 単結晶シンチレータの $\mathrm{Al/Ga}$ 比の 最適化	〇國方 俊彰 1 ,渡辺 賢 $-^{2}$,木村 大海 3 ,加藤 匠 1 ,中内 大 Ω ,河口 範明 1 ,柳田 健之 1	1. 奈良先端科学技術大学院大学, 2. 九州大学, 3. 産業技術総合研究所
16:30	16p-D62-13	取過に Ho添加 CsI 単結晶のシンチレーション特性評価	○高瀬 峻汰¹,宮崎 慧一郎¹,中内 大介¹,加藤 匠¹,河 □ 範明¹,柳田 健之¹	
16:45	16p-D62-14	熱中性子検出用Eu添加LiBr単結晶シンチレータの開発		1. 奈良先端大
17:00	16p-D62-15	Tb添加 Sr ₂ Y ₈ (SiO ₄) ₆ O ₂ 結晶シンチレータにおける Tb 濃度依存性	= -	1. 奈良先端大
17:15	16p-D62-16	シンチレータ型放射線電池の基礎検討	- 物田 健之¹, 岡崎 魁¹, 加藤 匠¹, 中内 大介¹, 河口 範 ・ 明¹	1. 奈良先端大
17:30	16p-D62-17	(n-CH ₃ PEA) ₂ PbCl ₄ 結晶のシンチレーション特性評価	〇若林 樹 1 , 山林 恵土 1 , 中内 大介 1 , 岡崎 魁 1 , 河野 直 樹 2 , 加藤 匠 1 , 河口 範明 1 , 柳田 健之 1	1. 奈良先端大, 2. 秋田大
		口頭講演 (Oral Presentation) B5 会場(Room B5)		
9:45	17a-B5-1	中性子検出用 Ce添加 BPO ₄ -Al(PO ₃) ₃ -CsPO ₃ ガラスシン チレータの開発	圭介 ¹	
10:00	17a-B5-2	赤色発光シンチレータγ-CuI単結晶の耐水性及び紫外線 耐性評価		1.東北大院工
10:15	17a-B5-3	Au添加ソーダ石灰ガラスにおけるラジオフォトルミネッセンス		1.東北大工
10:30	17a-B5-4	α 線検出用スピネル単結晶のシンチレーション特性評価	○竹渕優馬¹, 手塚慶太郎¹, 市場賢政², 加藤匠², 中内大介², 河口範明², 柳田健之²	1. 宇都宮大, 2. 奈良先端大

	17a-B5-5	$Ce:Na_2O-Gd_2O_3-P_2O_5$ ガラスのシンチレーション特性における組成依存性	〇王 晨陽 1 , 白鳥 大毅 1 , 木村 大海 2 , 西川 晃弘 3 , 福地 裕 1 , 柳田 健之 3	1. 東京理科大, 2. 産総研, 3. 奈良先端大
1:00	招 17a-B5-6	「第3回極限的励起状態の形成と量子エネルギー変換研究 グループ論文賞受賞記念講演」 SPS法によるEu:BaFBr透光性セラミックスの光学およ び輝尽性蛍光特性		1.産総研, 2.奈良先端大, 3.金沢工大
1:15	招 17a-B5-7	「第3回極限的励起状態の形成と量子エネルギー変換研究 グループ論文賞受賞記念講演」 希土類配位ポリマー結晶の形態変化とその光機能	〇中西 貴之 1 , 平井 悠一 2 , 許 健 2 , 武田 隆史 1 , 渡邊 俊祐 3 , 安盛 敦雄 3 , 袴田 翔 4 , 北川 裕一 $^{4.5}$, 長谷川 靖 哉 $^{4.5}$	
9/17(T 3:00	Tue.) 13:00 - 17:30 17p-B5-1	口頭講演 (Oral Presentation) B5 会場(Room B5) Eu添加AES(AE = Ca, Sr, Ba) 透光性セラミックスのシン	○木村 大海¹, 藤原 健¹, 加藤 英俊¹, 加藤 匠², 國方 俊	1. 産総研, 2. 奈良先端大
3:15	17p-B5-2	チレーション特性 Tb添加SrF ₂ 透明セラミックスのドシメータ特性	彰 ² , 河口 範明 ² , 柳田 健之 ² ○河野 直樹 ¹ , 加藤 匠 ² , Robin Conner ³ , Luiz Jacobsohn ³ , 中内 大介 ² , 岡崎 魁 ² , 市場 賢政 ² , 竹渕	1. 秋田大院理工, 2. 奈良先端大, 3. クレムソン大学, 4. 宇都宮大
3:30	17p-B5-3	蛍光特性における Eu³+添加 CaO-Al ₂ O ₃ -B ₂ O ₃ ガラスの Eu	優馬 4 ,柳田健之 2 〇福嶋宏之 1 ,坪内廉 2 ,松浦徹 1 ,米田知晃 1 ,柳田健	
0.45	15 D5 4	濃度依存性	之 ²	4
3:45 4:00	17p-B5-4 17p-B5-5	Sm添加 CaX ₂ 単結晶シンチレータの開発 Dy添加 Al ₂ O ₃ -SiO ₂ ガラスのドシメータ特性	○中内 大介¹, 加藤 E^1 , 河口 範明¹, 柳田 健之¹ ○西川 晃弘¹, 白鳥 大毅², 加藤 E^1 , 中内 大介¹, 河口 範明¹, 柳田 健之¹	1.奈良先端大 1.奈良先端大, 2.東京理科大
4:15		休憩/Break		
4:30	17p-B5-6	低潮解性 K ₂ Cu(Cl, Br) ₃ 混晶のシンチレーション特性評価	明¹,柳田健之¹	
4:45	17p-B5-7	Er 添加 $CaWO_4$ 単結晶の近赤外シンチレーション特性評価	〇岡崎 魁 1 , 中内 大 Ω 1 , 加藤 Ω 1 , 河口 範明 1 , 柳田 健 之 1	1.奈良先端大
5:00	17p-B5-8	$\mathrm{LiF}/(\mathrm{K},\mathrm{Rb})_2\mathrm{CuCl}_3$ コンポジット中性子シンチレーターの 特性評価	○河口 範明 1 , 山林 恵士 1 , 岡崎 魁 1 , 加藤 匠 1 , 中内 大 \uparrow 0, 柳田 健之 1	1.奈良先端大
5:15	17p-B5-9	Tb 添加 K_2O - B_2O_3 - SiO_2 ガラスのドシメータ特性の評価	○林 志勇 1 , 西川 晃弘 1 , 加藤 \mathbb{E}^1 , 中内 大介 1 , 河口 範 明 1 , 柳田 健之 1	1. 奈良先端大
5:30	17p-B5-10	Tb添加 CaSiO₃単結晶の蛍光およびドシメータ特性における Tb濃度依存性	〇藤井 愛朗 1 , 宮崎 慧一郎 1 , 加藤 \mathbb{E}^1 , 中内 大 Ω 1, 河口 範明 1 , 柳田 健之 1	1.奈良先端大
5:45 6:00	17p-B5-11	休憩/Break Dy添加LuVO4単結晶シンチレータの開発	○市場 賢政¹,渡辺 賢一²,加藤 匠¹,中内 大介¹,河口	1. 奈良先端大, 2. 九州大
6:15	17p-B5-12	Dy添加Ba ₃ Y(PO ₄) ₃ 単結晶のドシメータ特性	範明¹, 柳田健之¹ ○江澤喜朗¹, 竹渕 優馬², 岡崎 魁¹, 加藤 匠¹, 中内 大	1. 奈良先端大, 2. 宇都宮大
6:30	17p-B5-13	Cr添加Al ₂ O ₃ 透明セラミックスの放射線誘起蛍光特性	介¹,河口範明¹,柳田健之¹ ○加藤匠¹,市場賢政¹,中内大介¹,河口範明¹,柳田	1. 奈良先端大
6:45	17p-B5-14	Mn添加ZnAl ₂ O ₄ 透明セラミックスの光刺激蛍光特性	健之¹ ○本條悟史¹,市場賢政¹,加藤匠¹,中内大介¹,河口	1. 奈良先端大
7:00	17p-B5-15	金添加 $K_2O-Al_2O_3-P_2O_5$ ガラスが示すラジオフォトルミ	範明¹,柳田 健之¹ ○白鳥 大毅¹,市場 賢政²,中内 大介²,福地 裕¹,柳田	1. 東京理科大, 2. 奈良先端大
7:15	17p-B5-16	ネッセンス現象 Ag:NaCaPO4セラミックスにおけるドシメータ特性の評		1. 東京理科大, 2. 産総研, 3. 奈良先端大
3 光・	フォトニクス	価 / Optics and Photonics	田健之3	
	ジウムのプログラム	はプログラム冒頭にございます。		
1 光学				
		/ Basic optics and frontier of optics		
9/16(N	10n.) 13:30 - 17:15	口頭講演 (Oral Presentation) A32会場 (Room A32)	○(PC) 由山 牧业 ¹ 廃瀬 了共 ² 亩川 正敏 ¹ 角石 彰 ¹	1 古土陰祖 2 古土祖
9/16(N 3:30	10n.) 13:30 - 17:15		○ (PC) 中山 牧水¹, 廣瀬 了哉², 市川 正敏¹, 角五 彩¹ ○伊知地 直樹¹, 石田 拓也¹, 大上 能悟², 森近 一貴¹, 立間 徹¹, 芦原 聡¹	
9/16(N 3:30 3:45	lon.) 13:30 - 17:15 16p-A32-1	口頭講演 (Oral Presentation) A32 会場(Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回	〇伊知地 直樹 1 ,石田 拓也 1 ,大上 能悟 2 ,森近 一貴 1 ,	1. 東大生研, 2. リスボン大
9/16(N 3:30 3:45 4:00	lon.) 13:30 - 17:15 16p-A32-1 16p-A32-2	口頭講演 (Oral Presentation) A32 会場(Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回 転運動制御	○伊知地 直樹 1 ,石田 拓也 1 ,大上 能悟 2 ,森近 一貴 1 ,立間 徹 1 ,芦原 聡 1 ○福永 怜央 1 ,前田 裕也 1 ,高橋 龍之介 1 ,上野 哲郎 2 ,和達 大樹 1,2	 1. 東大生研, 2. リスポン大 1. 兵県大理, 2.QST, 3. 阪大レーザー研
0/16(M 3:30 3:45 4:00 4:15	16p-A32-1 16p-A32-2 16p-A32-3	口頭講演 (Oral Presentation) A32 会場(Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回 転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒	○伊知地 直樹¹, 石田 拓也¹, 大上 能悟², 森近 一貴¹, 立間 徹¹, 芦原 聡¹ ○福永 怜央¹, 前田 裕也¹, 高橋 龍之介¹, 上野 哲郎², 和達 大樹¹³ ○ (M1) 近藤 香奈¹, Mojtaba Karimi Habil¹, 杉本 泰¹, 藤井 稔¹	 1. 東大生研, 2. リスポン大 1. 兵県大理, 2.QST, 3. 阪大レーザー研
9/16(M 3:30 3:45 4:00 4:15 4:30	16n.) 13:30 - 17:15 16p-A32-1 16p-A32-2 16p-A32-3 奨 16p-A32-4	口頭講演 (Oral Presentation) A32 会場(Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回 転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒 子ブローブ 斜め蒸着を用いたTiO ₂ ナノ粒子アレイの作製と非対称光 学応答 金ナノブレートに励起されるプラズモンの共鳴特性と増 強光キラル場の研究	○伊知地 直樹¹, 石田 拓也¹, 大上 能悟², 森近 一貴¹, 立間 徹¹, 芦原 聡¹ ○福永 怜央¹, 前田 裕也¹, 高橋 龍之介¹, 上野 哲郎², 和達 大樹¹³ ○(M1) 近藤 香奈¹, Mojtaba Karimi Habil¹, 杉本 泰¹, 藤井 稔¹ ○復本 泰輔¹, 村井 俊介¹, 田中 勝久¹	 1. 東大生研, 2. リスポン大 1. 兵県大理, 2.QST, 3. 阪大レーザー研 1. 神戸大院工
9/16(M 3:30 3:45 4:00 4:15 4:30 4:45 5:00	fon.) 13:30 - 17:15 16p-A32-1 16p-A32-2 16p-A32-3 獎 16p-A32-4 獎 16p-A32-5 獎 16p-A32-6	口頭講演 (Oral Presentation) A32 会場(Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回 転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒 子プロープ 斜め蒸着を用いたTiO ₂ ナノ粒子アレイの作製と非対称光 学応答 金ナノプレートに励起されるプラズモンの共鳴特性と増 強光キラル場の研究 休憩/Break	○伊知地 直樹¹, 石田 拓也¹, 大上 能悟², 森近 一貴¹, 立間 徹¹, 芦原 聡¹ ○福永 恰央¹, 前田 裕也¹, 高橋 龍之介¹, 上野 哲郎², 和達 大樹¹.³ ○(M1) 近藤 香奈¹, Mojtaba Karimi Habil¹, 杉本 泰¹, 藤井 稔¹ ○榎本 泰輔¹, 村井 俊介¹, 田中 勝久¹ ○長谷川 誠樹¹, 井村 考平¹	 1. 東大生研, 2. リスポン大 1. 兵県大理, 2. QST, 3. 阪大レーザー研 1. 神戸大院工 1. 京大院工 1. 早大先進理工
9/16(M 3:30 3:45 4:00 4:15 4:30 4:45 5:00 5:15	fon.) 13:30 - 17:15 16p-A32-1 16p-A32-2 16p-A32-3 獎 16p-A32-4 髮 16p-A32-5	口頭講演 (Oral Presentation) A32 会場(Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回 転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒 子ブローブ 斜め蒸着を用いたTiO ₂ ナノ粒子アレイの作製と非対称光 学応答 金ナノブレートに励起されるプラズモンの共鳴特性と増 強光キラル場の研究	 ○伊知地直樹¹,石田拓也¹,大上能悟²,森近一貴¹,立間 徹¹,芦原 聡¹ ○福永怜央¹,前田裕也¹,高橋龍之介¹,上野哲郎²,和達大樹¹³ ○(M1)近藤香奈¹, Mojtaba Karimi Habil¹, 杉本泰¹,藤井稔¹ ○榎本泰輔¹,村井俊介¹,田中勝久¹ ○長谷川 誠樹¹,井村考平¹ ○小澤祐市¹,上杉祐貴¹,佐藤俊一¹ ○大原空¹,坂本盛嗣¹³,野田浩平¹³,鈴木雅人¹³, 	 1. 東大生研, 2. リスポン大 1. 兵県大理, 2.QST, 3. 阪大レーザー研 1. 神戸大院工 1. 京大院工
9/16(M 3:30 3:45 4:00 4:15 4:30 4:45 5:00 5:15 5:30	fon.) 13:30 - 17:15 16p-A32-1 16p-A32-2 16p-A32-3 奨 16p-A32-4 奨 16p-A32-5 奨 16p-A32-6	口頭講演 (Oral Presentation) A32 会場(Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回 転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒 子プローブ 斜め蒸着を用いたTiO ₂ ナノ粒子アレイの作製と非対称光 学応答 金ナノブレートに励起されるプラズモンの共鳴特性と増 強光キラル場の研究 体態/Break 修正瞳座標を用いた高開口数条件での球面収差補正 遠赤外用液晶偏光回折格子の形成と遠赤外偏光撮像の実	 ○伊知地直樹¹,石田拓也¹,大上能悟²,森近一貴¹,立間徹¹,芦原 聡¹ ○福永怜央¹,前田裕也¹,高橋龍之介¹,上野哲郎²,和達大樹¹³ ○(M1)近藤香奈¹, Mojtaba Karimi Habil¹,杉本泰¹,藤井稔¹ ○榎本泰輔¹,村井俊介¹,田中勝久¹ ○長谷川誠樹¹,井村考平¹ ○小澤祐市¹,上杉祐貴¹,佐藤俊一¹ ○大原空¹,坂本盛嗣¹³,野田浩平¹³,鈴木雅人¹³,佐々木友之¹³,川月喜弘²³,小野浩司¹¹³ 	 1.東大生研, 2.リスポン大 1.兵県大理, 2.QST, 3.阪大レーザー研 1.神戸大院工 1.京大院工 1.早大先進理工 1.東北大多元研
9/16(M 3:30 3:45 4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45	fon.) 13:30 - 17:15 16p-A32-1 16p-A32-2 16p-A32-3 獎 16p-A32-4 髮 16p-A32-5 獎 16p-A32-6 16p-A32-7 16p-A32-8 16p-A32-9	口頭講演 (Oral Presentation) A32 会場 (Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒子プローブ 斜め蒸着を用いたTiO₂ナノ粒子アレイの作製と非対称光学応答金ナノブレートに励起されるプラズモンの共鳴特性と増強光キラル場の研究 休憩/Break 修正 を正	○伊知地直樹¹,石田拓也¹,大上能悟²,森近一貴¹,立間徹¹,芦原聡¹ ○福永怜央¹,前田裕也¹,高橋龍之介¹,上野哲郎²,和達大樹¹³ ○(M1)近藤香奈¹, Mojtaba Karimi Habil¹,杉本泰¹,藤井稔¹ ○榎本秦輔¹,村井俊介¹,田中勝久¹ ○長谷川誠樹¹,井村考平¹ ○小澤 祐市¹,上杉 祐貴¹,佐藤俊一¹ ○大原空¹,坂本盛嗣¹²,野田浩平¹³,鈴木雅人¹³,佐々木友之¹³,川月喜弘²³,小野浩司¹³ ○三星陽平¹,坂本盛嗣¹³,野田浩平¹³,鈴木雅人,5²,佐々木友之¹³,川月喜弘²³,小野浩司¹³	 1.東大生研, 2.リスポン大 1.兵県大理, 2.QST, 3.阪大レーザー研 1.神戸大院工 1.京大院工 1.早大先進理工 1.東北大多元研 1.長岡技科大, 2.兵庫県立大, 3.CREST, JST
9/16(N 33:30 33:45 4:400 4:45 4:45 5:00 5:15 5:30 5:45	fon.) 13:30 - 17:15 16p-A32-1 16p-A32-2 16p-A32-3 獎 16p-A32-4 獎 16p-A32-5 獎 16p-A32-6 16p-A32-7 16p-A32-8 16p-A32-9 16p-A32-10	口頭講演 (Oral Presentation) A32 会場 (Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒子ブローブ 斜め蒸着を用いたTiO₂ナノ粒子アレイの作製と非対称光学応答金ナノブレートに励起されるプラズモンの共鳴特性と増強光キラル場の研究 休憩光きラル場の研究 休憩光を開いた高開口数条件での球面収差補正 遮赤外用液晶偏光回折格子の形成と遠赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証	○伊知地直樹¹,石田拓也¹,大上能悟²,森近一貴¹,立間徹¹,芦原聡¹ ○福永怜央¹,前田裕也¹,高橋龍之介¹,上野哲郎²,和達大樹¹.3 ○(M1)近藤香奈¹, Mojtaba Karimi Habil¹,杉本泰¹,藤井稔¹ ○榎本秦輔¹,村井俊介¹,田中勝久¹ ○長谷川誠樹¹,井村考平¹ ○小澤祐市¹,上杉 祐貴¹,佐藤俊一¹ ○大原空¹,坂本盛嗣¹.³,野田浩平¹.³,鈴木雅人¹.³,佐々木友之¹.³,川月喜弘².³,小野浩司¹.³ ○三星陽平¹,坂本盛嗣¹.³,野田浩平¹.²,鈴木雅人¹.³,佐々木友之¹.³,川月喜弘².³,小野浩司¹.3	 東大生研, 2. リスポン大 兵県大理, 2.QST, 3. 阪大レーザー研 神戸大院工 京大院工 早大先進理工 東北大多元研 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 長岡技科大学, 2. 兵庫県立大学, 3. CREST, JST
9/16(N 3:30 3:45 4:00 4:15 4:30 4:45 5:00 5:15 5:30 6:00 6:15	fon.) 13:30 - 17:15 16p-A32-1 16p-A32-2 16p-A32-3 奨 16p-A32-4 奨 16p-A32-5 奨 16p-A32-6 16p-A32-7 16p-A32-9 16p-A32-10 16p-A32-11	口頭講演 (Oral Presentation) A32 会場(Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回 転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒 子ブローブ 斜め蒸着を用いたTiO2ナノ粒子アレイの作製と非対称光学応答 金ナノブレートに励起されるプラズモンの共鳴特性と増強光キラル場の研究 休憩/Break 修正瞳座標を用いた高開口数条件での球面収差補正 遠赤外用液晶偏光回折格子の形成と遠赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 FTO透明電極基板を用いた水熱合成ZnO粒子膜の電気 駆動発光	○伊知地直樹¹,石田拓也¹,大上能悟²,森近一貴¹,立間徹¹,芦原聡¹ ○福永怜央¹,前田裕也¹,高橋龍之介¹,上野哲郎²,和達大樹¹。 ○(M1)近藤香奈¹, Mojtaba Karimi Habil¹,杉本泰¹,藤井稔¹ ○榎本泰輔¹,村井俊介¹,田中勝久¹ ○長谷川誠樹¹,井村考平¹ ○小澤祐市¹,上杉祐貴¹,佐藤俊一¹ ○大原空,坂本盛嗣¹。3,野田浩平¹。3,鈴木雅人¹。3,佐々木友之¹。3,川月喜弘²。3,小野浩司¹。3 ○三星陽平¹,坂本盛嗣¹。3,野田浩平¹。3,鈴木雅人¹。4,佐々木友之¹。3,川月喜弘²。3,小野浩司¹。3 ○三星陽平²,坂本盛嗣²。3,小野浩司¹。3	 1. 東大生研, 2. リスポン大 1. 兵県大理, 2.QST, 3. 阪大レーザー研 1. 神戸大院工 1. 京大院工 1. 早大先進理工 1. 東北大多元研 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 長岡技科大学, 2. 兵庫県立大学, 3. CREST, JST 1. 北海学園大工
3:30 3:45 4:00 4:15 4:43 4:45 5:00 5:15 5:30 6:00 6:15	fon.) 13:30 - 17:15 16p-A32-1 16p-A32-2 16p-A32-3 奨 16p-A32-4 奨 16p-A32-5 奨 16p-A32-6 16p-A32-7 16p-A32-8 16p-A32-10 16p-A32-11 奨 16p-A32-11	口頭講演 (Oral Presentation) A32 会場 (Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒子プローブ 斜め蒸着を用いたTiO₂ナノ粒子アレイの作製と非対称光学応答金ナノプレートに励起されるプラズモンの共鳴特性と増強光キラル場の研究 体想/Break 修正障座標を用いた高開口数条件での球面収差補正遠赤外用液晶偏光回折格子の形成と遠赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 野歌発光 Fabry-Perot型光共振器における固有モードの偏光状態解析 シリコンナノ粒子からなるフォトニックボール構造の開	○伊知地直樹¹,石田拓也¹,大上能悟²,森近一貴¹,立間徹¹,芦原聡¹ ○福永怜央¹,前田裕也¹,高橋龍之介¹,上野哲郎²,和達大樹¹³ ○(M1)近藤香奈¹, Mojtaba Karimi Habil¹,杉本泰¹,藤井稔¹ ○榎本泰輔¹,村井俊介¹,田中勝久¹ ○長谷川誠樹¹,井村考平¹ ○小澤 祐市¹,上杉 祐貴¹,佐藤俊一¹ ○大原空,坂本盛嗣¹³,野田浩平¹³,鈴木雅人¹³,佐々木友之¹³,川月喜弘²³,小野浩司¹³ ○三星陽平¹,坂本盛嗣¹³,野田浩平¹³,鈴木雅人¹³,佐々木友之¹³,川月喜弘²³,小野浩司¹³ ○三星陽平¹,坂本盛嗣¹³,野田浩平¹³,鈴木雅人¹³,佐々木友之¹³,川月喜弘²³,小野浩司¹³	 東大生研, 2.リスポン大 兵県大理, 2.QST, 3.阪大レーザー研 神戸大院工 京大院工 早大先進理工 東北大多元研 長岡技科大, 2.兵庫県立大, 3.CREST, JST 長岡技科大学, 2.兵庫県立大学, 3.CREST, JST 北海学園大工 横河電機(株)
9/16(N 3:30 3:45 4:00 4:15 4:30 4:45 5:00 5:15 5:30 5:45 6:00 6:15	fon.) 13:30 - 17:15 16p-A32-1 16p-A32-2 16p-A32-3 獎 16p-A32-4 髮 16p-A32-5 獎 16p-A32-6 16p-A32-7 16p-A32-8 16p-A32-10 16p-A32-11 獎 16p-A32-12 獎 16p-A32-12	口頭講演 (Oral Presentation) A32 会場 (Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒子プローブ 斜め蒸着を用いたTiO2ナノ粒子アレイの作製と非対称光学応答金ナノブレートに励起されるブラズモンの共鳴特性と増強光キラル場の研究 体想/Break 修正瞳座標を用いた高開口数条件での球面収差補正遠赤外用液晶偏光回折格子の形成と遠赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 下TO透明電極基板を用いた水熱合成ZnO粒子膜の電気駆動光光 Fabry-Perot型光共振器における固有モードの偏光状態解析 シリコンナノ粒子からなるフォトニックボール構造の開発	○伊知地直樹¹,石田拓也¹,大上能悟²,森近一貴¹,立間徹¹,芦原聡¹ ○福永怜央¹,前田裕也¹,高橋龍之介¹,上野哲郎²,和達大樹¹。³ ○(M1)近藤香奈¹, Mojtaba Karimi Habil¹,杉本泰¹,藤井稔¹ ○榎本秦輔¹,村井俊介¹,田中勝久¹ ○長谷川誠樹¹,井村考平¹ ○小澤祐市¹,上杉祐貴¹,佐藤俊一¹ ○大原空¹,坂本盛嗣¹。,野田浩平¹²,鈴木雅人¹³,佐々木友之¹。,川月喜弘²³,小野浩司¹²。○三星陽平¹,坂本盛嗣¹。,野田浩平¹²,鈴木雅人¹³,佐々木友之¹。,川月喜弘²³,小野浩司¹²。○三星陽平¹,坂本盛嗣¹。,野田浩平¹²,鈴木雅人³,佐々木友之¹。,川月喜弘²³,小野浩司¹³。○○臺陽平¹,坂本盛嗣¹。,斯野治司¹³。○○三星陽平¹,坂本盛嗣¹。,斯告治司³。○○三星陽平¹,坂本盛嗣¹。,斯告司1³。○三星陽平¹, 坂本 福嗣¹。,斯告司1³。○○三星陽平¹, 坂本 福嗣¹。,斯告司1³。○○三星陽平¹, 大本 秦嗣², 於野治司1³。	 1. 東大生研, 2. リスボン大 1. 兵県大理, 2.QST, 3. 阪大レーザー研 1. 神戸大院工 1. 京大院工 1. 早大先進理工 1. 東北大多元研 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 長岡技科大学, 2. 兵庫県立大学, 3. CREST, JST 1. 北海学園大工 1. 横河電機(株) 1. 神戸大院工 1. 阪大院工, 2. コーセー
9/16(N 3:30 3:45 4:400 4:15 4:30 4:45 5:00 5:15 5:30 6:15 6:30 6:45	fon.) 13:30 - 17:15 16p-A32-1 16p-A32-2 16p-A32-3 奨 16p-A32-4 奨 16p-A32-5 奨 16p-A32-6 16p-A32-7 16p-A32-9 16p-A32-10 16p-A32-11 奨 16p-A32-12 奨 16p-A32-13	口頭講演 (Oral Presentation) A32 会場 (Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒子プローブ 斜め蒸着を用いたTiO₂ナノ粒子アレイの作製と非対称光学応答金ナノブレートに励起されるプラズモンの共鳴特性と増強光キラル場の研究 休憩光号声ル場の研究 休憩光序ョ本 修正 座標を用いた高開口数条件での球面収差補正 遊赤外用液晶偏光回折格子の形成と遠赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 ヤ赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 ウボットでは型光共振器における固有モードの偏光状態解析 シリコンナノ粒子からなるフォトニックボール構造の開発 光学薄膜に基づく無色透明な UV 遮蔽塗布材料の開発	○伊知地直樹¹,石田拓也¹,大上能悟²,森近一貴¹,立間徹¹,芦原聡¹ ○福永怜央¹,前田裕也¹,高橋龍之介¹,上野哲郎²,和達大樹¹。3 ○(M1)近藤香奈¹, Mojtaba Karimi Habil¹,杉本泰¹,藤井稔¹ ○榎本秦輔¹,村井俊介¹,田中勝久¹ ○長谷川誠樹¹,井村考平¹ ○小澤祐市¹,上杉 祐貴¹,佐藤俊一¹ ○大原空¹,坂本盛嗣¹³,野田浩平¹³,鈴木雅人¹³,佐々木友之¹³,川月喜弘²³,小野浩司¹³ ○三星陽平¹,坂本盛嗣¹³,野田浩平¹³,鈴木雅人¹³,佐々木友之¹³,川月喜弘²³,小野浩司¹³ ○三星陽平¹,坂本盛嗣¹³,野田浩平¹³,鈴木雅人³,佐々木友之¹³,川月喜弘²³,小野浩司¹³ ○蔣原英樹¹,菅浩輔¹,橋本和樹¹ ○渡邉芙美枝¹,鈴木雄太¹,手塚信一郎¹ ○河野晋太郎¹,杉本泰¹,藤井稔¹ ○(M2)谷口夏奈¹,山下和真¹,國津健太郎¹,服邻卓磨¹,桑原裕司¹,大谷紘平²,渡辺恵悟²,紺野義一²,齋藤彰¹	 1. 東大生研, 2. リスボン大 1. 兵県大理, 2.QST, 3. 阪大レーザー研 1. 神戸大院工 1. 京大院工 1. 早大先進理工 1. 東北大多元研 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 長岡技科大学, 2. 兵庫県立大学, 3. CREST, JST 1. 北海学園大工 1. 横河電機(株) 1. 神戸大院工 1. 阪大院工, 2. コーセー
99/16(N 13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 16:15 16:30 16:15	fon.) 13:30 - 17:15 16p-A32-1 16p-A32-2 16p-A32-3 奨 16p-A32-4 奨 16p-A32-5 奨 16p-A32-6 16p-A32-7 16p-A32-9 16p-A32-10 16p-A32-11 奨 16p-A32-12 奨 16p-A32-13	口頭講演 (Oral Presentation) A32 会場 (Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒子ブローブ 斜め蒸着を用いたTiO₂ナノ粒子アレイの作製と非対称光学応答金ナノブレートに励起されるブラズモンの共鳴特性と増強光キラル場の研究 休憩/Break 修正瞳座標を用いた高開口数条件での球面収差補正遠赤外用液晶偏光回折格子の形成と遠赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 や赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 や赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 や赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 中赤外間を基本を開発を表生が表現であるフォトニックボール構造の開発 大学薄膜に基づく無色透明な UV 遮蔽塗布材料の開発 光学薄膜に基づく無色透明な UV 遮蔽塗布材料の開発 MnTe 薄膜の結晶間相転移による光学応答変化 口頭講演 (Oral Presentation) A32 会場 (Room A32) 「第56回講演題励賞受賞記念講演」アゾポリマー薄膜への光ホプフィオン・スキルミオンに	○伊知地直樹¹,石田拓也¹,大上能悟²,森近一貴¹,立間徹¹,芦原聡¹ ○福永怜央¹,前田裕也¹,高橋龍之介¹,上野哲郎²,和達大樹¹。³ ○(M1)近藤香奈¹, Mojtaba Karimi Habil¹,杉本泰¹,藤井稔¹ ○榎本秦輔¹,村井俊介¹,田中勝久¹ ○長谷川誠樹¹,井村考平¹ ○小澤祐市¹,上杉祐貴¹,佐藤俊一¹ ○大原空¹,坂本盛嗣¹。,野田浩平¹²,鈴木雅人¹³,佐々木友之¹。,川月喜弘²³,小野浩司¹²。○三星陽平¹,坂本盛嗣¹。,野田浩平¹²,鈴木雅人¹³,佐々木友之¹。,川月喜弘²³,小野浩司¹²。○三星陽平¹,坂本盛嗣¹。,野田浩平¹²,鈴木雅人³,佐々木友之¹。,川月喜弘²³,小野浩司¹³。○○臺陽平¹,坂本盛嗣¹。,斯野治司¹³。○○三星陽平¹,坂本盛嗣¹。,斯告治司³。○○三星陽平¹,坂本盛嗣¹。,斯告司1³。○三星陽平¹, 坂本 福嗣¹。,斯告司1³。○○三星陽平¹, 坂本 福嗣¹。,斯告司1³。○○三星陽平¹, 大本 秦嗣², 於野治司1³。	 1. 東大生研, 2. リスボン大 1. 兵県大理, 2.QST, 3. 阪大レーザー研 1. 神戸大院工 1. 京大院工 1. 早大先進理工 1. 東北大多元研 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 長岡技科大学, 2. 兵庫県立大学, 3. CREST, JST 1. 北海学園大工 1. 横河電機(株) 1. 神戸大院工 1. 阪大院工, 2. コーセー
3:30 3:45 4:00 4:15 4:30 4:45 5:00 5:15 5:30 6:15 6:30 6:45	fon.) 13:30 - 17:15 16p-A32-1 16p-A32-2 16p-A32-3 奨 16p-A32-4 奨 16p-A32-5 奨 16p-A32-6 16p-A32-7 16p-A32-8 16p-A32-10 16p-A32-11 奨 16p-A32-11 奨 16p-A32-12 奨 16p-A32-13	口頭講演 (Oral Presentation) A32 会場 (Room A32) 粘度勾配を形成するヤヌス粒子の自己泳動運動 円偏光励起によるプラズモニックナノ構造上の電荷の回転運動制御 NanoVNAを用いた強磁性共鳴測定装置の開発 局所温度測定とナノヒーター機能をもつシリコンナノ粒子ブローブ 斜め蒸着を用いたTiO₂ナノ粒子アレイの作製と非対称光学応答金ナノブレートに励起されるプラズモンの共鳴特性と増強光キラル場の研究 体想/Break 修正障座標を用いた高開口数条件での球面収差補正遠赤外用液晶偏光回折格子の形成と遠赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 サ赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 サ赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 サ赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 中赤外用液晶偏光回折格子の形成と中赤外偏光撮像の実証 中赤外間電極基板を用いた水熱合成 ZnO粒子膜の電気 駆動発光 Fabry-Perot型光共振器における固有モードの偏光状態解析 シリコンナノ粒子からなるフォトニックボール構造の開発 光学薄膜に基づく無色透明な UV 遮蔽塗布材料の開発 MnTe 薄膜の結晶間相転移による光学応答変化 口頭講演 (Oral Presentation) A32 会場 (Room A32) 「第56回講演規動賞受賞記念講演」	○伊知地直樹¹,石田拓也¹,大上能悟²,森近一貴¹,立間徹¹,芦原聡¹ ○福永怜央¹,前田裕也¹,高橋龍之介¹,上野哲郎²,和達大樹¹.3 ○(M1)近藤香奈¹, Mojtaba Karimi Habil¹,杉本泰¹,藤井稔¹ ○榎本秦輔¹,村井俊介¹,田中勝久¹ ○長谷川誠樹¹,井村考平¹ ○小澤祐市¹,上杉 祐貴¹,佐藤俊一¹ ○大原空¹,坂本盛嗣¹.³,野田浩平¹.³,鈴木雅人¹.³,佐々木友之¹.³,川月喜弘².³,小野浩司¹.³ ○三星陽平¹,坂本盛嗣¹.³,野田浩平¹.³,鈴木雅人¹.³,佐々木友之¹.³,川月喜弘².³,小野浩司¹.³ ○乘陽平,坂本盛嗣¹.³,野田浩平¹.³,鈴木雅人¹.³,佐々木友之¹.³,川月喜弘².³,小野浩司¹.³ ○蘇原英樹¹,菅浩輔¹,橋本和樹¹ ○渡邉芙美枝¹,鈴木雄太¹,手塚信一郎¹ ○河野晋太郎¹,杉本泰¹,藤井稔¹ ○(M2)谷口夏奈¹,山下和真¹,國津健太郎¹,服部卓磨¹,桑原裕司¹,大谷紘平²,渡辺恵悟²,紺野義一²,齋藤彰¹ ○佐野陽之¹,桑原正史²,河島整²,津田裕之³,水谷五郎⁴,安東秀⁴ ○田村理人¹,尾松孝茂¹.²	 1. 東大生研, 2. リスボン大 1. 兵県大理, 2.QST, 3. 阪大レーザー研 1. 神戸大院工 1. 京大院工 1. 早大先進理工 1. 東北大多元研 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 長岡技科大学, 2. 兵庫県立大学, 3. CREST, JST 1. 北海学園大工 1. 推河電機(株) 1. 神戸大院工 1. 阪大院工, 2. コーセー 1. 石川高専, 2. 産総研, 3. 慶応大, 4. 北陸先端大 1. 千葉大院融合, 2. 千葉大分子キラリティー研

18a-P01-1 水スター講演 (Poster Presentation) P会場 (Room P) 18a-P01-2 ボスター講演 (Poster Presentation) P会場 (Room P) 18a-P01-3 北京 大					
19.0 19.3	9:45	17a-A32-4			1. 阪公大院工, 2. 阪大院基礎工
1931	10:00	17a-A32-5	透明マイクロ微粒子近傍におけるアゾポリマー微粒子の		1.新潟大
19-15-15-15-15-15-15-15-15-15-15-15-15-15-		17a-A32-6	休憩/Break 偏光回折と結像機能を併せ持つハイブリッドフレネルレ		1. 長岡技科大, 2. 兵庫県立大, 3.CREST, JST
19. 日から、			ガラスの光渦レーザー結晶化法 -キラリティ選択性-	○木崎 和郎 1 , 小笠原 颯平 1 , 尾松 孝茂 2 , 小野 円佳 1	
1.	11:15	17a-A32-9		○明井 翔太¹, 松元 俊基¹, 角江 崇¹, 森田 健¹	1. 千葉大院理工
1 日	11:30	E 17a-A32-10		○ (D)Chayanika Sharma¹, Purnesh Singh Badavath¹,	1.NIT Warangal India
19.1 19.2	11:45	E 17a-A32-11		* *	1.Centre for Optics Photonics and Lasers, University
1.			azimuthal polarization		Laval, Canada
19-14日			面外四重極子SLRを利用した積層メタサーフェスの光学	○羅 天易¹,村井 俊介¹,髙嶋 大輝¹,田中 勝久¹	1. 京大院工
19	13:45	17p-A32-2	光熱変換薄膜表面のナノ構造が蒸発とマランゴニ対流に	○ZHUO RUI¹, 名村 今日子¹, 鈴木 基史¹	1. 京大院工
14.15 1. 1. 1. 1. 1. 1. 1.	14:00	17p-A32-3	4分割円形パターン電極を有する液晶レンズの可変偏芯		1. 秋田大院
14.0 1.1 1	14:15	奨 17p-A32-4			1.神戸大工
15.1			相変化基板上の交流電界誘起流によるサイズ選択的微粒	〇安谷 錦之介 1 , 畑山 祥吾 2 , 牧野 孝太郎 2 , 斎木 敏	***
1.1 1.		E 17p-A32-6	ultrasound		1.CORE, Utsunomiya Univ., 2.Doshisha Univ.
1.		E 17p-A32-7	Electric field spin skyrmion generated by plasmonic	○Pin Christophe¹, Keiji Sasaki²	1.OIST, 2.RIES, Hokkaido Univ.
1525 17p-322-10	15:30	E 17p-A32-8	The 3D dynamics of mutual optical binding of gold	Kosei Ueno², Boris Louis³, Roger Bresoli-Obach⁴, Johan Hofkens³, Hiroaki Misawa¹.², Hiroshi	Hokkaido Univ., Japan, 3.KU Leuven, Belgium, 4.
1-00 1-00	15:45	E 17p-A32-9	Co-Propagating Lasers on Optical Binding Forces Outside	○ (M2)Xin-Xiu Wang¹, Mu-En Li¹, Chih-Hao Huang¹, Boris Louis², Roger Bresoli-Obach³, Johan	Ktholieke Univ. Leuven, Belgium, 3.Univ. Ramon Llull,
19-A32-11	16:00	奨 17p-A32-10	サブmm級・不規則形状粒子の安定捕捉・操作に向けた	-	•
19-A22-12	16:15	17p-A32-11	液中のレーザー誘起熱泳動のブラウン動力学シミュレー	○瀬戸浦 健仁¹, 出 康樹², 鈴木 隆起², 辻 徹郎³	1. 兵県大工, 2. 神戸高専, 3. 京大情報
18-101 アース32-13 アノ屋子センサの光発熱集合による光学的計画法の開発	16:30	17p-A32-12	溶液表面における光圧捕捉による α シヌクレインの単一		1.台湾国立陽明交通大, 2.神戸大
3/18/West 9:30 - 11:30 オスター高速 (Poster Presentation) 全域 (Room P) 18a-P01-1 18a-P01-2 18a-P01-2 18a-P01-3 18a-P01-3 18a-P01-3 18a-P01-3 18a-P01-3 18a-P01-3 18a-P01-4 18a-P01-3 18a-P01-4 18a-P01-4 18a-P01-5 18a	16:45	17p-A32-13		○鈴木 啓太 ^{1,2,3} ,豊内 秀一 ^{1,2} ,林 康太 ^{1,2,3} ,田村	1.大阪公立大院理, 2.大阪公大LAC-SYS研, 3.大阪公大 院工 4.大阪士院其際工
18a-P01-2	9/18(V		単一周波数・波長可変ナノ秒パルスレーザーを用いたオ	○(M2)小瀬村輝 ¹ ,山田恭滉 ¹ ,大饗千彰 ^{1,2} ,桂川眞	
18a-P01-3 誘電体球を用いた電子類微鏡内レーザー照射時のWGM (大き 真相)、1.2xah Machfuudzoh'、杉本 春*, 藤井 1.東工大、2.神戸大		18a-P01-2		· (M1)洗 佳慧¹, 豊永 大貴¹, 吉野 健斗¹, 大饗 千	1.電通大・基盤理工, 2.電通大・量子センター
18a-P01-5 福光と強度を同時時間と表所た高次光子の表案		18a-P01-3		○安達 良和¹, Izzah Machfuudzoh¹, 杉本 泰², 藤井	1. 東工大, 2. 神戸大
18a-P01-5 空間米変調器による高次光子生成とその伝鞭距離依存性		18a-P01-4			1 千萬士
18a-P01-6					
作法の開発			ストライプ型 space-time 表面プラズモンのスピン角運動	\bigcirc (M1) 元井 慧 1 , 菊池 陽々紀 1 , 伊知地 直樹 2 , 久保	
Protein Solution Huang ¹ , Mu-En Li ¹ , Hiroshi Masuhara ○ (M2) 藤本 悠佑 ¹ , 井上 達貴 ¹ , 村松 正吾 ¹ , 新保		18a-P01-7			1. 福井大工
造の評価 機・大平 秦生! ○辻 諒比路', 松井 龍之介 1.三重大院工 1.三重大院工 1.を成コスト超解像 顕微鏡の作製 1.を成コスト超解像 顕微鏡の作製 1.を成立スト超解像 顕微鏡の作製 1.を表し、		E 18a-P01-8			1.Nat'l Yang Ming Chiao Tung Univ.,Taiwan
18a-P01-10 3D ブリントフレクシャ機構をマイクロビーズを利用した低コスト超解像 顕微鏡の作製		18a-P01-9			1. 新潟大自然研
18a-P01-11		18a-P01-10	3D プリントフレクシャ機構とマイクロビーズを利用し		1. 三重大院工
18a-P01-12 体積編光ホログラフィ用フォトボリマーの検討 1.字大光工学, 2.字大CORE 18a-P01-13 相変化浮遊電極を用いた誘導電荷電気浸透流による液中 マイクロ粒子の収束および分離 牧野 孝太郎², 齊藤 雄太³ 1.慶大理工, 2.産総研, 3.東北大学 牧野 孝太郎², 齊藤 雄太³ 1.慶大理工, 2.産総研, 3.東北大学 牧野 孝太郎², 齊藤 雄太³ 1.慶大理工, 2.産総研, 3.東北大学 牧野 孝太郎², 齊藤 雄太³ 1. 慶大理工, 2.産総研, 3.東北大学 牧野 孝太郎², 齊藤 雄太³ 1. 慶大理工, 2.産総研, 3.東北大学 牧野 孝太郎², 齊藤 雄太³ 1. 慶大理工, 2.産総研, 3.東北大学 牧野 孝太郎², 齊藤 雄太³ 1. 世界		18a-P01-11	パルス電子線を用いたカソードルミネセンスによる発光	○稲目 航大¹, 柳本 宗達¹, 安達 良和¹, 三宮 エ¹	1.東工大
マイクロ粒子の収束および分離 牧野 孝太郎², 齊藤 雄太³			体積偏光ホログラフィ用フォトポリマーの検討		
9/19(Thu.) 9:30 - 11:30	3.2 情報		マイクロ粒子の収束および分離		
19a-P01-1 実時間デジタル位相共役鏡を用いた 30m離れた標的に対 ○(M2)中川 知弥¹,川上 言美², 岡村 秀樹¹ 1.国際基督教大学理学科, 2.北里大学一般教育学部 する自動追跡及び波面補償 19a-P01-2 電圧印加によりガラスに転写したホログラムの後処理に ○中西 智也¹,平塚 心太郎¹,酒井 大輔¹,原田 建治¹ 1.北見工大 関する研究 ~エッチング処理とコロナ放電選択堆積法の組み合わせ~ 19a-P01-3 共焦点顕微鏡下における強度輸送定量位相イメージング ○米田 成¹², 坂本 丞³⁴, 友井 拓実⁵⁵⁶², 根本 知 1. 神戸大院シス情, 2. 神戸大 OaSIS, 3. 生命創成探究セとディジタルホログラフィック顕微鏡との比較 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □					
19a-P01-2 電圧印加によりガラスに転写したホログラムの後処理に ○中西 智也¹, 平塚 心太郎¹, 酒井 大輔¹, 原田 建治¹ 1.北見工大 関する研究 ~エッチング処理とコロナ放電選択堆積法の組み合わせ~ 19a-P01-3 共焦点顕微鏡下における強度輸送定量位相イメージング ○米田 成¹², 坂本 丞³⁴, 友井 拓実⁵.67, 根本 知 1. 神戸大院シス情, 2. 神戸大 OaSIS, 3. 生命創成探究セとディジタルホログラフィック顕微鏡との比較 ○光田 成¹², 坂本 丞³⁴, 友井 拓実⁵.67, 根本 知 1. 神戸大院シス情, 2. 神戸大 OaSIS, 3. 生命創成探究セとディジタルホログラフィック顕微鏡との比較 ○光田 成¹², 近井 祈実⁵.67, 他本 知 1. 神戸大院シス情, 2. 神戸大 OaSIS, 3. 生命創成探究センター、4. 生理学研究所, 5. 宇都宮大工, 6. 宇都宮大 CORE, 10. 宇都宮大 TANHK 技研, 2. 東京工業大 「クムの形成 「東口 がよっト」の形成 「東口 談情 信彦¹, 山口 雑浩² 1. NHK 技研, 2. 東京工業大 「カー・ NHK 技研, 2. 東京工業大 「カー・ NHK 技研, 2. 東京工業大 「カー・ NHK 大研, 2. 東京工業大 「大学実験状況の遠隔共有のための三次元レーザービーム ○(M2)千葉 丈之亮¹ 1. 宇大光工学	3, 10(1		実時間デジタル位相共役鏡を用いた30m離れた標的に対	○(M2)中川 知弥¹,川上 言美²,岡村 秀樹¹	1.国際基督教大学理学科, 2.北里大学一般教育学部
19a-P01-3 共焦点顕微鏡下における強度輸送定量位相イメージング ○米田 成 ^{1,2} , 坂本 丞 ^{3,4} , 友井 拓実 ^{5,6,7} , 根本 知 1. 神戸大院シス情, 2. 神戸大 OaSIS, 3. 生命創成探究セとディジタルホログラフィック顕微鏡との比較 ○ 元 ^{3,4,8} , 玉田 洋介 ^{5,9,10} , 的場 修 ^{1,2} ンター, 4. 生理学研究所, 5. 宇都宮大工, 6. 宇都宮大イノベ, 7. 東京理科大創域理工, 8. 総研大, 9. 宇都宮大 CORE, 10. 宇都宮大 REAL 19a-P01-4 高エテンデュー表面レリーフ型バイナリー計算機合成ホ 「東田 諒 ¹ , 三浦 雅人 ¹ , 信川 輝吉 ¹ , 山口 祐太 ¹ , 青島 ログムの形成 「東田 諒 ¹ , 上浦 雅人 ¹ , 信川 輝吉 ¹ , 山口 祐太 ¹ , 青島 1. NHK 技研, 2. 東京工業大 「東京工業大」の形成 「東京工業大」()(M2)千葉 丈之売 ¹ 1. 宇大光工学		19a-P01-2	電圧印加によりガラスに転写したホログラムの後処理に 関する研究		1. 北見工大
ログムの形成 賢一 1 , 船橋 信 \hat{g} 1 , 山口 雅浩 2 19a-P01-5 光学実験状況の遠隔共有のための三次元レーザービーム \bigcirc (M2) 千葉 丈之亮 1 1. 宇大光工学		19a-P01-3	共焦点顕微鏡下における強度輸送定量位相イメージング とディジタルホログラフィック顕微鏡との比較	〇米田 成 $^{1.2}$, 坂本 $\overline{\alpha}$ $^{3.4}$, 友井 拓実 $^{5.6.7}$, 根本 知己 $^{3.4.8}$, 玉田 洋介 $^{5.9.10}$, 的場 修 $^{1.2}$	ンター, 4. 生理学研究所, 5. 宇都宮大工, 6. 宇都宮大イノベ, 7. 東京理科大創域理工, 8. 総研大, 9. 宇都宮大CORE, 10. 宇都宮大REAL
19a-P01-5 光学実験状況の遠隔共有のための三次元レーザービーム \bigcirc $(M2)$ 千葉 丈之亮 1 1.宇大光工学		19a-P01-4			1.NHK 技研, 2. 東京工業大
		19a-P01-5	光学実験状況の遠隔共有のための三次元レーザービーム		1. 宇大光工学

)/16(Mo		ス・画像工学、4.4 Information Photonicsのコードシェア	/ Code-sharing Session of 3.2 & 4.4	
3.30 坪	n.) 13:30 - 17:00 { E 16p-A37-1	口頭講演 (Oral Presentation) A37会場 (Room A37) [JSAP-Optica Joint Symposia Invited Talk]	○Yuhong Wan ¹ , Tianlong Man ¹ , Wenxue Zhang ¹ ,	1.School of Physics and Optoelectronic Engineering
).3U 1p	E 10p-A37-1	Incoherent Coded Aperture Correlation Holography	Minghua Zhang ¹ , Hongqiang Zhou ¹	Beijing University of Technology
4:00	E 16p-A37-2	Enhanced live cell imaging through polarization digital	(D)Shivam Kumar Chaubey ¹ , Mohit Rathor ¹ ,	1.Dept. of Phy. IIT BHU, 2.Dept of Zoology, BHU
		holographic microscope	Rupen Tamang ² , Biplob Koch ² , Rakesh Kumar Singh ¹	
4:15 奨	E 16p-A37-3	Quantitative Zernike Phase-Contrast Microscopy with an Untrained Neural Network	ŭ	1.UTokyo (Science), 2.UTokyo (IST)
4:30 奨	E 16p-A37-4	Generation of structured light beams on HOPS and HyPS using multiplexed holograms	0	1.Kyoto Inst. of Tech.
4:45 招	E 16p-A37-5	[JSAP-Optica Joint Symposia Invited Talk]	O Atsushi Shibukawa ¹	1.Hokkaido Univ.
	'	Ultra-wide field-of-view optical focus control with high- speed complex wavefront shaping		
5:15		休憩/Break		
	奨 16p-A37-6 奨 16p-A37-7	単一画素計測を用いた波面計測における輝点位置の抽出 1点読み出し時間ドメイン単画素イメージングによるリ	○(M2)小林 直弘¹,仁田 功一¹ ○槻 凌多¹,深津 晋¹	1. 神戸大院システム情報 1. 東京大院総合文化
6:00	奨 16p-A37-8	アルタイム像再生 スペクトル符号化法による2次元ファイバイメージング	○(M2)野々目久祥¹,小山卓耶²,大嶋祐介²,片桐	1.富山大医薬理工, 2.富山大工
6:15	奨 16p-A37-9	- 多芯化の効果 - マルチスポット照明を用いた散乱体深部蛍光イメージン		1.富山大理工, 2.富山大工
6:30	16p-A37-10	グ モーションレスオプティカルスキャニングホログラフィ	史 ² ○最田 裕介 ¹ , 西本 篤生 ¹ , 米田 成 ^{2,3} , 野村 孝徳 ¹	1.和歌山大システム工, 2.神戸大院システム情, 3.神戸
		における多波長イメージングのための照明光変調パター ン設計の検討		大OaSIS
6:45	16p-A37-11	チャープバルス位相シフトディジタルホログラフィーに よるピコ秒オーダー間隔の光波面の観測	○福田 渉¹, 唐澤 直樹¹	1. 千歲科技大理工
	•	口頭講演 (Oral Presentation) A37会場 (Room A37)	0.00	47 11 222
9:00 招	E 17a-A37-1	[JSAP-Optica Joint Symposia Invited Talk] Deep Neural Network 3D Reconstruction Using	O Hiroshi Ohno ¹	1.Toshiba RDC
		One-Shot Color Mapping of Reflectance Direction Fields		
9:30	E 17a-A37-2	Corneal quality assessment for corneal transplantation using hyperspectral imaging	○ (D)Maria Merin Antony¹, Murukeshan Vadakke Matham¹	1.Nanyang Techn. Univ.
:45	E 17a-A37-3	Enhancing the Accuracy of Identification in Complex	(M2)HUNG WEI HSU ¹ , Chih-Chung Wang ¹ ,	1.National Taiwan University
		Environmental Backgrounds using YOLO V7 and U2NET: Orchid Repotting		,
0:00 招	E 17a-A37-4	[JSAP-Optica Joint Symposia Invited Talk]	○ Jae-Hyeung Park ¹ , Myeong-Ho Choi ^{2, 1} ,	1.Seoul National Univ., 2.Inha Univ.
		Compact super multi-view and foveated holographic near eye display for augmented reality and virtual	Woongseob Han ^{2, 1} , Minseong Kim ^{2, 1}	
0.00		reality applications		
0:30 0:45	17a-A37-5	休憩/Break 3色レーザー照明を有するフェムト秒レーザー励起マイ クロクラウド体積ディスプレイ	○(M2) 沼澤 啓亮¹, 熊谷 幸汰¹, 早崎 芳夫¹	1.宇都宮大オプティクス
1:00	17a-A37-6	ダブルバルス励起空中ボクセルの評価と体積映像描画へ の適用	○熊谷 幸汰¹,遠藤 統伍¹,早崎 芳夫¹	1. 宇都宮大オプティクス
1:15	17a-A37-7	計算機ホログラムを用いた体積的ビーム成形	○(D) 黒尾 奈未¹, 早崎 芳夫¹	1.宇大オプティクス
1:30	17a-A37-8	複数のライン集光ビームを回折する体積ホログラフィッ ク光学素子の作製	○(M2) 玉井 裕基¹, 茨田 大輔²	1. 宇都宮大学光工学, 2. 宇都宮大学 CORE
9/17(Tue	e.) 13:30 - 15:00	口頭講演 (Oral Presentation) A37 会場 (Room A37)		
	- · ·		○會澤 颯泰 ¹, 藤村 隆史 ¹.²	1. 宇大院, 2. 東大生研
3:45 4:00		ハルトマンマスクを用いた位相信号検出精度の評価	○大塚 颯斗¹, 藤村 隆史¹.²	1. 宇大院, 2. 東大生研
	17p-A37-3	バイアス位相を用いた並列演算空間フォトニックイジングマシンの検証実験		1. 阪大院情
4:15 4:30	17p-A37-4 奨 17p-A37-5	BiBO結晶を用いた高輝度量子イメージングのための並 列強度相関測定の検討 LiDARを用いたグラデーションパターンの位置と姿勢の	○吉村 佳奈子¹, 米田 成¹², 的場 修¹²	1. 神戸大院シス情報, 2. 神戸大 OaSIS 1. 宇大光工学, 2. 宇大 CORE
1:45	*	検出 衛星画像と地上雲カメラ画像の連携解析による雲量予測		1. 三菱電機(株)
3 生体・	17p-A37-6 医用光学 / Biom	edical optics	○八田 貝碌,拯滕 貝雄,上川 扣助	1.二发电傚(怀)
9/19(Th	u.) 9:30 - 11:30 19a-P02-1	ポスター講演 (Poster Presentation) P会場 (Room P) ヒト肺腺癌の可視円偏光特性	○戸田 晋太郎¹, 市川 修平², 髙島 剛志³, 森井 英一³	1 アルベック物経血の阻力障子の原力を応
	19a-P02-1	円偏光散乱によるがん検出評価のための生体ファントム		
	19a-P02-3	実験 生体粒子計測のための円偏光散乱における偏光解消ダイ ヤグラム	-La	1.北里大理
	19a-P02-4	マクラム ニワトリ胚心臓の発生における超音波刺激の影響	○(B)野口 陸斗 1 ,別段 瑞周 1 ,山崎 隆一郎 1 ,田中 智 也 1 ,守山 裕大 $^{1.2}$,三井 敏之 1	1.青学大理工, 2.JST さきがけ
	19a-P02-5	近赤外吸収分光法を用いた拡散反射光による眼球表面の 非接触水分測定		1.東北大院工
	19a-P02-6	エタノールがニワトリ胚心臓の発生に及ぼす影響の SS-OCT観測	○(B)別段瑞周¹,野口陸斗¹,山崎隆一郎¹,山岡喬志¹,守山裕大¹.²,三井敏之¹	1.青学大理工, 2.JST さきがけ
	19a-P02-7	中空光ファイバガスセルと中赤外量子カスケードレーザ を用いた呼気中アンモニアガス分析		1.東北大院工
		レーザドラッグデリバリーのためのレーザ誘起圧力波発	○田中 僚祐¹, 八幡 祥生², 齋藤 正寛², 松浦 祐司¹	1. 東北大院医工, 2. 東北大院歯
	19a-P02-8	生の基礎検討		
	19a-P02-8 19a-P02-9	中赤外光音響分光法による非侵襲血中成分分析	〇坂本 舜太 1 , 松浦 祐司 1 , 木野 彩子 1	1. 東北大院医工
	19a-P02-9	中赤外光音響分光法による非侵襲血中成分分析 - 1型糖尿病患者の光音響スペクトル解析 - 中赤外光音響分光法による非侵襲血中成分分析 一変調周		1. 東北大院医工
)/19(Thu	19a-P02-9 19a-P02-10	中赤外光音響分光法による非侵襲血中成分分析 - 1 型糖尿病患者の光音響スペクトル解析- 中赤外光音響分光法による非侵襲血中成分分析 一変調周 波数制御による深さ方向分析- 口頭講演 (Oral Presentation) C32 会場(Room C32)	○(M1) 武田 侑純¹, 木野 彩子¹, 松浦 祐司¹	1. 東北大工
9/19(Thu 3:00	19a-P02-9 19a-P02-10	中赤外光音響分光法による非侵襲血中成分分析 - 1型糖尿病患者の光音響スペクトル解析- 中赤外光音響分光法による非侵襲血中成分分析 一変調周 波数制御による深さ方向分析-	○(M1) 武田 侑純¹, 木野 彩子¹, 松浦 祐司¹	1. 東北大工 1. 東大工, 2. 東大先端研, 3. 東工大

13:30	奨 19p-C32-3	多変量スペクトル分解によるトランス脂肪滴のコヒーレ ントラマン分光イメージング	○本間 宗一郎¹, 大和 尚記², 橋本 守¹	1.北大院情報, 2.北大MDSC
13:45	19p-C32-4	ラマン散乱を用いた凍結試料の顕微イメージング	水島 健太 1,2 , 辻 康介 1,2 , 田村 昌子 4 , 山中 真仁 1 , 望月 健太郎 4 , 李 梦露 1 , 江越 脩祐 5 , 閬闌 孝介 5 , 原田 義規 4 , スミスニコラス 6 , 袖岡 幹子 5 , 田中 秀央 4 , ○藤田 克昌 1,2,3	1. 阪大院工, 2. 産総研, 3. 阪大OTRI, 4. 京府医大, 5. 理研, 6. 阪大IFReC
14:00 14:15	奨 19p-C32-5 19p-C32-6	広視野ラマン計測における背景光増強機構の解明 1分子デジタルSERS計数法による酵素の高感度計測	 ○桐島潤¹,小山卓耶²,大嶋 祐介²,片桐崇史² ○安藤潤¹,村井和枝¹,高橋育子¹,飯田龍也¹,渡邉力也¹ 	1. 富山大医薬理工, 2. 富山大工 1. 理研
14:30 14:45	19p-C32-7	休憩/Break 光刺激中の多光子イメージング技術	○磯部 圭佑 ^{1,2} , 稲澤 健太 ^{1,2} , 道川 貴章 ^{1,2,3} , 宮脇 敦	1. 理研光量子, 2. 京大生命, 3. 理研脳神経科学
15:00	19p-C32-8	顕微鏡観察下で細胞を急速凍結する時間決定型クライオ 蛍光顕微鏡	史 ^{1.3} 、緑川 克美 ¹ 〇山中 真仁 ¹ 、辻 康介 ^{1.2} 、熊本 康昭 ^{1.3} 、田村 昌子 ⁴ 、宮 村 和奏 ¹ 、久保 後貴 ⁵ 、水島 健太 ^{1.2} 、河野 駆 ¹ 、平野 花 咲 ¹ 、杉浦 一億 ⁶ 、福島 俊一 ⁶ 、國本 拓実 ⁵ 、西田 健太 郎 ¹ 、望月 健太郎 ⁴ 、原田 義規 ⁴ 、スミスニコラス ⁷ 、永 井 健治 ^{6.3} 、田中 秀央 ⁴ 、藤田 克昌 ^{1.2.3}	1. 阪大院工, 2. 産総研 PhotoBio-OIL, 3. 阪大OTRI, 4. 京府医大, 5. 阪大院医, 6. 阪大産研, 7. 阪大IFReC
15:15	E 19p-C32-9	Neural network-based amplitude-spectral dynamic optical	$\bigcirc(D)$ Yusong Liu $^{\!1}$, Ibrahim Abd El-Sadek $^{\!1,2}$, Atsuko	
15:30	E 19p-C32-10	~	Furukawa ³ , Satoshi Matsusaka ³ , Yoshiaki Yasuno ¹ (P)Ibrahim Gamal Abd El-Sadek ^{1,2} , Rion Morishita ¹ , Guo Yu ¹ , Atsuko Furukawa ³ , Shuichi Makita ¹ , Satoshi Matsusaka ³ , Yoshiaki Yasuno ¹	Damietta Univ., 3.Faculty of Medicine, Univ. of Tsukuba 1.COG Univ. Tsukuba, 2.Damietta University, 3.Univ. of Tsukuba Med
15:45	E 19p-C32-11	coherence tomography and cell cultivation Dynamic optical coherence tomography to assess the swiftness of intratissue activities	Makita , Satosin Matsusaka , Toshiaki Tasuno (D)Rion Morishita¹, Pradipta Mukherjee¹¹², Ibrahim Abd El-Sadek¹¹³, Tanatchaya Seesan⁴, Tomoko Mori³, Atsuko Furukawa², Satoshi Matsusaka⁵, Shuichi Makita¹, Yoshiaki Yasuno¹	1.COG, Univ. of Tsukuba, 2.IIT Delhi, 3.Damietta Univ., 4.KMITL, 5.Univ. of Tsukuba Med.
16:00	E 19p-C32-12	Toward Cellular-Level Volumetric Imaging of the Human Retina Using Digital Aberration Correction of OCT	○ Shuichi Makita¹, Lida Zhu¹, Yoshiaki Yasuno¹	1.Computational Optics Group in the Univ. of Tsukuba
9/20(9:00	Fri.) 9:00 - 11:45 E 20a-A25-1	口頭講演 (Oral Presentation) A25 会場 (Room A25) A novel proposal to obtain cardiovascular parameters from	○ (DC)Sarai Dominguez Hernandez¹ Gonzalo	1.Centro de Investigaciones en Optica
		remote photoplethysmography	Paez ¹	
9:15	奨 20a-A25-2	病理細胞診標本の散乱スペクトル計測と主成分分析によ るがん診断	伊藤 彰彦³, 細川 陽一郎 ^{1,4}	1. 奈良先端大物質, 2. 近大奈良病院, 3. 近大医, 4. 奈良先端大MLC
9:30	E 20a-A25-3	Evaluation of water toxicity using a fast and reliable novel biospeckle micro bioassay technique	○(DC)Devi Arti Devi¹, Hirofumi Kadono¹, Uma Maheswari Rajagopalan²	1.Graduate School of Science and Engineeing Saitama University, 255 shimookubo, Sakura ward, Saitama, 338-0825, Japan, 2.Department of mechanical Eng. Faculty of Engineering, Shibaura Institute of Technology, Japan
9:45	E 20a-A25-4	Size-dependent impacts of copper oxide nanoparticles on the internal activity of lentil (<i>Lens culinaris</i>) seeds and leaves using biospeckle optical coherence tomography (bOCT).	Maheswari Rajagopalan²	1.Graduate School of Science and Engineering, Saitama University, Japan, 2.Department of Mechanical Eng. Faculty of Engineering, Shibaura Institute of Technology, Japan
10:00	E 20a-A25-5	Mapping optic axis of multi-layered birefringent tissue using Jones-matrix optical coherence tomography	O Yiheng Lim ¹ , Pradipta Mukherjee ^{1, 2} , Shuichi Makita ¹ , Yoshiaki Yasuno ¹	1.Univ. of Tsukuba, 2.IIT Delhi
10:15 10:30	奨 20a-A25-6	超音波誘起仮想導波路を用いた散乱媒質中の吸光度計測 休憩/Break	〇児玉 佳祐¹, 小山 卓耶², 大嶋 佑介², 片桐 崇史²	1.富山大医薬理工, 2.富山大工
10:45	20a-A25-7	低出力光源の光音響イメージングにおける M系列を用いた信号増幅	○ (M2) 橋本 和磨¹, ラジャゴパラン ウママヘスワ リ¹, 山田 純¹, 河野 貴裕²	1. 芝浦工業大学, 2. 東京都立大学
11:00	20a-A25-8	波長830 nm帯高分解能スペクトル領域光コヒーレンス 顕微鏡(OCM)の開発に関する研究		1. 名大院工
11:15	20a-A25-9	軟性力学ファントム作成に向けたレーザー粘弾性計測手 法の検討	○三上 勝大¹, 渕田 藍¹, 松山 哲也², 今岡 幸弘³	1.近大生物理工, 2.近大院シス工, 3.国立循環器病研究 センター
11:30	20a-A25-10	偏波保持光ファイバーによるリサージュスキャナーを用いた 蛍光内視鏡プローブの開発	○大和 尚記¹, 橋本 守²	1.北大MDSC, 2.北大院情報
	Fri.) 13:30 - 15:15 招 20p-A25-1	口頭講演 (Oral Presentation) A25 会場 (Room A25)		1 = 1 = 2 = 1 = 2
13:30	抬 ZUP-AZ5-1	「第56回講演奨励賞受賞記念講演」 中赤外光熱顕微鏡による非標識細胞内熱ダイナミクス計 測	○戸田 圭一郎¹, 寳田 雅治², 石金 元気¹, ベンカタラマイヤ バダルラ¹, 島田 紘行¹, 岡部 弘基², 井手口 拓郎¹	
13:45	奨 20p-A25-2	広視野型中赤外光熱顕微鏡による高分解能三次元イメージング		1.東大理
14:00	20p-A25-3	中赤外光熱顕微鏡性能の理論的考察	○戸田 圭一郎¹, 井手口 拓郎¹ ○戸田 圭一郎¹, 井手口 拓郎¹	1. 東大理 1. 東大理
14:15 14:30	20p-A25-4 奨 20p-A25-5	先端振動分光顕微鏡の理論的性能比較 中赤外光誘起超音波分光法による生体組織分析	\bigcirc (M2) 相場 希衣子 1 , 木野 彩子 1 , 松浦 祐司 1	1.東北大院工
14:45	20p-A25-6	- 角質ファントムの作成と深さ方向解析 - 血液からの脳卒中トリアージ - 赤外分光法による病院前	○木野 彩子¹, 石田 朋久², 金森 政之², 新妻 邦泰¹.²,	1. 東北大院医工, 2. 東北大院医
15:00	奨 20p-A25-7	迅速診断 - 生体組織分析のための中赤外光熱偏向分光システム - 平 行プローブ光とガラスプリズムの導入 -	松浦 祐司 1 \bigcirc (DC) 伊藤 大登 1 , 本野 彩子 1 , 富田 充 2 , 松浦 祐司 1	1. 東北大医工, 2. 日本電気硝子 (株)
		Laser system and materials		
9/19(1	19a-P03-1	ポスター講演 (Poster Presentation) P会場(Room P) 高平均出力レーザー用光学材料の検討	〇吉田 英次 ¹, 椿本 孝治 ¹, 荻野 純平 ¹, 松尾 悟志 ¹, 田 丸 裕基 ¹, 杂語 覚文 ¹, 宮永 憲明 ¹, 三上 拓哉 ², 岡本 隆 幸 ²	
	19a-P03-2	マイクロロッド型Nd,Ce:YAG 太陽光励起レーザーの特性評価	辛¹ ○鈴木 優紀子¹, 鳥海 陽平¹, 髙橋 円¹, 長谷川 和男², 元廣 友美 ^{2,3}	1.NTT宇宙環境研, 2.光産業創成大学院大, 3.名大
	E 19a-P03-3	在注意中國 Continuous phase-shifting interferometry using an optical vortex as a reference beam: Application to coherent beam combining	○ Haik Chosrowjan¹, Seiji Taniguchi¹, Noriaki	1.ILT, 2.MHI
	19a-P03-4	combining レーザーを用いた衛星搭載高精度マイクロ波周波数発生 システム	〇竹内 裕一 1 , 田中 祐志 1 , 藤田 悠生 1 , 高木 希 1 , 大石 晃裕 1 , 山田 隆寬 1 , 趙 叡讃 1 , 松下 紗也 2 , 末正 有 2 , 佐 々木 俊崇 2 , 瀧口 博士 2 , 河野 功 2 , 小暮 聡 2 , 蜂須 英 和 3 , Nils Nemitz 3 , 後藤 忠広 3 , 井戸 哲也 3 , 武者 満	•
	19a-P03-5	広帯域に波長組合せが可能な二波長発振・注入同期ナノ 秒レーザー	○三好 咲也子¹,橋本 彩香¹,小林 蒼汰¹,大饗 千 彰¹²,桂川 眞幸¹²	1.電通大・基盤理工学, 2.電通大・量子センター

- //				
9/20() 10:45 11:00	Fri.) 10:45 - 12:00 20a-A37-7 20a-A37-8	□頭講演 (Oral Presentation) A37 会場(Room A37) 太陽追尾が不要な平面太陽光励起レーザー 音響光学変調器を用いた波長2 μ m 帯 Q-switch Tm ファ	○遠藤 雅守¹, 富澤 亮太², 永野 知哉², 林 宏司² ○(M1) 增永 真輝¹², 戸倉川 正樹¹²	1. 東海大理, 2. トヨタ自動車 1. 電通大レーザー研, 2. 電通大脳・医工研
11:15	20a-A37-9	イバーレーザーのゲート時間依存性 FBGを用いた波長1907 nm高出力Tmファイバーレー	○高貫 広翔¹, 戸倉川 正樹¹.²	1.電通大レーザー研, 2.電通大脳・医工学研
11:30	20a-A37-10	ザーの作成 最適解ランダム探索を組み込むことによる光位相の自在		1.電通大・基盤理工, 2.電通大・量子センター
11:45	20a-A37-11	な操作を用いた波長変換 フェムト秒レーザー直描によるEr:YAGモノリシック導 波路レーザー	平 ¹ , 鈴木 勝 ^{1,2} , 桂川 眞幸 ^{1,2} (D) 住谷 大志 ¹ , 谷 峻太郎 ¹ , 角田 明博 ² , 中崎 雅 人 ² , 小林 洋平 ¹	1. 東大物性研, 2.JX 金属株式会社
9/20(13:30	Fri.) 13:30 - 17:00 20p-A37-1	口頭講演 (Oral Presentation) A37会場(Room A37) スペクトル合成による Nd 添加ガーネットの蛍光帯域拡	○佐藤 庸一 ^{1,2} , 平等 拓範 ^{1,2}	1. 理研, 2. 分子研
13:45	奨 E 20p-A37-2	大 Room temperature bonding for Cr:LiSAF thermal	○ (P)Florent Cassouret¹, Yoichi Sato², Arvydas	1.Inst. for Molecular Science, 2.Riken Spring-8 Center
14:00	奨 20p-A37-3	properties improvement 振動検知手法による異なるパルス幅におけるレーザー損	Kausas², Takunori Taira².¹ ○秋吉 諒一¹, 三上 勝大¹, 宮坂 泰弘²	1.近大生物理工, 2.量研関西研
14:15	奨 20p-A37-4	傷検出 空間光変調器を用いたレーザー発振器における強化学習 の実装	○池谷 有貴 $^{1.2}$, 関根 尊史 1 , 谷 峻太郎 2 , 乙津 聡夫 2 , 遠藤 翼 2 , 森田 宇亮 1 , 玉置 善紀 1 , 加藤 義則 1 , 川嶋 利 幸 1 , 小林 洋平 2	
14:30	奨 20p-A37-5	ファイバー干渉計とヨウ素分子のドップラーフリー分光 を併用した超小型レーザーモジュールのハイブリッド周 波数制御		1.日大生産工学部, 2. 横国大理工学部
14:45	20p-A37-6	ローカルビーム間位相同期によるサブアレイコヒーレントビーム合成の原理実証	○秋山智浩¹,原口英介¹,鈴木貴敬¹,楢崎梨央¹,尾野仁深¹	1.三菱電機
15:00	20p-A37-7	疑似ランダム位相変調信号を重畳した光フェーズドアレ イシステムの実現性検討		1.三菱電機(株)
15:15 15:30	20p-A37-8	休憩/Break 35 W 出力 Tm ファイバーレーザーシステム	○姜 東彦¹, 乙津 聡夫¹, 谷 峻太郎¹, 小林 洋平¹	1. 東京大学 物性研究所
15:45	20p-A37-9		○ 安 東 彦 , △ 津 聡 大 , 谷 噯 太 郎 , 小 林 洋 平 ○ 西浦 匡則 ^{1,2} , 中村 亮 介 ^{1,2} , 塩田 達 俊 ¹	1. 東京人子 初任町元府 1. 埼玉大学 , 2. セブンシックス
16:00	奨 20p-A37-10	3×3カプラを用いた非線形増幅ループミラーによる全偏 波保持Ybファイバレーザーの開発	○(M1)田村 俊貴¹,吉井 智紀¹,戸田 裕之¹,鈴木 将 之¹	1.同志社大
16:15	奨 20p-A37-11	異なるコア径の Yb 添加ダブルクラッドファイバを用いた Mamyshev 発振器の 出力特性評価に関する研究	.~	1.同志社大
16:30	20p-A37-12	分散制御型 Tm-Ho共添加超短パルスファイバレーザーに おける単層カーボンナノチューブフィルムの濃度依存性		1.名大院工, 2.産総研
16:45	奨 20p-A37-13	サブ 50 fs Kerr レンズモード同期 Yb:KLuW 薄ディスクレーザー	○北島 将太朗¹, 西澤 典彦¹	1.名大院工
		材料、3.13 光制御デバイス・光ファイバーのコードシェア	/ Code-sharing Session of 3.4 & 3.13	
		口頭講演 (Oral Presentation) A37 会場 (Room A37)	○自田 井之1 医 打た1 小十 田庄2 廿里 喜 5 3 十二	1 匠上陸子 2 匠上)
9:00	20a-A37-1	$\operatorname{CsLiB}^{\bullet}O^{10}$ を用いた深紫外光波長変換における出力変化の調査(Π)	〇島田 恭丞',原 拍海', 山本 果想', 村开 艮多', 南部 誠明², 高橋 義典³, 岡田 穣治 4 , 宇佐美 茂佳 1 , 今西 正 幸 1 , 丸山 美帆子 1 , 森 勇介 1,3 , 吉村 政志 2,3	1. 阪大院工, 2. 阪大レーザー研, 3. 創晶超光, 4. スペクトロニクス
9:15	20a-A37-2	CsLiB ₆ O ₁₀ 結晶の深紫外光誘起吸収欠陥の調査	〇大浦 龍之介 1 , 山本 \mathbb{A}^2 , 南部 誠明 1 , 村井 良多 3 , 五十嵐 裕紀 4 , 中嶋 誠 1 , 森 勇介 $^{2.3}$, 吉村 政志 $^{1.3}$	1. 阪大レーザー研, 2. 阪大院工, 3. 創晶超光, 4. ギガフォトン
9:30	20a-A37-3	薄膜ニオブ酸リチウムナノ構造の製作(II)	○羽中田 祥司¹,吉田 凌一¹,馬場 俊彦¹	1.横国大院工
9:45 10:00	20a-A37-4 20a-A37-5	TFLN導波路用グレーティングカプラの構造最適化(II) 超低損失気体素子キャビティダンプによるパルスレー	〇北原 凌成 ,田原 直樹 ,馬場 俊彦 · ○米田 仁紀 ¹ ,道根 百合奈 ¹	1. 横国大院工 1. 電通大レーザー
10:15	20a-A37-6	ザーの高出力化 オゾン気体空間位相変調器の開発	○道根 百合奈¹, 米田 仁紀¹	1.電通大レーザー研
		– / Ultrashort-pulse and high-intensity lasers		
9/18(ポスター講演 (Poster Presentation) P会場(Room P)		
	18a-P02-1 18a-P02-2	全編波保持エルビウムファイバーコムを光源とする導波 路型PPLN結晶による広帯域中赤外コム発生 光ポンプ光プロープ実験の測定時間拡大に向けた再生増	武史 ^{2,4} , 美濃島 薫 ^{2,5} , 吉井 一倫 ^{1,2}	1.龍谷大学, 2.徳島大学ポスト LED フォトニクス研究 所, 3.東邦大学, 4.徳島大学, 5.電気通信大学 1.慶大理工
	E 18a-P02-3	幅器と光コムの周波数同期実験 Mid-infrared femtosecond laser based on Cr:ZnS oscillator	O Kajia Zangl Ani Sataul Vianal Dl S 1	1.Utokyo, IIS
	E 108-1 U2-3	and ZBLAN fiber	Ashihara ¹	·
	18a-P02-4	超短パルス励起した GaAs での電子状態に依存したコ ヒーレントLOフォノン・プラズモン結合	\bigcirc (M2) 西村 太一 1,2 , 中村 一隆 1,2 , 高木 一旗 1,2 , 萱沼 洋輔 3	1.東工大フロンティア研, 2.東工大物質理工, 3.大阪公立大
	18a-P02-5	時間分解電子エネルギー損失分光のための分析装置の開 発	○立花 佑一¹, 森本 裕也¹.2	1. 理研光量子, 2. 東大院工
9/19(° 9:00	Thu.) 9:00 - 12:00 19a-A25-1	口頭講演 (Oral Presentation) A25 会場(Room A25) 直線偏光超短バルス光による三次元トポロジカル絶縁体 表面の光波駆動スピン分極電流の理論的研究	○篠原 康 ¹.², 眞田 治樹 ¹, 小栗 克弥 ¹	1.NTT 物性研, 2.NTT-TQC
9:15	E 19a-A25-2	Ab Initio Study on Light-Driven Current in Graphene in the Real Space	○ (M2)SIYUAN LI¹, Mizuki Tani², Arqum Hashimi¹, Kenichi Ishikawa¹	1.UTokyo., 2.KPSI
9:30	E 19a-A25-3	High-Harmonic Anomalous Hall Responses in 2D Weyl Semimetals	○ (P)Arqum Hashmi ¹ , Mizuki Tani ² , Kazuhiro Yabana ³ , Tomohito Otobe ² , Kenichi L. Ishikawa ¹	1.The Univ. Tokyo, 2.KPSI, QST, 3.Univ. of Tsukuba
9:45 10:00	19a-A25-4	休憩/Break Physics-Informed Neural Networkを用いた時間依存シュ	屋比久 怜央¹, 織茂 悠貴¹, 佐藤 健¹, ○石川 顕一¹	1.東大
10:15	19a-A25-5	レーディンガー方程式のシミュレーション Natural-expansion ansatz と量子コンピュータを用いた高 強度レーザーパルス下の多電子系の第一原理シミュレー	-	1. 東大院工, 2.IBM Quantum
10:30	19a-A25-6	ション II 多電子ダイナミクスのための量子 Krylov部分空間法の開 発	○佐藤 健¹	1.東大院工
10:45 11:00	奨 19a-A25-7	矩 休憩/Break 分散補償チャープパルス分光法における時間窓幅の	○眞榮城 蒼¹, 玉置 亮¹², 武田 淳¹, 片山 郁文¹	1. 横浜国大, 2.KISTEC
11:15	奨 19a-A25-8	チャープ量依存性 遷移金属M吸収端でのMOKE測定用高次高調波発生装	〇塩川 裕斗 1 , 高橋 龍之 Λ 1 , 冨田 繁寿 1 , 石井 順 Λ 2 ,	
11:30	19a-A25-9	置の開発 光波駆動走査トンネル分光法のための広帯域中赤外バル	和達 大樹 1.3	
		スの振幅制御	修1, 重川 秀実1	
11:45	19a-A25-10	高コヒーレンスかつ極短パルス時間分解電子線回折装置		1. 筑波大数理, 2. 岡大院自然

		口頭講演 (Oral Presentation) A25 会場 (Room A25) 中赤外フェムト秒パルスによる振動回転ラダークライミ		1 ** 1
13:30	奨 19p-A25-1	甲亦外ノェムト杉ハルスによる振動凹転フタークライミング		1. 東大生研
13:45 14:00	奨 19p-A25-2 奨 19p-A25-3	2次元層状半導体の光学応答における高次フォノン周波 数発生 電荷密度波系1T-TiSe。の光誘起相転移に伴う集団モード	ス ポール 5, 石川 良 6, 上野 啓司 6, 長谷 宗明 2	1. 沖縄科技大, 2. 筑波大数理, 3. 産総研, 4. 東北大工, 5. 慶大電情, 6. 埼大院理工 1. 筑波大院数理, 2. 沖縄科技大
		の観測		
14:15	E 19p-A25-4	Three-dimensional enantioselective orientation of chiral molecules with a linearly polarized fundamental pulse and an elliptically polarized second harmonic pulse 休憩/Break	○ Maruf Hossain¹, Kazuki Inomata¹, Hirofumi Sakai¹	1.Tokyo University
14:45	19p-A25-5	カーボンナノチューブ - 窒化ホウ素ナノチューブへテロ 構造体への光照射で生じるエネルギー輸送現象の観測	○羽田 真毅¹, 齋田 友梨¹, Gauthier Thomas², 鈴木 弘朗³, 大村 訓史⁴, 四方 諒¹, 岩崎 ゆい¹, 野山 豪大¹, 岸淵 美咲³, 田中 祐一郎³, 矢嶋 渉¹, Godin Nicolas², Privault Gael², 徳永 智春³, 小野 頌太⁵, 腰原 伸也², 鶴田 健二³, 林 靖彦³, Bertoni Roman²	1. 筑波大数理, 2. レンヌ大, 3. 岡大院工, 4. 広工大工, 5. 名大院工, 6. 室蘭工大院工, 7. 東工大理
15:00	19p-A25-6	Ti 添加 NbO₂ の超高速光応答	〇谷村 \not \vec{F} , 石井 暁大 \vec{F} , 中島 拓海 \vec{F} , 高村 \vec{F} , 市坪 哲 \vec{F}	1. 東北大金研, 2. 東北大工
15:15	19p-A25-7	TR-ARPES を用いた 2次元反強磁性体 NiPS $_3$ の電子状態 イメージング	(D) 友田 七海¹, Yan Thong Poon¹, Vivek Pareek¹, Xing Zhu¹, Harley Suchiang¹, 渡邊 賢司², 谷口 尚², Michael K. L. Man¹, Julien Madeo¹, Keshav M. Dani¹	1. 沖科技大, 2. 物材機構
15:30	E 19p-A25-8	Monitoring small polarons and phase transitions through ultrafast Infrared spectroscopy.	O(P)Gael Emilien Privault ^{1,3,2} , Marius Herve ^{1,2} , Nicolas Godin ^{1,2} , Roman Bertoni ^{1,2} , Shintaro Akagi ³ , Jacek Kubicki ⁴ , Masaki Hada ³ , Hiroko Tokoro ^{2,3} , Shin-ichi Ohkoshi ^{2,5} , Maciej Lorenc ^{1,2} , Eric Collet ^{1,2,6}	1.Rennes Inst., 2.DYNACOM IRL 2015, 3.Tsukuba Univ., 4.Poznan Univ., 5.Tokyo Univ., 6.IUF
15:45 16:00	19p-A25-9	休憩/Break 二次元層状物質 WSe₂からのテラヘルツ波発生における 光電流効果の研究	○(M2)山田 知穂¹, 上野 啓司³, 谷 正彦², Jessica Afalla¹, 長谷 宗明¹	1. 筑波大数理物質, 2. 福井大遠赤セ, 3. 埼玉大院理工
16:15		二次元層状物質 MoTe2 におけるテラヘルツ発生の研究	\bigcirc (M1) 柳澤 宏瑛 1 , 山田 知穂 1 , 谷 正彦 2 , 長谷 宗明 1	
16:30	19p-A25-11	ダイヤモンドNVセンター探針を用いた超高速局所電場 計測システムの開発	○ (M2) 佐藤 大輔¹, 郭 俊杰¹, 市川 卓人¹², Dwi Prananto³, 安 東秀³, Paul Fons⁴, 吉田 昭二¹, 重川 秀 実¹, 長谷 宗明¹	1. 筑波大数理, 2. 産総研, 3. 北陸先端大, 4. 慶大電情
16:45	19p-A25-12	プラズモン増強による NV センター含有ダイヤモンドの 超高速時間分解分光	○(M1)木村 優太¹, 安 東秀², 長谷 宗明¹	1. 筑波大数理, 2. 北陸先端大
17:00 17:15	19p-A25-13	休憩/Break 波長分解型過渡反射率計測による WSe ₂ のコヒーレント フォノン計測	○河西 壱輝 ^{1,2} , 高木 一旗 ^{1,2} , 中村 一隆 ^{1,2}	1.東工大フロンティア研, 2.東工大物質理工
17:30	19p-A25-14		○(M1)明井 水希¹,福田 拓未¹²,水越 優¹,菊池 和弘¹,長谷 宗明¹	1. 筑波大院数理, 2. 沖縄科技大
17:45		Bi ₂ Se ₃ バルク状態におけるスピン依存したバンドギャップ再正規化と状態充填効果	\bigcirc (M2) 菊池 和弘 1 , 水越 優 1 , 福田 拓未 2 , Paul Fons 3 , 長谷 宗明 1	1. 筑波大数理, 2. 沖縄科技大, 3. 慶大電情
9/20(9:00	(Fri.) 9:00 - 11:30 20a-C301-1	口頭講演 (Oral Presentation) C301会場(Room C301) アト秒レーザー用極限集光光学系の開発	○今坂 光太郎 ¹ , 神田 夏輝 ¹ , Dong Dianhong ¹ , Xue Bing ¹ , 江川 悟 ^{1,2} , 細畠 拓也 ¹ , 竹田 真宏 ¹ , 山形 豊 ¹ , 高橋 栄治 ¹	1. 理研, 2. 東大先端研
9:15	20a-C301-2	中赤外における水薄膜中異常伝搬の第二高調波による観 測	○栗原 貴之¹, 華 洋陽¹, 楊 添淇¹, 水野 智也¹, 原田 慈	1. 東大物性研
9:30		中赤外光による水薄膜ジェットからの高調波発生におけ る励起効果	治郎 ¹	
9:45	E 20a-C301-4	Enhancement of high harmonic generation in liquid water by resonant excitation in mid-infrared	○ Tianqi Yang¹, Takayuki Kurihara¹, Yangyang Hua¹, Tomoya Mizuno¹, Teruto Kanai¹, Yoshihisa Harada¹, Jiro Itatani¹	1.ISSP, Univ. Tokyo
10:00 10:15	20a-C301-5	休憩/Break 高出力数サイクル赤外光源による水の窓を超える軟X線 高次高調波発生	○石井 順久¹, 圓山 桃子¹, 板倉 隆二¹	1.量研関西
10:30	E 20a-C301-6	Efficient generation of 11-eV pulses in Kr and Xe using a turnkey Yb:KGW laser	○ Yimin Gu ^{1,2} , Takayuki Kurihara ^{1,2} , Tomoya Mizuno ^{1,2} , Ahmed R. A. Ibrahim ^{1,2} , Teruto Kanai ^{1,2} , Iiro Itatani ^{1,2}	1.ISSP, 2.The Univ. of Tokyo
10:45	奨 20a-C301-7	Advanced DC-OPA法による 100 mJ 級中赤外サブサイク ルレーザー開発	○西宮 海人¹, 高橋 栄治¹	1.理研 光量子
11:00	20a-C301-8	Yb系レーザー励起 2μ m オクターブ帯域光 バラメトリック 増幅器 の 開発	○神田 夏輝¹, 高橋 栄治¹	1.理研光量子セ
11:15	20a-C301-9	ナノ秒アブレーションによる推力発生	〇月花 智博 1 ,春日 博 1 ,山根 秀公 1 ,津野 克彦 1 ,永田 豊 1 ,斎藤 徳人 1 ,小川 貴代 1 ,和田 智之 1	1.理研
9/20(F 13:00		口頭講演 (Oral Presentation) C301会場 (Room C301) 分散補償チャープバルス和周波分光法による利得スイッ チレーザーのシングルショットバルス波形計測	○玉置 亮 ^{1,2} , 小林 真隆 ³ , 中前 秀一 ³ , 金 昌秀 ^{3,4} , 伊藤 隆 ⁴ , 秋山 英文 ^{3,4} , 片山 郁文 ²	1.KISTEC, 2.横浜国大理工, 3.東大物性研, 4.LDseed
13:15	E 20p-C301-2	Characterization of GW-class Isolated Attosecond Pulses Based on All-optical FROG	EE , 秋田 英文 , 万田 聊文 (D)Dianhong Dong ¹ , Hushan Wang ¹ , Kotaro Imasaka ^{1,2} , Natsuki Kanda ^{1,2} , Eiji J. Takahashi ^{1,2}	1.UFSXP, RAP, RIKEN, 2.ELS Lab., CPR, RIKEN
13:30	E 20p-C301-3	Dither-locked mid-infrared femtosecond subharmonic OPO using ZnGeP ₂	OXiangbao Bu ¹ , Wenqing Song ¹ , Clement Ribot ¹ , Ikki Morichika ¹ , Satoshi Ashihara ¹	1.Institute of Industrial Science, The University of Tokyo
13:45	20p-C301-4	Cr:ZnS結晶とZBLANファイバーを用いた広帯域フェムト秒光源による中赤外バルス内差周波発生	○(M2)佐藤 葵¹, 芦原 聡¹	1. 東大生研
14:00 14:15	奨 20p-C301-5	休憩/Break ファイバー接続Si ₃ N ₄ 微小光共振器からのマイクロ光コム ⁸⁸ 4	〇山地 広大 1 , 西本 健司 1 , 時実 悠 $^{2.3}$, 久世 直也 $^{2.3}$, 安井 武史 $^{2.3}$	1. 徳島大院創成, 2. 徳島大pLED, 3. 集積コムによる通信 コンソーシアム
14:30	20p-C301-6	発生 ファイバラマン増幅器を用いた1.4μm スペクトルピーク のコヒーレント増幅		
14:45	20p-C301-7	のコピーレジト瑁幅 衛星環境下での長期安定 Figure-8型光周波数コムの開発		1.電通大レーザー研
15:00 15:15	20p-C301-8	繰り返し207 MHzファイバレーザーデュアルコムの開発 休憩/Break		1.名大院工
15:30	奨 20p-C301-9	双方向動作型デュアルコムファイバレーザーによる波長 赤外光周波数コムの発生II	○窪田 光佑¹, 內山 竜成¹, 穀山 涉², Peter G. Schunemann³, 中嶋 善晶¹	1. 東邦大学, 2. 産業技術総合研究所, 3.BAE Systems
15:45	奨 20p-C301-10	全編波保持機構共有型デュアルコムファイバレーザーを 用いた分光計測の検討	〇内山 竜成 1 , 高星 拓海 1 , 吉岡 拓馬 1 , 穀山 \mathcal{B}^2 , 時実 悠 3 , 安井 武史 3 , 松原 伸一 4 , 中嶋 善晶 1	1. 東邦大学 , 2. 産総研 , 3. 徳島大ポスト LED 研究所 , 4. 高輝度光科学研究所

16:00	将 20m C201 11	デュアルコム分光法を用いた 2 成分ガス分光応用計測	○ (M1C) 武子 尚生¹, 内山 竜成¹, 窪田 光佑¹, 宮崎	1. 東邦大学, 2. 横浜国立大学
			俊行 ¹ , 杉山 陽平 ² , 洪 鋒雷 ² , 中嶋 善晶 ¹	
16:15	20p-C301-12	デュアルコム分光を用いたスペクトルビーキングの観測 と応用	○加藤 杏祐¹, 臼井 隆一郎¹, 北島 将太朗¹, 寺林 稜 平², 富田 英生¹, 阿部 恒³, 西澤 典彦¹	1.名古屋大院工, 2.東京大院工, 3.産総研
	-ザープロセシング ,			
9:00	18a-A25-1	口頭講演 (Oral Presentation) A25 会場(Room A25) Optical absorption properties of copper during ultrashort	○谷 水城¹, Ishikawa Kenichi L.², Otobe Tomohito¹	1.KPSI, 2.The Univ. of Tokyo
9:15	18a-A25-2	pulse laser processing シリコンの励起過程における欠陥の影響	○乙部 智仁¹	1.QST 関西研
9:30	18a-A25-3	【注目講演】誘電体ガラス基板の深紫外ナノ秒パルスレー		1.東大院理
9:45	18a-A25-4	ザー加工における時間分解複素振幅イメージング Nd:YAGレーザーのナノ秒パルス、ロングパルスを用い	昭¹, 井手口 拓郎¹ ○辻 剛志¹, 山田 一葵¹, 中村 大輔²	1. 島根大総理工, 2. 九大工
10:00	18a-A25-5	た穴開け加工に対するプラズマ遮蔽の影響の観察 二波長ダブルバルス照射による均一な周期を有するナノ	○竹中 啓輔¹, 橋田 昌樹², 坂上 仁志².³, 岩森 暁², 佐藤 雄二¹, 塚本 雅裕¹	1. 阪大接合研, 2. 総合科学技術研, 東海大, 3. 核融合研
10:15	18a-A25-6	周期構造の形成 引張変形した銅単結晶におけるフェムト秒レーザ誘起周 期表面構造		1. 徳島大理工
10:30		休憩/Break		
10:45	18a-A25-7	液中レーザーアブレーションを用いたEu賦活ストロンチウムアルミネート系蛍光体微粒子の作製	○高嶋 優斗¹, 中村 俊博¹	1.法政大院理工
11:00	18a-A25-8	パルスレーザーアブレーション過程で生成されたSi球状ナノ粒子のミー散乱	〇谷口 \mathcal{H}^1 , 青木 珠緒 2 , 吉田 岳人 3 , 内藤 宗幸 2 , 梅津 郁朗 2	1.甲南大自然, 2.甲南大理工, 3.阿南高専
11:15	18a-A25-9	レーザーアブレーション法で作製されたZnO球状粒子の 作製条件と光学特性		1.甲南大院自然, 2.甲南大理工, 3.九大シス情
11:30	18a-A25-10	プラズモニック球状ナノ粒子を堆積させたSiの光電流増	○國生 泰成 1, 丁 咨翔 2, 谷口 光 1, 青木 珠緒 2, 梅津 郁	1. 甲南大自然, 2. 甲南大理工
11:45	E 18a-A25-11	強 Photoinjection of Fluorescent Molecules into Tobacco	朗 ² (D)Muhammad Ridho Jatmiko ¹ . Naomi Tanga ^{1,4}	1.Div. Mat. Sci., NAIST, 2.Pinpoint Photonics, Inc.,,
11.10	D Touriso II	BY-2 Cells Adapted with a Microchip Laser	Koichiro Kishima ² , Arvydas Kausas ³ , Yuji Sano ³ , Takunori Taira ³ , Yoichiroh Hosokawa ^{1,4,5}	3.Div. Rsc. Innov, and Collabo., IMS, 4.CDG NAIST, 5.MLC NAIST
		口頭講演 (Oral Presentation) A25 会場 (Room A25)	O = 44 44 1 (4-87 fc) 1	
13:30	招 18p-A25-1	「第56回講演奨励賞受賞記念講演」 大気の電離閾値を超える超短パルスレーザーの非線形集 光特性	○西端 樹 ¹ , 佐野 智一 ¹	1. 阪大院工
13:45	奨 18p-A25-2	ルーザー加工用広域シールドノズルの開発及び3D流体 シミュレーションによるガスフロー解析	○(M2) 古場 雅大¹, 菊地 俊文¹, 小窪 陸斗¹, 池上 浩², 中村 大輔¹	1. 九大シ情, 2. 高知工大総合研
14:00	奨 18p-A25-3		○豊島 圭一郎¹, 竹内 楓¹, 道根 百合奈¹, 米田 仁紀¹	1. 電通大
14:15	奨 18p-A25-4	液中レーザーアブレーション法によるカーボン量子ドッ	○奥村 太一 ¹ ,和田 裕之 ¹	1.東工大物質理工
14:30	奨 18p-A25-5	トの作製と評価 レーザーアブレーション結晶化に最適なパターン照射条		1. 阪大院工, 2. 阪大レーザー研
14:45	奨 18p-A25-6	件の探求 水中レーザー誘起プレークダウン分光法における黒体の	寿¹, 吉川 洋史¹ ○(M2) 新谷 匡史¹, 横山 悠子¹, 西 直哉¹, 作花 哲夫¹	1.京大院工
15:00	奨 18p-A25-7	発光と吸光を考慮した放射輸送モデルの構築 PDMSのレーザー炭化による導電性構造とグラフェン量	○塚田 康介¹, 寺川 光洋¹.²	1. 慶大院理工, 2. 慶大理工
15:15	奨 18p-A25-8	子ドット(GQDs)二層構造の一括作製 GHzバーストモードフェムト秒レーザーが形成する新奇 微細表面周期構造の固体表面機能評価		1.理研 光量子, 2.農工大, 3.CETAL-Nat. Inst. for Laser, Plasma and Rad. Phys., 4.Inst. of Biochem. of the Romanian Acad.
15:30	10 AOF O	休憩/Break	O(10) + + + + + 1 .1 + T 1 m + + + + 1 + m + + + + m + + + + + +	1 A T 1. 0 H- A A 1
15:45	奨 18p-A25-9	潤滑油中S45Cへの短パルスレーザー照射による表面炭 化	○ (M2) 中村 友哉¹, 山中 正人¹, 田中 良樹¹, 吉田 直樹², 劉 晓旭¹, 樋口 和夫¹, 前川 覚¹, 糸魚川 文広¹, 小野 晋吾¹	1. 石工人, 4. 株式会任ーデック
16:00	奨 18p-A25-10	液中光渦フェムト秒レーザー加工によるタングステンの 微細構造形成		1.核融合研, 2.総研大, 3.名工大, 4.理研 光量子
16:15	奨 18p-A25-11	超短パルスレーザーによるSiC上オーミック電極の電気 特性のパルス時間幅依存性		
16:30	将 18n-A25-12		貴¹, 山口 誠³, 岡田 達也¹, 小林 洋平², 富田 卓朗¹ ○(M1) 中川 功士¹, 関 宏都¹, 高林 圭佑², 遠藤 翼²,	
10.00	× 10p 1120 12	金化	土屋 叡本 ² , 山口 誠 ³ , 岡田 達也 ¹ , 小林 洋平 ² , 富田 卓朗 ¹	
16:45	奨 18p-A25-13	p型窒化ガリウム上Ni/Au電極へのサブピコ秒レーザー 照射による電気特性改質	○福田海人¹,須藤 直也¹,関宏都¹,川上 拓哉¹,遠藤 翼²,高林 圭佑²³,小林 洋平²,山口 誠³,永松 謙太郎¹,	
17:00	奨 18p-A25-14	バルスエネルギ変調によるフェムト秒レーザ加工の精密 化	高島 祐介¹, 直井 美貴¹, 富田 卓朗¹ ○長谷川 亮太¹, 服部 隼也¹, 福井 智大¹, 杉田 直彦¹, 伊藤 佑介¹	1.東大院工
17:15	奨 E 18p-A25-15	Precision microprocessing of silica glass using a temporally shaped ultrafast laser	伊滕 伯介。 Guoqi Ren¹, Huijie Sun¹, Keiichi Nakagawa¹, Naohiko Sugita¹, Yusuke Ito¹	1.Univ. Tokyo
17:30	奨 18p-A25-16	temporany snaped utratast taser 1.5 kW 青色半導体レーザーを用いた純銅溶接におけるブルームの溶接への影響		1. 阪大院工, 2. 株) デンソー, 3. 阪大接研
9/10/	Thu) 9.30 - 11.20	ポスター講演 (Poster Presentation) P 会場(Room P)	裕 ³	
3/19(19a-P04-1	ボスター講演 (Poster Presentation) P会場(Room P) レーザー誘起前方転写におけるダブルバルス励起の効果	○爲本 龍汰¹, 漕江 駿太¹, 佐藤 光太朗¹, 山根 啓作¹, 戸田 泰則¹, 尾松 孝茂²³, 森田 隆二¹	1.北大院工, 2.千葉大融合理工, 3.千葉大分子キラリティー
	19a-P04-2	ヘキサン中レーザーアプレーション法によって作製した SiCナノ微粒子の構造評価と発光スペクトル		1. 東理大院先進工
	19a-P04-3	PLD法によるハイドロキシアパタイト成膜の結晶性評価		1. 産総研 電子光
	19a-P04-4	バラメータ制御 CO_2 レーザーによる PTFE フィルムの加工特性		1.山梨大工
	19a-P04-5	フェムト秒レーザーを用いたハイドロゲル表面における カーボンドットの作製	○內山 敬太 1, 塚田 康介 1, 寺川 光洋 1,2	1. 慶大院理工, 2. 慶大理工
	19a-P04-6	フェムト秒レーザ直接描画によるフレキシブル電気化学	The state of the s	1.長岡技科大, 2.ルール大学ボーフム
	19a-P04-7	センサ用3電極の集積化 液中ピコ秒レーザーバルス照射によるS45C表面への円 形微細構造形成	Tumkin², Andreas Ostendorl², 溝尻 瑞枝¹ \bigcirc (M2) 中村 友哉¹, 山中 正人¹, 田中 良樹¹, 吉田 直 樹², 劉 暁旭¹, 樋口 和夫¹, 前川 覚¹, 糸魚川 文広¹, 小	1.名工大, 2.株式会社ニデック
	10 70010	田石ヤラーナは、パー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	野晋吾1	1 サ油マムマ
	19a-P04-8	円偏光フェムト秒レーザーバルスによる正方格子表面周 期構造の形成	○松尾 案例,備原 敬介。	1. 芝浦工大工

	19a-P04-9	レーザードーピングによる Ce:YAG, Ce:YAPシンチレー タ作製	○ (M1) 丸山 祐樹¹, Cadatal-Raduban Marilou²³, 日 比野 孝太¹, 西井 一郎², 佐藤 匠², 櫻井 陽子¹, 山ノ井 航平², 小野 晋吾¹	1.名工大, 2.阪大レーザー研, 3.Massey Univ.
		Fe ₂ O ₃ マイクロパターンのフェムト秒レーザー直接描画 レーザー集積固化プロセスにおける集光部周辺バブルの	○(M1)熊谷 温人¹, 丹波 優大², 西山 宏昭¹	1.山形大院理工, 2.山形大工 1.山形大院理工, 2.山形大工
		形状評価 レーザー集積固化プロセスによるダイヤモンドバターン		1.山形大院理工, 2.山形大工
		の直接描画 超短パルスレーザーを用いたガラスのマイクロ溶接にお		1. 奈良高専
9/19(T		ける数値流体解析 口頭講演 (Oral Presentation) B2 会場 (Room B2)		
13:00	E 19p-B2-1	Ring-shaped gold nanocluster array fabricated by CTAB-assited fs laser near-field reduction	○ Shi Bai¹, Ozasa Kazunari¹, Koji Sugioka¹	1.RAP, RIKEN
13:15	19p-B2-2	深層学習を用いたナノ周期構造の散乱光画像にもとづく 構造推定	○(M2)增田 諒太¹, 早崎 芳夫¹, 長谷川 智士¹	1.宇都宮大学オプティクス教育センター
13:30	19p-B2-3	フェムト秒レーザーパルスからアモルファスシリコンへ のエネルギー移行の第一原理計算	〇具志堅 英雄 1 ,乙部 智仁 2 ,谷 水城 2 ,山田 俊介 2 ,石 川 顕一 1	1. 東京大工, 2. 量研
13:45	19p-B2-4	Type Ⅱ型光導波路レーザ書き込み過程の直接観察	○吉崎 れいな¹, 福井 智大¹, 伊藤 佑介¹, 服部 隼也¹, 手嶋 勇太¹, 北村 章吾¹, 杉田 直彦¹	1.東大工
14:00	19p-B2-5	ホログラフィックレーザー加工における光干渉法を用い た構造のインライン計測	○梅津 廉¹, 早崎 芳夫¹, 長谷川 智士¹	1.宇大 オプティクス教育研究センター
14:15	19p-B2-6	空間光位相変調を用いたレーザー集積固化プロセスの並 列化	\bigcirc (M1) 佐藤 勇斗 1 , 青山 昌央 1 , 西山 宏昭 1	1.山形大院理工
14:30	19p-B2-7	銅のレーザーアブレーション閾値付近での蓄積効果	〇高林 圭佑 $^{1.2}$, 遠藤 翼 2 , 乙津 俊夫 2 , 谷 峻太郎 2 , 山 2	1. 秋田大理工, 2. 東大物性研
14:45 15:00	19p-B2-8	休憩/Break レーザーアブレーションによる炭素繊維強化プラスチッ	○寿日 懴¹ 日花 智懴¹ 山根 黍公¹ 津野 喜彦¹ 永田	1 理研
		ク (CFRP) の推力発生特性 パーシステントホモロジーによるレーザーアブレーショ	豊¹, 斎藤 徳人¹, 小川 貴代¹, 和田 智之¹	1.東大院工
15:15	19p-B2-9	ン過程の解析		····
15:30	19p-B2-10	水中レーザー誘起ブレークダウン分光法におけるビーム 形状の効果		1.京大院工
15:45	19p-B2-11	ナノ秒パルスレーザー除染によって発生する粉塵の時間 空間分解計測	小菅 淳¹, 山本 恵輔², ○中嶋 隆²	1. 日本原子力機構, 2. 京都大学
16:00	19p-B2-12	レーザー構造化Ni電極の水電解酸素発生反応における電 解特性評価	Mondal Siniya¹, 内本 喜睛¹, ○中嶋 隆¹	1.京都大学
16:15	E 19p-B2-13	Laser Ablation of Copper using GHz Bursts of Green Wavelength fs Laser Pulses	○ (P)Ashkan MomeniBidzard¹, Shota Kawabata¹, Kotaro Obata¹, Koji Sugioka¹	1.RIKEN
16:30	19p-B2-14	ボリビニルピロリドン添加グリオキシル酸ニッケル錯体 を用いたフェムト秒レーザ光熱還元析出抑制による細線	-	1. 長岡技科大, 2. 芝浦工大
3.7 光計	↑測技術・機器 / Op	描画 tical measurement, instrumentation, and sensor		
9/19(7 9:15	Thu.) 9:15 - 12:00 19a-A37-1	口頭講演 (Oral Presentation) A37 会場 (Room A37) 光干渉を用いたレーザー生成超音波の観測	○ (M2) 小松 宗太郎¹, 早崎 芳夫¹	1. 宇都宮大学オプティクス
	授 E 19a-A37-2	Single-shot spectral phase measurement of mid-infrared pulses with upconversion time-stretch spectroscopy		1. 于能占人テイフティッス 1. The Univ. of Tokyo
9:45	奨 19a-A37-3	光コムの位相制御を用いた逆位相パルス生成による背景 光除去手法における広帯域化	○日野 圭人¹, 加藤 峰士¹, 美濃島 薫¹	1. 電通大
10:00	奨 19a-A37-4	デュアル光コム分光偏光解析とシングル・ピクセル・イ メージングの融合	〇谷村 省吾 1 , 長谷 栄治 2 , 時実 悠 2 , 南川 丈夫 2,3 , 安 井 武史 2	1. 徳島大院創成, 2. 徳島大pLED, 3. 阪大院基礎工
10:15	奨 19a-A37-5	繰り返し周波数の変調によるデュアルコム分光法の高速 化手法の研究	○伊藤 万葉 ¹,朱 瑞宸 ¹,加藤 峰土 ¹,浅原 彰文 ¹,美濃 島 薫 ¹	1.電通大
10:30 10:45	19a-A37-6	休憩/Break 2種類の光コムを組み合わせたデュアルコム分光の測定 スペクトル範囲の拡大	○柏木 謙¹, 大久保 章¹, 稲場 肇¹	1.産総研
11:00 11:15	19a-A37-7 19a-A37-8	広帯域デュアルコム共振器モード分散分光 機構共有型デュアルコムファイバーレーザーを用いた多	○大久保 章¹, 稲場 肇¹○大登 正敬¹	1. 産総研, 計量標準 1. 富土電機
11:30	奨 19a-A37-9	成分ガススペクトル計測 デュアル屈折率センシング光コムにおけるセンサー信号	○檜垣 将之¹, 宮村 祥吾¹, 田上 周路², 時実 優³, 長谷	1. 徳島大院創成, 2. 高知工科大, 3. 徳島大 pLED, 4. 阪大
11:45	19a-A37-10	の残留揺らぎ抑制に関する検討 低コヒーレンス干渉によるガラス基板の屈折率・厚みの	栄治³, 南川 丈夫⁴³, 安井 武史³ ○森田 大樹¹, 高和 研利², 中島 由智², 高和 宏行², 增	院基礎工 1.宇大工, 2.トライオプティクス
0.12-1	. \ 10.00	同時計測	村明 ² ,大矢尚司 ² ,東口武史 ¹	
9/19(T 13:30	Thu.) 13:30 - 17:45 19p-A37-1	口頭講演 (Oral Presentation) A37 会場 (Room A37) 飽和吸収分光法による近赤外領域Xe原子の同位体シフト	○(D)野村 克貴¹, 西宮 信夫¹	1.工芸大院
13:45		と同位体原子核電荷半径二乗平均の差 $Zr I 原子における a^5 F_j \rightarrow z^5 F_j$ のスペクトル計測	○(M1)嶋田 秀寿¹, 野村 克貴¹, 西宮 信夫¹	1.東京工芸大学工学研究科
14:00	•	大気中分子の高分解能分光に向けたバッファーガス冷却 による冷却分子の生成 実環境ファイバ伝送を介した周波数もつれ光子による非		1. 電通大レーザー, 2. 岡山大基礎研 1. 電通大 棲報理工 2. 電通大 景研
14:15	奨 19p-A37-4 奨 19p-A37-5	長環境ノアイバ伝送を介した同仮数もつれ元寸による非 局所相関を用いた量子分光ファイバセンシング スペクトルピークを用いた選択的高感度分光計測技術の	介 1,2, 美濃島 薫 1,2	
14:45	× 15h-1791-9	開発 休憩/Break	○伊果 陵 , 北局 村太朔 , 留田 夹主 , 門部 但 , 四澤 典彦 ¹	A・ロハゼルー・4・たちの♥[
15:00	奨 19p-A37-6	ファイバー光バラメトリック発振器を用いた広帯域ハイ バースペクトル誘導ラマン散乱イメージング	○高橋 俊¹, 亀井 健斗¹, 小口 研一², 車 一宏², スプラット スペンサー², 赤星 光¹, 若本 裕介¹, 前田 拓也¹, 小関 泰之¹.²	1. 東大院工, 2. 東大先端研
15:15	奨 19p-A37-7	通信波長帯光源を用いた誘導ラマン散乱顕微法によるシ	○(DC)佐野 由季 ¹ ,小口研一 ² ,辻 啓吾 ¹ ,三田 吉	1.東大院工, 2.東京理科大
15:30	19p-A37-8	リコンの内部ひずみ計測 狭線幅CWレーザー用セラミック光共振器の長期安定性	郎¹,小関泰之¹ ○伊藤 功¹,小林 洋平¹	1.東大物性研
15:45 16:00	19p-A37-9 19p-A37-10	測定 微差圧計測による新規赤外分光法の開発 DSB変調を用いた周波数領域光相関法による超高速光波	 ○ 蔡 徳七¹, 東 駿太郎², 村松 悟², 井口 佳哉² ○ (M1C) 大森 翔¹, 鈴木 涼介¹, 塩田 達俊¹ 	1. 阪大院理, 2. 広島大理 1. 埼玉大理工
16:15		形計測の原理検証 休憩/Break		
16:30	奨 19p-A37-11	半導体チップのレーザー破断検査における振動動態解析	\bigcirc (M1) 寺内 玲碧 1 , 三上 勝大 1 , 池田 研 $-^2$, 中南 友 佑 2 , 大竹 政則 2	1.近大生物理工, 2.株式会社オプト・システム

6:45	19p-A37-12	デュアルレーザ光相関領域反射計の提案	〇元田 圭佑¹,朱 光韜¹,清住 空樹¹²,石丸 貴大³,高 橋 ヰ³ 古勲公 優介³ 水野 洋輔¹	1. 横浜国大, 2. 東大, 3.NTT
7:00	19p-A37-13	BOCDRにおけるレイリーノイズスベクトルの発生要因 の再調査	橋 央³, 古敷谷 優介³, 水野 洋輔¹ ○菊地 啓太¹, 井上 諒¹, 野田 康平², 水野 洋輔³, 李 ひ よん¹	1. 芝浦工大, 2. 東大, 3. 横浜国大
:15	19p-A37-14	SPADを用いた半導体光増幅器のASEノイズ計測	○猪口 泰利¹, 長沢 海斗¹, 鄭 和翊¹	1. 東海大理
:30		ワンショット位相差検出による共鳴格子型水素センサ	○水谷 彰夫¹, 奥山 裕貴¹	1.大公大工
9/20(Fri		ポスター講演 (Poster Presentation) P会場(Room P)	○図版 Will え き = v1 Htm セエ1 エロ ペピ?	1日十生進期了 9日上級理機構 9 支票上人型
	20a-P01-1	低温冷却が可能な一般型高精度万能旋光計とその Pi Sr CoCu O 単純星 の原理	○岡野 洸明 ¹ , チョウ コン ¹ , 時田 桂吾 ¹ , 中川 鉄馬 ² , 中西 卓也 ² , 藤田 全基 ³ , 朝日 透 ^{1,2}	1. 早大先進埋工, 2. 早大総研機構, 3. 東北大金研
	20a-P01-2	Bi ₂ Sr ₂ CaCu ₂ O _{8+δ} 単結晶への応用 可視光OCTによる曲面構造の高分解能断面観察	○ (M2) 小馬 啓輔 ¹ , 尾崎 信彦 ¹	1.和大シスエ
	20a-P01-3	空間光学系における偏光干渉を用いた低コヒーレンス	○田邊 寛洋¹, 関口 優紀¹, 塩田 達俊¹	1.埼玉大理工
		デュアルコム分光法の提案と距離計測への応用		
	20a-P01-4	主成分分析により次元削減した加工データを学習データ	○大場 正規 '	1.原子力機構
		に用いたニューラルネットワークによるスペクトル解析 その2		
	20a-P01-5	SiCにおけるモード選択的励起フォノンの励起個数分布	○吉田 恭平¹,全 炳俊²,蜂谷 寬³,大垣 英明²	1.熊産技セ,2.京大エネ研,3.京大エネ科
		のレーザーエネルギー依存性		
	20a-P01-6	静的・動的前方光散乱の画像計測によるポリスチレン粒	○若松 孝¹, 尾形 慎², 植 英規³	1. 茨城高専, 2. 福島大学, 3. 福島高専
	20a-P01-7	子の凝集化分析 CWレーザを用いた可視光硬化樹脂に対する微細加工	○長畑 翔太¹, 江上 力¹	1.静岡大工
	20a-P01-8	微粒子位相共役鏡を用いたpH計測	○竹内 爽人¹, 江上 力¹	1.静岡大工
	20a-P01-9	四光波混合非線形レーザ顕微鏡を用いた葉緑体の3次元		1. 静岡大工
		計測		
		CTF測定による偏光干渉非線形共焦点顕微鏡の性能評価		1.静岡大工
	20a-P01-11		○(M1) 若林 楓真¹, 河合 孝太郎²	1. 阪大院工, 2. 神戸高専
	20a DO1 12	の実験的検討	○発令 十輔』中中 嘉丁 桂田 海原』	1 松工十岁 珊丁瓜
	20a-P01-12	光周波数コムシンセサイザ/アナライザによるテラヘル ツマイクロ波生成と距離計測応用へ向けた基礎検討	○ 肥示 八翈,门山 返,塩田 廷俊	1.埼玉大学 理工研
	20a-P01-13	POFを用いたBOCDRにおける世界最高の空間分解能達	○越智 星河 ¹ , 菊地 啓太 ² , 鶴谷 柊人 ² , 李 ひよん ² . 水	1.横浜国大, 2.芝浦工大
		成に向けた検討	野洋輔1	
	20a-P01-14	ファイバ透過光スペクトルの電気領域での解析:光パワー		1.横浜国大, 2.フェデリコサンタマリア工大
	00 501 :-	依存性の調査	野洋輔1	1 # に同し 0 # 2 - 1
	20a-P01-15	電気領域での時間ゲートを用いた BOCDR の提案	○大畠 瑠己¹, 菊地 啓太², 尾崎 滉太¹, 李 ひよん², 水 野 洋輔¹	1. 傾浜国大, 2. 芝浦工大
	20a-P01-16	傾斜利用 BOCDR による遠方での歪分布測定の実証		1. 芝浦工大, 2. 横浜国大
	20a-P01-17		○ 鈴木 之大 ¹ , 水野 洋輔 ² , 李 ひよん ¹	1. 芝浦工大, 2. 横浜国大
		赤外分光計測のための毛細管流動による液交換システム	○加藤 翔 1 , 杉本 尚哉 1 , 上原 日和 2 , 時田 茂樹 3 , 合谷	
			賢治1	
	20a-P01-19	画像の歪みによる畳み込みニューラルネットワーク認識	○曽根 大地¹,熊谷 賢人¹,韋 冬¹	1.長岡技大
	20a-P01-20	への影響 フィルタによる敵対的生成ネットワークのステレオマッ	○上原 樹¹, 熊谷 賢人¹, 韋 冬¹	1.長岡技大
		チングへの影響の低減	0 (5) (1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
	20a-P01-21	チングへの影響の低減 図の表示スケール変化による畳み込みニューラルネット ワークを用いた白色干渉縞の有無検出における認識率の	○(B)竹石 遼平¹, 三浦 岳斗¹, 韋冬¹	1.長岡技大
	20a-P01-21	図の表示スケール変化による畳み込みニューラルネット	○(B)竹石 遼平 ¹ , 三浦 岳斗 ¹ , 韋 冬 ¹	1.長岡技大
/20(Fri.) 13:00 - 14:30	図の表示スケール変化による畳み込みニューラルネット ワークを用いた白色干渉縞の有無検出における認識率の 変化 口頭講演 (Oral Presentation) C31 会場(Room C31)		
) 13:00 - 14:30	図の表示スケール変化による畳み込みニューラルネット ワークを用いた白色干渉縞の有無検出における認識率の 変化 口頭講演 (Oral Presentation) C31会場(Room C31) 可変FSRブリルアン散乱分光計におけるスペクトル測定	○(M2)石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上	1.阪大院工, 2.産総研・阪大 先端フォトバイオ, 3
00) 13:00 - 14:30 20p-C31-1	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変FSRプリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発	○(M2)石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3}	1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命
00) 13:00 - 14:30 20p-C31-1	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31会場(Room C31)可変FSRブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光撮像装置による水分吸収下での高	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上 康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田	1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命
00 15) 13:00 - 14:30 20p-C31-1	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変FSRプリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発	○(M2)石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3}	1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命
:15) 13:00 - 14:30 20p-C31-1 20p-C31-2	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変 FSR ブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光撮像装置による水分吸収下での高感度可視化	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上 康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} ,川月 喜弘 ^{2,3} ,小野 浩司 ^{1,3} ○江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² ,	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研
00 15 30 45	20p-C31-2 20p-C31-3 20p-C31-4	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変 FSR ブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光振像装置による水分吸収下での高處度可視化 有害物質の遠隔検知に向けたLIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発	○ (M2) 石田 花菜 ^{1.2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1.2,3} , 井上康志 ^{1.2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1.3} , 坂本 盛嗣 ^{1.3} , 野田 浩平 ^{1.3} , 佐々木 友之 ^{1.3} , 川月 喜弘 ^{2.3} , 小野 浩司 ^{1.3} ○江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1.2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe
00 15 30 45	20p-C31-2 20p-C31-3	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変 FSR ブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光撮像装置による水分吸収下での高感度可視化有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発高層大気に分布する Ca原子・イオンの同時観測用二波長	○ (M2) 石田 花菜 ^{1.2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1.2,3} , 井上康志 ^{1.2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1.3} , 坂本 盛嗣 ^{1.3} , 野田浩平 ^{1.3} , 佐々木 友之 ^{1.3} , 川月 喜弘 ^{2.3} , 小野 浩司 ^{1.3} ○江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○ 梁川 智弘 ^{1.2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 入世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗	 版大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 長岡枝科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地の
00 15 30 45	20p-C31-2 20p-C31-3 20p-C31-4	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変 FSR ブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光振像装置による水分吸収下での高處度可視化 有害物質の遠隔検知に向けたLIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発	○ (M2) 石田 花菜 ^{1.2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1.2,3} , 井上康志 ^{1.2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1.3} , 坂本 盛嗣 ^{1.3} , 野田 浩平 ^{1.3} , 佐々木 友之 ^{1.3} , 川月 喜弘 ^{2.3} , 小野 浩司 ^{1.3} ○江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1.2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe
15 80 45 00 き) 13:00 - 14:30 20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 遅 20p-C31-5 20p-C31-6 ルツ全般 / Teral	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光撮像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計 ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca原子・イオンの同時観測用二波長 発振ライダーシステム 高次の相関ピークを用いた相関領域 LiDAR の高感度化 nertz technologies	○(M2)石田 花菜 ^{1.2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1.2.3} , 井上康志 ^{1.2.3} ○(M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1.3} , 坂本 盛嗣 ^{1.3} , 野田浩平 ^{1.3} , 佐々木 友之 ^{1.3} , 川月 喜弘 ^{2.3} , 小野 浩司 ^{1.3} ○江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○梁川 智弘 ^{1.2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○(M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1.2} , 桂川 眞幸 ^{1.2} , 江尻 省 ^{3.4} , 中村 卓司 ^{3.4}	1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地配 4. 総研大
00 15 30 45 00 き	20p-C31-2 20p-C31-3 20p-C31-4 20p-C31-5 20p-C31-6 ルツ全般 / Teral	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 ロ頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計 ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca原子・イオンの同時観測用二波長 発振ライダーシステム 高次の相関ビークを用いた相関領域 LiDAR の高感度化 lertz technologies ポスター講演 (Poster Presentation) P会場(Room P)	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} ○江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○ 梁川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 大世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生 4. 総研大 1. 横浜国大, 2. 東大
00 15 30 45 00 15 テラヘ /19(Thu	20p-C31-2 20p-C31-3 20p-C31-4 建 20p-C31-5 20p-C31-6 ルツ全般 / Teral は, 9:30 - 11:30 19a-P05-1	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変FSR ブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム 高次の相関ビークを用いた相関領域 LiDAR の高感度化 では Zechnologies ポスター講演 (Poster Presentation) P会場(Room P) 3μ m厚 InGaSb/AlInGaSb THz-QCL 構造の MBE 成長	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} ○江藤 修三 ¹ , 北護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生 4. 総研大 1. 横浜国大, 2. 東大
15 30 45 00 歩 15 テラヘ /19(Thu	20p-C31-2 20p-C31-3 20p-C31-4 20p-C31-5 20p-C31-6 ルツ全般 / Teral	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 ロ頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計 ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca原子・イオンの同時観測用二波長 発振ライダーシステム 高次の相関ビークを用いた相関領域 LiDAR の高感度化 lertz technologies ポスター講演 (Poster Presentation) P会場(Room P)	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} ○江藤 修三 ¹ , 北護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生 4. 総研大 1. 横浜国大, 2. 東大
15 30 45 00 き フラヘ /19(Thu	20p-C31-2 20p-C31-3 20p-C31-4 建 20p-C31-5 20p-C31-6 ルツ全般 / Teral は, 9:30 - 11:30 19a-P05-1	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変 FSR ブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム 高次の相関ビークを用いた相関領域 LiDARの高感度化 では technologies ポスター講演 (Poster Presentation) P 会場(Room P)3 μ m 厚 InGaSb/AlInGaSb THz-QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} ,川月 喜弘 ^{2,3} ,小野 浩司 ^{1,3} ○江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 入世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 徳彦 ¹ , 寶迫 厳 ¹ ○ Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd.
15 30 45 00 き フラヘ /19(Thu	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 遅 20p-C31-5 20p-C31-6 ルツ全般 / Teral 1.) 9:30 - 11:30 19a-P05-1 E 19a-P05-2	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光撮像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ビークを用いた相関領域 LiDARの高感度化では technologics ボスター講演 (Poster Presentation) P 会場(Room P)3 μ m 厚 In Ga Sb/AlIn Ga Sb THz - QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz 時間領域分光用光源としての戻り光を持つ利得変調 半導体レーザー	○ (M2) 石田 花菜 ^{1.2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1.2,3} , 井上康志 ^{1.2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1.3} , 坂本 盛嗣 ^{1.3} , 野田浩平 ^{1.3} , 佐々木 友之 ^{1.3} , 川月 喜弘 ^{2.3} , 小野 浩司 ^{1.3} ○江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○梁川 智弘 ^{1.2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 入世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1.2} , 桂川 眞幸 ^{1.2} , 江尻 省 ^{3.4} , 中村 卓司 ^{3.4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1.2} , 水野 洋輔 ¹ ○安田 浩朗 ¹ , 関根 徳彦 ¹ , 寶迫 嚴 ¹ ○ Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 楠 海侑 ¹ , 和田 健司 ² , 松山 哲也 ¹ , 岡本 晃一 ¹ , 桒島 史欣 ³	1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大
00 15 30 45 00 15 テラヘ /19(Thu	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 遅 20p-C31-5 20p-C31-6 ルッ全般 / Teral 1、9:30 - 11:30 19a-P05-1 E 19a-P05-2	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光撮像装置による水分吸収下での高感度可視化有害物質の遠隔検知に向けたLIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ビークを用いた相関領域 LiDARの高感度化では technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSb/AlInGaSb THz-QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz時間領域分光用光源としての戻り光を持つ利得変調半導体レーザー反射型構造によるコヒーレント結合を利用した高強度磁	○ (M2) 石田 花菜 ^{1.2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1.2,3} , 井上康志 ^{1.2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1.3} , 坂本 盛嗣 ^{1.3} , 野田浩平 ^{1.3} , 佐々木 友之 ^{1.3} , 川月 喜弘 ^{2.3} , 小野 浩司 ^{1.3} ○江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○梁川 智弘 ^{1.2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1.2} , 桂川 眞幸 ^{1.2} , 江尻 省 ^{3.4} , 中村 卓司 ^{3.4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1.2} , 水野 洋輔 ¹ ○安田 浩朗 ¹ , 開根 徳彦 ¹ , 寶迫 嚴 ¹ ○ Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 禰 海侑 ¹ , 和田 健司 ² , 松山 哲也 ¹ , 阿本 晃一 ¹ , 桒島 史欣 ³	1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大
15 30 45 00 歩 15 テラヘ /19(Thu	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 遅 20p-C31-5 20p-C31-6 ルツ全般 / Teral 1.) 9:30 - 11:30 19a-P05-1 E 19a-P05-2	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光撮像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ビークを用いた相関領域 LiDARの高感度化では technologics ボスター講演 (Poster Presentation) P 会場(Room P)3 μ m 厚 In Ga Sb/AlIn Ga Sb THz - QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz 時間領域分光用光源としての戻り光を持つ利得変調 半導体レーザー	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} ○ 江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 食橋 慎理 ¹ , 余語 覚文 ² , 入世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 徳彦 ¹ , 寶迫 厳 ¹ ○ Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 楠 海侑 ¹ , 和田 健司 ² , 松山 哲也 ¹ , 阿本 晃一 ¹ , 秦島 史欣 ³ ○ (M1) 饑崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ ,	1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大
15 30 45 00 歩 15 テラヘ /19(Thu	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 遅 20p-C31-5 20p-C31-6 ルツ全般 / Teral 1.) 9:30 - 11:30 19a-P05-1 E 19a-P05-2	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変FSR ブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化有害物質の遠隔検知に向けたLIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム。 高次の相関ビークを用いた相関領域LiDARの高感度化では technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSb/AlInGaSb THz-QCL構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz 時間領域分光用光源としての戻り光を持つ利得変調半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性外超薄膜テラヘルツ光源の開発	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} ○江藤 修三 ¹ , 北護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 唉也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 徳彦 ¹ , 寶迫 嚴 ¹ ○ Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 禰 海侑 ¹ , 和田 健司 ² , 松山 哲也 ¹ , 岡本 晃一 ¹ , 莱島 史欣 ³ ○ (M1) 磯崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大 1. 阪大レーザー研
00 15 30 45 00 15 テラヘ /19(Thu	20p-C31-2 20p-C31-3 20p-C31-4 達 20p-C31-5 20p-C31-6 ルツ全般 / Teral は、9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光撮像装置による水分吸収下での高感度可視化有害物質の遠隔検知に向けたLIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ビークを用いた相関領域 LiDARの高感度化では technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSb/AlInGaSb THz-QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz時間領域分光用光源としての戻り光を持つ利得変調半導体レーザー反射型構造によるコヒーレント結合を利用した高強度磁	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} ○江藤 修三 ¹ , 北護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 唉也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 徳彦 ¹ , 寶迫 嚴 ¹ ○ Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 禰 海侑 ¹ , 和田 健司 ² , 松山 哲也 ¹ , 岡本 晃一 ¹ , 莱島 史欣 ³ ○ (M1) 磯崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹	1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大
00 15 30 45 00 15 テラヘ /19(Thu	20p-C31-2 20p-C31-3 20p-C31-4 達 20p-C31-5 20p-C31-6 ルツ全般 / Teral は、9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変 FSR ブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光撮像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca原子・イオンの同時観測用二波長発振うイダーシステム 高次の相関ビークを用いた相関領域 LiDAR の高感度化 ertz technologies ボスター講演 (Poster Presentation) P 会場(Room P)3 μ m厚 InGaSb/AlInGaSb THz-QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz 時間領域分光用光源としての戻り光を持つ利得変調 半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLN スラブ導波路によるテラヘルツ光発生の励起波長 依存性 広帯域テラヘルツバルス励起による気相分子からの自由	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} ,川月 喜弘 ^{2,3} ,小野 浩司 ^{1,3} ○ 江藤 修三 ¹ , 比渡 貴之 ¹ , 大石 柘嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 人世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 柱川 真幸 ^{1,2} , 江尻 省 ^{2,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 徳彦 ¹ , 寶迫 巌 ¹ ○ Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 磯崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大 1. 阪大レーザー研
15 30 45 00 き フラヘ /19(Thu	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 遅 20p-C31-5 20p-C31-6 ルツ全般 / Teral 1.) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-4	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光撮像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けたLIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ビークを用いた相関領域 LiDARの高感度化では technologies ボスター講演 (Poster Presentation) P 会場(Room P)3 μ m 厚 In Ga Sb/AlIn Ga Sb THz - QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz 時間領域分光用光源としての戻り光を持つ利得変調半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLN スラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツバルス励起による気相分子からの自由誘導減衰の高分解能検出	○ (M2) 石田 花菜 ^{1.2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1.2,3} , 井上康志 ^{1.2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} ,川月 喜弘 ^{2,3} ,小野 浩司 ^{1,3} ○ 江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○ 梁川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 入世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 虞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 德彦 ¹ , 寶迫 嚴 ¹ ○ Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 稱 海侑 ¹ , 和田 健司 ² , 松山 哲也 ¹ , 岡本 晃一 ¹ , 桒島 史欣 ³ ○ (M1) 碳崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹ ○ 广本 直 ¹ , 林 伸一郎 ¹ , 関根 徳彦 ¹ ○ 古屋 岳 ¹ , 北原 英明 ¹ , 佐々木 祐奈 ² , 谷 正彦 ¹	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生 4. 総研大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大 1. 阪大レーザー研 1. 情報機構 1. 福井大遠赤セ, 2. 福井大工
00 15 30 45 00 15 テラヘ /19(Thu	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 遅 20p-C31-5 20p-C31-6 ルツ全般 / Teral ル) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca 原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ピークを用いた相関領域 LiDARの高感度化 では technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSh/AlInGaSb THz-QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz時間領域分光用光源としての戻り光を持つ利得変調 半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLN スラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツバルス励起による気相分子からの自由誘導減衰の高分解能検出 表面形態を変化させた3C-SiC/Siのテラヘルツ波透過特	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} ○ 江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 徳彦 ¹ , 賓迫 嚴 ¹ ○ (M1) 横 高相 ¹ , 和田 健司 ² , 松山 哲也 ¹ , 阿本 晃一 ¹ , 來島 史欣 ³ ○ (M1) 磯崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹ ○ 岸本 直 ¹ , 林 伸一郎 ¹ , 関根 徳彦 ¹ ○ 古屋 岳 ¹ , 北原 英明 ¹ , 佐々木 祐奈 ² , 谷 正彦 ¹ ○ 木下 雅貴 ¹ , 小山田 賢志朗 ¹ , 鎌田 香織 ² , 齊藤 敦 ¹ ,	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生 4. 総研大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大 1. 阪大レーザー研 1. 情報機構 1. 福井大遠赤セ, 2. 福井大工
00 15 30 45 00 15 テラヘ /19(Thu	20p-C31-2 20p-C31-3 20p-C31-4 20p-C31-5 20p-C31-6 ルツ全般 / Teral 1.) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-4	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ビークを用いた相関領域 LiDAR の高感度化 lertz technologies ポスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 In GaSb/AlIn GaSb THz-QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz 時間領域分光用光源としての戻り光を持つ利得変調半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLNスラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツバルス励起による気相分子からの自由誘導減衰の高分解能検出表面形態を変化させた 3C-SiC/Siのテラヘルツ波透過特性	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} ○ 江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 徳彦 ¹ , 寶迫 厳 ¹ ○ Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 楠 海侑 ¹ , 和田 健司 ² , 松山 哲也 ¹ , 阿本 泉 史欣 ³ ○ (M1) 磯崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹ ○ 岸本 直 ¹ , 林 伸一郎 ¹ , 関根 徳彦 ¹ ○ 古屋 岳 ¹ , 北原 英明 ¹ , 佐々木 祐奈 ² , 谷 正彦 ¹ ○ 木下 雅貴 ¹ , 小山田 賢志朗 ¹ , 鎌田 香織 ² , 齊藤 敦 ¹ , 成田 克 ¹	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生, 2. 様が円大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪大レーザー研 1. 情通機構 1. 福井大遠赤セ, 2. 福井大工 1. 山形大工, 2. 防衛医科大
00 15 30 45 00 15 テラヘ /19(Thu	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 遅 20p-C31-5 20p-C31-6 ルツ全般 / Teral 1.) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-4	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca 原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ピークを用いた相関領域 LiDARの高感度化 では technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSh/AlInGaSb THz-QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz時間領域分光用光源としての戻り光を持つ利得変調 半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLN スラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツバルス励起による気相分子からの自由誘導減衰の高分解能検出 表面形態を変化させた3C-SiC/Siのテラヘルツ波透過特	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} ○ 江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 徳彦 ¹ , 賓迫 嚴 ¹ ○ (M1) 横 高相 ¹ , 和田 健司 ² , 松山 哲也 ¹ , 阿本 晃一 ¹ , 來島 史欣 ³ ○ (M1) 磯崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹ ○ 岸本 直 ¹ , 林 伸一郎 ¹ , 関根 徳彦 ¹ ○ 古屋 岳 ¹ , 北原 英明 ¹ , 佐々木 祐奈 ² , 谷 正彦 ¹ ○ 木下 雅貴 ¹ , 小山田 賢志朗 ¹ , 鎌田 香織 ² , 齊藤 敦 ¹ ,	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生, 2. 様が円大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪大レーザー研 1. 情通機構 1. 福井大遠赤セ, 2. 福井大工 1. 山形大工, 2. 防衛医科大
15 30 45 00 歩 15 テラヘ /19(Thu	20p-C31-2 20p-C31-3 20p-C31-4 20p-C31-5 20p-C31-6 ルツ全般 / Teral 1.) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-4	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 コ頭講演 (Oral Presentation) C31 会場(Room C31) 可変FSRブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化有害物質の遠隔検知に向けたLIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ピークを用いた相関領域LiDARの高感度化では technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSb/AlInGaSb THz-QCL構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz 時間領域分光用光源としての戻り光を持つ利得変調半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLNスラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツバルス励起による気相分子からの自由誘導減衰の高分解能検出 表面形態を変化させた3C-SiC/Siのテラヘルツ光透過特性	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} ,川月 喜弘 ^{2,3} ,小野 浩司 ^{1,3} ○ 江藤 修三 ¹ , 北渡 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 徳彦 ¹ , 寶迫 嚴 ¹ ○ (Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 磯崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹ ○ 广本 直 ¹ , 林 伸一郎 ¹ , 関根 徳彦 ¹ ○ 古屋 岳 ¹ , 北原 英明 ¹ , 佐々木 祐奈 ² , 谷 正彦 ¹ ○ 木下 雅貴 ¹ , 小山田 賢志朗 ¹ , 鎌田 香織 ² , 齊藤 敦 ¹ , 成田 克 ¹ ○ 大内 敦史 ¹ , 中村 美晴 ¹ , 木村 亮太 ¹ , トリバティ サ	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生, 2. 様が円大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪大レーザー研 1. 情通機構 1. 福井大遠赤セ, 2. 福井大工 1. 山形大工, 2. 防衛医科大
15 30 45 00 歩 15 テラヘ /19(Thu	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 達 20p-C31-5 20p-C31-6 ルツ全般 / Teral ル) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-4 19a-P05-6 19a-P05-7	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変FSR ブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化有害物質の遠隔検知に向けたLIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム。 高次の相関ビークを用いた相関領域 LiDARの高感度化では technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSb/AlInGaSb THz-QCL 構造の MBE 成長Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz 時間領域分光用光源としての戻り光を持つ利得変調半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLNスラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツパルス励起による気相分子からの自由誘導減衰の高分解能検出表面形態を変化させた3C-SiC/Siのテラヘルツ光透過特性金属らせんマイクロ構造を用いたテラヘルツ光学素子の開発	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} ,川月 喜弘 ^{2,3} ,小野 浩司 ^{1,3} ○江藤 修三 ¹ , 比護 貴之 ¹ , 大石 柘嗣 ¹ ○染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 入世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 虞幸 ^{1,2} , 江尻 省 ^{3,4} 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○安田 浩朗 ¹ , 開根 徳彦 ¹ , 寶迫 厳 ¹ ○ Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 横海侑 ¹ , 和田 健司 ² , 松山 哲也 ¹ , 岡本 晃一 ¹ , 来島 史欣 ³ ○ (M1) 磯崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹ ○岸本 直 ¹ , 林 伸一郎 ¹ , 関根 徳彦 ¹ ○古屋 岳 ¹ , 北原 英明 ¹ , 佐々木 祐奈 ² , 谷 正彦 ¹ ○木下 雅貴 ¹ , 小山田 賢志朗 ¹ , 鎌田 香織 ² , 齊藤 敦 ¹ , 成田 克 ¹ ○大内 敦史 ¹ , 中村 美晴 ¹ , 木村 亮太 ¹ , トリバティ サ ¹ ジ ¹ ○ 佐澤 魁斗 ¹ , 鈴木 健仁 ¹ ○ (M2) 伊郷 祐馬 ¹ , 滝川 稜人 ¹ , 大道 英二 ¹ , 太田	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地砂 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大 1. 阪大レーザー研 1. 情通機構 1. 福井大遠赤セ, 2. 福井大工 1. 山形大工, 2. 防衛医科大 1. 静岡大院工
:15 :30 :45 :00 単:15 :7ラヘ/19(Thu	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 選 20p-C31-5 20p-C31-5 20p-C31-6 ルツ全般 / Teral 1.) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-4 19a-P05-5 19a-P05-6 19a-P05-7 19a-P05-7	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光撮像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca 原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ピークを用いた相関領域 LiDARの高感度化 では technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSb/AlInGaSb THz-QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz時間領域分光用光源としての戻り光を持つ利得変調 半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLN スラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツボルス励起による気相分子からの自由誘導減衰の高分解能検出 表面形態を変化させた3C-SiC/Siのテラヘルツ波透過特性 金属らせんマイクロ構造を用いたテラヘルツ光学素子の開発 0.85 THz 帯短焦点メタレンズアンテナの設計 広帯域テラヘルツ振動磁場増強アンテナの特性評価	○ (M2) 石田 花菜 1.2, 玉城 凜野 1, 石飛 秀和 1.2.3, 井上康志 1.2.3 ○ (M2) 清水 智哉 1, 鈴木 雅人 1.3, 坂本 盛嗣 1.3, 野田 浩平 1.3, 佐々木 友之 1.3, 川月 喜弘 2.3, 小野 浩司 1.3 ○ 江藤 修三 1, 比護 貴之 1, 大石 祐嗣 1 ○ 染川 智弘 1.2, 松田 晶平 1, 倉橋 慎理 1, 余語 覚文 2, 人世 宏明 3 ○ (M2) 小林 蒼汰 1, 橋本 彩香 1, 三好 咲也子 1, 大饗 千彰 1.2, 柱川 眞幸 1.2, 江尻 省 8.4, 中村 卓司 3.4 ○ (B) 吉田 総司 1, 清住 空樹 1.2, 水野 洋輔 1 ○ 安田 浩朗 1, 関根 徳彦 1, 寶迫 厳 1 ○ Alka Singh 1, Yosuke Nishida 1, Bezhko Mikhail 1, Kazuisao Tsuruda 1 ○ (M1) 輔 海侑 1, 和田 健司 2, 松山 哲也 1, 岡本 晃一 1, 桒島 史欣 3 ○ (M1) 磯崎 慎也 1, 戴 若辰 1, 張 家銘 1, 松永 大陽 1, 西谷 彰二郎 1, 加藤 康作 1, V.C. Agulto 1, 西谷 幹彦 1, 吉村 政志 1, 中嶋 誠 1 ○ 岸本 直 1, 林 伸一郎 1, 関根 徳彦 1 ○ 古屋 岳 1, 北原 英明 1, 佐々木 祐奈 2, 谷 正彦 1 ○ 木下 雅貴 1, 小山田 賢志朗 1, 鎌田 香織 2, 齊藤 敦 1, 成田 克 1 ○ 大内 敦史 1, 中村 美晴 1, 木村 亮太 1, トリバティ サロジ 1 ○ ・	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪大レーザー研 1. 情通機構 1. 福井大遠赤セ, 2. 福井大工 1. 山形大工, 2. 防衛医科大 1. 静岡大院工 1. 農工大 1. 神戸大院理, 2. 神戸大分子フォトセ
:15 :30 :45 :00 単:15 :7ラヘ/19(Thu	20p-C31-2 20p-C31-3 20p-C31-4 20p-C31-5 20p-C31-6 ルツ全般 / Teral 1.) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-6 19a-P05-6 19a-P05-7 19a-P05-7 19a-P05-8	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca 原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ビークを用いた相関領域 LiDARの高感度化 では technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSh/AlInGaSb THz-QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz 時間領域分光用光源としての戻り光を持つ利得変調 半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLN スラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツバルス励起による気相分子からの自由誘導減衰の高分解能検出 表面形態を変化させた 3C-SiC/Siのテラヘルツ波透過特性 金属らせんマイクロ構造を用いたテラヘルツ光学素子の開発 0.85 THz 帯短焦点メタレンズアンテナの設計 広帯域テラヘルツ振動磁場増強アンテナの特性評価 テラヘルツ帯反射防止構造の断面形状の最適化	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3}	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大 1. 阪大レーザー研 1. 情通機構 1. 福井大遠赤セ, 2. 福井大工 1. 山形大工, 2. 防衛医科大 1. 静岡大院工 1. 農工大 1. 神戸大院理, 2. 神戸大分子フォトセ 1. 東京理科大先進工
:15 :30 :45 :00 単:15 :7ラヘ/19(Thu	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 選 20p-C31-5 20p-C31-5 20p-C31-6 ルツ全般 / Teral 1.) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-4 19a-P05-5 19a-P05-6 19a-P05-7 19a-P05-7	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光撮像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca 原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ピークを用いた相関領域 LiDARの高感度化 では technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSb/AlInGaSb THz-QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz時間領域分光用光源としての戻り光を持つ利得変調半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLN スラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツボルス励起による気相分子からの自由誘導減衰の高分解能検出表面形態を変化させた3C-SiC/Siのテラヘルツ波透過特性 金属らせんマイクロ構造を用いたテラヘルツ光学素子の開発	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} ,川月 喜弘 ^{2,3} ,小野 浩司 ^{1,3} ○ 江藤 修三 ¹ , 北護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 徳彦 ¹ , 寶迫 厳 ¹ ○ (Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 穢崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹ ○ 广本 直 ¹ , 林 伸一郎 ¹ , 関根 徳彦 ¹ ○ 古屋 岳 ¹ , 北原 英明 ¹ , 佐々木 祐奈 ² , 谷 正彦 ¹ ○ 木下 雅貴 ¹ , 小山田 賢志朗 ¹ , 鎌田 香織 ² , 齊藤 敦 ¹ , 成田 克 ¹ ○ 大内 敦史 ¹ , 中村 美晴 ¹ , 木村 亮太 ¹ , トリバティ サロジ ¹ ○ 総澤 魁斗 ¹ , 鈴木 健仁 ¹ ○ (M2) 伊郷 祐馬 ¹ , 滝川 稜人 ¹ , 大道 英二 ¹ , 太田 仁 ^{1,2} ○ 小宮 利通 ¹ , 余希 ¹ , 宮島 顕祐 ¹ ○ 島貫 慎戸 郁 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪大レーザー研 1. 情通機構 1. 福井大遠赤セ, 2. 福井大工 1. 山形大工, 2. 防衛医科大 1. 静岡大院工 1. 農工大 1. 神戸大院理, 2. 神戸大分子フォトセ
:15 :30 :45 :00	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 達 20p-C31-5 20p-C31-6 ルツ全般 / Teral は、9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-4 19a-P05-5 19a-P05-6 19a-P05-7 19a-P05-7 19a-P05-9 19a-P05-10 19a-P05-11	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変FSRブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化有害物質の遠隔検知に向けたLIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ビークを用いた相関領域LiDARの高感度化ではtete technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSb/AlInGaSb THz-QCL構造のMBE成長Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz時間領域分光用光源としての戻り光を持つ利得変調半導体レーザー反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLNスラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツボルス励起による気相分子からの自由誘導減衰の高分解能検出表面形態を変化させた3C-SiC/Siのテラヘルツ波透過特性 金属らせんマイクロ構造を用いたテラヘルツ光光素子の開発 0.85 THz 帯短焦点メタレンズアンテナの設計 広帯域テラヘルツ振動磁場増強アンテナの特性評価 テラヘルツ帯反射防止構造の断面形状の最適化電圧駆動テラヘルツ偏波変換素子の設計に関する研究	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} ,川月 喜弘 ^{2,3} ,小野 浩司 ^{1,3} ○ 江藤 修三 ¹ , 北護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 徳彦 ¹ , 寶迫 嚴 ¹ ○ (Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 礦 海侑 ¹ , 和田 健司 ² , 松山 哲也 ¹ , 岡本 晃一 ¹ , 莱島 史欣 ³ ○ (M1) 磯崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹ ○ 广本 直 ¹ , 林 伸一郎 ¹ , 関根 徳彦 ¹ ○ 古屋 岳 ¹ , 北原 英明 ¹ , 佐々木 祐奈 ² , 谷 正彦 ¹ ○ 木下 雅貴 ¹ , 小山田 賢志朗 ¹ , 鎌田 香織 ² , 齊藤 敦 ¹ , 成田 克 ¹ ○ 大内 敦史 ¹ , 中村 美晴 ¹ , 木村 亮太 ¹ , トリバティ サロジ ¹ ○ 総澤 魁斗 ¹ , 鈴木 健仁 ¹ ○ (M2) 伊郷 祐馬 ¹ , 湾川 稜人 ¹ , 大道 英二 ¹ , 太田 仁 ^{1,2} ○ 小宮 利通 ¹ , 余 希 ¹ , 宮鳥 顕祐 ¹ ○ 鳥質 慎戸 郁 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 伊藤 桂一 ^{2,3} , 小野 浩司 ^{1,3} , 6本 木木 人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 伊藤 桂一 ^{2,4} , 小野 浩司 ^{1,3} , 6本 木木 大之 ^{1,5}	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生, 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大 1. 阪大レーザー研 1. 情通機構 1. 福井大遠赤セ, 2. 福井大工 1. 山形大工, 2. 防衛医科大 1. 静岡大院工 1. 農工大 1. 神戸大院理, 2. 神戸大分子フォトセ 1. 東京理科大先進工 1. 長岡技科大工, 2. 秋田高専, 3. CREST, JST
00 15 30 45 00 15 テラヘ /19(Thu	20p-C31-2 20p-C31-3 20p-C31-4 20p-C31-5 20p-C31-6 ルツ全般 / Teral 1.) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-6 19a-P05-6 19a-P05-7 19a-P05-7 19a-P05-8	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変FSRブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化有害物質の遠隔検知に向けたLIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ビークを用いた相関領域LiDARの高感度化ではtete technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSb/AlInGaSb THz-QCL構造のMBE成長Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz時間領域分光用光源としての戻り光を持つ利得変調半導体レーザー反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLNスラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツボルス励起による気相分子からの自由誘導減衰の高分解能検出表面形態を変化させた3C-SiC/Siのテラヘルツ波透過特性 金属らせんマイクロ構造を用いたテラヘルツ光光素子の開発 0.85 THz 帯短焦点メタレンズアンテナの設計 広帯域テラヘルツ振動磁場増強アンテナの特性評価 テラヘルツ帯反射防止構造の断面形状の最適化電圧駆動テラヘルツ偏波変換素子の設計に関する研究	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○ (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} ,川月 喜弘 ^{2,3} ,小野 浩司 ^{1,3} ○ 江藤 修三 ¹ , 北護 貴之 ¹ , 大石 祐嗣 ¹ ○ 染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○ 安田 浩朗 ¹ , 関根 徳彦 ¹ , 寶迫 厳 ¹ ○ (Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 穢崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹ ○ 广本 直 ¹ , 林 伸一郎 ¹ , 関根 徳彦 ¹ ○ 古屋 岳 ¹ , 北原 英明 ¹ , 佐々木 祐奈 ² , 谷 正彦 ¹ ○ 木下 雅貴 ¹ , 小山田 賢志朗 ¹ , 鎌田 香織 ² , 齊藤 敦 ¹ , 成田 克 ¹ ○ 大内 敦史 ¹ , 中村 美晴 ¹ , 木村 亮太 ¹ , トリバティ サロジ ¹ ○ 総澤 魁斗 ¹ , 鈴木 健仁 ¹ ○ (M2) 伊郷 祐馬 ¹ , 滝川 稜人 ¹ , 大道 英二 ¹ , 太田 仁 ^{1,2} ○ 小宮 利通 ¹ , 余希 ¹ , 宮島 顕祐 ¹ ○ 島貫 慎戸 郁 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研生, 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大 1. 阪大レーザー研 1. 情通機構 1. 福井大遠赤セ, 2. 福井大工 1. 山形大工, 2. 防衛医科大 1. 静岡大院工 1. 農工大 1. 神戸大院理, 2. 神戸大分子フォトセ 1. 東京理科大先進工 1. 長岡技科大工, 2. 秋田高専, 3. CREST, JST
115 330 445 45 15 テラヘ	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 達 20p-C31-5 20p-C31-6 ルン全般 / Teral L) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-4 19a-P05-6 19a-P05-6 19a-P05-7 19a-P05-8 19a-P05-9 19a-P05-10 19a-P05-11 19a-P05-12	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変FSR ブリルアン散乱分光計におけるスペクトル測定安定化のためのフィードバックシステムの開発近赤外偏光走査型偏光振像装置による水分吸収下での高感度可視化有害物質の遠隔検知に向けたLIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発高層大気に分布する Ca原子・イオンの同時観測用二波長発振ライダーシステム。高次の相関ビークを用いた相関領域LiDARの高感度化では technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSb/AlInGaSb THz-QCL構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz 時間領域分光用光源としての戻り光を持つ利得変調半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLNスラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツボルス励起による気相分子からの自由誘導減衰の高分解能検出表面形態を変化させた3C-SiC/Siのテラヘルツ波透過特性金属らせんマイクロ構造を用いたテラヘルツ光透過特性金属らせんマイクロ構造を用いたテラヘルツ光光素子の開発 0.85 THz 帯短焦点メタレンズアンテナの設計 広帯域テラヘルツ振動磁場増強アンテナの特性評価テラヘルツ振動磁場増強アンテナの特性評価テラヘルツ振動磁場増強アンテナの特性評価	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} ,川月 喜弘 ^{2,3} ,小野 浩司 ^{1,3} ○江藤 修三 ¹ , 比渡 貴之 ¹ , 大石 祐嗣 ¹ ○染川 智弘 ^{1,2} 秋田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 人世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 真幸 ^{1,2} , 江尻 省 ^{2,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○安田 浩朗 ¹ , 開根 徳彦 ¹ , 寶迫 嚴 ¹ ○ Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 磯崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹ ○岸本 直 ¹ , 林 伸一郎 ¹ , 関根 徳彦 ¹ ○ 古屋 岳 ¹ , 北原 英明 ¹ , 佐々木 祐奈 ² , 合 正彦 ¹ ○ 木 雅貴 ¹ , 小山田 賢志朗 ¹ , 鎌田 香織 ² , 齊藤 敦 ¹ , 成田 克 ¹ ○大内 敦史 ¹ , 中村 美晴 ¹ , 木村 亮太 ¹ , トリバティ サロジ ¹ ○ 蛇澤 魁斗 ¹ , 鈴木 健仁 ¹ ○ (M2) 伊郷 祐馬 ¹ , 湾川 稜人 ¹ , 大道 英二 ¹ , 太田 仁 ^{1,2} ○ (M2) 湯原 養明 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 伊藤 桂 ^{-2,3} , 小野 浩司 ^{1,3} , 佐々木 友之 ^{1,3} ○ (M2) 湯原 義卿 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 伊藤 桂 ^{-2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 義卿 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 義卿 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 義卿 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 義卿 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 義卿 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 ^{1,3} , 川月 喜弘 ^{2,4} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 ^{1,3} , 川月 宮弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太 大 之 ^{1,3} ○ (M2) 湯原 ^{1,3} , 川月 宮弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大 1. 阪大レーザー研 1. 情通機構 1. 福井大遠赤セ, 2. 福井大工 1. 山形大工, 2. 防衛医科大 1. 静岡大院工 1. 農工大 1. 神戸大院理, 2. 神戸大分子フォトセ 1. 東京理科大先進工 1. 長岡技科大工, 2. 秋田高専, 3. CREST, JST
115	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 達 20p-C31-5 20p-C31-6 ルン全般 / Teral 1) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-5 19a-P05-6 19a-P05-7 19a-P05-7 19a-P05-7 19a-P05-11 19a-P05-11 19a-P05-12 19a-P05-13 .) 13:30 - 18:15 19p-A34-1	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31) 可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光撮像装置による水分吸収下での高感度可視化 有害物質の遠隔検知に向けた LIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca 原子・イオンの同時観測用二波長発振ライダーシステム高次の相関ピークを用いた相関領域 LiDARの高感度化 では technologies ボスター講演 (Poster Presentation) P会場(Room P)3 μ m厚 InGaSb/AlInGaSb THz-QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz時間領域分光用光源としての戻り光を持つ利得変調 半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLN スラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツバルス励起による気相分子からの自由誘導減衰の高分解能検出 表面形態を変化させた3C-SiC/Siのテラヘルツ波透過特性 金属らせんマイクロ構造を用いたテラヘルツ波透過特性 金属らせんマイクロ構造を用いたテラヘルツ光学素子の開発 0.85 THz 帯短焦点メタレンズアンテナの設計 広帯域テラヘルツ振動磁場増強アンテナの特性評価 テラヘルツ帯反射防止構造の断面形状の最適化 電圧駆動テラヘルツ振動磁場増強アンテナの特性評価 テラヘルツ帯反射防止構造の断面形状の最適化 電圧駆動テラヘルツ振動磁場増強アンテナの設計に関する研究 中間配向膜を有する液晶素子のテラヘルツ領域での複屈 折に関する研究	○(M2)石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} ○(M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} ○江藤 修三 ¹ , 比護 貴之 ¹ , 大石 祐嗣 ¹ ○染川 智弘 ^{1,2} , 松田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³ ○(M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 眞幸 ^{1,2} , 江尻 省 ^{3,4} , 中村 卓司 ^{3,4} ○(B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○安田 浩朗 ¹ , 関根 徳彦 ¹ , 賓迫 嚴 ¹ ○(M1) 横 海信 ¹ , 和田 健司 ² , 松山 哲也 ¹ , 岡本 晃一 ¹ , 來島 史欣 ³ ○(M1) 磯崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 古村 政志 ¹ , 中嶋 誠 ¹ ○广本 直 ¹ , 水 伸一郎 ¹ , 関根 徳彦 ¹ ○古屋 岳 ¹ , 北原 英明 ¹ , 佐々木 祐奈 ² , 谷 正彦 ¹ ○木下 雅貴 ¹ , 小山田 賢志朗 ¹ , 鎌田 香織 ² , 齊藤 敦 ¹ , 成田 克 ¹ ○大內 敦史 ¹ , 中村 美晴 ¹ , 木村 亮太 ¹ , トリバティ サロジ ¹ □ ジ ¹ □ シ ¹ □ 外宮 利通 ¹ , 余 希 ¹ , 宮島 顕祐 ¹ ○ (M2) 伊郷 祐馬 ¹ , 滝川 稜人 ¹ , 大道 英二 ¹ , 太田 仁 ^{1,2} ○ 小宮 利通 ¹ , 余 希 ¹ , 宮島 顕祐 ¹ ○ 鳥質 慎戸郁 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 伊藤 桂一 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 友之 ^{1,3} ○ (M2) 湯原 義輝 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 伊藤 桂一 ^{2,3} , 小野 浩司 ^{1,3} , 佐々 木 友之 ^{1,3} ○ 石月 秀貴 ^{1,2} , 平等 拓範 ^{1,2}	1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CERe 1. 電通大基盤理工, 2. 電通大量子センター, 3. 極地研 4. 総研大 1. 横浜国大, 2. 東大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大 1. 阪大レーザー研 1. 情通機構 1. 福井大遠赤セ, 2. 福井大工 1. 山形大工, 2. 防衛医科大 1. 静岡大院工 1. 農工大 1. 神戸大院理, 2. 神戸大分子フォトセ 1. 東京理科大先進工 1. 長岡技科大工, 2. 秋田高専, 3. CREST, JST 1. 長岡技科大工, 2. 兵庫県立大, 3. CREST, JST 1. 長岡技科大工, 2. 兵庫県立大, 3. CREST, JST
:15 :15 :15 :15 :15 :15 :15 :17 :17 :17 :17 :17 :17 :17 :17 :17 :17	20p-C31-1 20p-C31-2 20p-C31-3 20p-C31-4 達 20p-C31-5 20p-C31-6 ルン全般 / Teral ル) 9:30 - 11:30 19a-P05-1 E 19a-P05-2 19a-P05-3 19a-P05-4 19a-P05-6 19a-P05-7 19a-P05-7 19a-P05-7 19a-P05-9 19a-P05-10 19a-P05-11 19a-P05-12 19a-P05-13 .) 13:30 - 18:15	図の表示スケール変化による畳み込みニューラルネットワークを用いた白色干渉縞の有無検出における認識率の変化 口頭講演 (Oral Presentation) C31 会場(Room C31)可変 FSR ブリルアン散乱分光計におけるスペクトル測定 安定化のためのフィードバックシステムの開発 近赤外偏光走査型偏光撮像装置による水分吸収下での高 感度可視化 有害物質の遠隔検知に向けたLIDARシステムの設計ラマンライダーによるブラスチックの遠隔計測技術の開発 高層大気に分布する Ca原子・イオンの同時観測用二波長 発振 クイーシステム 高速 (Room P) 3 μ m 厚 In GaSb/All In GaSb THz - QCL 構造の MBE 成長 Resonant Tunnelling Diodes THz Oscillator: above room temperature characterization THz 時間領域分光用光源としての戻り光を持つ利得変調 半導体レーザー 反射型構造によるコヒーレント結合を利用した高強度磁性体超薄膜テラヘルツ光源の開発 PPLN スラブ導波路によるテラヘルツ光発生の励起波長依存性 広帯域テラヘルツ光ルス励起による気相分子からの自由誘導減衰の高分解能検出表面形態を変化させた 3C-SiC/Siのテラヘルツ波透過特性 金属らせんマイクロ構造を用いたテラヘルツ波透過特性 金属らせんマイクロ構造を用いたテラヘルツ光学素子の開発 0.85 THz 帯短焦点メタレンズアンテナの設計 広帯域テラヘルツ振動磁場増強アンテナの特性評価 デラヘルツ振動磁場増強アンテナの特性評価 デラヘルツ振動磁場増強アンテナの特性評価 デラヘルツ振動磁場増強アンテナの特性評価 デラヘルツ振り間に関を有する液晶素子のテラヘルツ領域での複屈 折に関する研究 中間配向膜を有する液晶素子のテラヘルツ領域での複居 折に関する研究	○ (M2) 石田 花菜 ^{1,2} , 玉城 凜野 ¹ , 石飛 秀和 ^{1,2,3} , 井上康志 ^{1,2,3} (M2) 清水 智哉 ¹ , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 野田 浩平 ^{1,3} , 佐々木 友之 ^{1,3} ,川月 喜弘 ^{2,3} ,小野 浩司 ^{1,3} ○江藤 修三 ¹ , 比渡 貴之 ¹ , 大石 祐嗣 ¹ ○染川 智弘 ^{1,2} 秋田 晶平 ¹ , 倉橋 慎理 ¹ , 余語 覚文 ² , 人世 宏明 ³ ○ (M2) 小林 蒼汰 ¹ , 橋本 彩香 ¹ , 三好 咲也子 ¹ , 大饗 千彰 ^{1,2} , 桂川 真幸 ^{1,2} , 江尻 省 ^{2,4} , 中村 卓司 ^{3,4} ○ (B) 吉田 総司 ¹ , 清住 空樹 ^{1,2} , 水野 洋輔 ¹ ○安田 浩朗 ¹ , 開根 徳彦 ¹ , 寶迫 嚴 ¹ ○ Alka Singh ¹ , Yosuke Nishida ¹ , Bezhko Mikhail ¹ , Kazuisao Tsuruda ¹ ○ (M1) 磯崎 慎也 ¹ , 戴 若辰 ¹ , 張 家銘 ¹ , 松永 大陽 ¹ , 西谷 彰二郎 ¹ , 加藤 康作 ¹ , V.C. Agulto ¹ , 西谷 幹彦 ¹ , 吉村 政志 ¹ , 中嶋 誠 ¹ ○岸本 直 ¹ , 林 伸一郎 ¹ , 関根 徳彦 ¹ ○ 古屋 岳 ¹ , 北原 英明 ¹ , 佐々木 祐奈 ² , 合 正彦 ¹ ○ 木 雅貴 ¹ , 小山田 賢志朗 ¹ , 鎌田 香織 ² , 齊藤 敦 ¹ , 成田 克 ¹ ○大内 敦史 ¹ , 中村 美晴 ¹ , 木村 亮太 ¹ , トリバティ サロジ ¹ ○ 蛇澤 魁斗 ¹ , 鈴木 健仁 ¹ ○ (M2) 伊郷 祐馬 ¹ , 湾川 稜人 ¹ , 大道 英二 ¹ , 太田 仁 ^{1,2} ○ (M2) 湯原 養明 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 伊藤 桂 ^{-2,3} , 小野 浩司 ^{1,3} , 佐々木 友之 ^{1,3} ○ (M2) 湯原 義卿 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 伊藤 桂 ^{-2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 義卿 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 義卿 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 義卿 ¹ , 野田 浩平 ^{1,3} , 鈴木 雅人 ^{1,3} , 坂本 盛嗣 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 義卿 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 義卿 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 ^{1,3} , 川月 喜弘 ^{2,4} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 ^{1,3} , 川月 喜弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太之 ^{1,3} ○ (M2) 湯原 ^{1,3} , 川月 宮弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太 大 之 ^{1,3} ○ (M2) 湯原 ^{1,3} , 川月 宮弘 ^{2,3} , 小野 浩司 ^{1,3} , 佐々木 太 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大	 1. 阪大院工, 2. 産総研・阪大 先端フォトバイオ, 3. 大生命 1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST 1. 電中研 1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CERe 1. 電道大基盤理工, 2. 電通大量子センター, 3. 極地研4. 総研大 1. 情報通信研究機構 1. Rohm Co., Ltd. 1. 阪公大工, 2. 阪公大研究推進, 3. 福工大 1. 阪大レーザー研 1. 情通機構 1. 福井大遠赤セ, 2. 福井大工 1. 山形大工, 2. 防衛医科大 1. 静岡大院工 1. 農工大 1. 神戸大院理, 2. 神戸大分子フォトセ 1. 東京理科大先進工 1. 長岡技科大工, 2. 秋田高専, 3. CREST, JST 1. 長岡技科大工, 2. 兵庫県立大, 3. CREST, JST 1. 長岡技科大工, 2. 兵庫県立大, 3. CREST, JST

14:15	奨 19p-A34-4	パルストレイン励起光を用いたテラヘルツパラメトリック検出	○木下 知紀¹, 嶺 颯太¹, 林 伸一郎², 川瀬 晃道¹, 村手 宏輔¹	1.名大院工, 2.情報通信研究機構
14:30	19p-A34-5	ク快出 スペクトルドリル共振器による周波数安定化サブテラへ ルツ光発生	200	1.情通機構, 2.東北大, 3.千葉大, 4.東北工大, 5.フラクシ
14:45	奨 19p-A34-6	周波数可変テラヘルツ高次光渦の発生	□ 住治',與恨 偲彦' ○足立 瑞季¹,酒井 悠連¹,藤代 隼人¹,宮本 克彦¹.²	ン 1.千葉大学, 2.千葉大学分子キラリティセンター
15:00 15:15	19p-A34-7	休憩/Break 非線形分極の縦成分を利用したテラヘルツ波の発生と	○(M2)岩瀬 弘明¹,白坂 啓陽¹,大野 誠吾¹.²	1.東北大理, 2.東北大高等研究機構
15:30	奨 19p-A34-8	ビームステアリング技術への応用 微弱偏光イメージングシステムを用いた 0.1 THz 電気光	○(D)岡田竜馬¹,水野麻弥²,竹原浩成¹,春田牧	1.奈良先端大, 2.情報通信機構, 3.千歲科学技術大, 4.九
15:45	奨 19p-A34-9	学イメージング マイケルソン干渉計を用いた反射型テラヘルツ波位相		州大 1.山形大院理工, 2.理研
16:00	奨 19p-A34-10	CT 遮蔽物越しのテラヘルツ波シングルピクセル分光イメー	知行 ² ○種谷 知樹¹, 嶺 颯太¹, 川瀬 晃道¹, 村手 宏輔¹	1.名大院工
16:15	19p-A34-11	ジング 共鳴トンネルダイオードテラヘルツ発振器を用いたサブ キャリア FMCW レーダーによる 3D イメージング	○八重樫 暁¹, ドブロユ アドリアン¹, 鈴木 左文¹	1.東工大
16:30 16:45	奨 19p-A34-12	休憩/Break テラヘルツ時間領域分光法による歯の齲蝕部と正常部の 識別	○小橋 遥人¹, 趙 王軒¹, Verdad Agulto¹, 加藤 康作¹, 三浦 滉穀², 白男川 卓彦², 西谷 佳浩². 倉橋 直也³. 坂	1. 阪大レーザー研, 2. 鹿児島院医歯, 3. 京都府中小企業 技術セ 4 金沢丁大先端電子技術応用研
17:00	奨 19p-A34-13	フィードバック制御を用いた高速・高分解能周波数掃引	之上 悦典 3 , 堤 定美 4 , 猿倉 信彦 1 , 中嶋 誠 1 \bigcirc (D) 小路 悠斗 1 , 大道 英二 1 , 高橋 英幸 2 , 太田 仁 2	
17:15	19p-A34-14	型テラヘルツ分光法の開発 サブテラヘルツ波を用いた実用的なガソリン中の水分含	○樋口 裕治¹,仁科 孝之¹,戸辺 光浩¹,照元 幸次²,峯	1.トキコ, 2.ローム
17:30	奨 19p-A34-15	有量計測 シクロオレフィンポリマーファイバーを用いたテラヘル	下 健太郎², 鶴田 一魁² ○市川 大暉¹, Weijie Gao¹, Nguyen Ngo¹, 芳我 基	1.阪大基礎工, 2.ダイセル, 3.東大理, 4.阪大産研
		ツ通信	治 ² , 八甫谷 明彦 ² , 伊藤 弘 ³ , 冨士田 誠之 ¹ , 永妻 忠 夫 ^{3,4}	
17:45	E 19p-A34-16	Design and fabrication of transmissive metasurface for 300-GHz-band beamforming in Beyond 5G wireless networks	○ Adam Pander¹, Daisuke Kitayama¹, Hibiki Kagami¹, Hiroyuki Takahashi¹	1.NTT Device Technology Labs , NTT Corporation
18:00	E 19p-A34-17 (Fri.) 9:00 - 12:00	Design and fabrication of metasurface collimating lens at 300 GHz band 口頭講演 (Oral Presentation) A34 会場(Room A34)	○ Adam Pander¹, Daisuke Kitayama¹, Hibiki Kagami¹, Toshiaki Watanabe², Hiroyuki Takahashi¹	1.NTT Device Technology Labs , NTT Corporation, 2.Toyota Central R&D Labs, Inc.
9:00	奨 20a-A34-1	AIN 基板を用いた片面金属導波路 GaN 系 THz-QCL の 導波路解析	\bigcirc (M1) 金子 瑛 ^{1,2} , 藤川 紗千恵 ^{1,2} , 矢口 裕之 ¹ , 平山 秀樹 ²	1.埼玉大学, 2.理研
9:15	奨 20a-A34-2	GaN系10THz帯量子カスケードレーザー光利得のドービング濃度依存性	○ (M1) 高橋 瞳瑠 ^{1,2} , 王 利 ¹ , 藤川 紗千恵 ^{1,2} , 矢口 裕 之 ² , 平山 秀樹 ¹	1. 理研, 2. 埼玉大院理工
9:30	20a-A34-3	エビタキシャルグラフェンFETによるTHz検出のキャリ アダイナミクス		1.東北大通研, 2.東北大院工学研究科, 3.学振特別研究員, 4.東北大学際研, 5.理研光量子工学研究センター
9:45	20a-A34-4	エビタキシャルグラフェンFETのゲート読み出しに基づく新たな検出メカニズム		1. 東北大通研, 2. 東北大院工学研究科, 3. 学振特別研究 員, 4. 東北大学際研, 5. 理化学研究所
10:00	20a-A34-5	単ゲートグラフェンチャネル電界効果トランジスタを用いた1THz帯の光ダブルミキシング		1. 東北大通研, 2. 東北大大学院工, 3. 学振特別研究員, 4. 東北大学際研, 5. 理研RAP
10:15 10:30	20a-A34-6	休憩/Break P型変調ドープGaAs/AlGaAsへテロ構造を用いたMEMS		
10:45	20a-A34-7	共振器の特性改善に関する検討 超伝導ジョセフソンプラズマエミッタからの 広帯域テラ ヘルツ周波数変調放射		1.京大院工, 2.産総研
11:00	20a-A34-8	オフセットリングスロットアンテナ集積共鳴トンネルダ イオードテラヘルツ発振器からの2THzを超える高調波	○吉田 裕二¹, 佐藤 太一¹, 浅田 雅洋¹, 鈴木 左文¹	1.東工大工
11:15	20a-A34-9	の発生 共鳴トンネルダイオードを用いたテラヘルツ波増幅の数 値解析	○猪瀬 裕太¹, 富士田 誠之¹	1.阪大基礎工
11:30	20a-A34-10	導波管キャビティを用いた共鳴トンネルダイオードテラ ヘルツ発振器の広帯域化	辻村 凜太 1 , 西田 陽亮 2 , 鶴田 一魁 2 , 伊藤 弘 3 , \bigcirc 有川 敬 $^{1.4}$	1.兵庫県立大工, 2.ローム株式会社, 3.東大理, 4.JST さきがけ
11:45	20a-A34-11	マルチモード発振状態の共鳴トンネルダイオードテラヘルツ発振器における周波数安定化		1.兵庫県立大工, 2.東大理, 3.東工大, 4.JST さきがけ
9/20(F	Fri) 13·30 - 17·00	ロ頭講演 (Oral Presentation) A34 会場(Room A34)	ųх	
13:30	招 20p-A34-1	「第45回優秀論文賞受賞記念講演」	○鈴木 健仁¹	1. 農工大
14:00	20p-A34-2	高屈折率低反射メタサーフェスの開拓と応用 バビネ相補型メタルメッシュ構造を持つテラヘルツバン ドバスフィルタにおけるプラズモニックモード		1. 上智大理工, 2. 宇宙航空研究開発機構, 3. 量子場計測 システム国際拠点/高エネルギー加速器研究機構, 4. 国
14:15	奨 20p-A34-3	バビネ相補型メタルメッシュ構造における例外点		立天文台 1.上智大理工, 2.宇宙航空研究開発機構, 3.量子場計測 システム国際拠点/高エネルギー加速器研究機構, 4.国
14:30	奨 20p-A34-4	非等方歪モアレ型メタ表面によるテラヘルツ円偏光セレ	中岡 俊裕¹ ○千葉 初奈¹, 代市 拓海¹, 折谷 岳¹, 三成 剛生², 大野	立天文台 1.千葉大学, 2. 物材機構, 3. 東北大院理, 4.千葉大学分子
14:45	奨 20p-A34-5	クター素子 テラヘルツ渦干渉計のための中空らせん位相板の作成	誠吾³, 宮本 克彦¹.⁴ ○山口 航平¹, 時実 悠², 長谷 栄治², 安井 武史²	キラリティー研 1. 徳島大院創成 , 2. 徳島大 pLED
15:00	20p-A34-6	シリコン-空気有効媒質を用いたテラヘルツ広帯域旋光 子 体類/Prook	〇山根 秀勝 1 ,山田 義春 1 ,近藤 裕佑 1 ,富士田 誠之 2 ,村上 修一 1	1. 大阪技術研, 2. 阪大基礎工
15:15 15:30	20p-A34-7	休憩/Break THz域における二重Wire Grid 偏光保持鏡の光学特性解 ば	○前田季里¹,東原 奈央¹,水谷 颯真¹,鶴町 徳昭¹	1.香川大創造工
15:45	20p-A34-8	析 レーザー加工によるTHz 波位相制御及び反射防止デバイスの開発	○ (M2) 三浦 悠杜¹, Agulto Verdad², 馮 時雨², 加藤 康作², 中嶋 誠², 小野 晋吾¹	1.名工大工, 2.阪大レーザー研
16:00	奨 20p-A34-9	テラヘルツ波反射防止用 ${ m TiO_2}$ コーティング ${ m Si}$ モスアイ構	○(M2) 三浦 悠杜¹, Agulto Verdad², 加藤 康作²,	1.名工大工, 2.阪大レーザー研, 3.Czech Academy of
		造	Raduban Marilou ^{2,4} , 山ノ井 航平 ² , 中嶋 誠 ² , 前川 覚 ¹ , 糸魚川 文広 ¹ , Olejnicek Jiri ³ , 小野 晋吾 ¹	Sciences., 4.Massey Univ.
16:15	E 20p-A34-10	Multi-frequency terahertz quasi-MIM absorber for integrating with thin-film MEMS bolometer	○ (M1)ZIHAO ZHAO¹, Kazuho Harada¹, Chao Li¹, Isao Morohashi², Ya Zhang¹	
16:30	20p-A34-11	Fabrication of terahertz quasi-MIM absorbers for integration with thin-film MEMS bolometers	○原田和歩¹,趙子豪¹,李超¹,諸橋功²,張亜¹	1. 農工大工, 2. 情報通信研究機構

			和田 武彦*	立大义台
		tical quantum physics and technologies ポスター講演 (Poster Presentation) P会場(Room P) 広帯域量子赤外分光に向けた非同軸同時パラメトリック	○廣田 晴哉¹, 北條 真之¹, 田中 耕一郎¹	1.京大院理
	18a-P03-2	下方変換非線形干渉計 シリコン細線導波路から得られる相関光子の純粋度と伝	○一二三 真周¹. Yang Fan¹. 木村 彰吾¹. 松田 信幸¹	1.東北大院工
	18a-P03-3	令効率の関係 原子スピン波 QED メモリの実現に向けた量子状態の初	○堀江 遥斗¹, 志村 一樹¹, 丹治 はるか¹	1.電通大レーザー研
		期化と測定		
	18a-P03-4	光周波数自由度を用いた2次元連続時間量子ウォーク	○ (M2) 行方 祥太朗¹, 行方 直人¹, 大谷 聡¹, 井上 修 —郎¹	
	18a-P03-5	超電導ナノワイヤ単一光子検出器を用いた光子数相関の 再構築	○大河原 駿¹, 倉重 太一¹, 本橋 拓¹, 松田 信幸¹	1.東北大院工
	E 18a-P03-6	A Comparative Study of Many-Body Interaction Models Using Two-dimensional Coherent Spectroscopy Simulations	○ (DC)Pradeep Kumar¹, Bhaskar De¹, Rishabh Tripathi¹, Rohan Singh¹	1.Department of Physics, Indian Institute of Science Education and Research, Bhopal 462066, India
	u.) 9:00 - 11:45	口頭講演 (Oral Presentation) A32会場 (Room A32)		a three c
	奨 19a-A32-1	マルチモード半導体レーザへの光注入による周波数帯域 拡大と乱数生成		1.埼玉大
	奨 19a-A32-2	利得スイッチング半導体レーザにおけるバースト光パル スの観測	○伊藤 瑠希 ', 岩見 龍吾 ', 内田 淳史 '	1.埼玉大
9:30	奨 19a-A32-3	3つの光スイッチを用いた光パスゲート論理による秘密 計算	○藤井 勇輔¹, 内田 淳史¹	1.埼玉大
9:45	19a-A32-4	縮退光パラメトリック発振器を用いた大規模な光スパイ キングニューラルネットワークにおける発火ダイナミク スの観測		1.NTT 物性研, 2.NTT 先端集積デバイス研究所, 3.東京 大学
10:00	19a-A32-5	コヒーレントイジングマシーン計算性能の動作パラー メーター依存性	北原 彰吾¹, ○井上 恭¹	1. 阪大工
10:15		休憩/Break		
	招 19a-A32-6	「第56回講演奨励賞受賞記念講演」 リーダ - ラガード関係を用いた意思決定における周波数 差検知による高速化	〇平 英駿 1 , 巴鼻 孝朋 1 , André Röhm 1 , 菅野 円隆 2 , 内田 淳史 2 , 堀崎 遼 $-^1$, 成瀬 誠 1	1.東大情理, 2.埼玉大
10:45	奨 19a-A32-7	複雑ネットワークのダイナミクスに基づく多腕バン ディット問題における意思決定	○朴 シオン¹, 武塙 賢人¹, 内田 淳史¹	1.埼玉大
11:00	19a-A32-8	VCSEL の偏光スイッチングによる光意思決定	坪井 元春¹, ○巳鼻 孝朋¹, レーム アンドレ¹, 菅野 円 隆², 堀崎 遼一¹	1. 東大情理, 2. 埼玉大
11:15 11:30	19a-A32-9 奨 19a-A32-10	半導体レーザの間欠性カオスにおける力学系の複製 デジタルマイクロミラーデバイスに基づくリザーバーコ	○小原 翔馬¹, 菅野 円隆², 内田 淳史², 黒川 弘章¹	1. 東京工科大, 2. 埼玉大 1. 埼玉大
11:30	英 198-A32-10	ンピューティングの予測精度と記憶容量の評価	〇平在 友団 ,自打 门性	1. 坦上八
9/19(Thu 13:30	1.) 13:30 - 18:15 19p-A32-1	口頭講演 (Oral Presentation) A32 会場(Room A32) ¹⁶⁷ Er ³⁺ :Y ₂ SiO ₅ 結晶における超微細準位間隔の同定	○(DC)安井 翔一郎¹², 稲葉 智宏¹, 石澤 淳³, 日達 研一¹, 尾身 博雄⁴, 松浦 求磨³, 鍜治 怜奈², 俵 毅彦³,	1.NTT物性基礎研, 2.北大院工, 3.日大, 4.大和大
13:45	奨 19p-A32-2	電子・格子系による SPDC 光発生と量子もつれ生成ダイ	足立 智 2 , Xuejun Xu 1 , 眞田 治樹 1 \bigcirc (M1C) 奥田 葵 1 , 南出 泰亜 2 , 石田 邦夫 1	1. 宇都宮大院地域創生, 2. 理研
14:00	奨 19p-A32-3	ナミクス 高光バワー領域における単眼検出標準量子限界を超えた 量子増強誘導ラマン散乱イメージング	〇似内 涉 1 ,徐 自聡 1 ,小口 研一 2 ,赤星 光 1 ,Spratt Spencer 2 ,田村 真統 2 ,田口 富隆 1 ,佐野 由季 1 ,小関 泰之 1,2	1. 東大院工, 2. 東大先端研
14:15	19p-A32-4	全光型スクイージングレベル測定における光パラメト	\bigcirc 柏崎 貴大 1 , 井上 飛鳥 1 , 山嶋 大地 1 , 圓佛 晃次 1 , 遠	1.NTT, 2.東大工, 3.理研RQC
14:30	19p-A32-5	リック増幅利得の影響評価 高速光量子演算に向けた導波路型励起光/信号光合分波	藤 護 ^{2,3} , 梅木 毅同 ¹ , 古澤 明 ^{2,3} ○井上 飛鳥 ¹ , 柏崎 貴大 ¹ , 山嶋 大地 ¹ , 遠藤 護 ^{2,3} , 梅	1.NTT, 2.東大工, 3.理研RQC
14:45	奨 19p-A32-6	器の PPLN モノリシック集積 量子テレポーテーションを用いた低ロス高繰り返し光ス	木 毅伺 ¹ , 古澤 明 ^{2,3}	1 亩十工 2 NTT 生 三冠 2 桂 海
	ж 17 р- 1732-0	イッチングの実現Ⅲ	専也 ¹ , 柏崎 貴大 ² , 井上 飛鳥 ² , 梅木 毅同 ² , 三木 茂 人 ³ , 寺井 弘高 ³ , 藪野 正裕 ³ , 阪口 淳史 ⁴ , 高瀬 寛 ^{1,4} , 遠藤 護 ^{1,4} , アサバナント ワリット ^{1,4} , 古澤 明 ^{1,4}	1. 宋八上, 2.N11 儿 / 训, 3. <u></u> 周型被褥, 4. 注训 NQC
15:00 15:15	奨 19p-A32-7	休憩/Break 量子ディスク構造における高次光子を用いた高次電子ス ピンのラビ振動のシミュレーション	○寺島 魁人¹, 伊藤 亮太¹, 余越 伸彦², 角江 崇¹, 森田 健¹	1.千葉大院理工, 2.大阪公立大院工
15:30	奨 19p-A32-8	高Qナノファイバーフォトニック結晶共振器の作製と光 非線形性測定	re-	1.早大理工
15:45	19p-A32-9	光ファイバによる高性能な波長多重偏波量子もつれ光発		1. 古河電工, 2. 情報通信研究機構, 3. 横国大QIC, 4. 横国
16:00	19p-A32-10	生 光周波数ピンセットによる選択的周波数変換		大院理工, 5. 横国大 IAS 1. 阪大基礎工, 2. 阪大 QIQB
16:15	19p-A32-11	差動位相シフト量子鍵配送に対する一般個別区劇に関す	生田 カ三 ^{1,2} ○井上 恭 ¹ , 本庄 利守 ²	1. 阪大工, 2.NTT 物性基礎研
16:30	19p-A32-12	る考察 光子検出器の特性平均化によるBB84の盗聴対策	○加藤 寿嗣¹, 岡本 淳², 富田 章久²	1.北大院情報科学, 2.北大情報科学研
16:45	10 10-1-	休憩/Break	O (25) H. Shiki	4 ± 1.85×2
17:00 17:15	19p-A32-13 奨 19p-A32-14	変分量子固有値ソルバーにおける効率的な逐次最適化 超高速光量子情報処理システム評価のためのTH2帯域ラ ンダムコヒーレント状態生成	 ○ (M1) 林 啓道¹, 佐藤 健¹, 石川 顕一¹ ○ (M2) 鈴木 拓海¹, 星 尊也¹, 川崎 彬斗¹, 園山 樹¹, 高瀬 寛¹², アサバナント ワリット¹², 遠藤 護¹², 古 澤 明¹² 	1. 東大院工 1. 東大工, 2. 理研 RQC
	将 19n-A32-15	測定誘起型光量子計算機コントローラの開発	○阪口 淳史¹, 横山 翔竜¹, 陳 奕如¹, 柏崎 貴大², 井上 飛鳥², 梅木 毅伺², 米澤 英宏¹, 古澤 明¹.³	1. 理研RQC, 2.NTT先デ研, 3. 東大工
17:30	× 17p 1132 13		/以ッツ,1947年秋四,小伴 天丛,日佯 切	
	•	高速光量子計算に向けたクラスター状態の生成と測定	○ (D) 井出 竜鳳¹, 星 尊也¹, 鈴木 拓海¹, 川崎 彬斗¹, 柏崎 貴大², 井上 飛鳥², 梅木 毅伺², 高瀬 寬¹³, 遠藤 護¹³, 阪口 淳史³, アサバナント フリット¹³, 古澤 明¹.³	1. 東大工, 2.NTT 先デ研, 3.理研 RQC

		象 / Photonic structures and phenomena 口頭講演 (Oral Presentation) A34会場(Room A34)		
13:00	17p-A34-1	転写プリントによるダイヤモンド導波路のSiN 導波路上 へのハイブリッド集積	〇石田 悟己 1 , 松清 秀次 2 , Pholsen Natthajuks 1 , 太田 泰友 3 , 池 尚玟 2 , 大槻 秀夫 1 , 西岡 政雄 2 , 李 衛村 4 , 羽 中田 翔司 4 , 鎌田 幹也 4 , 玉貫 岳正 4 , 馬場 俊彦 4 , 岩本 敏 $^{1.2}$	1. 東大先端研, 2. 東大生産研, 3. 慶應大, 4. 横浜国大
13:15	E 17p-A34-2	High-Q 2D photonic crystal nanocavities with asymmetric glass claddings	○ (PC)Heungjoon Kim¹, Bong-Shik Song¹.², Takashi Asano¹, Susumu Noda¹	1.Kyoto Univ., 2.Sungkyunkwan Univ.
13:30	奨 17p-A34-3	1次元フォトニック結晶ナノビーム共振器型ダイヤモン ド量子センサの開発	○板垣 柘杜¹, 勝見 亮太¹², 髙田 晃佑¹, 八井 崇¹.²	1. 豊橋技科大, 2. 東大
13:45	17p-A34-4	光ナノ共振器を用いた有機発光体の発光制御のFDTD法 による理論検討	○浅野 卓¹, 野田 進¹	1.京大院工
14:00	17p-A34-5	共振器結合型通信波長帯量子ドット単一光子源のSi光回 路上アライメントフリーハイブリッド集積に向けた検討	〇宇井 遼太郎 1 , 髙田 晃佑 1 , 勝見 亮太 1 , 八井 崇 1	1. 豊橋技科大
14:15	17p-A34-6	陽子線照射に対するフォトニック帯電センサの応答特性	〇高濱 \mathfrak{b}^1 , 鈴木 耕拓 2 , 大塚 亘晟 1 , 石原 \mathfrak{b}^1 , 高橋 和 1	1.大阪公大院工, 2.若狭湾エネルギー研究センター
14:30 14:45	17p-A34-7	休憩/Break 光ナノ共振器結合系の正弦波変調による時間反転対称性 の破れを活用した光機能の検討	○(M2)永江 隆太¹, 浅野 卓¹, 野田 進¹	1.京大院工
15:00	E 17p-A34-8	Investigation of flat bands in bilayer one-dimensional moiré photonic crystals with staggered potential (II)	○ (D)Stepan Maksimovich Trushin¹, Yuki Ishii¹, Takahiro Ito¹, Satoshi Iwamoto², Yasutomo Ota¹	1.Keio Univ., 2.RCAST, Tokyo Univ.
15:15	奨 17p-A34-9	積層フォトニック結晶ナノビームに基づくモアレ微小光 共振器の検討		1. 慶應理工, 2. 東大先端研
15:30	17p-A34-10	ツイスト積層バレーフォトニック結晶に基づく微小共振 器の検討		1. 慶応理工, 2. 東大先端研
15:45	17p-A34-11	変調フォトニック結晶レーザーと単一光子アバランシェ ダイオードアレイを用いた3次元ToF-LiDAR	○ De Zoysa Menaka¹, 石崎 賢司¹, 坂田 諒一¹, 井上卓也¹, 吉田 昌宏¹, 峯山 佳之², Ligges Manuel³, Henschke Andre³, 野田 進¹	1. 京大院工 , 2. スペースビュー , 3. フラウンホーファー IMS
16:00	17p-A34-12	SLG ビームスキャナにおける回折格子のトポロジカル最適化(II)	○廣谷 圭祐¹, 馬場 俊彦¹	1. 横国大院工
16:15 16:30	17p-A34-13	休憩/Break 短バルス・多点同時出射可能な1mm Φ変調フォトニック 結晶レーザーの設計	○坂田 諒一¹, 石崎 賢司¹, 井上 卓也¹, 八木 雄大¹, 森 田 遼平¹, 田中 聡記¹, De Zoysa Menaka¹, 野田 進¹	1. 京大院工
16:45	17p-A34-14	短パルス・多点同時出射可能な1mmΦ変調フォトニック 結晶レーザーの作製		1. 京大院工
17:00	17p-A34-15	映進対称フォトニック結晶導波路を利用したSSHナノ共 振器の構成		1. 東工大理, 2.NTT物性研, 3.NTT NPC
17:15	17p-A34-16	映進対称フォトニック結晶導波路における利得/損失誘起トポロジカル絶縁相	○上村 高広 ^{1,2} , 森竹 勇斗 ¹ , 高田 健太 ^{2,3} , 納富 雅 也 ^{1,2,3}	1. 東工大理, 2.NTT物性研, 3.NTT NPC
17:30 9/18(W		物質中の重力場理論: Einstein方程式と Maxwell方程式 口頭講演 (Oral Presentation) A34会場 (Room A34)	〇北川均1	1.Geometrize
13:30	招 18p-A34-1	「第56回講演奨励賞受賞記念講演」 フォトニック結晶レーザーへの複数接合活性層の導入: 実験的実証	〇勝野 峻平 1 , 吉田 昌宏 1 , 井上 卓也 1 , De Zoysa Menaka 1 , 初田 蘭子 1 , 奥田 功太郎 1 , 石崎 賢司 1 , 野 田 進 1	1.京大院工
13:45	18p-A34-2	金属3Dプリンタ応用に向けたフォトニック結晶レー ザーアレイモジュールの開発 (II)	○吉田 昌宏¹, 深田 豊¹², De Zoysa Menaka¹, 勝野 峻 平¹, 井上 卓也¹, 服部 綾太郎², 廣野 陽子², 野田 進¹	1. 京大院工, 2.DMG 森精機
14:00	18p-A34-3	バレートポロジーに基づく円偏光生成器の検討	〇林 文博 1 , 張 成昆 2 , 吉見 拓展 3 , 甲斐 航 1 , 雨宮 智 宏 1 , 太田 泰友 4 , 岩本 敏 2 , 中川 茂 1	1. 東工大, 2. 東大先端研, 3. 無所属, 4. 慶應大
14:15	18p-A34-4	Observation of unidirectional lasing in a ring resonator with a surface grating	\bigcirc (D) 戴 知微 1 , 林 文博 2 , 池 尚玟 1 , 作本 宙彌 1 , 竹中 充 1 , 岩本 敏 1	1. 東大, 2. 東工大
14:30	18p-A34-5	直径 10mm フォトニック結晶レーザーの特性評価	○吉田 昌宏¹, 奥田 功太郎¹, 勝野 峻平¹, 井上 卓也¹, De Zoysa Menaka¹, 石崎 賢司¹, 野田 進¹	1.京大院工
14:45 15:00	18p-A34-6	休憩/Break 10mm Φ PCSELの自己無撞着連続動作解析	○ (M2) 前田 健太郎¹, 井上 卓也¹, 吉田 昌宏¹, 勝野	1. 京大院工
15:15	18p-A34-7	非エルミートスキン効果の実験観測に向けたフォトニッ	峻平¹, 奥田 功太郎¹, 野田 進¹ ○小川 希海¹², 森竹 勇斗¹, 養田 大騎¹⁴, 高田 健	1. 東工大理, 2.NTT 物性研, 3.NTT NPC, 4. 関西学院力
15:30	18p-A34-8	ク結晶構造の探索 非エルミートフォトニック結晶におけるカイラル発光 モードの損失装荷法依存性	太 ^{2,3} , 倉持 栄一 ^{2,3} , 納富 雅也 ^{1,2,3} 〇原田 拓実 ^{1,2} , 鈴木 聡 ^{1,2} , 大塚 秀太郎 ^{1,2} , 森竹 勇 斗 ¹ , 倉持 栄一 ^{2,3} , 小野 真証 ^{2,3} , 藤井 拓郎 ^{3,4} , 松尾 慎	学理工 1. 東工大理 , 2.NTT 物性研 , 3.NTT NPC , 4.NTT 先ディ
15:45	18p-A34-9	非エルミート・エルミート結合制御に基づく自由空間結	治 ^{3,4} , 納富 雅也 ^{1,2,3} ○金坂 知樹 ¹ , 井上 卓也 ¹ , 吉田 昌宏 ¹ , 野田 進 ¹	1.京大院工
16:00	18p-A34-10	合型偏光可変フォトニック結晶の設計 フォトニック結晶におけるM点ゼロ屈折率状態の実験的		1. 東工大理, 2.NTT 物性研, 3.NTT NPC
16:15	E 18p-A34-11	観測 Observation of slow-light modes in valley photonic crystal		1.RCAST, 2.IIS, 3.Keio Univ.
16:30	10 45:	heterostructure waveguides 休憩/Break	Ota ³ , Satoshi Iwamoto ^{1,2}	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
16:45	•	GaN系二重格子PCSELの格子間距離と発振特性	○十鳥 雅弘¹, 北村 篤史¹, 小泉 朋朗²¹, 江本 渓²¹, De Zoysa Menaka¹, 小川 健志¹, 井上 卓也¹, 石崎 賢 司¹, 吉田 昌宏¹, 勝野 峻平¹, 野田 進¹	
17:00	18p-A34-13	GaN 系フォトニック結晶レーザーを用いた水中 3 次元 ToF-LiDAR の開発 (IV)	〇小川 健志¹, De Zoysa Menaka¹, 十鳥 雅弘¹, 北村 篤史¹, 江本 渓 2 ¹, 小泉 朋朗 2 ¹, 井上 卓也 1 , 石崎 賢 司 1 , 野田 進 1	1. 京大院工, 2. スタンレー電気
17:15	奨 18p-A34-14	InGaN/GaN系トポロジカルPhC共振器構造の作製と発 光特性評価	〇杉浦 雛姫¹, 本多 卓人¹, 秋元 弥頼¹, 片岡 生一¹, 倉 田 隼也斗¹, 菊池 昭彦¹.²	1.上智大理工, 2.上智大半導体研
17:30	E 18p-A34-15	Y-junction optical combiner composed of unidirectional waveguides utilizing topological photonic crystals	○ (D)Guangtai Lu¹, Satoshi Iwamoto¹	1.Univ. Tokyo
17:45 9/19(TI	18p-A34-16 hu.) 13:30 - 15:30	ポスター講演 (Poster Presentation) P会場(Room P)	○(M2)鈴木 直道¹,池之上 卓己¹,三宅 正男¹	1.京大院エネ科
	19p-P01-1	光子転送操作後の共振器損失低減を目指した光ナノ共振 器結合系の作製	\bigcirc (M1) 松田 卓大 1 , 永江 隆太 1 , 浅野 卓 1 , 野田 進 1	1. 京大院工
	19p-P01-2	二次元フォトニック結晶ナノ共振器に基づく導波路結合 型量子ドット単一光子源の作製	野誠3,岩本敏2,太田泰友1	1. 慶應理工, 2. 東大先端研, 3. 産総研
	19p-P01-3	CirDレーザの出力強化に向けた量子ドット埋め込みコア 層の高精度選択ドライエッチング	人 1 ,梶井 博武 1 ,八木 哲哉 1 ,丸田 章博 1 ,近藤 正彦 1	1. 阪大院工
	19p-P01-4	低群速度・低分散フォトニック結晶導波路を用いた低コ ヒーレンス光干渉と超小型光干渉断層計への応用	○(M2)小田 奈菜穂¹, 尾崎 信彦¹	1.和歌山大シスエ

		構造・現象、3.11 ナノ領域光科学・近接場光学のコードシ	$_{ exttt{ iny T}}$ / Code-sharing Session of 3.10 $\&$ 3.11	
9:00	Гhu.) 9:00 - 12:00 奨 19a-A33-1	口頭講演 (Oral Presentation) A33会場 (Room A33) シリコンピラミッドを用いた熱放射取出しによる熱輻射 増強	○(M2)細川 竜冴 ^{1,2} , 嶌田 悦子 ¹ , 石井 智 ^{1,2}	1. 物材機構, 2. 筑波大
9:15 9:30	19a-A33-2 奨 19a-A33-3	プラズモニック共振器からの角度選択性熱放射 シリコンメタサーフェスの Fabry-Pérot BIC を利用した近	○清水 信¹, Benlyas Rihab¹, Liu Zhen¹, 湯上 浩雄¹ ○森朝 啓介¹, 長谷部 宏明¹, 杉本 泰¹, 藤井 稔¹	1. 東北大院工 1. 神戸大院工
9:45	19a-A33-4	赤外狭帯域光電流増強 カゴメ格子らせん積層型高次ワイルフォノニック結晶の	○秦 佑介¹, 鶴田 健二¹	1. 岡山大院自然
10:00	19a-A33-5	設計 金属ナノ構造装荷による軌道角運動量光導波路の形成	○来馬 龍治 ^{1,3} , 滝口 雅人 ^{2,3} , Haidt Peter ³ , 森竹 勇 斗 ¹ , 納富 雅也 ^{1,2,3}	1. 東工大理, 2.NTT NPC, 3.NTT 物性基礎研
10:15 10:30	19a-A33-6	休憩/Break イットリウム鉄ガーネットを母材としたH1型フォト ニック結晶ナノ共振器の作製	○谷口 公太¹, 北井 達也¹, 山家 健¹, 高 思源¹, 岩本 敏², 太田 泰友¹	1. 慶應理工, 2. 東大先端研
10:45	19a-A33-7	イットリウム鉄ガーネットに基づく磁気光学マイクロ ディスク共振器の作製と評価	\bigcirc (M1) 山家 健 1 , 北井 達也 1 , 谷口 公太 1 , 高 思源 1 , 今村 陸 1 , 熊崎 基 1 , 藤井 瞬 1 , 田邉 孝純 1 , 岩本 敏 2 , 太	
11:00	E 19a-A33-8	Optical Rectenna Based on a Hollow Resonator for		1.Tohoku Univ.
11:15	19a-A33-9	Mid-Infrared Energy Harvesting 光ヘテロダイン光熱変位法によるマイクロビラーとホールの熱物性評価	Yugami 1 〇岩切 孝洋 1 ,原田 知季 1 ,石井 智 2 ,碇 哲雄 1 ,福山 敦 彦 1	1. 宮崎大工, 2. 物材機構
11:30 11:45	19a-A33-10 19a-A33-11	銀ナノ粒子電極を装着した熱電変換素子の特性評価 磁気光学薄膜上におけるBIC モードスローライト導波路	○ (M2) 爲廣 英純¹, 久保 若奈¹ ○谷村 優太¹, 石井 佑樹¹, 上村 高広², 岩本 敏³, 太田	1. 東京農工大学 1. 慶應理工, 2. 東工大, 3. 東大先端研
[CS.5]	3.10 フォトニック権	<mark>の検討Ⅱ</mark> 構造・現象、3.12 半導体光デバイスのコードシェア / Code	泰友 ¹ e-sharing Session of 3.10 & 3.12	
		口頭講演 (Oral Presentation) A34会場 (Room A34)		
9:30	18a-A34-1	凸型端面構造を有する円形欠陥2次元フォトニック結晶 レーザの作製と室温連続発振	○左 如氷¹, 足立 雄紀¹, 工藤 悠人¹, 葉 漢嶠¹, 八木 哲哉¹, 森藤 正人¹, 梶井 博武¹, 丸田 章博¹, 近藤 正彦¹	1. 阪大院工
9:45	18a-A34-2	フォトニック結晶レーザーの光注入同期動作の実証	○井上 卓也¹, 森田 遼平¹.², 吉田 昌宏¹, 石崎 賢司¹, De Zoysa Menaka¹, 野田 進¹	1. 京大院工, 2. 東北大院工
10:00	18a-A34-3	InP系フォトニック結晶レーザーの光出力のスケーラビ リティの検討	〇伊藤 友樹 1,2 , 青木 健志 1,2 , 藤井 康祐 1,2 , 田中 礼 1 , 小笠原 誠 1 , 澤田 祐甫 1 , 町長 賢一 1 , 木村 峻 1 , 吉永 弘	
			幸 1,2 , 藤原 直樹 1,2 , 八木 英樹 1,4 柳沢 昌輝 1,5 田 昌 宏 2,4 井上 卓 1,2 メーナカ デゾイサ 2,4 石崎 賢 司 2,4 野 田 進 2,4	
10:15	E 18a-A34-4	First emission of active nano-pixel waveguide using InGaAsP-MQW membrane	○ (M2)ZHESHENG LEI¹, Islam Mohammad Shafiqul¹, Haisong Jing¹, Ryota kuwahata¹, Eisaku Kato², Kiichi Hamamoto¹	1.I-Eggs, Kyushu Univ., 2.The Univ. of Tokyo.
10:30 10:45	18a-A34-5	17	○(DC)趙亮¹, 矢田 涼介¹, ZHANG JUNYU¹, 下村	1. 上智大学
11:00	18a-A34-6	ザの発振特性 異種材料集積波長可変レーザのしきい値電流における 1.55μm帯 QD-RSOAの素子長依存性の検討	和彦 1 〇 (M2) 松木 太翼 1 , 松本 敦 2 , 中島 慎也 2 , 梅沢 俊匡 2 , Cheng Chih-Hsien 2 , 赤羽 浩 $-^2$, 山本 直克 2 , 川西 哲	1. 早大理工, 2. 情通機構
11:15	18a-A34-7	化合物エッチングナノワイヤ集積Siフォトニック結晶共		1.NTT NPC, 2.NTT 物性研, 3.NTT 先デ研, 4.東工大
11:30	18a-A34-8	振器のレーザ発振 分割領域フォトニック結晶レーザーの周波数変調度増大 の検討	彦 ^{1.2} , 松尾 慎治 ^{1.3} , 納富 雅也 ^{1.2.4} ○森田 遼平 ^{1.2} , 井上 卓也 ¹ , 仲野 秀栄 ¹ , De Zoysa Menaka ¹ , 石崎 賢司 ¹ , 石村 昇太 ³ , 高橋 英憲 ³ , 釣谷 剛宏 ³ , 鈴木 正敏 ⁴ , 野田 進 ¹	理 1. 京大院工, 2. 東北大工, 3.KDDI 総合研究所, 4. 早大理 工
11:45	18a-A34-9	大域的バンド端周波数分布と分割電極導入による短バルス・高出力フォトニック結晶レーザーの高速変調動作の 提案	○(M1) 柴田 悠樹¹, 井上 卓也¹, 森田 遼平¹.², 野田	1. 京大院工, 2. 東北大院工
		場光学 / Nanoscale optical science and near-field optics		
9/18(V 9:00	Wed.) 9:00 - 11:45 奨 18a-A33-1	口頭講演 (Oral Presentation) A33会場 (Room A33) 有機電気光学材料と単層二量化金属格子を用いた垂直入 射型光変調器の試作と実証	○蟻生 高人¹, 相馬 豪¹, 種村 拓夫¹, 中野 義昭¹	1.東大院工
9:15	18a-A33-2	列至ル及両部の試下と失証。 フォトクロミック微結晶アレイ構造試料の局所光励起に よる光異性化連鎖反応	○堀江 龍斗¹, 内山 和治¹, 内田 欣吾², 堀 裕和¹	1.山梨大工, 2.龍谷大先端理工
9:30	奨 18a-A33-3	Investigation of controllable quasi-BIC modes in magneto-photonic crystals under external magnetic field	○ Siyuan Gao¹, Satoshi Iwamoto², Yasutomo Ota¹	1.Keio University, 2.RCAST, UTokyo
9:45	E 18a-A33-4	Thickness dependence of thermally excited near fields on metal thin films		•
10:00	奨 18a-A33-5	フォトクロミック結晶におけるナノ光記憶の部分的消去 と再構成 休憩/Break	\bigcirc (D) 土山 晃平 ^{1,2} , 堀崎 遼一 ¹ , 内田 欣吾 ³ , 堀 裕和 ⁴ , 内山 和治 ⁴	1.東大院情理, 2.学振特別研究員 (DC1), 3.龍谷大理工, 4.山梨大工
10:15 10:30	18a-A33-6	体悪/Break メタ表面バイオセンサによる単一セルフリーDNA検出	〇岩長 祐伸 1 , 弘中 孝史 1 , 池田 直樹 1 , 菅澤 威仁 2 , 竹 越 一博 2	1.NIMS, 2. 筑波大医
10:45	奨 18a-A33-7	光源と検出器を結ぶ軸上にプリズムを配置した表面プラ ズモン共鳴センサ		1. 東工大, 2. 日本電気硝子
11:00	18a-A33-8	時間変調磁性メタマテリアルを用いたマイクロ波周波数 変換		1. 東北大高教機構, 2. 秋田大院理工, 3. 東北大多元研, 4. 東北大 CSIS, 5. 東北大院理
11:15	奨 18a-A33-9	同軸2重シリンダーメタマテリアル吸収体を用いた背景 光抑制赤外分光ガス検出	○ (M2) 伊藤 健大郎 ^{1,2} , 田中 拓男 ^{1,2}	1. 学習院大, 2. 理研
11:30		位相、強度、偏光を独立変調可能なダブルフェイズ型誘電体メタサーフェス 口頭講演 (Oral Presentation) A33 会場 (Room A33)	○大村 洸翔¹, 平山 颯紀¹, 藤村 隆史²¹, 志村 努¹	1. 東大生研, 2. 宇大工
13:00	招 18p-A33-1	「第56回講演奨励賞受賞記念講演」 エナンチオ選択的光圧のナノ顕微観測	〇山西 絢介 ¹, Ahn Hyo-Yong ¹, 岡本 裕巳 ¹	1.分子研
13:15 13:30	18p-A33-2 18p-A33-3	フタロシアニン分子対の光誘起力顕微鏡像の理論解析 銀ナノワイヤーと銀ナノ粒子の接点におけるプラズモン	○田村 守 ^{1,2} , 山根 秀勝 ³ , 石原 一 ¹ ○伊藤 民武 ¹ , 山本 裕子 ²	1. 阪大院基礎工, 2. 大阪公大 LAC-SYS 研, 3. 大阪技術研 1. 産総研健医工, 2. 北陸先端大
13:45	18p-A33-4	増強2光子励起発光の発生 一価カチオンに依存したアルカンチオール修飾金ナノ粒 ユー导体の結合性ま	○江刺家 恵子¹, 斎木 敏治¹	1.慶大理工
14:00	奨 18p-A33-5	子二量体の結合様式 単一分子測定に対するチップ増強ラマン散乱の自己無撞 着・非局所応答理論	○(DC)五十川 弘行¹, 田村 守¹.², 石原 一¹	1. 阪大院基礎工, 2. 大阪公大 LAC-SYS 研
14:15 14:30	18p-A33-6	SiCナノボイドアレイの作製と光学特性評価 休憩/Break	○(M2)丸山 紘矢¹, 村井 俊介¹, 田中 勝久¹	1. 京大院工

14:45	奨 18p-A33-7	可視局在表面プラズモン特性を示す規則合金ナノ粒子の 創製	○竹熊 晴香¹, 佐藤 良太¹, 飯田 健二², 寺西 利治¹	1. 京大化研, 2. 北大触媒科学研
15:00	18p-A33-8	削製 白色光照射下における銀フラクタル樹状構造の自己成長	○(D)香川 龍恭¹. 武安 伸幸¹	1. 岡大院環境生命自然
15:15	18p-A33-9	金属セミシェル構造の構造変形に伴う呈色変化	\bigcirc (M2) 安里 成海 1 , 鉤 正章 $^{2.1}$, 藤村 隆史 隆史 $^{1.3}$	1. 宇大院, 2. 堀場エステック, 3. 東大生研
15:30		トレンチ形成によるプラズモニック回折光の光閉じ込め 効率向上の検証		
15:45	18p-A33-11	銀イオンおよび還元剤濃度が銀樹状構造の形状に及ぼす		1. 岡山大学
16:00	18n-A22-12	影響 異方性B8 ₁ 構造をもつPtSnナノ粒子の合成と局在表面プ	○ LEE HYUNII¹ 竹能 膳黍¹.²	1 京大院理 2 京大化研
	10p-A33-12	ラズモン共鳴特性評価	OLEE HYUNJI', 竹熊 啃香 "", 佐滕 艮太", 寺四 利 治 ^{1,2}	1. 水八灰生, 4. 尔八七斯
16:15 16:30	19, 100 10	休憩/Break 流れが誘導する平衡から遠い量子構造 IV	○坂野 斎¹	1.山梨大工
16:45		流れが誘导する平側から速い重丁構造 IV オフシェル科学と因果性	○西郷 甲矢人¹	1. 山栄入工 1. 長浜バイオ大学
17:00		ネットワーク量子場からみたドレスト光子		1.中部大工
17:15	F	休憩/Break	0111111111	
17:30	18p-A33-16	正則グラフ上の量子ウォークの波動関数について	○齋藤 正顕¹	1.工学院大
17:45	18p-A33-17	ドレスト光子の自律的移動経路を決める最適散逸	○大津 元一¹, 瀬川 悦生², 結城 謙太³, 齋藤 正顕⁴	1. ドレスト光子研究起点, 2. 横浜国大, 3. Middenii, 4. 工学院大
18:00	18p-A33-18	量子ウォークモデルから見たドレスト光子が自律的に選 択するグラフ上のバス	○瀬川 悦生 1 , 斎藤 正顕 3 , 結城 謙太 4 , 大津 元 2	1. 横浜国立大学, 2. ドレスト光子, 3. 工学院, 4. Middenii
18:15	18p-A33-19	物質構造を介したドレスト光子高励起状態の生成	○三宮 俊¹	1. リコー
		口頭講演 (Oral Presentation) A33会場 (Room A33)		
13:30	奨 19p-A33-1	Mie 共鳴ナノ粒子による単層 MoS2の発光指向性制御	○ (M2) 大沢 慶祐 ¹ , 志摩 大輔 ¹ , 杉本 泰 ¹ , Søren Raza ² , 今枝 佳祐 ³ , 上野 貢生 ³ , Mrak L Brongersma ⁴ ,	1. 神戸大院工, 2. デンマーク工科大, 3. 北大院理, 4. スタンフォード大
			藤井稔 ¹	
13:45	19p-A33-2	第一原理計算によるシリコンナノ構造の非線形光学応答 予測	〇松浦 豪介¹,山田 俊介²,乙部 智仁²,植本 光治¹	1.神戸大工, 2.量研
14:00	19p-A33-3	シリコンメタサーフェスのトロイダル双極子共鳴による	○藪口 大輝¹, 森朝 啓介¹, 杉本 泰¹, 藤井 稔¹	1.神戸大院工
14:15	奨 19p-A33-4	電気・磁気双極子発光制御 励起子-光共振器強結合系の分光特性と超高速ダイナミ	○(DC)武内 浩輝¹, 今枝 佳祐², 龍崎 奏², 上野 貢生²	1.北大院総化, 2.北大院理
14.20	10- 422 5	クス 光通信波長帯InPメタサーフェスにおける反射防止層の	○台田 校司 1 亚网 切击 1.2 元田 七曜 1.2 未貞 エ	1 MTT 生誕集往ばメリュロ O MTT ゴッノ・ノ・・
14:30	19p-A33-5	光通信波長常 InPメタサーフェスにおける反射防止層の 検討	〇宮田 将司', 平崗 郁思 · · , 山田 友輝 · · , 中島 史 人 ^{1.2} , 橋本 俊和 ¹	1.NTT 先端集積デバイス研, 2.NTT デバイスイノベーションセンタ
14:45	奨 19p-A33-6	動的構造変化に向けた高応答光励起メタマテリアル	○ (M2)川端 竜司¹, 真田 篤志¹, 中田 陽介¹	1. 阪大院基礎工
15:00	2- F	休憩/Break		
15:15	奨 19p-A33-7	円偏光選択性ナノビラー対メタサーフェスの最適構造設 計	○田口 遥平 ¹ , 村田 雄生 ¹ , 戸田 晋太郎 ³ , 市川 修 平 ^{1.2} , 小島 一信 ¹	1.阪大院工, 2.阪大電顕センター, 3.アルバック協働研
15:30	19p-A33-8	シリコンナノ粒子 - キラル分子複合体におけるキラリ ティトランスファー	○笠井 大幹¹, 長谷部 宏明¹, 杉本 泰¹, 古山 渓行², 藤 井 稔¹	1.神戸大院工, 2.金沢大
15:45	19p-A33-9	キラルAgメタサーフェスの円偏光による作製	○石田 拓也¹, 黒木 秀起¹, 立間 徹¹	1. 東大生研
16:00		螺旋磁気テクスチャを有するメタ分子による非相反伝送 特性		1.京都工繊大
16:15	19p-A33-11	周回プラズモンモード励起に伴うキラリティを有した近		1. 東大生研
		接場の生成	原 聡 1	
16:30	19p-A33-12	円偏光を用いたキラルプラズモニックナノ粒子のコロイ ド合成における粒子形態の影響	○齋藤 滉一郎¹, 石川 善恵¹	1.産総研
16:45	ated a second	休憩/Break		
17:00	奨 19p-A33-13	Mirror on Nano-Hemisphere 構造による ZnO 薄膜の紫 外域発光増強	〇時盛 将吾 1 ,舩戸 魁 1 ,松山 哲也 1 ,和田 健司 2 ,岡本 晃 1	1. 阪公大工, 2. 阪公大研究推進
17:15	19p-A33-14	プラズモニック金ナノロッド - ナノプリズム二量体構造 の円二色性第二高調波現象		1.静大工
17:30	奨 E 19p-A33-15	SEIRA control using of mid-infrared metasurfaces with	○ (DC)Tang Dang¹, Jiaqi Yang¹, Yan Ding¹, Shuting	1.Univ. of Tokyo
		multiple wavelength resonances	Ma ¹ , Hitoshi Tabata ¹ , Hiroaki Matsui ¹	
17:45	E 19p-A33-16	Plasmonic nano-vortex field excited by a circularly- polarized plane wave	○ Pin Christophe¹, Keiji Sasaki²	1.OIST, 2.RIES, Hokkaido Univ.
18:00	19p-A33-17	NLOポリマー/金ナノ粒子複合構造における非線形分子- プラズモン相互作用に関する研究	○黒柳 和希¹,神谷 眞好¹,細見 圭¹,佐藤 浩平¹,杉田 篤史¹	1.静大工
18:15	奨 19p-A33-18	表面プラズモン共鳴によるCdSe/ZnS量子ドットの赤色・		1. 阪公大工, 2. 阪公大研究推進
		緑色発光増強	本晃一1	
9/20(ポスター講演 (Poster Presentation) P会場(Room P)		
	20a-P02-1	六角形状 GaN マイクロディスクにおける WGM 発振の周回方向 (II)	○ (M1)川口 雄輝 ¹ , 東海林 篤 ¹ , 光野 徹也 ² , 菊池 昭 彦 ³ , 岸野 克巳 ³ , 酒井 優 ¹	1.山梨大工, 2.静岡大工, 3.上智大理工
	20a-P02-2	RF-MBE 法で作製した InN/GaN 量子ドットの室温 PL スペクトルの観測	○(M1)小島 一真¹, 八木 修平¹, 矢口 裕之¹	1.埼玉大院理工
	20a-P02-3	プラズモン/遷移金属ダイカルコゲナイドへテロ構造の	○山崎 公太¹, 高橋 佑輔¹, 今枝 佳祐², 龍﨑 奏², 上野	1. 北大院総化, 2. 北大院理
		発光特性	貢生 ²	
	20a-P02-4	歪み添加 GaAs/AlAs 量子井戸の光学特性評価	○ (M2) 増田 悠人¹, 酒井 優¹, 小島 磨²	1.山梨大工, 2.千葉工大工
	20a-P02-5	グラフェン/Siメタサーフェス構造を用いた近赤外波長 帯における垂直入射型光変調器・受光器	渡邊 賢司³,谷口尚³,森山悟士⁴,藤方潤一¹,高原淳	1.徳島大, 2.大阪大, 3.物質・材料研究機構, 4.東京電機 大
	00 DCC 5	為水形(付. 2. A. 1)		1 市岩典工工
	20a-P02-6	熱制御メタサーフェスの設計と評価 メタマテリアル熱電変換特性と電極の熱輻射吸収特性の	○(M2)濱田 健太¹, 久保 若奈¹ ○(B)山木 彩葉¹山崎 彩香¹ 齊藤 宗平¹ 久保 若奈¹	1.東京農工大
	20a-D02 7		○ (□/ Ш平 杉米,山岬 杉甘,屈膝 ボ干,八体 右宗	1. 不小灰上八
	20a-P02-7	相関		
	20a-P02-7 20a-P02-8	印刷技術を用いたオールポリマー広帯域電波吸収メタマ	○芳川 翔¹, 松井 龍之介¹	1. 三重大院工
		印刷技術を用いたオールボリマー広帯域電波吸収メタマ テリアル開発に向けた数値電磁界シミュレーション		
	20a-P02-8 20a-P02-9	印刷技術を用いたオールポリマー広帯域電波吸収メタマテリアル開発に向けた数値電磁界シミュレーションフォトクロミック微結晶におけるナノ光異性化の走査型トンネル分光法を用いた非破壊計測	○堀江 龍斗¹, 内山 和治¹, 内田 欣吾², 堀 裕和¹	1. 山梨大工, 2. 龍谷大先端理工
	20a-P02-8	印刷技術を用いたオールポリマー広帯域電波吸収メタマ テリアル開発に向けた数値電磁界シミュレーション フォトクロミック微結晶におけるナノ光異性化の走査型	○堀江龍斗¹,内山和治¹,内田欣吾²,堀裕和¹ ○岡本浩行¹,尾崎貴弥¹,山口堅三²,原口雅宣²,岡本敏弘²	1. 山梨大工, 2. 龍谷大先端理工
	20a-P02-8 20a-P02-9 20a-P02-10 20a-P02-11	印刷技術を用いたオールボリマー広帯域電波吸収メタマテリアル開発に向けた数値電磁界シミュレーションフォトクロミック微結晶におけるナノ光異性化の走査型トンネル分光法を用いた非破壊計測セルフイメージングを利用したハイブリッドブラズモニックデバイスの伝搬特性液体金属ナノ粒子の局在表面プラズモン共鳴	○堀江龍斗¹,内山和治¹,内田欣吾²,堀裕和¹ ○岡本浩行¹,尾崎貴弥¹,山口堅三²,原口雅宣²,岡本敏弘² ○桐井和徳¹,三宮工¹	1. 山梨大工, 2. 龍谷大先端理工 1. 阿南高専, 2. 徳島大pLED 1. 東工大物質理工
	20a-P02-8 20a-P02-9 20a-P02-10 20a-P02-11 20a-P02-12	印刷技術を用いたオールボリマー広帯域電波吸収メタマテリアル開発に向けた数値電磁界シミュレーションフォトクロミック微結晶におけるナノ光異性化の走査型トンネル分光法を用いた非破壊計測セルフイメージングを利用したハイブリッドプラズモニックデバイスの伝搬特性液体金属ナノ粒子の局在表面プラズモン共鳴磁石で回収可能なFe ₃ O ₄ -Au-Pdナノ粒子の合成	○堀江龍斗¹,内山和治¹,内田欣吾²,堀裕和¹ ○岡本浩行¹,尾崎貴弥¹,山口堅三²,原口雅宣²,岡本敏弘² ○桐井和徳¹,三宮工¹ 竹田満音¹,内田寛¹,○横田幸恵¹	1. 山梨大工, 2. 龍谷大先端理工 1. 阿南高専, 2. 徳島大pLED 1. 東工大物質理工 1. 上智大
	20a-P02-8 20a-P02-9 20a-P02-10 20a-P02-11 20a-P02-12	印刷技術を用いたオールボリマー広帯域電波吸収メタマテリアル開発に向けた数値電磁界シミュレーションフォトクロミック微結晶におけるナノ光異性化の走査型トンネル分光法を用いた非破壊計測セルフイメージングを利用したハイブリッドブラズモニックデバイスの伝搬特性液体金属ナノ粒子の局在表面ブラズモン共鳴磁石で回収可能なFe ₃ O ₄ -Au-Pdナノ粒子の合成レーザー照射下で自己成長する銀樹状構造と表面金置換	○堀江龍斗¹,内山和治¹,内田欣吾²,堀裕和¹ ○岡本浩行¹,尾崎貴弥¹,山口堅三²,原口雅宣²,岡本敏弘² ○桐井和徳¹,三宮工¹ 竹田満音¹,内田寛¹,○横田幸恵¹	1. 山梨大工, 2. 龍谷大先端理工 1. 阿南高専, 2. 徳島大pLED 1. 東工大物質理工
	20a-P02-8 20a-P02-9 20a-P02-10 20a-P02-11 20a-P02-12 20a-P02-13	印刷技術を用いたオールボリマー広帯域電波吸収メタマテリアル開発に向けた数値電磁界シミュレーションフォトクロミック微結晶におけるナノ光異性化の走査型トンネル分光法を用いた非破壊計測セルフイメージングを利用したハイブリッドプラズモニックデバイスの伝搬特性液体金属ナノ粒子の局在表面プラズモン共鳴磁石で回収可能なFe ₃ O ₄ -Au-Pdナノ粒子の合成	○堀江龍斗¹,内山和治¹,内田欣吾²,堀裕和¹ ○岡本浩行¹,尾崎貴弥¹,山口堅三²,原口雅宣²,岡本敏弘² ○桐井和徳¹,三宮工¹ 竹田満音¹,内田寛¹,○横田幸恵¹	1. 山梨大工, 2. 龍谷大先端理工 1. 阿南高専, 2. 徳島大pLED 1. 東工大物質理工 1. 上智大
	20a-P02-8 20a-P02-9 20a-P02-10 20a-P02-11 20a-P02-12 20a-P02-13 20a-P02-14	印刷技術を用いたオールボリマー広帯域電波吸収メタマテリアル開発に向けた数値電磁界シミュレーションフォトクロミック微結晶におけるナノ光異性化の走査型トンネル分光法を用いた非破壊計測セルフイメージングを利用したハイブリッドブラズモニックデバイスの伝搬特性液体金属ナノ粒子の局在表面ブラズモン共鳴磁石で回収可能なFe ₂ O ₄ -Au-Pdナノ粒子の合成レーザー照射下で自己成長する銀樹状構造と表面金置換による光学的性質の変化	○堀江龍斗¹,内山和治¹,内田欣吾²,堀裕和¹ ○岡本浩行¹,尾崎貴弥¹,山口堅三²,原口雅宣²,岡本敏弘² ○桐井和徳¹,三宮工¹ 竹田満音¹,内田寛¹,○横田幸恵¹ ○武安伸幸¹,若槻啓悟¹,本田一志¹	1.山梨大工, 2.龍谷大先端理工 1.阿南高専, 2.徳島大pLED 1.東工大物質理工 1.上智大 1.岡大院環境生命自然 1.岡大理

	20a-P02-16	ナノ粒子/誘電体/格子型複合構造のプラズモニック特性	○(B)中川優大¹成嶋風音²佐藤勇気²Ⅲ井優	1.山形大丁 2.山形大院理丁
		の解析	輝 ² , 西山 宏昭 ²	
		金属薄膜上ナノキューブ構造のプラズモン特性評価	〇山崎 滉太 1 , 田中 悠斗 1 , 初岡 涼平 1 , 松山 哲也 1 , 和田 健司 2 , 岡本 晃 $^{-1}$	
	20a-P02-18	Nano Disc on Mirror 構造の加熱による散乱強度増大の要因	本晃一1	
		六角配列した銀-銅合金ナノ粒子の光学特性	○望月颯太¹,三宮 工¹	1.東工大物質理工
	20a-P02-20 20a-P02-21	単分散シリコンナノ粒子溶液の偏光分解散乱特性評価 バイオセンサー応用に向けたナノギャップ表面増強ラマ	○上林 武尊¹, 杉本 泰¹, 藤井 稔¹ ○(M1) 徳永 泰河¹ 細井 李秀¹ 鵜飼 智文³ 里須 俊	1. 神戸大院工 1 東洋大学院 2 東洋大学 3 RN研究センター
	204 1 02 21	ン散乱の開発	治 ³ , 樺澤 一真 ^{1,2} , 草間 裕介 ^{1,2} , 花尻 達郎 ^{1,2,3} , 前川 透 ^{1,2,3} , 根岸 良太 ^{1,2,3}	I.ATA I PL, B.ATTA I , S.DIVIII A. C.
	20a-P02-22	表面増強ラマン散乱素子の自動作製装置及び自動評価シ ステムの開発		1. 東洋大学大学院
		構造・現象、3.11 ナノ領域光科学・近接場光学のコードシ	$_{ exttt{ iny T}}$ / Code-sharing Session of 3.10 & 3.11	
		口頭講演 (Oral Presentation) A33 会場 (Room A33)	○ (2.50) APPLIEST 1.2 Harm 1.4 → 1. → 11. APPL 2.	a distributed to obtain
9:00	奨 19a-A33-1	シリコンピラミッドを用いた熱放射取出しによる熱輻射 増強	○(M2)相川 电闭 → , 鳥田 况于 , 石井 省 →	1.物材機構, 2.筑波大
9:15	19a-A33-2	プラズモニック共振器からの角度選択性熱放射	○清水 信¹, Benlyas Rihab¹, Liu Zhen¹, 湯上 浩雄¹	1. 東北大院工
9:30	奨 19a-A33-3	シリコンメタサーフェスの Fabry-Pérot BIC を利用した近 赤外狭帯域光電流増強	○森朝 啓介¹, 長谷部 宏明¹, 杉本 泰¹, 藤井 稔¹	1. 神戸大院工
9:45	19a-A33-4	カゴメ格子らせん積層型高次ワイルフォノニック結晶の	○秦 佑介¹, 鶴田 健二¹	1. 岡山大院自然
10:00	19a-A33-5	設計 金属ナノ構造装荷による軌道角運動量光導波路の形成	○来馬 龍治 ^{1,3} , 滝口 雅人 ^{2,3} , Haidt Peter ³ , 森竹 勇	1. 東工大理, 2.NTT NPC, 3.NTT 物性基礎研
10:15	17411000	休憩/Break	斗, 納富 雅也 1.2.3	TO THE OF THE PROPERTY OF THE
10:30	19a-A33-6	イットリウム鉄ガーネットを母材としたH1型フォト		1. 慶應理工, 2. 東大先端研
10:45	19a-A33-7	ニック結晶ナノ共振器の作製 イットリウム鉄ガーネットに基づく磁気光学マイクロ	敏², 太田 泰友¹ ○(M1)山家 健¹, 北井 達也¹, 谷口 公太¹, 高 思源¹,	1. 慶應理工, 2. 東大先端研
		ディスク共振器の作製と評価	今村 陸 1 ,熊崎 基 1 ,藤井 瞬 1 ,田邉 孝純 1 ,岩本 敏 2 ,太 田 泰 5	
11:00	E 19a-A33-8	Optical Rectenna Based on a Hollow Resonator for Mid-Infrared Energy Harvesting	○Zhen Liu¹, Yuji Oka¹, Makoto Shimizu¹, Hiroo Yugami¹	1.Tohoku Univ.
11:15	19a-A33-9	光ヘテロダイン光熱変位法によるマイクロピラーとホー	〇岩切 孝洋¹,原田 知季¹,石井 智²,碇 哲雄¹,福山 敦	1. 宮崎大工, 2. 物材機構
11:30	19a-A33-10	ルの熱物性評価 銀ナノ粒子電極を装着した熱電変換素子の特性評価	彦¹ ○(M2)爲廣 英純¹,久保 若奈¹	1. 東京農工大学
11:45		磁気光学薄膜上におけるBICモードスローライト導波路	〇谷村 優太 1 , 石井 佑樹 1 , 上村 高広 2 , 岩本 敏 3 , 太田	
0.40.1(1)	***	の検討II	泰友¹	
		emiconductor optical devices ポスター講演 (Poster Presentation) P会場(Room P)		
0, 20(1	E 18a-P04-1	Analysis of 4.1 μ m Quantum Cascade Lasers using Si/	○ (D)Zhiyuan Fan¹, Hyuma Suzuki¹, Haibo Wang¹,	1.TokyoTech Inst.
	18a-P04-2	$CaF2$ Heterostructures on SOI Substrate Si/CaF_2 ヘテロ構造を用いたホール駆動型近赤外波長量	Masahiro Watanabe¹ ○鈴木 飛雄馬¹, 范 志遠¹, 王 海波¹, 渡辺 正裕¹	1.東工大工学院
	18a-P04-3	子カスケードレーザの理論解析 電子サイクロトロン波共鳴を適用した中周波バルスス	○日比野 孝太¹, 丸山 祐樹¹, Raduban Marilou².⁴, Jiří	1.名工大、2.阪大レーザー研、3.Czech Academy of
		パッタリングによるZnO薄膜の膜質制御及び光伝導型 UVセンサの感度向上	Olejníček ³ , 山ノ井 航平 ² , 小野 晋吾 ¹	Sciences, 4.Massey Univ.
	18a-P04-4	酸化チタン薄膜を用いた真空紫外光検出器の光伝導性に		1.名工大, 2.阪大レーザー研, 3.Massey Univ., 4.Czech
		与える基板と膜厚の影響	藤 智規 ¹ , 堀内 勇佑 ¹ , Olejní´cek Jiˇrí ⁴ , Kohout Michal ⁴ , 山ノ井 航平 ² , 小野 晋吾 ¹	Academy of Sciences
	18a-P04-5	Ti 酸化物を用いる自己発電型 UV センサーの作製と評価	○ (M2) 小林 竜也¹, Subagyo Agus¹, 芳野 藤也¹, 中根 晃紀¹, 八木 遂行¹, 八田 英嗣¹, 末岡 和久¹	1.北大院情
	18a-P04-6	人工葉実用化に向けた InP 太陽電池の光 - 電力変換特性の 検討	○杉田 楓夏¹,下村 和彦¹	1.上智大理工
9/19(7	Thu.) 9:00 - 12:00	口頭講演 (Oral Presentation) A35会場(Room A35)		
9:00	19a-A35-1	反転型構造InGaAs単一光子アバランシェダイオードの 温度特性	○山田 友輝 ¹ , 平岡 郁恵 ¹ , 中島 史人 ¹	1.NTT先デ研
9:15	19a-A35-2	Siパターン基板上Geエピタキシャル層を用いた近赤外受 光器	○堤 光輝 ¹ , Mohd Faiz Bin Amin ¹ , Piedra-Lorenzana Jose A. ¹ , 飛沢 健 ¹ , 山根 啓輔 ¹ , 中井 哲弥 ² , 石川 靖 彦 ¹	1. 豊橋技科大, 2.SUMCO
9:30	19a-A35-3	超格子障壁による T2SL赤外線検出器の低電圧動作実証	〇田中朋1.2, 牛頭信一郎2, 佐野雅彦1, 金折恵2, 澁	1. 日本電気, 2. 産総研
9:45	19a-A35-4	ZnSe系有機-無機ハイブリッド型紫外APDのSU-8を用		1. 鳥取大
10:00	19a-A35-5	いた有機窓層エッジ保護による素子特性向上 ZnSe系有機 - 無機ハイブリッド紫外APDアレイの開発	田 安里紗¹,阿部 友紀¹,市野 邦男¹,赤岩 和明¹ ○平田 安里紗¹,近添 大輝¹,又野 陸哉¹,坂口 悠太¹,	1 皀町士
10.00	178-133-3	Zuoc ボロス・無阪バイノソファ 米水がリノレイの開発	古川 大和¹,阿部 友紀¹,市野 邦男¹,赤岩 和明¹	1. 1944/
10:15	E 19a-A35-6	Efficient Fabrication Method of Micro-Pyramid Structures	○ Sota Oshima¹	1.Ritsumei Univ.
10:30		for High-Speed Imaging 休憩/Break		
10:45	E 19a-A35-7	Self-assembled monolayer as the surface passivator for efficient and stable ZnO-based perovskite solar cells	O Jannatul Ferdous ^{1, 2} , Md. Emrul Kayesh ¹ , Mostafa F. Abdelbar ¹ , Wipakorn Jevasuwan ¹ , Ashraful Islam ¹ ,	1.NIMS, 2.Tsukuba Univ.
11:00	19a-A35-8	Low temperature operation of GaInP solar cells for underwater optical wireless power transmission	Naoki Fukata¹ ○ (M1)JIKUN LI¹, Takehiro Iida¹, Ryusei Takahashi¹, Junichi Suzuki¹, Kosuke Watanabe¹,	1.Chiba Institute of Technology
11:15	19a-A35-9		Shiro Uchida¹ ○(M1)千葉 萌翔¹,藤井 駿太朗¹,佐藤 恭輔¹,前野	1. 千葉工大, 2. 出光興産
11.00	10 15	性 Warried (A) 是 DEL S A A A A A A A A A A A A A A A A A A	陸 ¹ , 渋井 駿昌 ¹ , 小牧 弘典 ² , 冨田 仁 ² , 中村 浩昭 ² , 小田 雄介 ² , 石内 隆鳳 ² , 内田 史朗 ¹	4 MIDTI Charles TIE LOCATI
11:30	19a-A35-10	光無線給電における PV パネルのビーム走査による発電量の向上	〇落合 夏葉¹, 鳥海 陽平¹, 青貫 翔¹, 鈴木 優紀子¹, 柏 倉 一斗¹, 髙橋 円¹	
11:45	19a-A35-11	シリコンフォトニクス応用に向けた窒化ゲルマニウム薄 膜の反応性スパッタ堆積	○ (M1) 岡垣 颯¹, Piedra-Lorenzana Jose A.¹, 飛沢 健¹, 山根 啓輔¹, 石川 靖彦¹	1. 豊橋技科大
		口頭講演 (Oral Presentation) A35会場(Room A35)		
13:30 13:45	20p-A35-1 20p-A35-2	部分的な利得領域を有する円形共振器のモード解析 InP/Si 基板上 SCH - MQW レーザの井戸層厚とボイド密 第44年	○福嶋 丈浩¹ ○黒井 瑞生¹, 矢田 涼介¹, 趙 亮¹, 下村 和彦¹	1. 岡山県立大情報工 1. 上智大理工
14:00	20p-A35-3	度依存性 中央配置可飽和吸収体量子ドットモードロックレーザの	○簗瀬 智史 1.2, 赤羽 浩一², 松本 敦², 梅沢 俊匡², 山	1. 青学大理工, 2.NICT
	-	特性評価	本 直克², 前田 智弘¹.², 外林 秀之¹	

14:15 14:30	20p-A35-4 20p-A35-5	単一CsPbBr ₃ ペロブスカイトナノ結晶の電界発光の観測 粒子加速器用10kV級SiC光伝導スイッチの応答速度評価	○川崎 泰介¹, 安田 浩昌¹, 吉田 光宏²,³,⁴, ヤヒア ヴァ ンサン⁴,³, 平等 拓範³,⁴, 木村 重哉⁵, 太田 千春⁵, 宮崎	1. 東芝エネルギーシステムズ, 2. 高エネ研, 3. 理研, 4. 分
1,,-	00 4 :	- M- E /2-1	久夫 ⁵	4 ± ½ 1.m
14:45 15:00	20p-A35-6	二波長注入された半導体光増幅器における光励起効果 休憩/Break	○長沢 海斗¹, 猪口 泰利¹, 鄭 和翊¹	1. 東海大理
15:15 15:30	20p-A35-7 20p-A35-8	静電噴霧法による量子ドット薄膜の作製とその評価 シロキサン系樹脂を用いた熱制御転写プリント集積の検		1.同志社大 1.慶大理工, 2.JSR株式会社
15:45	20p-A35-9	討 プラズマ表面処理を援用した転写プリント集積の検討	晃成¹,太田泰友¹ ○(M1)立崎 裕真¹,赤星 颯麻¹,藤田 晃成¹,荒川 泰 彦²,太田泰友¹	1.慶應理工, 2.東大ナノ量子
[CS.5]	3.10 フォトニック	構造・現象、3.12 半導体光デバイスのコードシェア / Code		
	•	口頭講演 (Oral Presentation) A34会場 (Room A34)		
9:30	18a-A34-1	凸型端面構造を有する円形欠陥2次元フォトニック結晶 レーザの作製と室温連続発振	○左 如氷¹, 足立 雄紀¹, 工藤 悠人¹, 葉 漢嶠¹, 八木 哲哉¹, 森藤 正人¹, 梶井 博武¹, 丸田 章博¹, 近藤 正彦¹	1. 阪大院工
9:45	18a-A34-2	フォトニック結晶レーザーの光注入同期動作の実証	○井上 卓也¹, 森田 遼平¹.², 吉田 昌宏¹, 石崎 賢司¹, De Zoysa Menaka¹, 野田 進¹	
10:00	18a-A34-3	InP系フォトニック結晶レーザーの光出力のスケーラビリティの検討	○伊藤 友樹 ^{1,2} , 青木 健志 ^{1,2} , 藤井 康祐 ^{1,2} , 田中 礼 ¹ , 小笠原 誠 ¹ , 澤田 祐甫 ¹ , 町長 賢一 ¹ , 木村 峻 ¹ , 吉永 弘 幸 ^{1,2} , 藤原 直樹 ^{1,2} , 八木 英樹 ¹ , 柳沢 昌輝 ¹ , 吉田 昌 宏 ² , 井上 卓也 ² , メーナカ デゾイサ ² , 石崎 賢司 ² , 野田 進 ²	
10:15	E 18a-A34-4	First emission of active nano-pixel waveguide using InGaAsP-MQW membrane	○ (M2)ZHESHENG LEI¹, Islam Mohammad Shafiqul¹, Haisong Jing¹, Ryota kuwahata¹, Eisaku Kato², Kiichi Hamamoto¹	1.I-Eggs, Kyushu Univ., 2.The Univ. of Tokyo.
10:30		休憩/Break		
10:45	18a-A34-5	親水性直接貼付 InP/Si 基板上 GaInAsP SCH-MQW レーザの発振特性	○(DC)趙 亮¹, 矢田 涼介¹, ZHANG JUNYU¹, 下村 和彦¹	1. 上智大学
11:00	18a-A34-6	異種材料集積波長可変レーザのしきい値電流における 1.55μm帯 QD-RSOA の素子長依存性の検討	(M2) 松木 太翼 ¹ , 松本 敦 ² , 中島 慎也 ² , 梅沢 俊匡 ² , Cheng Chih-Hsien ² , 赤羽 浩一 ² , 山本 直克 ² , 川西 哲 也 ¹	1.早大理工, 2.情通機構
11:15	18a-A34-7	化合物エッチングナノワイヤ集積Siフォトニック結晶共 振器のレーザ発振		1.NTT NPC, 2.NTT 物性研, 3.NTT 先デ研, 4.東工大理
11:30	18a-A34-8	分割領域フォトニック結晶レーザーの周波数変調度増大 の検討		1.京大院工, 2.東北大工, 3.KDDI総合研究所, 4.早大理工
11:45	18a-A34-9	大域的バンド端周波数分布と分割電極導入による短バルス・高出力フォトニック結晶レーザーの高速変調動作の 提案	\bigcirc (M1) 柴田 悠樹 1 , 井上 卓也 1 , 森田 遼平 1,2 , 野田	1. 京大院工, 2. 東北大院工
3.13 光	制御デバイス・光フ	アテイバー / Optical control devices and optical fibers		
		口頭講演 (Oral Presentation) A36会場 (Room A36)		
9:00	18a-A36-1	次世代光電コパッケージに向けたポリマー光スプリッタ の開発	○須田 悟史 ', ラッセル MD オマールファルク ', 乗 木 暁博 ¹ , 中村 文 ¹ , 天野 建 ¹	1. 産総研
9:15	18a-A36-2	光硬化性ゲル材料を用いた全固体フレキシブル自己形成 光接続		1.宇大院
9:30	18a-A36-3	レーザー発振機構を用いた自己形成光導波路製作法の提	○(M1)渡邊 隼¹, 近藤 圭祐¹, 寺澤 英孝¹, 杉原 興浩¹	1. 宇大院
9:45	奨 18a-A36-4	表 波長2 μ m での自己形成光導波路作製と自動光接続	○柴 瑞輝 ¹ , 佐々木 裕太 ² , 寺澤 英孝 ² , 近藤 圭祐 ¹ , 杉 原 興浩 ¹	1. 宇大院, 2. 宇大工
10:00 10:15	奨 18a-A36-5 18a-A36-6	ブロッホ表面波共鳴を用いた集光再帰反射 薄膜狭帯域傾斜集光再帰反射器の設計	○(DC)小澤 桂介¹,井上 純一¹, 金高 健二²,裏 升吾¹ ○阪谷 圭亮¹,山西 裕也¹,小澤 桂介¹,井上 純一¹,裏 升吾¹	
		口頭講演 (Oral Presentation) A35 会場 (Room A35)		
13:30	奨 18p-A35-1	フェムト秒レーザー加工によるフッ化物ファイバーへの マイクロ流路の形成と赤外分光計測	○(M1) 石田 岳土¹, 杉本 尚哉¹, 上原 日和², 時田 茂 樹³, 合谷 賢治¹	1.秋田県大, 2.核融合研, 3.京大化研
13:45	奨 E 18p-A35-2	マイクロ流路の形成と赤外が元計測 Dual-laser Brillouin optical correlation-domain reflectometry: proof of concept	爾,百谷 真石 ○ (DC)Guangtao Zhu¹, Takahiro Ishimaru², Hiroshi Takahashi¹,², Yusuke Koshikiya², Yosuke Mizuno¹	1.YNU, 2.NTT
14:00	18p-A35-3	小径 POF におけるブリルアン周波数シフトの歪・温度依存性の解明		1. 横浜国大, 2. 東工大, 3. 日東電工
14:15	18p-A35-4	POFに描画したFBGによる接触センシング:グレーティング**の影響の解明		1. 横浜国大, 2. オキサイド, 3. 芝浦工大
14:30	18p-A35-5	ング数の影響の解明 時間分割多重による長距離準分布型FBGセンサー	ひよん ³ , 水野 洋輔 ¹ ○黒田 圭司 ¹ , 清水 虎正 ¹	1.北里大理
14:45 15:00	18p-A35-6	休憩/Break アクティブノイズ低減による高感度近接場オプトメカニ		1.NTT 物性研
15:15	18p-A35-7	カル測定 カスケード型チャープLPGを用いた偏波保持型EDF σ	○田中哲¹, 岡野真人¹. 和田 篤¹	1.防衛大
15:30	18p-A35-8	レーザの強度変調型センサへの応用 OCDRとBOCDRのハイブリッド実装	○久保田 晴之¹, 越智 星河¹, 石丸 貴大², 高橋 央², 古	
15:45	18p-A35-9	BOCDRにおける電気信号処理系の隔離の検討	敷谷優介²,水野洋輔¹ 〇井上諒¹,大畠瑠己²,岩嵜脩¹,菊地啓太¹,水野洋 輔²,水刀上,¹	1.芝浦工大, 2.横浜国大
16:00	18p-A35-10	螺旋型および直線型ファイバを用いた distributed acoustic sensing で計測される地震探査波形の逆解析に基	輔²,李ひよん¹ ○柾谷 将吾¹,谷 昌憲¹	1.INPEX
9/19(づく地下イメージング ポスター講演 (Poster Presentation) P 会場(Room P)		
	19a-P06-1	Si導波層を有する磁気光学導波路における非相反移相量の計算の計算		1.芝浦工大院理工
	19a-P06-2	有する光非相反素子の研究	○(M2)田巻 優輝 ¹ , 横井 秀樹 ¹ ○(M2) 劉 宏廷 ¹ 宏川 雲子 ¹ 山県 公起 ²	1. 芝浦工大院理工
	19a-P06-3 19a-P06-4	磁気光学キャビティのバイオ化学センサへの応用 等方性高分子を添加したリバースモードPDLCの電気光	○ (M2) 劉 家祥 ¹ , 安川 雪子 ¹ , 山根 治起 ² ○渡辺 大地 ¹ , 山口 留美子 ¹	1. 千葉工大, 2. 秋田産技センター 1. 秋大院理工
	19a-P06-5	学特性 偏波無依存性光トリプレクサを構成する交差導波路の伝 搬特性	○(M2)大石 啓斗¹, 白石 寛人¹, 横井 秀樹¹	1. 芝浦工大院理工
	19a-P06-6	版付注 感光性構造形成材料により製作される光導波路を用いた 方向性結合器の設計	○今村 遥貴¹	1. 芝浦工大

	19a-P06-7	高速 BOCDR に基づくプラスチック光ファイバに沿った		1. 芝浦工大, 2. 横浜国大, 3. 東大
	19a-P06-8	振動分布の検出 傾斜利用BOCDRによる振動分布計測の実証	ひよん¹ ○田中 伸輔¹, 鈴木 之大¹, 捧 治紀¹, 水野 洋輔², 李 ひ	1. 芝浦工大, 2. 横浜国大
	19a-P06-9	ヘテロダイン検出ファイバーキャビティリングダウン温	よん¹ ○池口 泰樹¹, 黒田 圭司¹	1.北里大理
	40 707.40	度センサーⅡ		* II III I viii
	19a-P06-10 19a-P06-11	二波長差動検波リアルタイム FBG センサー 時間・波長分割多重 Bus Topology FBG センサー	○鬼村 拓実¹, 黒田 圭司¹ ○松本 孝広¹, 黒田 圭司¹	1.北里大理 1.北里大理
	19a-P06-11	マルチモード干渉構造光ファイバ屈折率センサの長さと	○(B)田中翔稀¹,田上周路¹	1.高知工科大学
		局所的な径変化にともなう干渉スペクトルの変化	5 (-)	
	19a-P06-13	光相関領域反射計におけるGHz周波数シフトを用いた ゴーストピークの抑制	○ (DC)清住 空樹¹,吉田 総司²,野田 康平¹,水野 洋輔²,山下 真司¹	1. 東大, 2. 横浜国大
	19a-P06-14	周期的ランダム変調方式による OCDR の折り返しノイズ の抑制	〇比嘉 祐太¹, 元田 圭佑¹, 吉田 総司¹, 大坪 謙太¹, 朱 光韜¹, 清住 空樹¹², 石丸 貴大³, 高橋 央¹³, 古敷谷 優介³, 水野 洋輔¹	1. 横浜国大, 2. 東大, 3.NTT
	19a-P06-15 E 19a-P06-16	単側波帯変調器を用いた外部変調BOCDRの提案 Proposal of pump-probe technique for fiber-optic temperature sensing using Raman spectrum near Rayleigh peak	○尾崎 滉太¹, 菊地 啓太², 李 ひよん², 水野 洋輔¹ ○ Hamza Javid¹, Yosuke Mizuno¹	1. 横浜国大, 2. 芝浦工大 1.YNU
	19a-P06-17	*	○(M1)日色 駿介¹, 木崎 和郎¹, 小野 円佳¹, Liping Huang²	1. 東北大工, 2.Rensselear Polytechnic Inst.
[CS.3]	】3.4 レーザー装置・	材料、3.13 光制御デバイス・光ファイバーのコードシェア		
		口頭講演 (Oral Presentation) A37会場 (Room A37)	<u> </u>	
9:00	20a-A37-1	$\operatorname{CsLiB}^{\circ}\mathrm{O}^{10}$ を用いた深紫外光波長変換における出力変化の調査(II)	誠明 2 , 高橋 義典 3 , 岡田 穣治 4 , 宇佐美 茂佳 1 , 今西 正 幸 1 , 丸山 美帆子 1 , 森 勇介 $^{1.3}$, 吉村 政志 $^{2.3}$	1. 阪大院工, 2. 阪大レーザー研, 3. 創品超光, 4. スペクトロニクス
9:15	20a-A37-2	CsLiB ₆ O ₁₀ 結晶の深紫外光誘起吸収欠陥の調査	〇大浦 龍之 Ω^1 , 山本 Ω^2 , 南部 誠明 1 , 村井 良 Ω^3 , 五十嵐 裕紀 4 , 中嶋 誠 1 , 森 勇 Ω^2 , 吉村 政志 1,3	1. 阪大レーザー研, 2. 阪大院工, 3. 創晶超光, 4. ギガフォトン
9:30	20a-A37-3	薄膜ニオブ酸リチウムナノ構造の製作(II)	○羽中田 祥司¹,吉田 凌一¹,馬場 俊彦¹	1.横国大院工
9:45 10:00	20a-A37-4 20a-A37-5	TFLN導波路用グレーティングカプラの構造最適化(II) 超低損失気体素子キャビティダンプによるパルスレー	○北原 凌成¹, 田原 直樹¹, 馬場 俊彦¹○米田 仁紀¹, 道根 百合奈¹	1.横国大院工 1.電通大レーザー
10:15	20a-A37-6	ザーの高出力化 オゾン気体空間位相変調器の開発	○道根 百合奈¹, 米田 仁紀¹	1.電通大レーザー研
		スプレス体工町匹布友調品の研光 い・集積フォトニクス / Silicon photonics and integrated p		
	(Mon.) 9:00 - 11:45	口頭講演 (Oral Presentation) A25会場 (Room A25)		
9:00	16a-A25-1	集積レーザ素子のウェハレベル自動計測	○堀川剛¹,吉田俊¹,西山伸彦¹.2.3	1.東工大工, 2.東工大研究院, 3.PETRA
9:15 9:30	16a-A25-2 E 16a-A25-3	OFDR による Si フォトニクス素子の解析 (III) 1 × 2 Field Splitter Using Nano-pixel toward Compact	○名和 翔太¹, 鎌田 幹也¹, 佐藤 翼¹, 馬場 俊彦¹ ○(D) Yuzhuang Xie¹, Haisong Jiang¹, Kiichi	1. 横国大院工 1. Kyushu Univ
7.30	E 10a-1125-5	Optical Mode Switch	Hamamoto ¹	1. Kyushu Olliv
9:45	E 16a-A25-4	Nano-pixel Region Length Dependency in Polarization	○ (D)Sara Bruhier ¹ , Haisong Jiang ¹ , Kiichi Hamamoto ¹	1.I-EggS, Kyushu Univ.
10:00	16a-A25-5	Rotator GPUを用いた進化戦略計算によるInP-Siレイヤ間遷移光	〇作本 宙 \mathfrak{m}^1 ,宮武 悠人 1 ,トープラサートポン カシ	1.東大院工
10:15		導波路設計 休憩/Break	ディット ¹ , 高木 信一 ¹ , 竹中 充 ¹	
10:30	16a-A25-6	グレーティングカブラ上への受光器チップの接着実装	○北翔太 ^{1,2} ,高磊 ³ ,前神有里子 ³ ,大野守史 ³ ,コングアンウェイ ³ ,山本宗継 ³ ,山田浩治 ³ ,新家昭彦 ^{1,2} ,角倉久史 ^{1,2} ,納富雅也 ^{1,2}	1.NTTナノフォトニクスセンタ, 2.NTT 物性研, 3. 産総研
10:45	16a-A25-7	超小型パルス波形測定器用二光子吸収アバランシェフォ トダイオードアレイ(II)自由キャリア吸収損失の低減	○小山 希¹, 杉原 興浩¹, 近藤 圭祐¹	1.宇大院
11:00	16a-A25-8	Ge-on-Siを用いたマイクロブリッジ上の金属薄膜堆積による効果		1. 東京都市大学
11:15	16a-A25-9		〇田原 直樹 ¹, 名和 翔太 ¹, 平 陸人 ¹, 陶山 実之 ¹, 廣谷 圭祐 ¹, 前神 有里子 ², 土澤 泰 ², 山本 宗継 ², 山田 浩 治 ², 馬場 俊彦 ¹	
11:30	16a-A25-10	多モード LD 端面結合用界分布変換素子	〇山西 裕也 1 , 井上 純 $^{-1}$, 小澤 桂 1 , 金高 健 $^{-2}$, 市 橋 宏基 3 , 裏 升吾 1	1. 京都工繊大, 2. 産総研, 3. パナソニックホールディン グス(株)
9/16(13:30	Mon.) 13:30 - 18:00 招 16p-A25-1	口頭講演 (Oral Presentation) A25 会場 (Room A25) 「第56回講演奨励賞受賞記念講演」 0.87 V, 59 fJ/bit, 64 Gbps Siフォトニック結晶スローライト光変調器	〇川原 啓輔 1 ,土澤 泰 2 ,山本 宗継 2 ,前神 有里子 2 ,山 田 浩治 2 ,馬場 俊彦 1	1.横国大院工, 2.産総研
13:45	奨 16p-A25-2	Si 基板上に μ-Transfer Printing 集積した 1.1cm 長薄膜ニオブ酸リチウム光変調器	○村井 俊哉¹, 高 磊¹, コン グァンウェイ¹, 今井 雅 彦², 高林 和雅², 三田村 宣明², 秋山 傑², 山田 浩治¹	1.産総研, 2.富士通オプティカルコンポーネンツ
14:00	奨 E 16p-A25-3	Investigation of Linear Electro-optic Effect in Ferroelectric Hafnium Zirconium Oxide on SiN Waveguide	(M1) Dhruv Ishan Bhardwaj¹, Kazuma Taki¹, Naoki Sekine¹, Kouhei Watanabe¹, Yuto Miyatake¹, Tomohiro Akazawa¹, Hiroya Sakumoto¹, Kasidit Toprasertpong¹, Shinichi Takagi¹, Mitsuru Takenaka¹	1.The Univ. Tokyo
14:15	奨 16p-A25-4	GalnAsPメンプレンDRレーザの後部スペーサ導波路導入による光子・光子共鳴の共振周波数制御		1.東工大工, 2.東工大研究院, 3.KDDI 研究所, 4.早稲田 大
14:30	16p-A25-5	ハイブリッド 2 波長可変レーザ及びリング変調器の集積 化	\bigcirc (M2) 富村 悠雅 1 , 李 度炯 1 , 佐藤 昭 2 , 尾辻 泰一 2 , 北 智洋 1	1.早大理工, 2.東北大通研
14:45		休憩/Break		
15:00	16p-A25-6	多ポート光検出器を用いた単一波長・非コヒーレント型		1. 東大, 2. 産総研
15:15	16p-A25-7	光行列演算回路の実証 光電融合再帰型光演算回路における光 - 電 - 光変換デバイ	ト¹, 高木 信一¹, 竹中 充¹ ○ 薏畑 雅也¹.² 北 翔大¹.² 青山 一生³ 新家 昭彦¹.²	1 NTTナノフォトニクスセンタ 2 NTT物性研 3
15:30	奨 16p-A25-8	スのRC遅延の影響 光-電-光フィードバックループ系を用いた光メモリの提	角倉 久史 ^{1,2} ,澤田 宏 ³ ,納富 雅也 ^{1,2}	NTTCS研
	•	案と検討	納富 雅也 1.2	
15:45	奨 16p-A25-9	多面光波変換を用いた32入力光ニューラルネットワーク の実証	\bigcirc (M2) 任 \dot{p}^1 , 田之村 亮汰 1 , 一野瀬 知輝 1 , 中野 義 昭 1 , 種村 拓夫 1	1.東大院工
16:00	16p-A25-10	回路構成の異なるユニタリ変換光回路の損失耐性に関す る考察	〇黄 明智 1 , トープラサートポン カシディット 1 , 高木 信 $^{-1}$, 竹中 充 1	1.東大院工
16:15 16:30	奨 16p-A25-11	休憩/Break 磁性材料を用いた光スパイキングニューロン素子に向け た漏れ積分発火モデルの検証	○高木 岳¹, 庄司 雄哉¹	1.東工大工
16:45	16p-A25-12	オンチップパルスアナライザに向けた集積型波長可変 フィルタの検討	○(M2)早山 凌生¹, 杉原 興浩¹, 近藤 圭祐¹	1. 宇大院
		2 4 22 22 1X n 1		

17:00	16p-A25-13	シリコン2リング共振器結合系における周波数人工次元 のバンド構造測定 (II)	○中間 登惟¹,鎌田 幹也¹,馬場 俊彦¹,小澤 知己²,太 田 泰友³,張 潤銘⁴,岩本 敏⁴	1. 横国大院工, 2. 東北大 AIMR, 3. 慶大物情, 4. 東大生研
17:15	16p-A25-14	シリコンMMI導波路を用いたインライン光検出器	○(B)野村 彩果 ¹ , 北 智洋 ¹	1.早大理工
17:30	奨 16p-A25-15	Ni-InGaAs 合金を用いた InGaAs-Si ハイブリッドプラズ モニック導波路受光器	○小松 健太郎¹,中山 武壽¹,赤澤 智熈¹,脇田 耀介¹, 作本 宙彌¹,張 超¹,宮武 悠人¹,モンフレ ステファ ン²,ブフ フレデリック²,唐 睿¹,トープラサートポ	1. 東大院工, 2.ST マイクロエレクトロニクス
17:45	奨 16p-A25-16	InGaAs/SiハイブリッドフォトトランジスタとオンチップSi抵抗の一体集積によるTIA-less光パワーモニタの実	ン カシディット 1 , 高木 信 $-^1$, 竹中 充 1 \bigcirc 赤澤 智熙 1 , 李 強 2 , Guo-Qiang Lo 2 , トープラサー	1. 東大院工, 2.Advanced Micro Foundry
		証	「かっカラティテ」、同本 旧一、日平九	
9/17(⁻ 9:00	Tue.) 9:00 - 11:30 17a-C32-1	口頭講演 (Oral Presentation) C32 会場 (Room C32) Siフォトニクス SLG FMCW LiDARのリアルタイム測 距・速度測定	○玉貫 岳正¹,鎌田 幹也¹,馬場 俊彦¹	1. 横国大院工
9:15	17a-C32-2	位置と角度への依存性が小さいコリメート光学系の理論設計	○鎌田 幹也¹, 馬場 俊彦¹	1. 横国大院工
9:30	17a-C32-3	可視光フェーズドアレイに向けた $\mathrm{Nb_2O_5}$ 導波路の作製	○新保祐人¹, 矢島 駿¹, 端山 喜紀², 中津原 克己², 庄司 雄哉¹	1. 東工大工, 2. 神奈川工大工
9:45	17a-C32-4	SiN マイクロリング波長選択スイッチのハイパワー入力 調査	○小松 慶喜¹, 玉貫 岳正¹, 鎌田 幹也¹, 名和 翔太¹, 馬場 俊彦¹	1. 横国大院工
10:00 10:15	17a-C32-5	SLG ビームスキャナの温度無依存化の理論的検討(II) 休憩/Break	○小澤 優季¹, 馬場 俊彦¹	1. 横国大院工
10:30	奨 17a-C32-6		〇山口 拓人 1 ,伏見 直樹 1 ,肥田 勝春 1 ,宮武 哲也 1 ,宮 原 昭 $^{-1}$,宮澤 俊之 1 ,河口 研 $^{-1}$,石原 良 $^{-2}$,佐藤 信 太郎 1	1. 富士通, 2. デルフト工科大
10:45	17a-C32-7	Bound States in the Continuumに基づいた高Q値 Er:Gd ₂ O ₃ マイクロリング共振器	○徐 学俊¹, 稲葉 智宏¹, 相原 卓磨², 石澤 淳³, 俵 毅 彦³, 眞田 治樹¹	1.NTT 物性研, 2.NTT 先デ研, 3. 目大
11:00 11:15	17a-C32-8 17a-C32-9	多結晶 YIG/Ce:YIG 二層構造の成膜条件の最適化	○矢島 駿 ¹ , 庄司 雄哉 ¹ ○中西 航輔 ¹ , 高 磊 ² , 須藤 吉克 ² , 村井 俊哉 ² , 山田 浩	1.東工大 1.東工大 2. 産総研
		討	治², 庄司 雄哉¹	1. 不上八上,1. 汪柳柳
9/19(Гhu.) 9:30 - 11:30 19а-Р07-1	ポスター講演 (Poster Presentation) P会場 (Room P) リザバーコンピューティングを用いたスペクトログラ	○永井 幹治¹, 杉原 興浩¹, 近藤 圭祐¹	1. 宇大院
	19a-P07-2	フィックパルス波形再生の高精度化 希土類スロット型光導波路の光伝搬損失の構造依存性	○藤巻 隆之介¹, 櫻田 勇人¹, Xu Xuejun², 稲葉 智宏²,	1. 日本大学, 2.NTT 物性研
	19a-P07-3	シリコン - 有機ハイブリッド型高速空間光変調器の数値		1.東大院工
	19a-P07-4	検証 SiGe/Ge 多重量子井戸 LED における EL 発光特性の障壁	昭¹, 種村 拓夫¹ ○相川 茉由¹, 菊岡 柊也¹, 山田 道洋¹, 浜屋 宏平².³,	1. 東京都市大学, 2. 阪大基礎工 CSRN, 3. 阪大 OTRI
4 JSA	P-Optica Joint	層厚依存性 Symposia 2024	澤野 憲太郎 1	
シンポシ	ジウムのプログラム	はプログラム冒頭にございます。		
9/19(Гhu.) 9:30 - 11:30 Е 19а-Р08-1	ポスター講演 (Poster Presentation) P会場(Room P) Laser-induced Photothermal- and Magneto-Responsive	○ Hoon Eui Jeong ¹ , Moonkyu Kwak ³ , Hosup Jung ²	1.UNIST, 2.Seoul National Univ., 3.Kyungpook Nat.
		Polymer Composites for Soft-Bodied Devices		Univ.
	E 19a-P08-2	Silicon Waveguide Output Coupler Based on Nanohole Array	Ya-Cin Chung ^{1, 2} , Min-Hsiung Shih ² , Shu-Wei Chang ² , ○ Wan-Shao Tsai ¹	1.National Chung Hsing Univ., 2.Academia Sinica
	E 19a-P08-3	Determining Elastic Modulus of Fiber Material by Cantilever Vibration Method	○ (D)Saikat Mondal¹, Partha Roy Chaudhuri¹	1.IIT Kharagpur
	E 19a-P08-4	1 1 0 2	○ Jiayang He¹, Shunsuke Murai¹, Tienyang Lo¹, Katsuhisa Tanaka¹	1.Kyoto Univ.
	E 19a-P08-5	Spectroscopic Investigation of Physico-Chemical Characteristics of Rice Varieties	$ \bigcirc (M1C)MANIKANTH KARNATI^1, Adline \\ Rebello^1, Nandana B^1, Indira Govindaraju^1, Bharath \\ Prasad AS^2, Nirmal Mazumder^1 $	1.Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher 6 Education, Manipal, Karnataka, India -576104 7, 2.Department of Public Health Genomics, Manipal School of Life Sciences, Manipal 8 Academy of Higher Education, Manipal, Karnataka, India -576104
	E 19a-P08-6	Revisable Tuning of Tamm Plasmon Polaritons	○ (D)MingJyun Ye ^{1.3} , Satoshi Ishii³, Kuo-Ping Chen²	1.College of Photonics, National Yang Ming Chiao Tung Unv., Taiwan, 2.Institute of Photonics Technologies, National Tsing Hua Univ., Taiwan, 3.Research Center for Materials Nanoarchitectonics (MANA), NIMS, Japan
	E 19a-P08-7	Development of Four Channel based Stokes-Mueller Polarimetry Integrated with Machine Learning for Characterization and Classification of Ductal Carcinoma Tissue	Spandana K U¹, Sindhoora Kaniyala Melanthota¹, Raghavendra U¹, Sharada Rai¹, K K Mahato¹, ○ Nirmal Mazumder¹	1.Manipal Academy of Higher Education
	E 19a-P08-8	Unidirectional plasmons propagation	○ Subaru Yoshida¹, Tongyao Li¹, Takayuki Umakoshi¹.², Prabhat Verma¹	1.Dept. of Applied Physics, Osaka Univ, 2.Inst. Adv. Co-Creation Studies, Osaka Univ
	E 19a-P08-9	Enhancing SERS Sensor Reliability with Intensity-Based Self-Referencing Using 4-Amino Thiophenol	○ (D)Arti Yadav¹, Sachin Kumar Srivastava¹.²	1.Dept. of Physics, IIT Roorkee, 2.CPQCT, IIT Roorkee
	smonics and Nanop	hotonics		
	Mon.) 9:00 - 12:00 招 E 16a-B4-1	口頭講演 (Oral Presentation) B4会場 (Room B4) [JSAP-Optica Joint Symposia Invited Talk]	○ Dangyuan Lei¹	1.City Uni. of Hong Kong
		Electromagnetic Asymmetry, Quantum Conductivity and Optical Magnetism for Nonlinear Plasmonics		· · · · · · · · · · · · · · · · · · ·
9:30	招 E 16a-B4-2	[JSAP-Optica Joint Symposia Invited Talk] Super-resolution microscopy using nonlinear behavior of fluorescent molecules	○ Kenta Temma ^{1,2}	1.Osaka Univ. Eng., 2.Osaka Univ. Med.
10:00	奨 E 16a-B4-3	Anomalous Measurement of Imbert-Fedorov Shift at Surface Plasmon Resonance	○ (P)CherrieMay Olaya¹, Norihiko Hayazawa¹, Maria Herminia Balgos¹, Takuo Tanaka¹	1.RIKEN
10:15	奨 E 16a-B4-4	Modelling Purcell effect mediated by metasurfaces with spectral parameters	○ (P)JoshuaTinYau Tse¹, Shunsuke Murai¹, Katsuhisa Tanaka¹	1.Kyoto Univ.
10:30 10:45	E 16a-B4-5	体憩/Break Broadband Absorption Spectroscopy via Plasmon Nanofocusing	○ (M2)Haruki Kidoguchi¹, Prabhat Verma¹, Takayuki Umakoshi¹	1.Osaka Univ.
11:00	E 16a-B4-6	Suppression of Modulated Electron Beam Diffraction Radiation from Finite Array of Circular Graphene Nanotubes due to the Lattice-Mode Effect	(P)Dariia Herasymova ¹	1.Institute of Radio-Physics and Electronics NASU

11:15				
	E 16a-B4-7	Floquet-Mie Scattering of Time-Varying Core-Shell Nanoparticles	○ (D)YUCHEN SUN¹, GUANGWEI HU¹	1.School of Electrical and Electronic Engineering, Nanyang Technological University
11:30	E 16a-B4-8	Plasmon nanofocusing vs plasmon resonance: Which	○ (D)Tongyao Li¹, Andrea Schirato², ³, Remo	1.Osaka Univ., 2.Politecnico di Milano, 3.Rice Univ.,
		generates the strongest near-field light?	Proietti Zaccaria ⁴ , Prabhat Verma ¹ , Takayuki Umakoshi ¹	4.Instituto Italiano di Tecnologia
11:45	E 16a-B4-9	Nanoantennas with In-plane Asymmetry for Sensing and Non-centric Emission	○ Shunsuke Murai ¹ , Taisuke Enomoto ¹ , Katsuhisa Tanaka ¹ , Minpeng Liang ² , Jaime Gomes Rivas ²	1.Kyoto University, 2.TU/e
	on.) 13:00 - 17:00 沼 E 16p-B4-1	口頭講演 (Oral Presentation) B4会場 (Room B4) [JSAP-Optica Joint Symposia Invited Talk]	○Tomoko Inose ^{1, 2, 3}	1.Kyoto Univ., 2.iCeMS, Kyoto Univ., 3.JST PRESTO
15.00	д с 10р Б4 1	Plasmonic nanowire based intracellular material delivery	C TOTTONO ITIOSC	T.Nyoto Oliv., Z.Iociwo, Nyoto Oliv., 3331 i NEOTO
13:30 指	沼 E 16p-B4-2	[JSAP-Optica Joint Symposia Invited Talk] Controlling lyotropic liquid crystalline self-assembly for	○ Nhiem Tran¹	1.RMIT University
14:00	E 16p-B4-3	creating nano carriers for biomedical applications Ultra-wide dynamic structural colors with width- modulated Cr-subwavelength grating on Ni/SiO ₂ films	○ Yuusuke Takashima ^{1, 2} , Kentaro Nagamatsu ^{1, 2} , Yoshiki Naoi ^{1, 2}	1.Tokushima Univ., 2.pLED, Tokushima Univ.
14:15	E 16p-B4-4	Spectroscopic thermal emitters based on bimetallic compounds for high temperature plasmonic applications		1.NIMS, 2.Hokkaido Univ.
14:30	E 16p-B4-5	Designing Reconfigurable Metamaterials Toward Structural Color Generation	M. Pourmand¹, ○ Pankaj Kumar Choudhury²	1.Umea University, 2.Zhejiang University
14:45	E 16p-B4-6	Investigation of Plasmonic Effect in Slot Rectangular Waveguide by Applying a Gold as Metal Optimization	\bigcirc (D)Km Priyanka $^{\!1}$, Ritu Raj Singh $^{\!1}$	1.NETAJI SUBHAS UNIVERSITY OF TECHNOLOGY, NEW DELHI
15:00		休憩/Break		
	爰 E 16p-B4-7	Capillary-Interactions based Single-step and Scalable Fabrication of Gap-tuneable Plasmonic Nanostructures	O(DC)Renu Raman Sahu ¹ , Alwar Samy Ramasamy ¹ , Tapajyoti Das Gupta ¹	
	爰 E 16p-B4-8	Self-Assembled Silicon Metasurface for Mechanically Tunable Optical Properties	O(M1)Yongan Hu ¹ , Patrick Probst ¹ , Mojtaba Karimi Habil ¹ , Hiroshi Sugimoto ¹ , Minoru Fujii ¹	
15:45	延 E 16p-B4-9	A Fano resonance enhanced surface plasmon sensing for IgG/anti-IgG immunosensor with high sensitivity	\bigcirc (D) Yiming Lu 1,3 , Hidekazu Ishitobi 1,2,3 , Zouheir Sekkat 4,5 , Yasushi Inouy e 1,2,3	1.FBS, Osaka Univ., 2.Dept. of Appl. Phys. Osaka Univ. 3.PhotoBIO-OIL, AIST-Osaka Univ., 4.MAScIR, 5.Univ Mohammed VI Polytechnic
	爰 E 16p-B4-10	Tunable abrupt autofocusing meta-devices	O (DC)Rong Lin ¹ , Mu Ku Chen ¹ , Din Ping Tsai ¹	1.CityU
16:15	E 16p-B4-11	Wavelength-multiplexed full color 3D metasurface hologram made of silicon nitride	○ Tetsuhito Omori¹, Junpei Beppu¹, Masakazu Yamaguchi¹, Tamaki Onozawa¹, Kentaro Iwami¹	1.TUAT
16:30	E 16p-B4-12	A Cost-Effective, Flexible 1D Metasurface Absorber in The Infrared Region	(DC)Jhuma Pan ¹ , Sachin Kumar Srivastava ¹	1.IIT Roorkee
16:45	E 16p-B4-13	Polyaniline coated U-bent Fiber Optic Aptasensor for Arsenite Detection in Environmental Matrices	$\bigcirc \left(DC \right)$ Ashish Shukla $^{\rm l}$, Tathagata ${\rm Pal}^{\rm l}$, Soumyo Mukherji $^{\rm l}$	1.IIT Bombay, Mumbai
	ue.) 9:00 - 12:00 沼 E 17a-A34-1	口頭講演 (Oral Presentation) A34会場 (Room A34) [JSAP-Optica Joint Symposia Invited Talk]	○ Yuika Saito¹, Takahiro Kondo¹, Kota Uchiyama¹	1.Gakushuin Univ.
a∙30 ±	辺 F 17~ A24 2	Selective Accumulation of SERS Signal	O Tamitaka Itah ¹ Vulka S. Vamamata ²	1 AIST 2 IAIST
9:30 指	沼 E 17a-A34-2	[JSAP-Optica Joint Symposia Invited Talk] Contribution of sub-radiant plasmon resonance to surface-enhanced spectroscopy	O Tamitake Itoh ¹ , Yuko S. Yamamoto ²	1.AIST, 2.JAIST
0:00	E 17a-A34-3	Optical chirality enhancement at the nanoscale using inversely-designed 3D nanogap antennas	○ Atsushi Taguchi¹, Keiji Sasaki¹	1.Hokkaido Univ.
10:15	足E 17a-A34-4		\bigcirc (M2)VU THI OANH 1 , HIROSHI SUGIMOTO 1 , MINORU FUJII 1	1.Kobe Univ.
10:45 多	爰E 17a-A34-5	SERS Detection of Chemical Reactions Induced by Optical Heat	Yano ^{1, 2}	1.Tokushima University, 2.RIKEN
11:00	E 17a-A34-6	Bessel Beam-Instigated Two-Fold SERS Enhancement in AuNP Structures Compare to Drop Casting	Mondal ² , Sachin K. Srivastava ^{1,3}	1.Dept. of Physics, IIT Roorkee, 2.micro-NOC, CSIR-CSIO, 3.CPQCT, IIT Roorkee
11:15	E 17a-A34-7	High-Sensitivity Plasmonic Sensors Probe for Uric Acid Detection using Surface Funtionalized Gold-Graphene Quantum Dotes stacked Nanocomposites	O AHMAD SHUKRI MUHAMMAD NOOR ^{1,2} , Olabisi Abdullahi Onifade ^{1,2} , Muhammad Hafiz Abu Bakar ^{1,2} , Mohd Adzir Mahdi ^{1,2}	1.Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universit
				Putra Malaysia
11:30	E 17a-A34-8	Enhanced Red Emission in Europium-Doped Niobate Phosphors for High-Efficiency Warm White LEDs	$\bigcirc (DC) Kanishk Poria^1, Nisha Deopa^2, Jangvir Singh Shahi^1$	Centre of Excellence, Faculty of Engineering, Universit Putra Malaysia
	E 17a-A34-8 E 17a-A34-9			Centre of Excellence, Faculty of Engineering, Universit Putra Malaysia
11:45 1.2 Photo	E 17a-A34-9 onics Devices, Ph	Phosphors for High-Efficiency Warm White LEDs Probing Forbidden Low-Frequency Raman Modes in MoS ₂ via Plasmonic Nanoparticle otonic Integrated Circuit and Silicon Photonics	Shahi¹ ○ (D)Zhen Zong¹, Ryosuke Morisaki¹, Kanami Sugiyama², Masahiro Higashi³, Takayuki Umakoshi¹,	Centre of Excellence, Faculty of Engineering, Universit Putra Malaysia 1.Panjab Univ., 2.Ch. Ranbir Singh Univ.
11:45 4.2 Photo 9/17(Tu	E 17a-A34-9 onics Devices, Ph	Phosphors for High-Efficiency Warm White LEDs Probing Forbidden Low-Frequency Raman Modes in MoS ₂ via Plasmonic Nanoparticle	Shahi¹ ○ (D)Zhen Zong¹, Ryosuke Morisaki¹, Kanami Sugiyama², Masahiro Higashi³, Takayuki Umakoshi¹,	Centre of Excellence, Faculty of Engineering, Universiti Putra Malaysia 1.Panjab Univ., 2.Ch. Ranbir Singh Univ.
11:45 4.2 Photo 9/17(Tu	E 17a-A34-9 onics Devices, Ph ue.) 14:45 - 18:15	Phosphors for High-Efficiency Warm White LEDs Probing Forbidden Low-Frequency Raman Modes in MoS ₂ via Plasmonic Nanoparticle otonic Integrated Circuit and Silicon Photonics 口頭講演 (Oral Presentation) A25 会場(Room A25) [JSAP-Optica Joint Symposia Invited Talk] Integrated photonics for quantum computation Performant Thin-Film Lithium Niobate Polarizer with an	Shahi¹ ○ (D)Zhen Zong¹, Ryosuke Morisaki¹, Kanami Sugiyama², Masahiro Higashi³, Takayuki Umakoshi¹, Prabhat Verma¹ ○ Nobuyuki Matsuda¹ ○ (M2)Fengyang Jin¹.³, Tingting Lang², Xiaowei	Centre of Excellence, Faculty of Engineering, Universiti Putra Malaysia 1.Panjab Univ., 2.Ch. Ranbir Singh Univ. 1.Osaka Univ., 2.Kyoto Univ., 3.Nagoya Univ. 1.Tohoku Univ. 1.China Jiliang Univ., 2.ZJ Sci.&Tech Univ., 3.Jiaxing
1.45 1.2 Photo 9/17(Tu 1.4:45	E 17a-A34-9 onics Devices, Ph ue.) 14:45 - 18:15 诏 E 17p-A25-2	Phosphors for High-Efficiency Warm White LEDs Probing Forbidden Low-Frequency Raman Modes in MoS₂ via Plasmonic Nanoparticle otonic Integrated Circuit and Silicon Photonics 口頭講演 (Oral Presentation) A25 会場(Room A25) [JSAP-Optica Joint Symposia Invited Talk] Integrated photonics for quantum computation	Shahi ¹ (D)Zhen Zong ¹ , Ryosuke Morisaki ¹ , Kanami Sugiyama ² , Masahiro Higashi ³ , Takayuki Umakoshi ¹ , Prabhat Verma ¹ Nobuyuki Matsuda ¹ (M2)Fengyang Jin ^{1,3} , Tingting Lang ² , Xiaowei Guan ³ (DC)Shalini Vardhan ¹ , Naveen Kumar Gupta ² ,	Centre of Excellence, Faculty of Engineering, Universiti Putra Malaysia 1.Panjab Univ., 2.Ch. Ranbir Singh Univ. 1.Osaka Univ., 2.Kyoto Univ., 3.Nagoya Univ. 1.Tohoku Univ.
11:45 4.2 Photo 9/17(Tu 14:45 指 15:15	E 17a-A34-9 onics Devices, Ph ie.) 14:45 - 18:15 ZE 17p-A25-2 E 17p-A25-3	Phosphors for High-Efficiency Warm White LEDs Probing Forbidden Low-Frequency Raman Modes in MoS₂ via Plasmonic Nanoparticle otonic Integrated Circuit and Silicon Photonics □頭講演 (Oral Presentation) A25会場 (Room A25) [JSAP-Optica Joint Symposia Invited Talk] Integrated photonics for quantum computation Performant Thin-Film Lithium Niobate Polarizer with an S-bend waveguide Modelling of CO₂ Gas Sensing using Spectral Envelope of SoI Integrated Racetrack Resonator Analysis of Ring Radius and Q-Factor for Enhanced Bandpass Filter performance in Racetrack Ring	Shahi¹ (D)Zhen Zong¹, Ryosuke Morisaki¹, Kanami Sugiyama², Masahiro Higashi³, Takayuki Umakoshi¹, Prabhat Verma¹ (Nobuyuki Matsuda¹ (M2)Fengyang Jin¹.³, Tingting Lang², Xiaowei Guan³ (DC)Shalini Vardhan¹, Naveen Kumar Gupta²,	Centre of Excellence, Faculty of Engineering, Universit Putra Malaysia 1.Panjab Univ., 2.Ch. Ranbir Singh Univ. 1.Osaka Univ., 2.Kyoto Univ., 3.Nagoya Univ. 1.Tohoku Univ. 1.China Jiliang Univ., 2.ZJ Sci.&Tech Univ., 3.Jiaxing Inst. ZJU 1.Netaji Subhas University of Technology, Dwarka,
1:45 3.2 Photo 9/17(Tu 4:45 指 5:15 5:30	E 17a-A34-9 onics Devices, Ph ie.) 14:45 - 18:15 E 17p-A25-2 E 17p-A25-3 E 17p-A25-4	Phosphors for High-Efficiency Warm White LEDs Probing Forbidden Low-Frequency Raman Modes in MoS₂ via Plasmonic Nanoparticle otonic Integrated Circuit and Silicon Photonics □頭講演 (Oral Presentation) A25会場 (Room A25) [JSAP-Optica Joint Symposia Invited Talk] Integrated photonics for quantum computation Performant Thin-Film Lithium Niobate Polarizer with an S-bend waveguide Modelling of CO₂ Gas Sensing using Spectral Envelope of Sol Integrated Racetrack Resonator Analysis of Ring Radius and Q-Factor for Enhanced	Shahi¹ (D)Zhen Zong¹, Ryosuke Morisaki¹, Kanami Sugiyama², Masahiro Higashi³, Takayuki Umakoshi¹, Prabhat Verma¹ (Nobuyuki Matsuda¹ (M2)Fengyang Jin¹.³, Tingting Lang², Xiaowei Guan³ (DC)Shalini Vardhan¹, Naveen Kumar Gupta², Aditya Kushwaha¹, Priyanka Verma¹, Ritu Raj Singh¹ (DC)Shalini Vardhan², Naveen Kumar Gupta¹,	Centre of Excellence, Faculty of Engineering, Universit Putra Malaysia 1.Panjab Univ., 2.Ch. Ranbir Singh Univ. 1.Osaka Univ., 2.Kyoto Univ., 3.Nagoya Univ. 1.Tohoku Univ. 1.China Jiliang Univ., 2.ZJ Sci.&Tech Univ., 3.Jiaxing Inst. ZJU 1.Netaji Subhas University of Technology, Dwarka, Sector-3, Delhi-110078, India, 2.Indian Institute of Information Technology, Ranchi- 831014, India 1.IIT Ranchi- 831014, India, 2.NSUT, Delhi-110078, India
11:45 4.2 Photo 9/17(Tu 14:45 指 15:15 15:30 15:45	E 17a-A34-9 onics Devices, Ph ne.) 14:45 - 18:15 召 E 17p-A25-2 E 17p-A25-3 E 17p-A25-4 E 17p-A25-5	Phosphors for High-Efficiency Warm White LEDs Probing Forbidden Low-Frequency Raman Modes in MoS₂ via Plasmonic Nanoparticle otonic Integrated Circuit and Silicon Photonics □頭講演 (Oral Presentation) A25 会場(Room A25) [JSAP-Optica Joint Symposia Invited Talk] Integrated photonics for quantum computation Performant Thin-Film Lithium Niobate Polarizer with an S-bend waveguide Modelling of CO₂ Gas Sensing using Spectral Envelope of Sol Integrated Racetrack Resonator Analysis of Ring Radius and Q-Factor for Enhanced Bandpass Filter performance in Racetrack Ring Resonators [JSAP-Optica Joint Symposia Invited Talk] Diffraction-based on-chip optical neural network with	Shahi¹ (D)Zhen Zong¹, Ryosuke Morisaki¹, Kanami Sugiyama², Masahiro Higashi³, Takayuki Umakoshi¹, Prabhat Verma¹ (Nobuyuki Matsuda¹ (M2)Fengyang Jin¹.³, Tingting Lang², Xiaowei Guan³ (DC)Shalini Vardhan¹, Naveen Kumar Gupta², Aditya Kushwaha¹, Priyanka Verma¹, Ritu Raj Singh¹ (DC)Shalini Vardhan², Naveen Kumar Gupta¹, Ritu Raj Singh² (Wencan Liu¹, Yuyao Huang¹, Run Sun¹, Tingzhao Fu², Hongwei Chen¹	Centre of Excellence, Faculty of Engineering, Universit Putra Malaysia 1.Panjab Univ., 2.Ch. Ranbir Singh Univ. 1.Osaka Univ., 2.Kyoto Univ., 3.Nagoya Univ. 1.Tohoku Univ. 1.China Jiliang Univ., 2.ZJ Sci.&Tech Univ., 3.Jiaxing Inst. ZJU 1.Netaji Subhas University of Technology, Dwarka, Sector-3, Delhi-110078, India, 2.Indian Institute of Information Technology, Ranchi- 831014, India 1.IIIT Ranchi- 831014, India, 2.NSUT, Delhi-110078, India 1.Tsinghua Univ., 2.National Univ. of Defense
11:45 4.2 Photo 9/17(Tu 14:45 素 15:15 15:30 15:45 16:30	E 17a-A34-9 onics Devices, Ph ne.) 14:45 - 18:15 召 E 17p-A25-2 E 17p-A25-3 E 17p-A25-4 E 17p-A25-5	Phosphors for High-Efficiency Warm White LEDs Probing Forbidden Low-Frequency Raman Modes in MoS₂ via Plasmonic Nanoparticle otonic Integrated Circuit and Silicon Photonics □頭講演 (Oral Presentation) A25会場 (Room A25) [JSAP-Optica Joint Symposia Invited Talk] Integrated photonics for quantum computation Performant Thin-Film Lithium Niobate Polarizer with an S-bend waveguide Modelling of CO₂ Gas Sensing using Spectral Envelope of Sol Integrated Racetrack Resonator Analysis of Ring Radius and Q-Factor for Enhanced Bandpass Filter performance in Racetrack Ring Resonators [JSAP-Optica Joint Symposia Invited Talk] Diffraction-based on-chip optical neural network with high computational density	Shahi¹ (D)Zhen Zong¹, Ryosuke Morisaki¹, Kanami Sugiyama², Masahiro Higashi³, Takayuki Umakoshi¹, Prabhat Verma¹ Nobuyuki Matsuda¹ (M2)Fengyang Jin¹.³, Tingting Lang², Xiaowei Guan³ (DC)Shalini Vardhan¹, Naveen Kumar Gupta², Aditya Kushwaha¹, Priyanka Verma¹, Ritu Raj Singh¹ (DC)Shalini Vardhan², Naveen Kumar Gupta¹, Ritu Raj Singh²	Centre of Excellence, Faculty of Engineering, Universit Putra Malaysia 1.Panjab Univ., 2.Ch. Ranbir Singh Univ. 1.Osaka Univ., 2.Kyoto Univ., 3.Nagoya Univ. 1.Tohoku Univ. 1.China Jiliang Univ., 2.ZJ Sci.&Tech Univ., 3.Jiaxing Inst. ZJU 1.Netaji Subhas University of Technology, Dwarka, Sector-3, Delhi-110078, India, 2.Indian Institute of Information Technology, Ranchi- 831014, India 1.IIT Ranchi- 831014, India, 2.NSUT, Delhi-110078, India 1.Tsinghua Univ., 2.National Univ. of Defense
1.2 Photo 9/17(Tu 4.4:45 指 1.5:15 1.5:30 1.5:45 1.6:00 指 1.6:30 1.6:45 指	E 17a-A34-9 onics Devices, Ph ie.) 14:45 - 18:15 習 E 17p-A25-2 E 17p-A25-3 E 17p-A25-4 E 17p-A25-5	Phosphors for High-Efficiency Warm White LEDs Probing Forbidden Low-Frequency Raman Modes in MoS₂ via Plasmonic Nanoparticle otonic Integrated Circuit and Silicon Photonics □頭講演 (Oral Presentation) A25 会場(Room A25) [JSAP-Optica Joint Symposia Invited Talk] Integrated photonics for quantum computation Performant Thin-Film Lithium Niobate Polarizer with an S-bend waveguide Modelling of CO₂ Gas Sensing using Spectral Envelope of SoI Integrated Racetrack Resonator Analysis of Ring Radius and Q-Factor for Enhanced Bandpass Filter performance in Racetrack Ring Resonators [JSAP-Optica Joint Symposia Invited Talk] Diffraction-based on-chip optical neural network with high computational density (株憩/Break [JSAP-Optica Joint Symposia Invited Talk] Two-Dimensional Broadband Silicon Optical Beam Scanning Device for Free-Space Optical	Shahi¹ (D)Zhen Zong¹, Ryosuke Morisaki¹, Kanami Sugiyama², Masahiro Higashi³, Takayuki Umakoshi¹, Prabhat Verma¹ Nobuyuki Matsuda¹ (M2)Fengyang Jin¹.³, Tingting Lang², Xiaowei Guan³ (DC)Shalini Vardhan¹, Naveen Kumar Gupta², Aditya Kushwaha¹, Priyanka Verma¹, Ritu Raj Singh¹ (DC)Shalini Vardhan², Naveen Kumar Gupta¹, Ritu Raj Singh² Wencan Liu¹, Yuyao Huang¹, Run Sun¹, Tingzhao Fu², Hongwei Chen¹ Yuki Atsumi¹, Tomoya Yoshida¹, Ryosuke Matsumoto¹, Ryotaro Konoike¹, Kazuhiro Ikeda¹,	Centre of Excellence, Faculty of Engineering, Universit Putra Malaysia 1.Panjab Univ., 2.Ch. Ranbir Singh Univ. 1.Osaka Univ., 2.Kyoto Univ., 3.Nagoya Univ. 1.Tohoku Univ. 1.China Jiliang Univ., 2.ZJ Sci.&Tech Univ., 3.Jiaxing Inst. ZJU 1.Netaji Subhas University of Technology, Dwarka, Sector-3, Delhi-110078, India, 2.Indian Institute of Information Technology, Ranchi-831014, India 1.IIT Ranchi-831014, India, 2.NSUT, Delhi-110078, India 1.Tsinghua Univ., 2.National Univ. of Defense Technology

17:45	E 17p-A25-10	Multiband Frequency-Tunable Millimeter-Wave Absorber	A. Shahzad ¹ , S. Ahmed ¹ , Q. A. Naqvi ¹ , \bigcirc Pankaj	1.Quaid-i-Azam Univ., 2.Zhejiang University
			Kumar Choudhury ²	
18:00	E 17p-A25-11	Mode Switching in Few-Mode Fibers Using Electric Field Controlled Dynamic Offset Coupling	(D)Isha Sharma', Partha Roy Chaudhuri'	1.IIT Kharagpur
	ser sources and Las			
10:45	E 17a-A31-1	口頭講演 (Oral Presentation) A31会場(Room A31) 3D Reconstruction of Veins Using NIR by Efficientnet Model	Phuong Anh Dam ¹ , () (M1) Hoang Nhut Huynh ¹ , Tan Loc Huynh ¹ , Kien Vinh Vuong ¹ , Ngoc An Dang	1.Ho Chi Minh City University of Technology (HCMUT), VNUHCM
11:00	E 17a-A31-2	An Optical Approach for the Liquid Vortex Characterization	Nguyen¹, Anh Tu Tran¹, Trung Nghia Tran¹ $\bigcirc (M1) Tien \ Danh \ Vu^{1,2}, \ Phuong \ Hoang \ Le¹, \ Thanh \ Nhu \ Nguyen^{1,2}, \ Binh \ Xuan \ Cao^{1,2}$	Technology, 2.School of Mechanical Engineering, Hanoi
11:15	E 17a-A31-3	Utilizing Near-Infrared Femtosecond Laser-Generated Gas Bubbles for Acellular Area Construction in Cell Monolavers	○ Kazunori Okano ^{1,4} , Naomi Tanga ^{1,2} , Rieko Aida ⁴ , Hayato Suwa ⁴ , Hiromi Hagiwara ⁴ , Yalikun Yaxiaer ¹ , Koichiro Kishima ³ , Yoichiroh Hosokawa ^{1,2,3}	University of Science and Technology 1.Mat. Sci, NAIST, 2.CDG, NAIST, 3.MediLux, NAIST, 4.Toin Yokohama Univ., 5.Pinpoint Photonics
11:30	E 17a-A31-4	Evaluating Single Event Effects in Radiation-Tolerant Chips Using Short-Pulse Laser		1.National Taiwan Univ
11:45	E 17a-A31-5	BREAKING OF PHONON BOTTLENECK IN CsPbI ₃ NANOCRYSTALS DUE TO EFFICIENT AUGER RECOMBINATION	\bigcirc (D) Ankit Sharma $^{\! 1}$, Samit K ${\rm Ray}^2$, K V ${\rm Adarsh}^1$	1.IISER Bhopal India, 2.IIT Kharagpur India
9/17(Tue.) 13:30 - 17:45			
	招 E 17p-A31-1	[JSAP-Optica Joint Symposia Invited Talk] High-repetition-rate soliton frequency combs in	○Shun Fujii¹	1.Keio Univ.
14.00	E 17- A21 2	ultrahigh-Q microresonators All-PM, Soliton mode-locked, dual-comb fiber laser with	○ (M2)Yifei Zhu¹, Norihiko Nishizawa¹, Shotaro	1 M II. i
14:00	E 17p-A31-2	single-walled carbon nanotubes for high-precision spectroscopy	(M2) Thei Zhu, Noriniko Nishizawa, Shotaro Kitajima ¹	1.Nagoya Univ
14:15	E 17p-A31-3	Applied spectroscopic measurement and analysis of gases using dual comb spectroscopy	○ (M1)Naoki Takeshi¹, Ryusei Uchiyama¹, Kousuke Kubota¹, Toshiyuki Miyazaki¹, Yohei Sugiyama², Feng-Lei Hong², Yoshiaki Nakajima¹	1.Toho Univ., 2.Yokohama Natl. Univ.
14:30	奨 E 17p-A31-4	Detection of ultrafast pulse profiles at telecom wavelength using dispersion-compensated chirped-pulse spectroscopy	○(M1)Miho Fukuoka¹, Ryo Tamaki¹,², Isao	1.Yokohama National University, 2.KISTEC for Kanagawa Institute of Industrial Science and Technology, 3.NICT for National Institute of Information and Communications Technology
	招 E 17p-A31-5	[JSAP-Optica Joint Symposia Invited Talk] A microresonator frequency comb as a low phase-noise terahertz-wave oscillator	O Tomohiro Tetsumoto ¹	1.NICT
15:15 15:30	招 E 17p-A31-6	休憩/Break [JSAP-Optica Joing Symposia Invited Talk] Ion Clustering Model of a Highly Er ³⁺ -doped ZBLAN Fiber Laser at 2.8 um	O Ju Han Lee ¹	1.University of Seoul
16:00	招 E 17p-A31-7	[JSAP-Optica Joint Symposia Invited Talk] mW-class broadband mid-infrared comb generation using a waveguide-type PPLN crystal and its application to dual-comb spectroscopy	O Kazumichi Yoshii ¹ , Ryo Mitsumoto ² , Naoya Kuse ¹ , Yoshiaki Nakajima ³ , Takeshi Yasui ^{1,2} , Kaoru Minoshima ^{1,4}	1.pLED, Tokushima Univ., 2.Tokushima Univ., 3.Toho Univ., 4.Univ. of Electro-Commun.
16:30	E 17p-A31-8	Er:fiber Comb System Optimized for mW-class Mid- infrared Light Generation Using a Waveguide-type Periodically Poled Lithium Niobate Crystal	○ (D)Ryo Mitsumoto¹, Naoya Kuse², Yoshiaki Nakajima³, Takeshi Yasui¹¹², Kaoru Minoshima²²⁴, Kazumichi Yoshii²	1.Tokushima Univ., 2.Institute of Post-LED Photonics, Tokushima Univ., 3.Toho Univ., 4.Univ. of Electro-Commun.
16:45	E 17p-A31-9	Generation of Frequency Comb Spanning 5.0-12.0 µm Based on a Bidirectional Dual-comb Fiber Laser	○ Kousuke Kubota¹, Ryusei Uchiyama¹, Wataru Kokuyama², Peter G. Schunemann³, Yoshiaki Nakajima¹	1.Toho Univ., 2.AIST, 3.BAE Systems
17:00	E 17p-A31-10	Development of Broadband Fiber-Based Frequency Comb Light Sources Using Nonlinearity in a Laser Cavity		1.Toho Univ., 2.NMIJ/AIST
17:15	招 E 17p-A31-11	[JSAP-Optica Joint Symposia Invited Talk]		1.Aerospace Information Research Institute, Chinese Academy of Sciences, 2.School of Optoelectronics, University of the Chinese Academy of Sciences
		ス・画像工学、4.4 Information Photonics のコードシェア	/ Code-sharing Session of 3.2 & 4.4	
	Mon.) 13:30 - 17:00 招 E 16p-A37-1	口頭講演 (Oral Presentation) A37会場 (Room A37) [JSAP-Optica Joint Symposia Invited Talk]	○ Yuhong Wan ¹ , Tianlong Man ¹ , Wenxue Zhang ¹ ,	1.School of Physics and Optoelectronic Engineering ,
14:00	E 16p-A37-2	Incoherent Coded Aperture Correlation Holography Enhanced live cell imaging through polarization digital holographic microscope	Minghua Zhang ¹ , Hongqiang Zhou ¹ (D)Shivam Kumar Chaubey ¹ , Mohit Rathor ¹ , Rupen Tamang ² , Biplob Koch ² , Rakesh Kumar	Beijing University of Technology 1.Dept. of Phy. IIT BHU, 2.Dept of Zoology, BHU
14:15	奨 E 16p-A37-3	Quantitative Zernike Phase-Contrast Microscopy with an Untrained Neural Network	Singh¹ ○ (D)Zinan Zhou¹, Keiichiro Toda¹, Rikimaru Kurata², Kohki Horie¹, Ryoichi Horisaki², Takuro	1.UTokyo (Science), 2.UTokyo (IST)
14:30	奨 E 16p-A37-4	Generation of structured light beams on HOPS and HyPS	Ideguchi¹ ○ (D)SUMIT KUMAR SINGH¹, Kenji Kinashi¹,	1.Kyoto Inst. of Tech.
14:45	招 E 16p-A37-5	using multiplexed holograms [JSAP-Optica Joint Symposia Invited Talk] Ultra-wide field-of-view optical focus control with high-	Naoto Tsutsumi¹, Wataru Sakai¹, Boaz Jessie Jackin¹ O Atsushi Shibukawa¹	1.Hokkaido Univ.
15.15		speed complex wavefront shaping		
15:15 15:30 15:45	奨 16p-A37-6 奨 16p-A37-7	休憩/Break 単一画素計測を用いた波面計測における輝点位置の抽出 1点読み出し時間ドメイン単画素イメージングによるリ アルタイン像画性	○(M2)小林 直弘¹,仁田功一¹ ○槻 凌多¹,深津 晋¹	1. 神戸大院システム情報 1. 東京大院総合文化
16:00	奨 16p-A37-8	アルタイム像再生 スペクトル符号化法による2次元ファイバイメージング - 多芯化の効果 -	○(M2)野々目 久祥 ¹ , 小山 卓耶 ² , 大嶋 祐介 ² , 片桐 崇史 ²	1. 富山大医薬理工, 2. 富山大工
16:15	奨 16p-A37-9	- タルモの効果 - マルチスポット照明を用いた散乱体深部蛍光イメージング	宗文 \bigcirc	1.富山大理工, 2.富山大工
16:30	16p-A37-10	・ モーションレスオプティカルスキャニングホログラフィ における多波長イメージングのための照明光変調バター ン設計の検討	○最田 裕介¹, 西本 篤生¹, 米田 成².³, 野村 孝徳¹	1. 和歌山大システムエ, 2. 神戸大院システム情, 3. 神戸 大 OaSIS
16:45	16p-A37-11	チャーブバルス位相シフトディジタルホログラフィーに よるビコ秒オーダー間隔の光波面の観測	○福田 涉¹, 唐澤 直樹¹	1. 千歲科技大理工

0/17	/T \ 0.00 11.4F	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□		
9:00	(Tue.) 9:00 - 11:45 招 E 17a-A37-1	口頭講演 (Oral Presentation) A37会場 (Room A37) [JSAP-Optica Joint Symposia Invited Talk]	○ Hiroshi Ohno¹	1.Toshiba RDC
		Deep Neural Network 3D Reconstruction Using One-Shot Color Mapping of Reflectance Direction		
9:30	E 17a-A37-2	Fields Corneal quality assessment for corneal transplantation using hyperspectral imaging	○ (D)Maria Merin Antony¹, Murukeshan Vadakke Matham¹	1.Nanyang Techn. Univ.
9:45	E 17a-A37-3	Enhancing the Accuracy of Identification in Complex Environmental Backgrounds using YOLO V7 and U2NET:	$\bigcirc (M2) HUNG WEI HSU^1, Chih\text{-}Chung Wang^1,$	1.National Taiwan University
10:00	招 E 17a-A37-4	Orchid Repotting [JSAP-Optica Joint Symposia Invited Talk] Compact super multi-view and foveated holographic near eye display for augmented reality and virtual reality applications	O Jae-Hyeung Park ¹ , Myeong-Ho Choi ^{2, 1} , Woongseob Han ^{2, 1} , Minseong Kim ^{2, 1}	1.Seoul National Univ., 2.Inha Univ.
10:30 10:45	17a-A37-5	休憩/Break 3色レーザー照明を有するフェムト秒レーザー励起マイ クロクラウド体積ディスプレイ	○ (M2) 沼澤 啓亮¹, 熊谷 幸汰¹, 早崎 芳夫¹	1. 宇都宮大オプティクス
11:00	17a-A37-6	ダブルバルス励起空中ボクセルの評価と体積映像描画へ の適用	○熊谷 幸汰¹,遠藤 統伍¹,早崎 芳夫¹	1.宇都宮大オプティクス
11:15 11:30	17a-A37-7 17a-A37-8	お算機ホログラムを用いた体積的ビーム成形 複数のライン集光ビームを回折する体積ホログラフィッ ク光学素子の作製	○ (D) 黒尾 奈未¹, 早崎 芳夫¹ ○ (M2) 玉井 裕基¹, 茨田 大輔²	1. 宇大オプティクス 1. 宇都宮大学光工学, 2. 宇都宮大学 CORE
9/17(Tue.) 13:30 - 15:00	ロ頭講演 (Oral Presentation) A37会場 (Room A37)		
13:30	奨 17p-A37-1	機械学習を用いた位相4値多重記録画像の位相検出	○會澤 颯泰¹, 藤村 隆史¹.²	1.宇大院, 2.東大生研
13:45 14:00	奨 17p-A37-2 17p-A37-3	ハルトマンマスクを用いた位相信号検出精度の評価 バイアス位相を用いた並列演算空間フォトニックイジン グマシンの検証実験	○大塚 颯斗¹, 藤村 隆史¹.² ○(M1) 木原 崇晶¹, 下村 優¹, 小倉 裕介¹, 谷田 純¹	1. 宇大院, 2. 東大生研 1. 阪大院情
14:15	17p-A37-4	BiBO結晶を用いた高輝度量子イメージングのための並 列強度相関測定の検討	○吉村 佳奈子¹, 米田 成¹.², 的場 修¹.²	1.神戸大院シス情報, 2.神戸大OaSIS
14:30	奨 17p-A37-5	LiDARを用いたグラデーションパターンの位置と姿勢の 検出	_ , ,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1. 宇大光工学, 2. 宇大 CORE
14:45	17p-A37-6 nocarbon and 2D M	衛星画像と地上雲カメラ画像の連携解析による雲量予測	○穴田 貴康¹,遠藤 貴雄¹,土川 拓朗¹	1.三菱電機(株)
	(Tue.) 9:00 - 12:30	口頭講演 (Oral Presentation) A35 会場(Room A35)		
9:00	招 E 17a-A35-1	[JSAP-Optica Joint Symposia Invited Talk] Shift current photovoltaics in single domain ferroelectric SnS	○ Kosuke Nagashio¹	1.UTokyo
9:30	E 17a-A35-2	Absorption Enhancement of Excitons in WS_2 by Silicon Huygens' Metasurface	○ (D)Dingwei Chen¹, Junichi Takahara¹.²	1.GSE. Osaka Univ., 2.PC. Osaka Univ.
9:45	E 17a-A35-3	Magnetic brightening and its dynamics of defect-localized excitons in monolayer \mbox{WSe}_2	○ (DC)Yubei Xiang¹, Keisuke Shinokita¹, Kenji Watanabe², Takashi Taniguchi³, Kazunari Matsuda¹	1.Institute of Advanced Energy, Kyoto Univ., 2.Research Center for Electronic and Optical Materials, NIMS, 3.Research Center for Materials Nanoarchitectonics, NIMS
10:00	招 E 17a-A35-4	[JSAP-Optica Joint Symposia Invited Talk] 【注目講演】Electronic and excitonic properties of semiconductor bilayer moiré system revealed by optical spectroscopy	○ Yuya Shimazaki ^{1, 2}	1.RIKEN, CEMS, 2.Univ. of Tokyo, Eng.
10:30	E 17a-A35-5	Exciton-driven Floquet-Bloch States in 2D Semiconductors	Vivek Pareek ¹ , David Bacon ¹ , ○ (DC)XING ZHU ¹ , Yang-Hao Chan ² , Fabio Bussolotti ³ , Nicholas S Chan ¹ , Joel Perez Urquizo ¹ , Kenji Watanabe ⁴ , Takashi Taniguchi ⁴ , Michael K. L. Man ¹ , Julien Madeo ¹ , Diana Qiu ⁵ , Kuan Eng Johnson Goh ^{3,6,7} , Felipe H. da Jornada ^{8,9} , Keshav M. Dani ¹	1.FSU, OIST, 2.IAMS, Academia Sinica, 3.IMRE, A*STAR, 4.NIMS, 5.Yale Univ., 6.NUS, 7.NTU, 8. Stanford Univ., 9.SLAC
10:45	招 E 17a-A35-6	[JSAP-Optica Joint Symposia Invited Talk] Exciton transfer and interface excitons in mixed- dimensional heterostructures	O Nan Fang ¹ , Yih-Ren Chang ¹ , Shun Fujii ^{1,2} , Daiki Yamashita ^{1,3} , Mina Maruyama ⁴ , Yanlin Gao ⁴ , Chee Fai Fong ¹ , Daichi Kozawa ^{1,5} , Keigo Otsuka ^{1,6} ,	
11:15	E 17a-A35-7	Identification and manipulation of valley coherence in monolayer WSe ₂	Kosuke Nagashio ⁶ , Susumu Okada ⁴ , Yuichiro Kato ¹ O (D)Wang Haonan ¹ , Kenji Watanabe ² , Takashi Taniguchi ² , Kazunari Matsuda ¹	1.IAE, Kyoto Univ., 2.NIMS
11:30	E 17a-A35-8	Dry transfer and optical properties of CVD-grown transition metal dichalcogenides		1. Tokyo Metropolitan Univ., 2.NIMS, 3. Tokyo Tech., 4. Kyoto Univ.
11:45	E 17a-A35-9	Structural and Electrical Properties of Millimeter Scale CVD Graphene	(P)Sengottaiyan Chinnasamy ¹ , Kazunori Hirosawa ¹ , Yuta Kurachi ¹ , Masanori Hara ¹ , Masamichi Yoshimura ¹	1.Toyota Tech. Inst.
(CS.6)	4.5 Nanocarbon an	d 2D Materials、17 ナノカーボン・二次元材料のコードシ		
		口頭講演 (Oral Presentation) A35 会場 (Room A35)	(DC)Dunget Isin Shot V V I	1 The Univ. of Televe
10:00	E 18a-A35-1 E 18a-A35-2	Self-assembly of dopant molecules on MoS ₂ monolayer for degeneracy/heavily doping Development of a Stacking Method for Janus TMDs	(PC)Puneet Jain', Shotaro Yotsuya', Kosuke Nagashio¹, Daisuke Kiriya¹ ○ Tianyishan Sun¹², Weizi Lu¹², Soma Aoki¹²,	The Univ. of Tokyo Grad. Sch. of Eng., Tohoku Univ., 2.AIMR, Tohoku
10:15	E 18a-A35-3	Toward the Formation of Janus TMD Superlattices Relationship between the surface roughness of SiO ₂ /Si	Dingkun Bi ^{1,2} , Hiroto Ogura ^{1,2} , Toshiaki Kato ^{1,2} O Jaehyo Jang ¹ , Naoki Matsunaga ¹ , Soma Ito ¹ ,	Univ. 1. Tokyo Tech
10:45	E 18a-A35-4	sub. and the PVD-WS ₂ film Fabrication and Characterization of Germanium	Hitoshi Wakabayashi ¹ Qinqiang Zhang ¹ , Ryo Matsumura ¹ , Kazuhito	1.MANA-NIMS
11:00		Monosulfide Field-Effect Transistors 休憩/Break	Tsukagoshi ¹ , Naoki Fukata ¹	
	E 18a-A35-5	Energetics and electronic structures of Nb-doped WSSe	○ YANLIN GAO¹, SUSUMU OKADA¹	1.University of Tsukuba
11:15		layers		
11:15 11:30 11:45	E 18a-A35-6 E 18a-A35-7	layers Engineering MoSe ₂ Defects via SHI Irradiation for Improved NH ₃ Gas Sensing: A DFT Study Pt Nanocluster Decoration on WSe ₂ for Enhanced NO ₂	○ (DC)Aditya Kushwaha¹, Shalini Vardhan¹, Neeraj Goel¹ Neetu Raj Bharti¹, ○ (DC)Aditya Kushwaha¹, Neeraj	Sector - 3, Delhi - 110078, India

4.6 Ter	ahertz Photonics			
9/18(V	Ved.) 13:00 - 18:15	口頭講演 (Oral Presentation) B2会場 (Room B2)		
13:00	招 E 18p-B2-1	[JSAP-Optica Joint Symposia Invited Talk] High-power and compact terahertz signal sources	○ Safumi Suzuki¹	1.Tokyo Tech
13:30	招 E 18p-B2-2	using resonant tunneling diodes [JSAP-Optica Joint Symposia Invited Talk] Strongly coupled terahertz magnons and chiral phonons	○ Qi Zhang¹	1.Nanjing Univ.
14:00	奨 E 18p-B2-3	in antiferromagnets A fast and sensitive THz rectenna detector working with zero-bias based on the 2D Dirac-Semimetal/Insulator heterostructure	○ Chao Tang ^{1,2} , Koichi Tamura ^{1,3} , Aoi Hamada ^{1,3} , Hiroyoshi Kudo ^{1,3} , Shinnosuke Uchigasaki ^{1,3} , Yuma Takida ⁴ , Hiroaki Minamida ⁴ , Tsung-Tse Lin ^{1,4} , Akira Satou ¹ , Taiichi Otsuji ¹	1.RIEC, Tohoku Univ., 2.FRIS, Tohoku Univ., 3.School of Eng. Tohoku Univ., 4.RAP, RIKEN
14:15	E 18p-B2-4	Negative curvature annulus core fiber for transmission of orbital angular momentum modes in THz regime		1.Dept. of Physics, Indian Institute of Technology Roorkee, 2.Center of Photonics and Quantum Communication Technology, Indian Institute of Technology Roorkee
14:30 14:45	奨 E 18p-B2-5	体憩/Break Temperature Dependence Analysis for β -Ga $_2$ O $_3$ Studied by Terahertz Time-Domain Spectroscopy	○ (D)Shuang Liu¹, Verdad C. Agulto¹, Toshiyuki Iwamoto¹.², Kosaku Kato¹, Hisashi Murakami³, Yoshinao Kumagai³, Masashi Yoshimura¹, Makoto Nakajima¹	1.Osaka Univ. ILE, 2.Nippo Prec., 3.TAT Appli. Chem.
15:00	奨 E 18p-B2-6	Study of c- and m-plane properties of ZnO via terahertz time-domain ellipsometry	(O(D)Zixi Zhao¹, Verdad C. Agulto¹, Toshiyuki Iwamoto¹¹², Kosaku Kato¹, Kohei Yamanoi¹, Toshihiko Shimizu¹, Nobuhiko Sarukura¹, Takashi Fujii²³, Tsuguo Fukuda⁴, Masashi Yoshimura¹, Makoto Nakajima¹	1.ILE, Osaka Univ., 2.PNP, 3.Ritsumeikan Univ., 4. Fukuda Crystal Lab.
15:15	奨 E 18p-B2-7	Identification of calcium oxalate hydrates by terahertz spectroscopy		1.ILE Osaka Univ., 2.GSE Osaka Univ, 3.GSS Tohoku Univ.
15:30	奨 E 18p-B2-8	Low and High Spatial Frequency Periodic Surface Structure Formation under Terahertz Free Electron Laser Irradiation	(D)Youwei Wang ¹ , Zihao Yang ¹ , Kosaku Kato ¹ , Verdad C. Agulto ¹ , Kotaro Makino ² , Junjii Tominaga ² , Goro Isoyama ³ , Makoto Nakajima ¹	1.ILE, Osaka Univ., 2.AIST, 3.SANKEN, Osaka Univ.
15:45	奨 E 18p-B2-9	Terahertz micrometer-scale imaging based on spintronic emitters	(D)Ruochen Dai ¹ , Shinya Isosaki ¹ , Jiaming Zhang ¹ , Kosaku Kato ¹ , Verdad C. Agulto ¹ , Shojiro Nishitani ¹ , Mikihiko Nishitani ¹ , Masashi Yoshimura ¹ , Makoto Nakajima ¹	1.Osaka Univ. ILE
16:00 16:15	招 E 18p-B2-10	休憩/Break [JSAP-Optica Joint Symposia Invited Talk] Low-temperature-grown dilute bismide III-V compound semiconductors towards fabrication of photoconductive antenna for terahertz-wave emission and detection	Ikenaga³, Osamu Ueda⁴	1.Hiroshima Univ., 2.Hokkaido Univ., 3.Kanazawa Inst. Tech., 4.Meiji Univ.
16:45	招 E 18p-B2-11	[JSAP-Optica Joint Symposia Invited Talk] Terahertz spin currents resolved with nanometer spatial resolution	○ Xiaojun Wu¹	1.Beihang University
17:15	E 18p-B2-12	3D-printed Packaging for Terahertz Silicon Waveguides	○ (P)Ngo Hoai Nguyen¹, Weijie Gao¹, Mingxiang Li², Daiki Ichikawa¹, Yoshiharu Yamada³, Hidemasa Yamane³, Shuichi Murakami³, Withawat Withayachumnankul², Masayuki Fujita¹	1.Osaka University, 2.Univ. of Adelaide, 3.ORIST
17:30	奨 E 18p-B2-13	New Composition Signal Among Comb-Like Terahertz Spectrum Generated Using Dual Multimode Laser Diodes	○ (D)Yuanhao Zeng¹, Kosaku Kato¹, Verdad C.	1.ILE, Osaka Univ., 2.Fukui Univ. of Tech., 3.FIR-UF
	奨 E 18p-B2-14 奨 E 18p-B2-15	Terahertz spectroscopy and imaging of circular dichroism in chiral metasurfaces Kinetics analysis of anti-CD9 antibody and H1299 EV		
4700	antum Ontica Nanli	using terahertz chemical microscope near Optics and Structured Optics	Jin Wang ¹ , Toshihiko Kiwa ¹	
		口頭講演 (Oral Presentation) C43会場(Room C43)		
13:00	招 E 19p-C43-1	[JSAP-Optica Joint Symposia Invited Talk] Nonlinear mode converted with multi-color spectral composites	KH. Chang ^{1, 2} , JH. Lai ¹ , TF. Pan ¹ , HH. Chiu ³ , A. Boudrioua ² , CM. Lai ⁴ , H. Yokoyama ⁵ , E. Higurashi ⁵ , H. Akiyama ⁶ , O Lung-Han Peng ^{1, 3}	1.Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2.Laboratoire de Physique de Lasers CNRS UMR 7538, Universite Sorbonne Paris Nord., 3.Dept. Elec. Eng. National Taiwan University, 4.Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, 5.Graduate School of Engineering, Tohoku University, 6.The Institute for Solid State Physics, The University of Tokyo
13:30	招 E 19p-C43-2	[JSAP-Optica Joint Symposia Invited Talk] Optical skyrmion beam generation based on integrated photonics	○ Satoshi Iwamoto ^{1, 2} , Wenbo Lin³, Yasutomo Ota ⁴	1.RCAST, The Univ. of Tokyo, 2.IIS, The Univ. of Tokyo, 3.Tokyo Institute of Technology, 4.Keio University
14:00	E 19p-C43-3	Green Skyrmion fiber laser	○ (P)Srinivasa Rao Allam ^{1, 2, 3} , Yuto Yoneda ¹ , R. Kerriddge-Johns William ⁴ , Yasushi Fujimoto ⁵ , Takashige Omatsu ^{1, 2}	1.GSE, Chiba Univ., 2.MCRC, Chiba Univ., 3.IAAR, Chiba Univ., 4.Univ. Southampton, 5.Chiba Inst. Tech.
14:15	E 19p-C43-4	High-speed atomic force microscopy combined with optical vortex for in-situ real-time observation of twisting azo-polymer	○ Kota Kojimoto¹, Rihito Tamura², Chan Feng-Yueh³, Keishi Yang¹, Takayuki Uchihashi³.⁴, Prabhat Verma¹, Takashige Omatsu².⁵, Takayuki Umakoshi¹	1.Osaka Univ., 2.Chiba Univ., 3.Nagoya Univ., 4. ExCELLS, Nagoya Univ., 5.MCRC, Chiba Univ.
14:30 14:45	招 E 19p-C43-5	休憩/Break [JSAP-Optica Joint Symposia Invited Talk] High-order Laguerre- and Hermit-Gaussian laser generated from laser cavity incorporating aberrated cat-eye optics	○ Quan Sheng¹, Shijie Fu¹, Wei Shi¹, Jianquan Yao¹, Yuanyuan Ma², Takashige Omatsu²	1.Tianjin University, 2.Chiba University
15:15	E 19p-C43-6	Electron Dynamics of Ultrafast Vector Vortex Laser Irradiation	○ (M2)JIAMING ZHANG¹, Morita Ken², Verdad C. Agulto¹, Kosaku Kato¹, Makoto Nakajima¹	
15:30	E 19p-C43-7	Controlled Generation of White-Light Filaments in BK-7 Glass using Ultrafast Vector Pulses	○ Maruthi Manoj Brundavanam¹, Yuuki Uesugi², Yuichi Kozawa²	1.IIT Kharagpur, 2.IMRAM, Tohoku Univ.

15:45 16:00	奨 E 19p-C43-8 E 19p-C43-9	Real-time movies of photo-induced azo-polymer motions obtained by high-speed atomic force microscopy Soliton evolution under the perturbative effects of Raman	 ○ Keishi Yang¹, Feng-Yueh Chan², Yasushi Inouye¹.⁴, Prabhat Verma¹, Takayuki Uchihashi².³, Hidekazu Ishitobi¹.⁴, Takayuki Umakoshi¹.⁵ ○ (D)Abhisek Roy¹, Partha Roy Chaudhuri¹ 	1.Dept. Applied Physics, Osaka Univ., 2.Dept. of Physics, Nagoya Univ., 3.ExCELLS, 4.FBS, Osaka Univ., 5.Inst. Adv. Co-creation Studies, Osaka Univ. 1.IIT Kharagpur
16:15	E 19p-C43-10	scattering in Highly Nonlinear Materials Third Harmonic Generation at THz Frequencies:	○ (D)Mitali Sahu¹, Partha Roy Chaudhuri¹	1.IIT Kharagpur
	E 17p C43 10	Utilizing a Frequency Selective Metasurface Approach with Complementary Split Ring Resonators	(D) Mitali Saliu , 1 artila Roy Chaudhuri	Tarr Kuduagpur
16:30 16:45	E 19p-C43-11	休憩/Break Broadband Optical Frequency Comb Generation by Employing dual lasers with Dual-Drive Mach Zehnder	$\bigcirc (DC) PRIYANKA VERMA^{1}, SUKHBIR SINGH^{1}$	1.NETAJI SUBHAS UNIVERSITY OF TECHNOLOGY
17:00	E 19p-C43-12	modulator and Frequency Modulator Closed-form solutions in Lugiato-Lefever Equation for Frequency Comb Applications	○ (D)Sanjana Bhatia¹, C.N. Kumar¹	1.Panjab University, Chandigarh, India
17:15	E 19p-C43-13	Transmitted Wave Frequency Shift on a Moving Media Interface: between the Doppler and the Photon Recoil Effects	\bigcirc (D) Valentyn Ivan Lymar l , Evhen Makovetsky i l , Ruslan Vovk l	1.Kharkiv Univ.
17:30	E 19p-C43-14	A Numerical Study on the Sensing Characteristics of Raman-Induced Frequency Shift	○ (DC)Protik Roy¹, Partha Roy Chaudhuri¹	1.IIT Kharagpur
17:45	E 19p-C43-15	Metal–Insulator–Metal (MIM) Waveguide Based Fano Resonance Sensor for Human Sperm Detection	$\bigcirc (B) ANIRUDH YASHOVARDHAN^1, \\ LOKENDRA SINGH^1$	1.Department of Electronics and Communication Engineering, Graphic Era (Deemed to be University), Dehradun, India - 248001
	Fri.) 10:00 - 11:30	口頭講演 (Oral Presentation) C43会場 (Room C43)	OV 1 1/2 O 1	
10:00	招 E 20a-C43-1	[JSAP-Optica Joint Symposia Invited Talk] Femtosecond Region Photon Echo with Quantum Dots via Up-conversion Single-photon Detector	O Yuta Kochi ^{1,2} , Sunao Kurimura ³ , Kouichi Akahane ⁴ , Junko Ishi-Hayase ^{1,2}	1.Keio Univ., 2.Keio CSRN, 3.NIMS, 4.NICT
10:30	E 20a-C43-2	Optimizing Spontaneous Parametric Down Conversion in Metasurfaces with In-verse Design	○ Marcus Cai¹, Neuton Li¹, Tongmiao Fan¹, Jihua Zhang¹.², Jinyong Ma¹, Dragomir Neshev¹, Andrey Sukhorukov¹	1.ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Dept. of Electronic Materials Engineering, Research School of Physics, Australian National Univ., Australia, 2.Songshan Lake Materials Lab., China
10:45	奨 E 20a-C43-3	Spectral resolution of quantum Fourier transform infrared spectroscopy using pulsed laser excitation	○ (DC)Jasleen Kaur¹, Yu Mukai¹, Ryo Okamoto¹, Shigeki Takeuchi¹	1.Kyoto University
11:00	E 20a-C43-4	All-fiber broadband photon pair generation in dispersion flattened highly non-linear fiber	○ (D)Anadi Agnihotri¹, Pradeep kumar Krishnamurthy¹	1.IIT Kanpur
11:15	E 20a-C43-5	Quantum Antibunching in Nonlinear Coupler Using Wigner Representation	Mohd Syafiq M. Hanapi ¹ , Abel-Baset M. A. Ibrahim ¹ , O Pankaj Kumar Choudhury ²	1.Univ. Teknologi MARA, 2.Zhejiang University
	ica Special Lecture			
	Tue.) 13:30 - 14:30 招 E 17p-A25-1	[JSAP-Optica Joint Symposia Invited Talk]	○Toshihiko Baba¹	1.Yokohama National University
6 藩崩	i.丰而/Thin	Silicon photonics and its application to LiDAR Films and Surfaces		
	夏・表面/Thin ジウムのプログラム	はプログラム冒頭にございます。		
	秀電体薄膜 / Ferroel Tue) 9:30 - 11:30	ectric thin films 口頭講演 (Oral Presentation) B3会場(Room B3)		
9:30	17a-B3-1	Sm ドープBiFeO ₃ 薄膜におけるSm 原子近傍の局所構造解析	〇川上 真梨花 1 , 中嶋 誠二 1 , 木村 耕治 2 , 八方 直久 3 , 大坂 藍 1 , 藤沢 浩訓 1 , 林 好一 2	1.兵庫県大工, 2.名工大工, 3.広島市大情報
9:45	奨 17a-B3-2	渦分極を有するPbTiO ₃ /SrTiO ₃ 人工超格子自立膜の作製	〇高橋 航平 1 , 近藤 真矢 2 , 村井 俊哉 3 , 高 磊 3 , 吉野 正 人 1 , 長崎 正雅 1 , 山田 智明 1,4	
10:00	奨 17a-B3-3	プロトン伝導性酸化物 $BaSn_{0.6}In_{0.4}O_{2.8}$ 膜の格子歪みと電 歪特性	\bigcirc (M1) 岩崎 航平 1 , 吉野 正人 1 , 長崎 正雅 1 , 山田 智 明 1,2	
10:15	17a-B3-4	ハフニウムが吸着したゲルマニウム表面と酸素分子の反 応中に同時進行する酸化・還元反応	隆 ²	
10:30	奨 17a-B3-5	パイロクロア型酸化物 $Y_2 Ti_2 O_7$ における Y サイト空間の 制御	正雅 ¹ , 設楽 一希 ² , 森分 博紀 ^{2,3} , 山田 智明 ^{1,3}	1. 名大工, 2.JFCC, 3. 東工大MDX
10:45	E 17a-B3-6	Growth and Characterization of Epitaxial Co-Substituted Bismuth Ferrite Thin Film on Silicon Substrate	○ (P)Jie Chen¹, Kei Shigematsu¹.².³, Masaki Azuma¹.².³	1.TokyoTech., 2.KISTEC, 3.Sumitomo Chemical Next-Generation Eco-Friendly Devices Collaborative Research Cluster, Tokyo Tech.
11:00	奨 17a-B3-7	電子線描画 HSQ をマスクに用いた $BiFe_{0.9}Co_{0.1}O_3$ ナノドットの作製 (2)	〇 (M1) 中山 創 1 , 吉川 浩太 1 , Lee Koomok 1 , 角嶋 邦 之 2 , 星井 拓也 2 , 金子 智 4 , 安井 学 4 , 黒内 正仁 4 , 重 松 圭 $^{1.3.4}$, 東 正樹 $^{1.3.4}$	1.東工大科技院, 2.東工大工, 3.東工大住友化学協働研
11:15	奨 17a-B3-8	YbFe ₂ O ₄ エピタキシャル薄膜の結晶相と組成の制御	○嶋本 健人¹, 葉山 琢充¹, 市川 颯大¹, 吉村 武¹, 藤村 紀文¹	1.大阪公立大工
9/17(7	Tue.) 13:00 - 17:45 奨 17p-B3-1	口頭講演 (Oral Presentation) B3会場 (Room B3) 水熱法で作製した自己分極 (001) 配向エピタキシャル	○(D)胡 雨弦¹,村下 太一¹, 岡本 一輝¹, 舟窪 浩¹	1.東工大物院
13:00	英 1/p-B3-1	水熱法で作製した自己分極(001)配同エピタキンキル (Bi,K)TiO ₃ -PbTiO ₃ -膜の結晶構造及び強誘電特性 急速分極凍結によって誘起されたシアン化ビニリデン	○(D) 胡 附弦', 村 下 太一', 岡本 一輝', 舟捶 浩' ○(M2) 吉武 晃生¹, 児玉 秀和², 中嶋 宇史¹	1. 東工大物院 1. 東理大物工, 2. 小林理研
13:30	17p-B3-3	(VDCN)/酢酸ビニル (VAc) 共重合体の圧電特性 BiFe _{1-x} Mn _x O ₃ エビタキシャル膜の結晶構造と電気的特性		1. 阪公大工
13:45	17p-B3-4	SOI 基板上BiFe _(1-a) Mn _x O ₃ 薄膜の作製と評価	佳¹, 高木 昂平¹, 藤林 世覇音¹, 藤村 紀文¹, 吉村 武¹ ○(M1) 高城 明佳¹, Aphayvong Sengsavang¹, 藤林 世覇音¹, 藤原 輝羅¹, 村上 修一², 山根 秀勝², 藤村 紀	1. 阪公大工, 2. 大阪技術研
14:00	奨 17p-B3-5	誘電率 ε^T と ε^S の差を用いた圧電薄膜の電気機械結合係		1.早大先進理工, 2.材研技術研究所
14:15	奨 E 17p-B3-6	数 k_{33}^2 の抽出 Non-destructive measurement of longitudinal piezoelectric properties for thin films	隆彦 ^{1, 2} ○ Aphayvong Sengsavang ¹ , Meika Takagi ¹ , Yohane Fujibayashi ¹ , Kira Fujihara ¹ , Shuichi Murakami ² , Hidemasa Yamane ² , Norifumi Fujimura ¹ , Takeshi Yoshimura ¹	1.Osaka Metro. Univ, 2.ORIST
14:30	奨 17p-B3-7	$(100)/(001)$ 配向正方晶 $Pb(Zr,Ti)O_3$ 膜における圧電応答の周波数依存性		1. 東工大, 2. 東大, 3.NIMS, 4.JASRI, 5. 名古屋大, 6. 東工大MDX
			, 12 24 , E4 E4 E4 74 3 774 EES TE4	
14:45	奨 17p-B3-8	分極処理による強誘電体薄膜の焦電と電気熱量効果への 効果	○字佐美 潤¹, 岡本 有貴¹, 井上 悠¹, 小林 健¹, 山田 浩 之¹	1. 産総研
14:45 15:00 15:15	奨 17p-B3-8 17p-B3-9			1. 大阪公立大工

15:30	奨	17p-B3-10	$(Hf, Zr)O_2$ バッファ層及びスピンコート法を用いた強誘電体薄膜の作製	○片岡 莉咲¹, 李 海寧¹, 木島 健¹², 山原 弘靖¹, 田畑仁¹, 関 宗俊¹	1. 東大院工, 2.(株) ガイアニクス
15:45		17p-B3-11	強誘電体 BiFeO ₃ 薄膜上へのカーボンナノチューブ電極		1.兵庫県大工
16:00	奨	17p-B3-12	の作製 エビタキシャルPbZrO ₃ 薄膜の分極ダイナミクスが電気		1. 岡山大, 2. 名大
16:15		17p-B3-13	光学特性に与える影響 高信頼性 FeRAM 向けの MOCVD-PZT とスパッタ PLZT	本昭 ¹ ○王文生 ¹ , 中村 百 ¹ , 恵下 隆 ¹ , 中林 正明 ¹ , 高井 一	1. 富十诵セミコンダクターメモリソリューション
		·F 20 10	の非対称二重層構造を備えた新規強誘電体キャパシタ	章 ¹ , 末沢 健吉 ¹ , 及川 光彬 ¹ , 佐藤 のぞみ ¹ , 小澤 聡一郎 ¹ , 永井 孝一 ¹ , 三原 智 ¹ , 彦坂 幸信 ¹ , 齋藤 仁 ¹	
16:30		17p-B3-14	水熱微粒子分散液を用いたチタン酸バリウム薄膜のイン クジェット形成		1. 芝浦工大, 2. 大阪公大
16:45 17:00		17p-B3-15 17p-B3-16	HAFeR技術開発の為の時間分解 SNDM法 実用的強誘電体記録を目指した PZT 大面積記録媒体の開	○長 康雄¹, 山末 耕平² ○長 康雄¹, 平永 良臣²	1. 東北大未来科学, 2. 東北大通研 1. 東北大未来科学, 2. 東北大通研
17:15	奨	17p-B3-17	発 $(Ba,Sr)TiO_3$ 薄膜を用いた強誘電体トンネル接合素子の作	○(M1C)武藤 祐暉¹, Xueyou Yuan¹, 吉野 正人¹, 長	1.名大工
17:30	奨	17p-B3-18	製とメモリシティブ特性の評価 【注目講演】Single-Crystalline PbTiO ₃ -Based	崎 正雅 1 ,山田 智明 1 \bigcirc (DC) 李 海寧 1 ,木島 健 $^{1.2}$,片岡 莉咲 1 ,山原 弘靖 1 ,	1.東大院工, 2. (株) ガイアニクス
0/10/1	Vad)	10.20 12.00	Ferroelectric Memristors for Synaptic Plasticity Emulation 口頭講演 (Oral Presentation) B3会場 (Room B3)	田畑 仁¹, 関 宗俊¹	
10:30		18a-B3-1	c 軸垂直および傾斜 ScAIN の大面積成膜に向けた矩形カソードスパッタリング	○(M2)浴田 航平 ^{1,2} , 島野 耀康 ^{1,2} , 柳谷 隆彦 ^{1,2}	1.早大先進理工, 2.材料技術研究所
10:45		18a-B3-2	Zn-Ti-N圧電薄膜の作製と Al添加効果	○上原 雅人 ¹ , 井上 ゆか梨 ² , 平田 研二 ¹ , 寺田 朋広 ² , 木村 純一 ² , 山田 浩志 ¹ , 秋山 守人 ¹	1. 産総研, 2.TDK 株式会社
1:00		18a-B3-3	(Ce,Mn) 置換 ZnO 薄膜の低温エピタキシャル成長と電気 的特性評価		1. 阪公大工
11:15	奨	18a-B3-4	電極抵抗低減に向けて上下電極にエピタキシャル金属ブラッグ反射器を採用した SMR	○(M1) 富岡 美咲 ^{1,2} , 柳谷 隆彦 ^{1,2}	1.早大理工, 2.材料技術研究所
11:30		18a-B3-5	FeRAM向け (Al,Sc)N膜における強誘電特性の膜厚依存性評価	○道古 宗俊¹, 松井 尚子¹, 入澤 寿和¹, 恒川 孝二¹, Nana Sun², 中村 美子², 岡本 一輝², 舟窪 浩²	1. キヤノンアネルバ, 2. 東工大
11:45		18a-B3-6	スパッタ法によるAl _{1-x} Sc _x N/Siへテロ構造の作製II	○山田 洋人¹, 安岡 功樹¹, 藤村 紀文¹, 吉村 武¹	1. 阪公大工
9/18(V		16:00 - 18:00 18p-P07-1	ポスター講演 (Poster Presentation) P会場 (Room P) 多能性®中間膜を用いたエピタキシャルPb(Zr,Ti)O ₃ 薄	○關 雅志¹, 木島 健¹, 降旗 栄道¹, 中尾 健人¹	1.株式会社 Gaianixx
		•	膜の作製		
		18p-P07-2	Si基板上エピタキシャル KNN 薄膜の BFO バッファ層の 影響	,	1.神戸大工
		18p-P07-3 18p-P07-4	Ce, Mn 共置換 ZnO 強誘電体薄膜の圧電特性 溶液プロセスにより作製した CeO _v /Y-HZO 積層構造の結	○玉井 敦大¹, 吉野 雄大¹, 足立 秀明¹, 神野 伊策¹ ○Wang Yuzhong¹. 徳光 永輔¹	1. 神戸大工 1. 北陸先端大
		18p-P07-5	晶化雰囲気依存性 酸化ハフニウム基強誘電体膜の剥離によるメンブレン結		1. 京大化研, 2. 名大
		18p-P07-6	晶の作製 金属/HfZrO2/金属キャバシタの容量一電圧カーブの温	明²,藤颯太¹,菅大介¹,島川祐一¹	
		18p-P07-7	度依存性 有機金属分解法によるYMnO。薄膜の結晶構造制御	森 竜雄 ¹ , 清家 善之 ¹ , 牧原 克典 ² , 田岡 紀之 ¹ ○渡邉 奏汰 ¹ , 西川 雅美 ¹ , チャフィ ファティマ ザー	
		18p-P07-8	非冷却グラフェン赤外線検出器への適用に向けた	ハラ¹, 浅田 裕法², 石橋 隆幸¹	1.三菱電機株式会社
		100 107 0	LiNbO ₃ 焦電体ナノ薄膜の開発	○田町日 即,蜀田以中,石川 1,八川 村 1	1.一久 电放外八ム は
			13.3 絶縁膜技術、13.5 デバイス/配線/集積化技術のコーロ頭講演 (Oral Presentation) B3会場 (Room B3)	ードシェア / Code-sharing Session of 6.1 & 13.3 & 13	3.5
13:00	-	18p-B3-1	強誘電体ゲートFETを用いた物理リザバー計算における 分極状態と学習性能の関係		1. 阪公大工, 2. 兵庫県大工, 3. 東大工
13:15	Е	18p-B3-2	Imprint Behavior of Ferroelectric Hf _{0.5} Zr _{0.5} O ₂ Thin Film: Impact of Wake-up	(D)Zhenhong Liu¹, Zuocheng Cai¹, Mitsuru Takenaka¹, Shinichi Takagi¹, Kasidit Toprasertpong¹	1.Univ. Tokyo
13:30		18p-B3-3	HZO強誘電体キャバシタにおけるwake-up特性の周波数・温度依存性と物理機構の考察	○伊藤 広恭¹, 田原 建人¹, 川野 真琴¹, 竹中 充¹, 高木信一¹, トープラサートポン カシディット¹	1. 東大院工
13:45		18p-B3-4	$\mathrm{Hf_{0.5}Zr_{0.5}O_{2}MFM}$ キャパシタに対する最初の電界印加時	○森田 行則¹, 浅沼 周太郎¹, 太田 裕之¹, 右田 真司¹	1.産総研
14:00		18p-B3-5	における欠陥生成と強誘電性の相関 強誘電性HfO ₂ キャパシタにおける極薄膜下での強誘電	○鳥海 明¹, 右田 真司²	1.自由業, 2.産総研
4.15		18n=P2-6	性の消失 強誘電性HfO。の分極反転時間からみた分極反転機構の	○鳥海 明¹, 右田 真司²	1. 自由業, 2. 産総研
14:15		18p-B3-6	強誘電性 HtO ₂ の分極反転時間からみた分極反転機構の 考察 休憩/Break	○ 河 伊 切 , 口 田	1. 口口来, 4. 生秘切
14:30 14:45	奨	18p-B3-7	体思/Break AIN 微粒子を均一に添加した多層 $\mathrm{Hf_{0.5}Zr_{0.5}O_{2}}$ 薄膜の強誘電体特性の評価	○高野 貴裕¹,山口 直¹,大森 和幸¹,村中 誠志¹	1.ルネサスエレクトロニクス株式会社
15:00	奨 E	18p-B3-8	Electro-optic properties of $Hf_{0.5}Zr_{0.5}O_2$ thin films on (La, $Sr)MnO_3/SrTiO_3(100)$	○ (D)Afeefa Dastgir¹, Yuan Xueyou¹, Yufan Shen², Daisuke Kan², Yuichi Shimakawa², Tomoaki	1.Nagoya Univ., 2.Kyoto Univ., 3.Tokyo Tech, MDX
15:15	奨	18p-B3-9	CeO ₂ -HfO ₂ -ZrO ₂ 薄膜の格子間隔と強誘電性の評価	Yamada ^{1,3} ○下野園 航平 ¹ , 前川 芳輝 ¹ , 茶谷 那知 ¹ , 岡本 一輝 ¹ ,	1.東工大, 2.TDK株式会社
15:30	奨	18p-B3-10	フラッシュランプアニールによるAl:HfO ₂ 薄膜の結晶化		1. 兵庫県大工, 2.SCREEN セミコンダクターソリュー
15:45		18p-B3-11	機械学習ポテンシャルを用いたHfO2結晶のモデリング	中嶋 誠二¹, 大坂 藍¹, 加藤 慎一², 三河 巧² ○(D) 糸矢 祐喜¹, 小林 正治¹²	ションズ 1. 東大生研 , 2. 東大 d.lab
16:00		18p-B3-12	の検討 アモルファス HfO ₂ における酸素の拡散	○(M2)本図優奈¹,仲村龍介¹,鈴木健之²	1. 滋賀県大工, 2. 阪大産研
	Thu.)		on-based thin films 口頭講演 (Oral Presentation) B3会場(Room B3) F ₂ レーザーによるアモルファス炭素薄膜の光化学的透明	○大越 昌幸¹, 奥園 聡史¹	1.防衛大電気電子
9:15		19a-B3-2	化 光表面化学修飾を用いたフッ素フリー炭化水素系撥水	○中村 拳子¹	1. 産総研
9:30		19a-B3-3	コーティング技術(第2報) 層状窒化炭素膜の磁気光学特性	○栗本 菜津子¹, 浦上 法之¹.², 橋本 佳男¹.², 劉 小	1.信州大工, 2.信州大 先鋭材料研
9:45	奨	19a-B3-4	窒素ナノドープダイヤモンドライクカーボン薄膜の合成		1.有明高専, 2.九大, 3.福岡大
10:00	dell'	19a-B3-5	と電気特性 酸素ナノドープダイヤモンドライクカーボン薄膜の合成		1.有明高專, 2.九大, 3.福岡大
10.00	樊		, ==	6 2 Mars	
10:15	英		と電気特性 休憩/Break	介², 篠原 正典³, 鷹林 捋¹	

10:30	:	19a-B3-6	シリコンおよび窒素添加ダイヤモンドライクカーボン膜 特性への 酸素添加効果	○山崎 雄也¹, 鈴木 裕史¹, 小林 康之¹, 中澤 日出樹¹	1. 弘前大院理工
10:45		19a-B3-7	Q-carbon の強磁性に関する第一原理計算	○YUE QIANG¹, 横谷 尚睦¹, 村岡 祐治¹	1.岡山大基礎研
11:00	奨	19a-B3-8	光電子制御プラズマで成膜したダイヤモンドライクカー ボン膜の応力	○(B) 出村 翼 1 , 福田 旺土 1 , 小野 晋次郎 2 , 恵利 眞 人 2 , 古閑 一憲 2 , 鷹林 将 1	1.有明高専, 2.九大
11:15		19a-B3-9	高水素希釈中圧プラズマ CVD により作製した DLC 膜におけるアニール処理の影響	○織田 悠雅¹, 上野 瑞樹¹, 垣内 弘章¹, 大参 宏昌¹	1.阪大院工
9/19(T 13:00		3:00 - 19:15 19p-B3-1	口頭講演 (Oral Presentation) B3会場(Room B3) 真空アーク蒸着装置による水素フリーDLC成膜における		1. 豊橋技科大, 2. オーエスジー (株)
13:15	奨	19p-B3-2	インターバル冷却の効果 水素フリー硬質 DLC 膜の高速成膜フィルタードアーク蒸		1. 豊橋技科大, 2. オーエスジー (株)
13:30	:	19p-B3-3	着装置における放電維持 大電力バルスマグネトロンスパッタリングを用いたDLC 成膜における希ガスの効果	史¹,杉田 博昭²,服部 貴大²,儀間 弘樹² 〇松本 詩郎¹,小田 昭紀²,針谷 達³,上坂 裕之³,太田 貴之¹	1. 名城大理工, 2. 千葉工大, 3. 岐阜大工
13:45	奨	19p-B3-4	炭素性産業廃棄物粉末のスパッタリングによる水素フリーDLC合成	○山口智大¹,上坂裕之¹,針谷達¹,諏訪裕吾²	1. 岐阜大学, 2. エムエス製作所
14:00	奨	19p-B3-5	レーザ接合による水素化アモルファス炭素膜の構造変化	○長谷 嘉琉¹, Tunmee Sarayut², 青野 祐子¹, Rittihong Ukit², 平田 祐樹¹, 大竹 尚登¹, 赤坂 大樹¹	1. 東工大, 2. タイ放射光研究所
14:15	奨	19p-B3-6	放電電極近傍への局所ガス投入による円筒部品外面への 超高速 DLC 成膜		1. 岐阜大, 2. アールシーロゴ
14:30			休憩/Break		
14:45		19p-B3-7	リモートプラズマCVD法による単結晶ダイヤモンド成長		1. 産総研
15:00	奨	19p-B3-8	単結晶ダイヤモンド成長表面のin-situ顕微観察	谷原 昭義¹, 杢野 由明¹ ○新田 魁洲¹, 嶋岡 毅紘¹, 山田 英明¹, 坪内 信輝¹, 茶 谷原 昭義¹, 杢野 由明¹	1. 産総研
15:15		19p-B3-9	タングステン原子添加ダイヤモンドエビタキシャル薄膜 の応力分布		1.産総研センシング
15:30		19p-B3-10	熱フィラメント CVD 法による超高濃度 (> 10^{22} cm $^{-3}$) ボロンドープダイヤモンド膜の実現	○大谷 亮太¹, 蔭浦 泰資¹, 大曲 新矢¹	1. 産総研
15:45	:	19p-B3-11	ダイヤモンドへの高濃度Bイオン注入による低抵抗ドープ層形成における注入時基板温度依存性	○(M1) 今村 海哉¹, 関 裕平¹, 星野 靖¹	1.神奈川大理
16:00		19p-B3-12	高濃度 P^+ イオン注入による n 型ダイヤモンド半導体形成に向けた研究	○関 裕平¹, 今村 海哉¹, 星野 靖¹	1.神奈川大理
16:15		19p-B3-13	ダイヤモンド薄膜中のBeの拡散に対する表層状態の影響 の評価	○三宅 泰斗¹, 奥野 広樹¹, 渡邊 幸志¹.²	1.理研仁科センター, 2.産総研
16:30		10 DO 14	休憩/Break Niナノ粒子を用いた原子的平坦ダイヤモンド上1次元ナ	OTF 044 5 1 1 1 1 1 1 1 1 1	4 A M. L. O. A. L. L. J. D. (144) 18 2 3 3
16:45		19p-B3-14	NIデノ粒子を用いた原子的子垣ダイヤモント上1次ルデ ノビット生成	□ 休 見 ¹ , 小	1. 並朳人, 2. 並入テノマリ, 3.(株) タイセル
17:00	奨	19p-B3-15	二峰性粒度分布を持つダイヤモンド粒子を用いた高充填 伝熱シートの熱伝導率に電界整列が与える影響	〇久保田 吉彦 1 , 市来 宗一郎 1 , 稲葉 優文 1 , 中野 道 彦 1 , 末廣 純也 1	1.九州大
17:15	奨	19p-B3-16	微小浮遊電位電極を用いた蛍光ナノダイヤモンド粒子の 均質な誘電泳動集積		1.九州大学
17:30	奨	19p-B3-17	ホウ素ドープダイヤモンド電気化学電極を用いた高圧水		1. 九州大, 2. 産総研
17:45	奨 E	19p-B3-18	中における CO ₂ 検出 Effect of Oxygen Terminal Surface Adsorption Layer on Energy Dissipation in Single-Crystal Diamond MEMS	廣純也 ¹ ○ Keyun Gu ^{1, 2} , Zilong Zhang ³ , Wen Zhao ¹ , Guo Chen ¹ , Jian Huang ² , Satoshi Koizumi ¹ , Yasuo Koide ¹ , Meiyong Liao ¹	1.National Institute for Materials Science, 2.Shanghai University, 3.Tohoko University
18:00			休憩/Break	Trespond Date	
18:15	奨	19p-B3-19	原子的に平坦な $Al_2O_3/$ ダイヤモンド(111)界面を持つp型反転層 MOSFET の作製	〇小林 和樹 ¹ , 佐藤 解 ¹ , 加藤 宙光 ² , 小倉 政彦 ² , 牧野 俊晴 ² , 松本 翼 ¹ , 市川 公善 ¹ , 林 寬 ¹ , 猪熊 孝夫 ¹ , 山崎 聡 ¹ , Christoph Nebel ^{1,3} , 德田 規夫 ¹	1. 金沢大, 2. 産総研, 3. Diacara
18:30		19p-B3-20	走査型非線形誘電率顕微鏡によるAl ₂ O ₃ /OHダイヤモンド(111)の局所DLTS/CV特性同時測定		1. 東北大通研, 2. 金沢大ナノマリ研, 3. 東北大 NICHe
18:45	:	19p-B3-21	Al ₂ O ₃ /ダイヤモンドヘテロ接合の結合エネルギーの校正と界面バンドベンディングの解明	○劉 江偉¹, 寺地 徳之¹, 達 博¹, 小出 康夫¹	1. 物材機構
19:00	:	19p-B3-22		〇中川 龍 $-^1$, 斎藤 泰地 1 , 松本 翼 2 , 徳田 規夫 2 , 川江 健 1	1.金沢大理工, 2.金沢大ナノマリ研
9/20(1			ポスター講演 (Poster Presentation) P会場 (Room P)		
		20p-P01-1	耐放射線性・高温動作デジタル回路開発に向けたノーマ リーオフダイヤモンド MESFET の作製と評価	宏幸²,牧野俊春²	
	:	20p-P01-2	中性子照射HOPGの高圧高温処理による層状ナノダイヤ モンドへの直接変換	○(M2)徳永 匠¹,肥後 祐司²,佐藤 庸平³,庭瀬 敬右⁴, 新部 正人¹,本多 信一¹	1.兵庫県立大, 2. 高輝度光科学研究センター, 3. 東北大 多元研, 4.兵庫教育大
	1	20p-P01-3	原子状水素照射した水素化ダイヤモンドライクカーボン 薄膜に対する sp²結合炭素濃度の深さ方向分析		
	:	20p-P01-4	Zn溶出型Zn-DLC膜の構造解析		1. 兵県大高度研, 2. 長岡技大, 3. 東工大工, 4. 東京電機 大, 5. トッケン
	1	20p-P01-5	アルミニウム管内へのダイヤモンド状炭素膜の形成によ る流体圧力損失抑制		
	2	20p-P01-6	ポリプロビレン糸用搬送ガイドに対する DLC コーティング		1.東京電機大工, 2.泉工医科工業(株)
	1	20p-P01-7	Cu/C混合ターゲットスパッタリング法で作製した Cu-DLCのトライボロジー特性		1.東京電機大工, 2.(株)トッケン, 3.ナノテック(株)
		•	非晶質炭素膜の電気絶縁性と表面特性に対する硫酸浸漬 の影響	〇一條 瑛巴¹, 金杉 和弥¹, 平塚 傑工², 中森 秀樹³, 平 栗 健二¹	1. 電機大工, 2. 株式会社トッケン, 3. ナノテック株式会 社
			、KS.1 固体量子センサ研究会のコードシェア / Code-sha	ring Session of 6.2 & KS.1	
9/200			口頭講演 (Oral Presentation) A41 会場 (Room A41) 「分科内招待講演」 ナノダイヤモンド量子センサの材料設計・制御と生命計	○五十嵐 龍治 ^{1,2,3,4}	1.QST量子生命, 2.東工大生命理工, 3.千葉大院融合理工, 4.東北大院医
9:30		20a-A41-2	別への応用 生体量子センサ用ナノダイヤモンドへの電子線照射NV	○阿部 浩之 ^{1,2} , 神長 輝一 ² . 五十嵐 龍治 ² 大鳥 武 ¹	1.QST量子機能創製研究センター, 2.QST量子生命科学
9:45			センター形成2 ナノダイヤモンド中のNV中心を用いた高感度磁気セン		研究所 1. 京大化研, 2. 京大スピンセンター, 3. 量研
10:00			シング 3次元マイクロ波共振器を用いたナノダイヤモンド温度	鈴木 智達³, 神長 輝一³, 五十嵐 龍治³, 水落 憲和¹.²	1. 岡大環自
10:15			計測とその応用 休憩/Break		

10:30	奨 20a-A41-5	水素終端ダイヤモンド表面下で生じるバンドベンディン		1.物材機構, 2.産総研, 3.量研, 4.群馬大, 5.筑波大
10:45	20a-A41-6	グのNVセンターを利用した律速要因解析 アンサンブルNVによる低周波交流磁界計測	小野田 忍³, 山口 尚秀¹.5 ○済藤 紘矢¹, 林 司¹, 近藤 巧¹, 出口 洋成¹, 西林 良 樹¹, 小林 豊¹, 藤原 正規², 森下 弘樹³, 水落 憲和², 辰 巳 夏生¹	1. 住友電気工業(株), 2. 京大化研, 3. 東北大
11:00	20a-A41-7		- -	1. 慶大理工, 2. 慶大 CSRN, 3. 中大理工, 4. 金大ナノマリ
11:15	奨 20a-A41-8	化イメージング 脳磁計測に向けたフラックスコンセントレーターによる		1.東工大
11:30	20a-A41-9	ダイヤモンド量子センサの高感度化 脳機能磁場測定用ダイアモンドマイクロNVセンターア		1.理化学研究所 光量子, 2.筑波大学
11:45	20a-A41-10	レー素子の開発 ダイヤモンド量子センサによるミリメートル間隔での同 時多点磁場測定法の開発	次¹,和田智之¹,青柳克信¹ ○吉村厚美¹,金本あゆみ¹,関口直太¹,真榮力²,宮川仁³,谷口尚³,寺地徳之³,小野田忍⁴,大鳥武⁴,岩崎孝之¹,波多野睦子¹	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
		ス / Oxide electronics ロ頭講演 (Oral Presentation) D61会場(Room D61)		
	招 E 17p-D61-1	[The 56th Young Scientist Presentation Award Speech] Ultrathin Freestanding Membranes of Ferroelectric Hafnia	O Yufan Shen ¹ , Kousuke Ooe ² , Tomoaki Yamada ^{3, 4} , Shunsuke Kobayashi ² , Mitsutaka Haruta ¹ , Daisuke Kan ¹ , Yuichi Shimakawa ¹	
13:45	奨 17p-D61-2	岩塩型NbOの自立膜アプローチによる超伝導誘起	○(M1)春木 啓佑 ¹ ,木村 凛太郎 ¹ ,神永 健一 ¹ ,丸山 伸伍 ¹ ,松本 裕司 ¹	1.東北大工
14:00	奨 17p-D61-3	LaTiO ₃ エピタキシャル薄膜の輸送特性における基板と膜厚の影響		1.東工大物質理工
14:15	奨 17p-D61-4	ガスソース分子線エピタキシー法で作製した $SrVO_3$ 量子 井戸の電界効果	○高原 規行 ^{1,2} , 高橋 圭 ² , 十倉 好紀 ^{1,2,3} , 川﨑 雅司 ^{1,2}	1. 東大院工, 2. 理研 CEMS, 3. 東大東京カレッジ
14:30	奨 17p-D61-5	DyFeO ₃ /LaAlO ₃ /SrTiO ₃ ヘテロ界面における創発磁気輸送現象	○(D)張 レイ飛¹,藤田 貴啓¹,川崎 雅司¹.²	1. 東大院工, 2. 理研 CEMS
14:45	奨 17p-D61-6	ニッケル酸ランタン薄膜のエピタキシャル成長および還 元による酸素欠損型構造の作製	○河村 和哉¹, 金子 健太¹, 山中 悠生¹, 金子 智²¹, 松 田 晃史¹	1. 東工大物質理工, 2. 神奈川県産技総研
15:00	奨 E 17p-D61-7	Strain effects on electrochemical protonation in SrCoO _{2.5} epitaxial films		1.ICR., Kyoto Univ., 2.Dep. Nuc. Eng., Kyoto Univ.
15:15	奨 17p-D61-8	TiO ₂ /VO ₂ /TiO ₂ ヘテロ構造への電気化学的なプロトン挿 入		1. 京大化研, 2. 京大院工
15:30	奨 17p-D61-9	界面水素結合形成が光触媒水分解反応に及ぼす影響	○(DC)林 仲秋 ^{1,2} , 斉藤 晃 ¹ , 佐藤 宏祐 ¹ , 杉本 敏 樹 ^{1,2}	1. 分子研, 2. 総研大
15:45 16:00	17n-D61-10	休憩/Break エピタキシャルY ₃ Fe ₅ O ₁₂ 薄膜における成膜圧力の磁気ダ	○森 祐輔¹,上田 浩平¹.².³, 高藤 大悟¹, 塩貝 純一¹.³,	1 阪大理 2 阪大CSRN 3 阪大OTRIスピン
16:15	Î	ンピングへの影響 二層膜 Pt/La _{2/3} Sr _{1/3} MnO ₃ における一方向性磁気抵抗効果	松野 丈夫 1,2,3	1. 阪大理, 2. 阪大 CSRN, 3. 阪大 OTRI スピン
16:30			夫 ^{1,2,3} ○吉松 公平 ¹ , 中尾 裕則 ² , 組頭 広志 ³	
16:45	17p-D61-13	λ 相 Ti3O5 における温度誘起相転移の観測 基板の表面粗さ制御によるVO₂薄膜の相転移温度の変調	○宮下 寛規¹, Sharad Sunil Mane², 服部 梓², 藤沢 浩 訓¹, 中嶋 誠二¹, 大坂 藍¹.²	
17:00	17p-D61-14	光電子ホログラフィによるW doped VO ₂ の局所構造決定	○大岸 勇太¹, 橋本 由介², 松下 智裕², 孫 澤旭², 山田 翔梧², 山田 侑矢², 吉田 桃子², 村岡 祐治¹, 脇田 高徳¹, 中村 匠汰¹, 稲垣 翔哉¹. 横谷 尚睦¹, 山神 光平³	1. 岡山大基礎研, 2. 奈良先端大, 3. JASRI
9/18(\		ポスター講演 (Poster Presentation) P会場 (Room P)		1 Maria Large O DE Libbert
	18p-P02-1	c面およびm面サファイアを基板としたVO₂薄膜のミストCVD成長		1.岐阜大工, 2.阪大院工
	18p-P02-2	IZOナノファイバを用いた自立型フレキシブル導電性不 織布基板の実現	裕美菜 ¹ , 野見山 輝明 ¹ , 堀江 雄二 ¹	
	18p-P02-3 18p-P02-4	バナジウム酸化物薄膜における輸送特性評価 赤外線センサのためのW・Nb・Tiドープ酸化バナジウ	○阿部 友樹¹, 柳原 英人¹ 楠本 浩平¹, 山口 悟¹, ○齋藤 洋司¹	1. 筑波大数理 1. 成蹊大院理工
	18p-P02-5	ム膜の形成方法に関する研究 $KOHフラックス法 (Pr_{1-y}Sm_y)_{1-x}Ca_xCoO_3 膜の単相化に向けた合成条件の検討$	○山本 樹輝 ¹ , 舩木 修平 ¹ , 山田 容士 ¹ , 田橋 正浩 ² , 吉 田隆 ³ , 一野 祐亮 ⁴	1. 島根大自然, 2. 中部大, 3. 名古屋大, 4. 愛工大
	18p-P02-6	透明導電性酸化物を電極に用いた抵抗変化型メモリのスイッチング特性		1. 東北大工, 2. 大分大理工
	18p-P02-7	透明導電性 AZO バッファ層を有する VO 2/AZO/Polyimide 積層構造の作製と光スイッチング性能評価	○平鍋 頼¹, 于 鵬¹, 渡部 なごみ², 蘭 田², 沖村 邦 雄¹.²	1. 東海大学大学院工学研究科電気電子工学専攻, 2. 東海大学工学部電気電子工学科
	18p-P02-8	Folyimide 積層構造の作製と光スイッナンク性能評価 IGZO 薄膜 TFT の酸素流量依存性	雌 "- ○永井 慈¹, Alshanbari Reem², 前島 邦光³, Kymissis Ioannis², 山本 伸一¹	
	18p-P02-9	深紫外発光デバイス用透明電極材料の探索	□ (Q田 将希¹, 竹舎 大智¹, 上川 純平¹, 藤間 信久¹, 小 南 裕子¹, 原 和彦¹	1. 静岡大
	18p-P02-10	水晶振動子マイクロバランス法を用いた二酸化チタンの 光触媒活性評価		1.静岡大
	18p-P02-11 18p-P02-12	炭酸ナトリウムの構造解析と光触媒特性 可視光応答型光触媒における色素分解反応の励起波長依	○池田 隼人¹, 山本 伸一¹	1.龍谷大理工
	18p-P02-12	可保充心合型光融媒における巴素分解反応の励起波長依存性 ステンレスメッシュ上TiO₂ナノチューブの焼成温度によ		1. 静岡大学 1. 静岡大学
	18p-P02-14	る光触媒性能への影響 QCM法を用いたMoO ₃ の光触媒活性の評価	○横家 暉¹, 高橋 海斗², 坂間 弘², 下迫 直樹¹	1. 静岡大, 2. 上智大
	E 18p-P02-15	Novel Nanoscale Silver Bismuth Iodide Co-catalyst on Titanium Dioxide Nanofibers for Enhanced Photocatalytic CO ₂ Reduction	$\bigcirc(M2)ChiangKuoPing^1,JiaMaoChang^1,TingHan$	
	18p-P02-16	酸化チタンナノ粒子と繊維状リン酸カルシウムの複合シートの作製	○(D) 梶原 奨平¹, 板谷 清司¹², 桑原 英樹¹, 遠山 岳史². 横井 太史³. 佐々木 哲朗⁴, 黒江 晴彦¹	1.上智大理工, 2.日大理工, 3.東医歯大生材研, 4.静岡大電研
	E 18p-P02-17	Effect of Al Doping on the Photocatalytic Activity of SrTiO ₃ by Cyclic Voltammetry	文、横升 A文、匠々木 自助、無丘 哨彦 ○ Jiayue Ma¹, Mikk Lippmaa¹	1.ISSP, The Univ. of Tokyo
	18p-P02-18	反応性スパッタリングを用いた酸化チタン成膜における 窒素添加効果	○(M2)安藤 秀太¹,太田 貴之¹	1. 名城大理工
	18p-P02-19	三系の加列末 TiO ₂ /Cu積層薄膜のアニール処理による光触媒効果の向上	○(M1C)伊藤 龍斗¹, 鷹野 一朗²	1.工学院大院, 2.工学院大工
	18p-P02-20 18p-P02-21	La添加SrTiO ₃ 光触媒による水素生成 酸化チタン薄膜における酸素欠損と光触媒活性の相関	○板橋 達也¹,源馬 龍太¹.2.³,高尻 雅之¹.3 ○本田 光裕¹,森山 滉大¹,落合 剛²	1. 東海大工, 2. 東海大マイクロナノ研, 3. 東海大応化 1. 名工大応物, 2. 神奈川県立産業技術総合研究所
		版にアメン海峡におりる酸素人頂とル配珠店住の相関 $\mathrm{Li}_{0.35}\mathrm{La}_{0.55}\mathrm{TiO}_3/\mathrm{Li}_4\mathrm{Ti}_5\mathrm{O}_{12}$ 界面におけるイオン伝導特性の ナノファイバ化による効果		1. 在工人心包, 4. 计水川宗立生未仅相能 日明九月 1. 鹿児島大理工

	18p-P02-23	酸化物系固体電解質 Na ₃ OBrへのイオン導入による構造 変化とイオン伝導性の評価	○大崎 祐揮¹,村山 真理子¹.²,趙 新為¹	1. 東理大理, 2. 東洋大工業技術研
	18p-P02-24	水に分散した α -Fe ₂ O ₃ 粒子表面のバンド端エネルギーの評価	〇木下 真梨子 1 ,柳田 さやか 1 ,染川 正一 1 ,柳 捷凡 1 ,桑原 聡士 1	1.都産技研
	E 18p-P02-25	——大気中光電子収量分光法を用いたアプローチ—— The influence of defect density on the Kondo Effect and Anomalous Hall Effect in γ -Al ₂ O ₃ /SrTiO ₃ Heterostructures	○ (D)JIWON YANG¹, Mikk Lippmaa¹	1.ISSP, Univ. of Tokyo
	18p-P02-26	$Z_{\rm nO}$ をバッファ層とするガラス基板上 VO_2 薄膜堆積における成膜圧力と基板バイアスの影響	○下野 慎平¹,沖村 邦雄¹	1. 東海大院工
	18p-P02-27		○高藤 大悟 ¹ , 上田 浩平 ^{1,2,3} , 塩貝 純一 ^{1,3} , 松野 丈夫 ^{1,2,3}	1. 阪大理, 2. 阪大 CSRN, 3. 阪大 OTRI スピン
	18p-P02-28	真空中における極薄膜InGaZnOトランジスタの電流電圧		1.神戸大工
	18p-P02-29	特性 $p \digamma + \dot{\pi} N Sn O_x \bar{\pi} \bar{k} \bar{k} \bar{\rho} \nabla \dot{\nu} Z \rho \sigma \vec{\pi} Z \bar{k} T Z - \nu \Delta Z Z \bar{\mu} Z $		1.神戸大学工
	E 18p-P02-30	Modification of band alignment of Zn _{1-x} Sn _x O alloy buffer/Cu(In,Ga)Se ₂ for high- efficiency Cu(In,Ga)Se ₂ solar cell	○ (P)CheukKaiGary Kwok¹, Genchi Inohana¹, Yuta	1.Tsukuba Univ.
9/20(9:30	(Fri.) 9:30 - 11:30 20a-B3-1	□頭講演 (Oral Presentation) B3会場 (Room B3) リチウム吸蔵反応におけるチタン酸リチウム (Li,Ti₅Oı₂)		1. 産総研
0.45	20- D2 2	相転移機構の高分解能 TEM 観察 リチウム過剰系層状酸化物正極における遷移金属比と原	○廃井 輔』小井 陸十郎』 巨匠 幸次』 淬土 敢。 中程	1 自田十廿 2 2 休自十工
9:45	20a-B3-2	子配列の変化	海斗², 乙倉 悠人², 大石 昌嗣²	
0:00	20a-B3-3	チタニア/ボリアニリン多孔体ペレットを蓄電層とした 光蓄電池	○ (M1) 松本 大空', 前田 俊祐', 北山 公貴', 野見山 輝明 ¹ , 堀江 雄二 ¹	1. 鹿児島大院
0:15	20a-B3-4	キトサン/クエン酸と共にアニーリングした酸化亜鉛ナ ノ粒子の光触媒活性増強効果	○國本 虎太郎 1 , 川上 烈生 1 , 柳谷 伸一郎 $^{1.2}$, 中野 由 $\ \ \ \ \ \ $	1. 徳島大理工, 2. 徳島大pLED, 3. 中部大, 4. 東京大
0:30	20a-B3-5	大気下における蒸着重合を用いたロッド状 g - C_3N_4 の作製と光触媒への応用	○菱木 裕基¹, 青木 瑞稀¹, 大谷 直毅¹	1.同志社大
0:45	20a-B3-6	n型層としてTiO 2薄膜を用いたヘテロ接合Cu 2O薄膜 太陽電池の光起電力特性	○石田 竜也¹, 神崎 凌馬¹, 宮田 俊弘¹	1.金工大
1:00	E 20a-B3-7	Single-Atom Platinum Anchored Graphitic Carbon Nitride Nanosheets for Photoreforming Plastic to Hydrogen	$\bigcirc \ (P)Chang \ YinHsuan^1, CiaoYun \ Huang^1, TingHan \ Lin^1, JiaMao \ Chang^1, MingChung \ Wu^1$	1.Chang Gung Univ.
1:15	20a-B3-8	液体ターゲットを用いたスパッタ法による酸化ガリウム 薄膜の形成	○小柳 剛¹, 山田 直樹¹, 藤井 隆満²	1.山口大院創成科学, 2.TAK 薄膜デバイス
9/20(F 3:00	Fri.) 13:00 - 17:00 奨 20p-B3-1	口頭講演 (Oral Presentation) B3会場 (Room B3) 電極/Nb:SrTiO ₃ 接合の光応答特性における表 - 裏面レー ザー照射の比較	○佐田晋¹,鄭雨萌¹,木下健太郎¹	1. 東理大先進工
3:15	20p-B3-2	ICTS法による金属/Nb:SrTiO₃接合の界面状態と電圧 一電流特性の解明	○鄭 雨萌¹,木下 健太郎¹	1. 東京理科大
3:30	奨 20p-B3-3	Pt/Nb:SrTiO ₃ 接合における電流緩和特性の制御に向けた 界面準位の評価	○瀬戸 大雅 1 , 大谷 亮介 1 , 佐田 晋 1 , 鄭 雨萌 1 , 木下 健 太郎 1	1. 東理大先進工
3:45	奨 20p-B3-4	CeRAM応用に向けたNiO薄膜のミストCVD成膜と室 温・高温におけるモット転移現象の電気特性評価	○池田 守¹, 吾妻 正道¹, 宮本 翼¹, 西中 浩之¹	1.京工繊電子
4:00	奨 20p-B3-5	第一原理計算によるルチル型TiO ₂ 中の酸素空孔挙動及び 剪断面構造の外部電場依存性解析	\bigcirc (M2) 小泉 優紀 1 , DIAO ZHUO 1 , 藤平 哲也 1 , 酒井 朗 1	1. 阪大院基礎工
4:15	奨 20p-B3-6	Pt/TiO_2 薄膜モデル触媒における酸素空孔分布と Pt の電子状態	17.5	1. 九大院総理工
4:30	奨 20p-B3-7	ミスト CVD 法によるサファイア基板上エピタキシャル VO ₂ 薄膜の作製	○森永 亞郎¹, 池之上 卓己¹, 三宅 正男¹	1.京大院エネ科
4:45	奨 20p-B3-8	ミストCVDによるスマートウインドウに向けた石英基板上へのNドープVO ₂ 薄膜の形成及び物性評価	○(M2)加納 大成 ¹ , 西中 浩之 ¹	1. 京工繊大
5:00	奨 E 20p-B3-9	Detection of Kidney disorder based on pulsed laser deposited WO ₃ nanowire gas sensor	○ (M2)Keying Huang¹, Sankar Ganesh Ramaraj², Chuanlai Zang¹, Hiroyasu Yamahara¹, Hitoshi Tabata¹	1.Tokyo Univ.
5:15 5:30	20p-B3-10	休憩/Break 多元系n型酸化物半導体薄膜を用いる透明ReRAMにお けるZnO抵抗変化層へのドービング効果の検討	○木村 京介¹, 寺澤 楽徒¹, 吉田 将真¹, 宮田 俊弘¹	1.金工大
5:45	20p-B3-11	単結晶hBN上に作製したマイクロ狭窄 VO2素子における局所的な電流誘起抵抗スイッチ	○(M2) 冨田 雄揮 ¹ , 中払 周 ² , 若山 裕 ³ , 渡邉 賢治 ³ , 谷口 尚 ³ , 李 好博 ¹ , 服部 梓 ¹ , 田中 秀和 ¹	1. 阪大産研, 2. 東京工科大学, 3. 物質・材料機構
6:00	20p-B3-12	る同所的な電流誘起抵抗スイッチ CeRAMに向けたミスト CVD による炭素ドープ HfOx 薄膜のモット転位スイッチング		1.京都工繊大, 2.シンメトリクス
6:15	20p-B3-13	大ノギャップIGZO水素ガスセンサー	〇矢澤 卓 1 , 井手 啓介 1,2 , 伊澤 誠一郎 1 , 神谷 利夫 1,2 , 真島 豊 1	1.東工大フロ研, 2.東工大元素セ
6:30	20p-B3-14	原子拡散を用いたp-n接合CuOナノワイヤの作製とセン サ性能評価		1.東北大院工
6:45	20p-B3-15	Van der Waals Interactions Between Non-polar Alkyl Chains and Polar Oxide Surfaces Prevent Catalyst	中村 健太郎 1 , 高橋 綱己 1 , 細見 拓郎 1 , 田中 航 1 , \bigcirc 柳 田 剛 1	1. 東大応化
.4 薄膜	新材料 / Thin fil <u>ms</u>	Deactivation in Aldehyde Gas Sensing s and New materials		
9/16(N):00	Mon.) 9:00 - 11:30 16a-C31-1	口頭講演 (Oral Presentation) C31 会場(Room C31) ユニバーサルな機械学習ボテンシャルを用いて作成され たシリコン系低誘電率絶縁膜の評価	○野武 晃¹, 筒井 拓郎¹, 守屋 剛¹, 大井川 仁美¹, 馮 磊¹, 倪 澤遠², 加藤 大輝², 小川 智久², 松隈 正明², 樋 口 恒², 久保 敦史², 大越 顕², 松山 洋平², 村上 博紀²,	
		EA-NHE A NAME AND ACCUSE OF A SHARE A COLOR	戸根川 大和 ² ○(D) 田島 直弥 ¹ , 室谷 裕志 ¹ , 松平 学幸 ²	1. 東海大院工, 2.(株) シンクロン
9:15	16a-C31-2			
	16a-C31-2 16a-C31-3	優合成膜により成膜された低屈折率SiO₂光字薄膜の多層化(3)耐熱性ITO透明導電膜を用いた色素増感太陽電池の作製	○野村 尚寛¹, 大熊 豪¹, 奥谷 昌之¹	1.静岡大院工
9:15 9:30 9:45 10:00		化(3)		1.産総研

10:30	16a-C31-7	$\mathrm{Fe_{3x}Ti_{x}O_{4}}$ スピネルフェライト薄膜の高温スピンクラスターグラス挙動	○山原 弘靖¹, Tang Siyi¹, Li Haining¹, Md Shamim Sarker¹, Ahamed E M K Ikball¹, 高 成柱¹, 福島 鉄也², 関 宗後¹, 田畑 仁¹	1. 東大院工, 2. 産総研
10:45	16a-C31-8	【注目講演】コバルトハニカム格子を含むイルメナイト型 NaCo _{1/3} Sb _{2/3} O ₃ 薄膜の合成		1. 阪大産研, 2.JFCC, 3. 立命館大, 4. 南開大学, 5. 京大
11:00	16a-C31-9	VO ₂ /TiO ₂ (001) における格子歪の形成要因	○村岡 祐治¹, 中本 歷², 岡崎 宏之³, 脇田 高徳¹, 横谷 尚睦¹	1. 岡山大基礎研, 2. 岡山大院自然科学, 3. 量研
11:15	16a-C31-10	高基板温度におけるスパッタ膜形成時の内部応力 in-situ 観測	,	1. 東工大工, 2.ULVAC
9/16(Mon	n.) 13:00 - 18:00	口頭講演 (Oral Presentation) C31会場 (Room C31)		
.3:00 ‡	沼 16p-C31-1	「分科内招待講演」 機能性酸化物の「機能」を引き出す薄膜成長とデバイス 応用の可能性	○太田 裕道 1	1.北大電子研
13:30 隻	贬 16p-C31-2	交互ターゲットPLD法により作製したZrN _x H _y 薄膜の仕 事関数評価	\bigcirc (M2) 宮崎 大地 1 , 吉松 公平 1 , 相馬 拓人 1 , 組頭 広 志 2 3 , 大友 明 1	1. 東工大物質理工, 2. 高エネ研, 3. 東北大多元研
3:45 \$	段 16p-C31-3	アルカリ金属水素化ホウ素化合物のエピタキシャルヘテロ接合		1. 東北大工
14:00	段 16p-C31-4	アルカリ金属水素化ホウ素化合物を出発物質とする真空 蒸着による層状ポロフェン酸化物薄膜の合成	\bigcirc (M1) 佐々木 啓太 ¹, 清水 俊介 ², 神永 健一 ¹, 吉井 丈晴 ², 村上 響 ¹, 佐藤 匠 ¹, 丸山 伸伍 ¹, 西原 洋知 ², 松 本 祐司 ¹	1. 東北大学, 2. 東北大学多元物質研究所
14:15 ±	爰 16p-C31-5	昇温脱離ガス分析法を用いた Pd/Ni 薄膜ヘテロ構造の水 素吸蔵特性評価	〇筒井 健三郎 1 ,小野 広喜 1 ,小澤 孝拓 3 ,山本 航平 4 ,石山 修 4 ,Wilde Markus 3 ,横山 利彦 4 ,福谷 克之 3 ,水口 将輝 1,2 ,宫町 俊生 1,2	1. 名大院工, 2. 名大未来研, 3. 東大生産研, 4. 分子研
14:30 \$	贬 16p-C31-6	EuCd₂薄膜におけるトポロジカルホール効果の解明と外部歪みによる磁気特性の制御	○村上 嘉哉¹, 西早 辰一¹, 渡辺 悠斗, 打田 正輝¹	1. 東工大理
14:45	贬 16p-C31-7	CrMnSb 3元系合金薄膜の結晶構造と磁気特性・磁気光 学特性	○家 正人¹,強 博文¹,宮町 俊生¹,水口 将輝¹	1. 名大
	贬 16p-C31-8	分子線エピタキシー法によるEu-As二元系新物質薄膜の 作製	\bigcirc (M1) 米田 忠司 1 , 西早 辰 $ ^1$, 氏家 宏幸 1 , 中村 彩 \mathcal{B}^1 , 渡辺 悠斗 1 , Markus Kriener 2 , 打田 正輝 1	1. 東工大理, 2. 理研 CEMS
15:15 15:30	16p-C31-9	休憩/Break Li _{6.5} La ₃ Zr _{1.5} Ta _{0.5} O ₁₂ フラックス成長の水蒸気供給による過		1. 静大院工
15:45)	飽和度制御と薄膜作製への適用 フラックス法によるLiイオン固体電解質LLZTOエビタ	谷 尚樹¹ ○(M2)森谷 真夕¹,川口 昂彦¹,坂元 尚紀¹,脇谷 尚	1. 静大院工
16:00 隻	贬 16p-C31-11	キシャル薄膜の作製 溶液プロセスによる誘電体多層膜の室温作製	樹 ¹ ○長岡歩 ¹ ,孫鶴 ² ,宋 侣洋 ² ,吉田麗娜 ³ ,吉田 司 ¹ ,硯 甲善幸 ²	1.山形大院有機材料システム, 2.山形大INOEL, 3.東京
6:15 \$	爰 16p-C31-12	ミスト CVD 法による Cu 薄膜の作製、および、その膜特性		高專 1.高知工科大学, 2.総研
6:30 \$	₩ 16n-C31-13	真空蒸着法によるCuBiI₄薄膜の作製と評価	○小川 航輝 ¹ , 中村 陸駆 ¹ , 村田 秀信 ² , 山田 直臣 ¹	1.中部大院工, 2.ファインセラミックスセンター
		層状三元系窒化物 MgMoN ₂ 薄膜の固相合成	○(M2) 細川 紳¹, 相馬 拓人¹, 吉松 公平¹, 大友 明¹	1.東工大物質理工
		MnドープITOエピタキシャル成長膜の物性に対するSn 濃度依存性		1.京大院人環, 2.京大国際高等教育院, 3.日本学術振興 会(特別研究員)
17:15	贬 16p-C31-16	金属イオンの界面局在化による二次元 ZnO ナノシート の完全選択合成	○ (M1) 松村 竜之介 ¹ , 斉藤 光 ² , 松尾 保孝 ^{1,3} , 奈須 滉 ^{1,4} , 小林 弘明 ^{1,4} , 侗 紗雪 ^{1,3} , Narathon Kemasiri ³ , 蓬田 陽平 ^{1,3} , 長島 一樹 ^{1,3}	1.北大総化院, 2.九大先導研, 3.北大電子研, 4.北大理
17:30 隻	贬 16p-C31-17	GZO/AZO 積層構造熱線反射膜に関する研究	○桑田 龍一¹, 青木 孝憲¹, 入江 満¹	1.大阪産大院工
7:45	16p-C31-18	グラフェンナノリボンからなる構造規定触媒の開発	○矢野 雅大¹, 保田 諭¹	1. 原研先端研
		□頭講演 (Oral Presentation) C301会場(Room C301) ペロブスカイト型 SrCeO₃薄膜のトポケミカルフッ化反		1. お茶大理, 2. 北大電子研, 3. 都立大理
9:15	17a-C301-2	応 蛍石型構造 $Sr_{0.5}Ce_{0.5}F_{2.5}$ エピタキシャル薄膜のフッ化物イ オン伝導性	彰¹ ○萩原 美紅¹,中野 歩花¹,福士 英里香²,大口 裕之², 片山 司³,廣瀬 靖⁴,近松 彰¹	1.お茶大理, 2.芝浦工大理工, 3.北大電子研, 4.都立大理
9:30	17a-C301-3	電池応用を目指したLiBH₄薄膜の評価	○ (D) 福士 英里香¹, 戸澤 拓海¹, 大口 裕之¹	1. 芝浦工大理工
9:45	17a-C301-4	エピタキシャル薄膜を用いたLiH物性制御	○大脇 一眞¹, 宗房 幸太¹, 原田 尚之², 大口 裕之¹	1. 芝浦工大理工, 2. 物材研
0:00		水素感応層を有する光学キャビティセンサにおける水素 応答	○山根 治起¹,梁瀬智¹,高橋 幸希²,世古 暢哉²,重村 幸治²	
0:15	17a-C301-6	MgH₂薄膜の高品質化をもたらすラジカル水素供給条件の検討	\bigcirc (M2) 下萬 祐暉 1 , 宗房 幸太 1 , 磯田 洋介 2 , 間嶋 拓也 3 , 菅 大介 2 , 原田 尚之 4 , 大口 裕之 1	1. 芝浦工大理工, 2. 京大化研, 3. 京大院工, 4. 物材機構
0:30	17a-C301-7	マルチターゲットを利用したPtナノ粒子埋め込み希土類 ニッケル酸化物薄膜の作成と水素吸蔵特性		1. 阪大産研
0:45 1:00	17a-C301-8 17a-C301-9	第16元素ドーピングによる CuI の導電性増大 Mist CVD 法を用いた (001) SrTiO ₃ 基板上 Cu ₃ N 成長	○豊田 真秀¹, 安藤 誠人¹, 村田 秀信², 山田 直臣¹ ○(M1)月岡 知里¹, 吉田 将吾¹, 杉田 直樹¹, 永井 裕	1.中部大院工, 2.ファインセラミックスセンター 1.工学院大
11:15	17a-C301-10	トンネルFET用 Ti _{0.3} Zn _{0.7} O _{1.3} の電子物性のp型 Si 基板 キャリア濃度依存性の検討	己¹,尾沼猛儀¹,本田 徹¹,山口 智広¹ ○(M1)小川 健太¹²,知京 豊裕²,小椋 厚志¹³,長田 貴弘²¹	1. 明大理工, 2.NIMS, 3. 明大MREL
9/17(Tue	.) 13:30 - 15:30	ポスター講演 (Poster Presentation) P会場(Room P)	~~·	
	E 17p-P01-1	High Frequency MO Imaging of Bismuth-substituted Europium Iron Garnet	○ MdAbdullahAl Masud¹, Wataru Asano¹, Shuichiro Hashi², Takao Nishi³, Daiki Oshima⁴, Takeshi Kato⁴, Kiejin Lee⁵, Masami Kawahara⁴, Fatima Zahra Chafi¹, Masami Nishikawa¹, Takayuki Ishibashi¹	
	17p-P01-2	鉄酸フッ化ビスマス薄膜の光学特性	○佐野瑞歩¹, 上垣外 明子¹, 片山 司², 廣瀬 靖³, 近松 彰¹	1. お茶大理, 2. 北大電子研, 3. 都立大理
	17p-P01-3	鉄酸フッ化ビスマス薄膜の組成に依存した物性と電子状態	頭 広志4, 片山 司5, 廣瀬 靖6, 近松 彰1	北大多元研, 5. 北大電子研, 6. 都立大理
	17p-P01-4	ドロップ蒸発法による Cu-Mg(OH)2透明半導体薄膜の作製		1.名工大大学院工学部
	17p-P01-5 17p-P01-6	ドロップ蒸発法による酸化鉄透明薄膜の作製 Fe ドープITOエビタキシャル成長膜の作製と物性評価	○河村康希¹,市村正也¹ ○角卓実¹,栗原悠花¹,北川彩貴¹.23,中村敏浩¹.3	1.名工大大学院工学部 1.京大院人環,2.学振特別研究員,3.京大国際高等教育院
	17p-P01-7	UHVスパッタエピタキシー法による六方晶 ${\rm ZnSnN_2}$ 層の成長(${\rm II}$)	倉 信喜 ¹	
	17p-P01-8	UHVスパッタエピタキシー法による六方晶 ZnSnN ₂ 層の成長(III) 可想 W W 無対 C-S / - C N の 実際 - この な 会 形成 に と 7	倉 信喜 ¹	
	17p-P01-9	可視光光触媒 $\operatorname{SnS}_2/\operatorname{g-C}_3\mathbb{N}_4$ の薄膜へテロ接合形成による 光エネルギー効率向上に向けた研究	○森 羅平',バスカー マラティ',ハリッシュ サン ダーナクリッシュナン²,ナバニーザンマニ²,中村 篤志¹	1. 静岡大院, 2.SRM Inst

	17p-P01-10	高結晶性BaH₂薄膜の合成に適したラジカル水素供給条件	: ○多田 希 1 , 市岡 俊樹 1 , 福士 英里香 1 , 大口 裕之 1	1. 芝浦工大理工
	17p-P01-11	の探索 BaH ₂ 薄膜のヒドリド伝導率におけるLaドープの影響調	○春日井 若菜¹,多田 希¹,大口 裕之¹	1. 芝浦工大理工
	17p-P01-12	査 A15 構造を持つタングステンタンタル (W-Ta) 及び タン	○安田 雄一¹, Lee Heun Tae¹	1.阪大工
		グステンレニウム (W-Re) 薄膜の形成		
	17p-P01-13	反射率測定を用いた磁性ガーネット薄膜作製プロセスの 解析	○中澤俊¹,神郡啓吾¹,早野凌介¹,張健¹,チャフィファティマザーハラ¹,西川雅美¹,河原正美²,石橋隆幸¹	1. 長岡技大, 2. 高純度化学
	17p-P01-14	光 MOD 法による Cu ₂ O 光電極への SnO ₂ 複合化	○ (M1) 高橋 武揚¹, 西川 雅美¹, 石橋 隆幸¹, 中島 智 彦², 土屋 哲男²	1. 長岡技大工, 2. 産総研
	17p-P01-15	ウェアラブル超音波デバイスの作製に向けた $50Ba(Zr_{0.5}, Ti_{0.8})O_3$ - $50(Ba_{0.7}, Ca_{0.3})TiO_3$ エピタキシャル薄膜のフレキシブル化	○西川 直希 ¹ , Sharad Mane ² , 田中 秀和 ² , 西川 博昭 ³	1.近畿大院生物理工, 2.阪大産研, 3.近畿大生物理工
	17p-P01-16	Sr ₃ Al ₂ O ₆ (111)上に堆積したZnOヘテロエピタキシャル 薄膜の転写手法	〇小田 裕也 1 , 服部 梓 2 , 田中 秀和 2 , 西川 博昭 3	1. 近畿大院生物理工, 2. 阪大産研, 3. 近畿大生物理工
		ace Physics, Vacuum		
9/17(Ti	17p-P02-1		○片山 遼耶¹, 遠田 義晴¹	1. 弘前大院理工
	17 D00 0	程		1.横国大院理工, 2.高エネ研, 3.総研大, 4.原子力機構
	17p-P02-2	有機分子グラフェン界面の電子状態および伝導特性評価	○滕田 後為,長門 訳信,有川 隆平,島澤 崔弘,小 澤 健一 ^{2,3} ,間瀬 一彦 ^{2,3} ,千葉 大輔 ⁴ ,津田 泰孝 ⁴ ,吉越 章隆 ⁴ ,大野 真也 ¹	
	17p-P02-3	ベイズ推論に基づいたFIM像の強度の時系列解析	○世古 卓生¹, 岩田 達夫¹, 永井 滋一¹	1.三重大院工
	17p-P02-4	CNT 複合紙の電子状態と伝導特性の相関	○今堀 樹¹, 長尾 健太郎¹, 長門 諒浩¹, 藤田 陽平¹, 吉 田圭佑¹, 佐々木 知嶺¹, 梶山 海人¹, 坂井田 樹¹, 大矢 剛嗣¹², 小澤 健一³⁴, 間瀬 一彦³⁴, 大野 真也¹	1. 横国大院理工, 2. 横国大 IMS, 3. 高エネ研, 4. 総研大
	17p-P02-5	熱可塑性エラストマーとホモポリマーのブレンド薄膜表		1. 福井大工
	15 700	面における蒸着金粒子の空間分布と粒径分布	O (240) TIE #40 C 1	1 72 144 1-7111 72
	17p-P02-6	SiO2/Si 基板上でのナノダイヤモンドを原料としたグラフェン析出成長の高品質化	○(M2) 河原 詩絵名 '	1.名城大理工
	17p-P02-7	N ₂ +H ₂ 混合ガス雰囲気下における金属薄膜の窒化	○竹下 佑大¹, 源馬 龍太¹.²	1.東海大工, 2.東海大マイクロナノ研
	17p-P02-8	結晶GSTのアモルファス化に伴う表面構造変化		1. 東洋大理工, 2. 産総研, 3. 豊島製作所
	E 17p-P02-9	Development of sulphonated graphene oxide and sulphonated PVDF membranes for fuel cells	○ (D)Gagan Kumar Bhatt¹, Chellamuthu Jegannathan¹, Masanori Hara¹, Masamichi Yoshimura¹	1.Toyota Tech. Inst.
		、7.5 原子・分子線およびビーム関連新技術のコードシェ	ア / Code-sharing Session of 6.5 & 7.5	
		口頭講演 (Oral Presentation) D63会場 (Room D63)	OTE TO THE CONTRACT OF THE CON	a II. I Blackt
13:00	16p-D63-1	LEED および XPS による Au(111) 基板上の Fe ₃ O ₄ (111) 薄膜の評価	○石原 江瑚', スバギョ アグス', 岩崎 翔大', 大久保 貴生 ¹ , 城内 英大 ¹ , 八田 英嗣 ¹ , 末岡 和久 ¹	1.北大院情
13:15	16p-D63-2	InSb(111)A上のスタネン成長に向けたSn蒸着量の影響		1.北陸先端大
13:30	奨 16p-D63-3	人工光合成触媒 Ag/Ga ₂ O ₃ の活性に伴う電子状態と反応 機構		1. 名大院工, 2. 名大IMaSS, 3. JASRI
13:45 14:00	16p-D63-4 16p-D63-5	基板面方位制御によるZnO薄膜の熱電特性操作 Si基板上B20-CoSi薄膜のエピタキシャル成長法の開発	○小松原 祐樹¹, 石部 貴史¹, 成瀬 延康², 中村 芳明¹ ○石部 貴史¹², 佐藤 和則³, 山下 雄一郎⁴, 中村 芳 明¹²	1. 阪大院基礎工, 2. 滋賀医科大 1. 阪大院基礎工, 2. 阪大OTRI, 3. 阪大院工, 4. 産総研
14:15		休憩/Break		
14:30	16p-D63-6	4D-XPSスペクトルビッグデータのNoise2Noiseデノイ ジングによる多層積層薄膜構造バラメータの高精度抽出		
14:45	16p-D63-7	脂質二分子膜と支持基板との間の相互作用	○住友 弘二 ¹ , 吉水 寛人 ¹ , 大嶋 梓 ² , 山口 真澄 ² , 部家 彰 ¹	1. 兵庫県立大工, 2.NTT物性基礎研・BMC
15:00	16p-D63-8	ポリグリセリンアクリル膜と原子状水素との表面反応	○部家 彰¹, 藤野 雄飛¹, 住友 弘二¹	1. 兵庫県立大工
15:15	16p-D63-9	ナノ構造中電子の量子振動の局在プラズモンへの効果II		1. 東大院工
15:30	16p-D63-10		○秋山 亨 ', 河村 貴宏 '	1.三重大院工
15:45		則の検証:ステップおよびキンクを含む表面での検討 休憩/Break		
16:00	16p-D63-11	ルチルTiO ₂ の表面下に存在する酸素空孔の凝集可能性	○加藤 弘一¹, 福谷 克之¹	1. 東大生研
16:15		溶融Ga中Au-Ga合金結晶成長過程の原子スケールAFM 分析	〇一井 崇 1 ,安部 耀介 1 ,村田 真 1 ,宇都宮 徹 1 ,杉村 博 之 1	1.京大院工
16:30	*	0.2%Be-Cu材料を用いた超高真空容器による積層膜作製 と溶接加工	黒岩 雅英 ² , 大兼 幹彦 ³	
16:45 17:00		β -FeSi $_2$ コア/Si シェル量子ドットの形成と室温PL特性 二酸化チタンの表面酸素欠損の配列解析	坪倉 奏太 1,2 , 河野 翔也 3 , 野間 春生 2 , 日置 尋久 1 , \bigcirc	1. 名大院工 1. 京大人環, 2. 立命大情報理工, 3. 九工大, 4. 分子研
17:15	16p-D63-16	超音速NO分子線で照射されたNOのアナターゼ型	凑 丈俊 ⁴ ○勝部 大樹 ¹ , 金 庚民 ² , 大野 真也 ³ , 津田 泰孝 ⁴ , 稲見	
17:30	16p-D63-17	TiO ₂ (001)表面における反応 一段階酸化Loop A と二段階酸化Loop B の反応キネティ		3.横浜国大院工, 4.原子力機構, 5.高知工大 1.原子力機構, 2.日本大学, 3.東北大学
66 プロ	ーブ顕微鏡 / Prob	クス: p-Si(001) と n-Si(001) 表面の比較		
		口頭講演 (Oral Presentation) B4会場 (Room B4)		
9:00 9:15	奨 17a-B4-1 奨 17a-B4-2	溶融金属中二体間相互作用力のAFM分析 フッ素含有単分子膜における摩擦帯電メカニズム	\bigcirc (M2) 西脇 悠人 1 , 宇都宮 徹 1 , 天野 健一 2 , 一井 崇 1 \bigcirc 中山 優弘 1 , 三島 直也 1 , 三坂 朝基 1 , 山田 剛司 1 , 大	
0.00	15 D. C	ADMを用いま合体的と参供されません。	山浩1,松本卓也1	1 1 11 1 2 2 2
9:30 9:45	奨 17a-B4-3 奨 17a-B4-4		○石田遥也¹, 手嶋 秀彰¹, 李 秦宜¹, 高橋 厚史¹ ○蒲生 浩忠¹, 佐野 光¹, 清林 哲¹, 城間 純¹, 前田 泰¹	1. 九州大学 1. 産総研
10:00	E 17a-B4-5	析 Investigation of solvation structures of Lithium-ion	○ (D)Yilin Wang¹, Kei Kobayashi¹	1.Kyoto Univ
10:00	с 1/а-54-5	battery materials on clinochlore using frequency modulation atomic force microscopy	○(D)1 iiii wang , Kei Kobayasni'	1.ky0t0 ∪niv
10:15	17a-B4-6	超高速AFMの実現に向けた超微小カンチレバーの開発	○鴨下 香恋¹,梅田 健一²,古寺 哲幸²	1. 金沢大・院数物, 2. 金沢大・WPI-NanoLSI
10:30	17a-B4-7	原子間力顕微鏡による植物細胞の外部応力による応答評 価		1. 奈良先端大物質, 2. 奈良先端大MLC
10:45	17a-B4-8	走査型イオン伝導顕微鏡を用いたバイオフィルムの3D 可視化	服部 俊大 1 , 三輪 有平 2 , 平井 信充 2 , 中澤 謙太 1 , 〇岩 田 太 1	1. 静大工, 2. 鈴鹿高専

11:00	17a-B4-9	タッピングモード走査型プローブエレクトロスプレーイ オン化法を用いたヒト心臓疾患組織の質量分析イメージ ング		1. 阪大院理, 2. 阪大 FRC, 3. 阪大院工, 4. 阪大院医
9/18(\	Wed.) 9:00 - 11:30	口頭講演 (Oral Presentation) B4会場 (Room B4)		
9:00	18a-B4-1	O2 単層膜のスピンに由来した格子歪みのAFM観察	木村 光男¹, 國貞 雄治², ○杉本 宜昭¹	1. 東大新領域, 2. 北大院工
9:15	18a-B4-2	動的原子間力顕微鏡におけるエネルギー散逸の時間発展		1. 東大新領域
9:30	18a-B4-3	第一原理計算を用いた Si(111)-(7x7)表面における表面双極子の可視化		1. 電通大, 2. 東北大
9:45	18a-B4-4	Hybrid-KPFMによるSi(111)表面上の観察	○尾谷 颯太¹, 菅原 康弘¹, 李 艶君¹	1. 阪大院工
10:00	18a-B4-5	準間接照射探針増強ラマン分光用プローブにおける電界 増強特性の三次元計算		1. 京大院工, 2. 日立研開
10:15	18a-B4-6	FIBを用いたノンギャップモード TERS 探針の作製	○廣澤 和典¹, 張 開鋒², 原 正則¹, 吉村 雅満¹	1. 豊田工大工, 2. 目立製作所
10:30	18a-B4-7	SICM計測における適正バイアス電圧値の検討	○亀井 翔天¹, 渡邉 信嗣²	1. 金沢大院・ナノ生命, 2. 金沢大・WPI-NanoLSI
10:45	18a-B4-8	容量補償用ピペットを有する走査型イオン伝導顕微鏡に おけるバイアス変調モードでの応答特性の改善	○猪股 仁志¹, 中澤 謙太¹, 永田 年², 河崎 秀陽², 星 治³, 岩田 太¹	1.静岡大院工, 2.浜松医科大学, 3.東京医科歯科大学
11:00	18a-B4-9	スキャナのフィードフォワードパラメタ調整の自動化の 検討		1. 金沢大・院数物, 2. 金沢大・WPI-NanoLSI
11:15	18a-B4-10	3次元走査型力顕微鏡の高速化に資する取得データ処理 手法の検討	〇東 諒柊 1 , 熊谷 陽一 1 , 岡本 雅美 1 , 福間 剛士 1 , 宮田 一輝 1,2	1. 金沢大学, 2. さきがけ/JST
9/18(V	Ved.) 13:30 - 15:30	ポスター講演 (Poster Presentation) P会場 (Room P)		
	18p-P03-1	パルスフォース原子間力顕微鏡を用いた発生胚のメカニ クス測定	\bigcirc (M2) 小谷 崇博 1 , 山本 実季 1 , 垣内 琢規 1 , 野島 拓樹 1 , 岡嶋 孝治 1	1.北大情報科学
	18p-P03-2	二重円偏光変調光誘起力顕微鏡による銅フタロシアニン 分子のキラルマップの取得	○松谷 和歩¹, 山田 喬昭¹, 菅原 康弘¹	1. 阪大院工
	18p-P03-3	原子間力顕微鏡によるアモルファス氷表面形状測定:昇 温による表面形状の変化	○日高 宏¹,都丸 琢斗¹,渡部 直樹¹	1.北大低温研
	18p-P03-4	水素終端 Si(100) 表面上の Si ナノ領域の 2 探針 STM 測定	○小野田 穣¹, Livadaru Lucian², Wolkow Robert².³,	1. 福岡教育大, 2. アルバータ大, 3. Quantum Silicon Inc.,
	18p-P03-5	出力極性制御を適用した SNDM ポテンショメトリによる	Pitters Jason ⁴ ○宮戸 祐治 ¹ , 野崎 博樹 ² , 間山 憲仁 ²	4.カナダ国立研究評議会 1.龍谷大 先端理工, 2.東芝ナノアナリシス
	4	半導体キャリア分布測定	OF WANTED THE TOTAL TO A SECTION OF THE SECTION OF	A DE I Blave
	18p-P03-6 18p-P03-7	高温条件下におけるPdナノクラスターの接触電位差測定電気化学プローブを駆使した二次元材料における電極触媒能の高機能化		1. 阪大院工 1. 千葉工大, 2. 東北大AIMR, 3. 東北大院工, 4.JST さきがけ, 5. 名大工, 6. 都立大理, 7. 金沢大学 NanoLSI, 8. 物材機構
	18p-P03-8	積層セラミックコンデンサのArイオンミリング加工による状態変化とケルビンプローブフォース顕微鏡による可 視化	○相蘇 亨¹, 稲木 由紀¹	1.(株)日立ハイテク
	18p-P03-9	二重円偏光変調光誘起力顕微鏡の開発	○高柳 圭佑¹, 山田 喬昭¹, 菅原 康弘¹	1. 阪大院工
	18p-P03-10	高温炎エッチングによるタングステン探針の単結晶化		1. 金沢大自然, 2. 北陸先端科技大
		探針増強ラマン分光用 Au 蒸着カンチレバー探針の作製と性能評価		1. 京大工, 2. 日立製作所
[CS.10]	】6.6 プローブ顕微鏡	鏡、12.2 評価・基礎物性のコードシェア / Code-sharing S	ession of 6.6 & 12.2	
9/17(7	Tue.) 13:00 - 18:30	口頭講演 (Oral Presentation) B4会場 (Room B4)		
13:00	招 E 17p-B4-1	[The 56th Young Scientist Presentation Award Speech] High-Spatial-Resolution Mass Spectrometry Imaging of Mouse Retina by Improved Tapping-mode Scanning Probe Electrospray Ionization		1.Graduate school of science, Osaka Univ, 2.National Center for Global Health and Medicine
13:15	招 17p-B4-2	「第56回講演奨励賞受賞記念講演」 ガラス絶縁電析Au探針による電気化学走査トンネル顕微 鏡計測と探針増強ラマン分光への応用		1.理研, 2.JST さきがけ, 3.名大工, 4.金大ナノ生命科学研, 5.東大新領域, 6.東大工
13:30	奨 17p-B4-3	3D-SFMとMDシミュレーションによるアニオン界面活性剤結晶/水界面構造の分子スケール解析	垣 篤典 ² , Ygor Morais Jaques ³ , Adam S. Foster ³ , 柿澤	1. 金沢大, 2. ライオン (株), 3.Aalto 大
13:45	奨 17p-B4-4	加熱銅製ノズルを通して蒸着したAu(111)基板上のヘキ	恭史²,福間剛士¹ ○山口真広¹,坂上弘之¹,富成征弘²,田中秀吉²,鈴	1. 広島大先進理工, 2. 情通研機構
14:00	奨 17p-B4-5	サブロモトリフェニレン分子のSTM観察 DPh-BTBT の 1 次元構造における HOMO と HOMO-1	木仁¹ ○(D)小野 裕太郎¹,岩澤 柾人¹,鶴田 諒平¹,延山 知	1. 筑波大, 2. 京大, 3. 和歌山大
14:15	奨 E 17p-B4-6	の軌道混成 Negative Differential Resistance in Single-Molecule	弘², 小田 将人³, 石井 宏幸¹, 山田 洋一¹ ○(D)Dongbao Yin¹, Miku Furushima², Haru	1.Tokyo Tech, 2.Kobe Univ., 3.Osaka Univ.
		Junctions Based on Heteroepitaxial Spherical Au/Pt Nanogap Electrodes	Tanaka ¹ , Seiichiro Izawa ¹ , Tomoya Ono ² , Ryo Shintani ³ , Yutaka Majima ¹	
14:30	17p-B4-7	原子層磁石観察に向けた qPlus AFM/MFM開発 (1)	○ (M1) 赤松 瞬¹, 市川 稜¹, 石井 榛¹, Wulfhekel Wulf², Haghighirad Amir-Abbas², 益井 絵美里³, 稲見 栄一³, 西脇 悠人⁴, 時任 秀慈⁴, 一井 崇⁴, 山田 豊和¹⁵	1.千葉大院工, 2. カールスルーエ工科大, 3. 高知工大, 4. 京大院工, 5. 千葉大分子キラ研
14:45 15:00	17p-B4-8	休憩/Break STM誘起発光を用いたキラルPTCDI分子の光学活性評 価	○(M2)春名 泰成¹, 服部 卓磨¹, 松羅 翔大², 齋藤 彰¹, 大須賀 秀次², 桑原 裕司¹	1. 阪大院工, 2. 和歌山大システムエ
15:15 15:30	17p-B4-9 17p-B4-10	二次元ハニカム格子磁石の表面合成 液中AFMによる半導体ウェーハ絶縁膜表面の吸着力計測		1. 千葉大院工 1. 金沢大, 2. 荏原製作所
15:45	17p-B4-11	全固体電池における活物質間接触と電池容量に関する3	田 一輝¹, 宇野 恵², 高東 智佳子², 福間 剛士¹ ○前田 泰¹, 山岸 裕史¹, 蒲生 浩忠¹	1. 産総研
16:00	17p-B4-12	次元シミュレーション解析 基準電位制御法を導入した時間分解静電引力顕微鏡によ	○竹本 開太¹, 佐藤 捷¹, 石橋 亮太¹, 高橋 琢二¹.²	1.東大生研, 2.東大ナノ量子機構
16:15	17p-B4-13	る太陽電池材料評価 ヘテロダインポンププロープケルピンプロープフォース 顕微鏡による有機薄膜トランジスタのキャリアダイナミ	○有長 一輝¹, 小林 圭¹	1. 京大工
16:30	E 17p-B4-14	クス評価 PEDOT-PSS network layers for neuromorphic physical computing	○ meien Sou¹, Yuma Murano¹, Dock-chil Che¹, Syusaku Nagano², Takuya Matsumoto¹	1.Osaka Univ., 2.Rikkyo Univ.
16:45		休憩/Break		
17:00	E 17p-B4-15	AFM observation of microparticle latex film under tensile strain	○ Fengyueh Chan¹, Yuichiro Nishizawa², Yuma Sasaki², Natsuki Watanabe¹, Daisuke Suzuki², Takayuki Uchihashi¹.³	1.Nagoya Univ., 2.Okayama Univ., 3.ExCELLS
17:15	17p-B4-16	【注目講演】原子間力顕微鏡による単一椀状分子の機械的 構造反転		1. 東大新領域, 2. 阪大院工
17:30	17p-B4-17	σ - 非局在系を有する分子接合の電荷輸送特性	○藤井 慎太郎¹, 瀬古 紗弥², 田中 泰地², 吉原 勇輝¹, 古川 俊輔², 西野 智昭¹, 斎藤 雅一²	1.東工大, 2.埼玉大
17:45	17p-B4-18	単一分子架橋系の整流特性の第一原理計算による研究	○古島 弥来¹, 植本 光治¹, 小野 倫也¹	1.神戸大工

18:00	17p-B4-19	CNT探針を用いた DNAの液中 FM-AFM 計測	○水野 雄介¹, 宮澤 佳甫¹.², 寺前 圭吾¹, 児島 亮平¹,	1.金大院, 2.WPI-NanoLSI
18:15	17p-B4-20	原子間力顕微鏡を用いたシロイヌナズナ細胞の力学特性	福間 剛士 ^{1,2} ○山神 見友 ¹ , 山崎 勇輝 ¹ , 笹井 美佳 ² , 國枝 正 ^{2,3} , 出	1. 奈良先端大物質, 2. 奈良先端大バイオ, 3. 奈良先端大
		評価	村 拓 ^{2,3} , 細川 陽一郎 ^{1,3,4}	CDG, 4. 奈良先端大MLC
		n Technology and Nanofabrication はプログラム冒頭にございます。		
		ポスター講演 (Poster Presentation) P会場(Room P)		
3/ TO(IN		30 keV励起硬X線光電子分光法における反跳効果の検討	○而后 幸亚¹ 安野 聡¹ 真太 唐多¹ Seo Okkwan¹	1.JASRI
	16p-P01-2	マルチ吸収端時間分解クイックXAFS計測システムの構		1.高輝度セ, 2.都立大院理, 3.東大院工
	16p-P01-3	築 電子線照射処理前後における CFRTP (CF/PPS) の衝撃	郎³,河底秀幸²,今井康彦¹,鈴木康介³,山添誠司² ○(M1C)入汀 紘嵩¹ 伊比井亜弥音¹ 木村 華樹¹ 佐	1. 東海大院工 2.KISTEC
	·	值評価	川 耕平¹, 西 義武¹.², 内田 ヘルムート貴大¹	
	16p-P01-4	イオンビームプロファイルの測定によるウィーンフィル タの分離性能評価	之1, 松友 真哉1, 浅地 豊久2	1. 新居浜高専, 2. 滋賀県立大
	16p-P01-5	超低地球軌道(VLEO)原子状酸素・窒素分子環境の地 上対照試験	横田 久美子¹, 西岡 燦太¹, 中山 開智¹, 上田 一輝¹, 竹 中 優太¹, ○田川 雅人¹	1.神戸大院
7.1 X線	技術 / X-ray techno	logies		
9/16(N		口頭講演 (Oral Presentation) C43会場 (Room C43)		
9:00	16a-C43-1	250~550 eV 領域において高回折効率と高 spectral fluxを 呈する軟X線平面結像型分光器用の Au/Ni ラミナー型回 折格子の設計		
9:15	16a-C43-2	が配子の設計 小型高強度レーザーを用いた極超短パルス軟X線レー ザーの開発に関する研究	○ デン タンフン¹, 石野 雅彦¹, 長谷川 登¹, 錦野 将元¹, 近藤 公伯¹, 西井 唯人², 渡辺 恵深², 難波 慎一²,	1.量研関西研, 2. 広大先進理工, 3. 宇大工
9:30	16a-C43-3	連続供給液体金属ターゲットによる極端紫外光源	佐藤 稜馬³, 杉浦 使³, 空本 龍弥³, 東口 武史³ ○空本 龍弥¹, 杉浦 使¹, 荻原 彩華¹, 森田 大樹¹, 難波	1. 宇都宮大, 2. 広島大
9:45	16a-C43-4	固体レーザーマルチビーム照射による EUV 変換効率	慎 $-^2$,東口武史 1 〇杉浦 使 1 ,矢澤 隼斗 1 ,森田 大樹 1 ,難波 慎 $-^2$,東口	1. 宇都宮大, 2. 広島大
	lei m a c · · ·		武史 ¹	
10:00	奨 E 16a-C43-5	Atomic site occupancy of the Si dopant in κ -Ga ₂ O ₃ (001) studied by photoelectron holography	(D)YUHUA TSAI" ² , Yusuke Hashimoto', Piero Mazzolini ^{4,5} , Parisini Antonella ⁴ , Bosi Matteo ⁵ , Seravalli Luca ³ , Tomohiro Matsushita ³ , Yoshiyuki Yamashita ^{1,2}	1.NIMS, 2.Kyushu Univ., 3.NAIST, 4.UNIPR, 5.IMEM-CNR
10:15 10:30	奨 16a-C43-6	休憩/Break 変形・劣化を動的可視化する X線位相イメージングの高		1. 東北大, 2.(株) デンソー, 3. 愛知シンクロトロン
10:45	16a-C43-7	速化研究 ns時分割 X線トポグラフィーの開発	888° ,上田 亮介 $^{\circ}$,岡島 敏浩 $^{\circ}$,百生 敦 $^{\circ}$ 〇米山 明男 $^{\circ}$,石地 耕太朗 $^{\circ}$,竹谷 敏 $^{\circ}$,八木 貴志 $^{\circ}$,兵	1.SAGA LS, 2.産総研, 3. 高エネ研
11:00	16a-C43-8	3GeV高輝度放射光施設ナノテラスBL09WにおけるX	藤 一行 ³ , 平野 馨一 ³ , 岸本 俊二 ³ ○矢代 航 ^{1,2,3,4} , 梁 暁宇 ² , 亀沢 知夏 ¹ , 住石 海希 ⁴	1. 東北大 SRIS, 2. 東北大多元研, 3. 東大院工物工, 4. 東
		線イメージング		北大院工ファイン
11:15	16a-C43-9	X線を利用した3次元せん断波エラストグラフィの検討		1. 東北大工, 2. 東北大 SRIS, 3. リガク, 4. 東北大多元研 5. 高エネ研, 6. 佐賀 LS, 7. 東大応物
11:30	16a-C43-10	$\mathrm{Li_xMO_2}$ 系 Li イオン電池正極材料におけるコンプトン散 乱を用いた電位測定法の検討	○天田 洋輔¹, 巩 春侠², 星 和志¹, 鈴木 宏輔¹, 高橋 学¹. 櫻井 浩¹	1.群馬大学, 2.北陸先端科学大学
11:45	16a-C43-11		一	1. 理化学研究所
7.2 電子	ビーム応用 / Applio	cations and technologies of electron beams		
9/17(Tr	ue.) 10:00 - 11:30	口頭講演 (Oral Presentation) D63会場 (Room D63)		
10:00		「第56回講演奨励賞受賞記念講演」 Graphene-Insulator-Semiconductor構造電子源中の単層	〇小市崇央 ^{1,2} ,河嶋 祥吾 ¹ ,三宅 広士 ¹ ,阿保 智 ¹ ,若家 富士男 ¹ ,長尾 昌善 ² ,村上 勝久 ²	1.阪大基礎工, 2.産総研
10:15		および多層グラフェンでの電子回折を利用した単色性の		
	17a-D63-2	およい多僧クフフェンでの電子回折を利用した単色性の 向上 電界印加された層状絶縁体における入射電子の干渉効果		1. 阪大基礎工, 2. 産総研
0:30		向上 電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源	長尾 昌善 2 ,村上 勝久 2 \bigcirc (M2) 六川 蓮 1,3 ,鷹尾 祥典 1 ,山本 将也 2,3 ,根尾 陽	
	17a-D63-3	向上 電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源 作製プロセスの開発	長尾 昌善², 村上 勝久² \bigcirc	
	17a-D63-3	向上 電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源	長尾 昌善², 村上 勝久² \bigcirc	1. 横国大, 2. 静岡大, 3. 産総研
10:45	17a-D63-3 17a-D63-4	向上 電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いたInGaNフォトカソードの電	長尾 昌善 ² , 村上 勝久 ² ○ (M2) 六川 蓮 ^{1,3} , 鷹尾 祥典 ¹ , 山本 将也 ^{2,3} , 根尾 陽一郎 ² , 村田 博雅 ³ , 長尾 昌善 ³ , 村上 勝久 ³ ○ 村上 勝久 ¹ , 村田 博雅 ¹ , 長尾 昌善 ¹ ○ (D) 出射 幹也 ¹ , 佐藤 大樹 ² , 小泉 淳 ² , 西谷 智博 ^{2,3} ,	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研
10:45 11:00	17a-D63-3 17a-D63-4 17a-D63-5	向上 電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスか ら放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaN フォトカソードの電 子放出特性	長尾 昌善², 村上 勝久² ○ (M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也².³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○村上 勝久¹, 村田 博雅¹, 長尾 昌善¹ ○ (D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博².³, 本田 善央³, 天野 浩³	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大 IMaSS
10:45 11:00	17a-D63-3 17a-D63-4 17a-D63-5	向上 電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いたInGaNフォトカソードの電	長尾 昌善², 村上 勝久² ○ (M2) 六川 蓮 ^{1,3} , 鷹尾 祥典¹, 山本 将也 ^{2,3} , 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○ 村上 勝久¹, 村田 博雅¹, 長尾 昌善¹ ○ (D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善央³, 天野 浩³ ○ (M2) 岡田 昌大¹, 根尾 陽一郎¹¹², 文 宗鉉¹¹², 松本	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大 IMaSS
10:45 11:00 11:15 9/17(Tu	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15	向上 電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 口頭講演 (Oral Presentation) D63 会場(Room D63) ADF STEM 法を用いた結晶表面の精密原子間距離計測技	長尾 昌善², 村上 勝久² ○ (M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○ 村上 勝久¹, 村田 博雅¹, 長尾 昌善¹ ○ (D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善央³, 天野 浩³ ○ (M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本 貴裕³ ○小林 俊介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大 IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大
10:45 11:00 11:15 9/17(To	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1	向上 電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 口頭講演 (Oral Presentation) D63 会場(Room D63) ADF STEM法を用いた結晶表面の精密原子間距離計測技術の構築	長尾 昌善², 村上 勝久² ○ (M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○ 村上 勝久¹, 村田 博雅¹, 長尾 昌善¹ ○ (D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善央³, 天野 浩³ ○ (M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本 貴裕³ ○ 小林 俊介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田 智史¹, 桑原 彰秀¹	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC
11:00 11:15 9/17(To 3:00	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1 17p-D63-2	向上 電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaN フォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 豆頭講演 (Oral Presentation) D63 会場(Room D63) ADF STEM 法を用いた結晶表面の精密原子間距離計測技術の構築 円形絞りを用いた電子ビーム空間干渉性の定量計測	長尾 昌善², 村上 勝久² ○ (M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○ 村上 勝久¹, 村田 博雅¹, 長尾 昌善¹ ○ (D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善央³, 天野 浩³ ○ (M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本 貴裕³ ○小林 俊介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田 智史¹, 桑原 彰秀¹ ○山崎 順¹², 畑中 修平¹	 1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC 1. 阪大電顕セ, 2. 名大未来研
0:45 1:00 1:15 9/17(Tr 3:00 3:15 3:30	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1 17p-D63-2 17p-D63-3	向上 電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 口頭講演 (Oral Presentation) D63 会場(Room D63) ADF STEM 法を用いた結晶表面の精密原子間距離計測技術の構築 円形絞りを用いた電子ビーム空間干渉性の定量計測 電子ビームの Wigner 関数再構成と軸上輝度式の導出	長尾 昌善², 村上 勝久² ○ (M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○ 村上 勝久¹, 村田 博雅¹, 長尾 昌善¹ ○ (D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善央³, 天野 浩³ ○ (M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本 貴裕³ ○小林 俊介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田 智史¹, 桑原 彰秀¹ ○山崎 順¹², 畑中 修平¹ ○ (D) 畑中 修平¹², 山崎 順¹³	 1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC 1. 阪大電顕セ, 2. 名大未来研 1. 阪大電顕セ, 2. 阪大院工, 3. 名大未来研
11:00 11:15 9/17(Tr 13:00 13:15 13:30 13:45	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1 17p-D63-2 17p-D63-3 17p-D63-4	向上 電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Si ショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 口頭講演 (Oral Presentation) D63 会場(Room D63) ADF STEM法を用いた結晶表面の精密原子間距離計測技術の構築 円形絞りを用いた電子ビーム空間干渉性の定量計測 電子ビームのWigner関数再構成と軸上輝度式の導出 走査電子顕微鏡の電子ビームサイズ推定用試料の提案	長尾 昌善², 村上 勝久² ○(M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○村上 勝久¹, 村田 博雅¹, 長尾 昌善¹ ○(D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善央², 天野 浩³ ○(M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本 貴裕³ ○小林 俊介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田 智史¹, 桑原 彰秀¹ ○山崎 順¹², 畑 「修平¹², 山崎 順¹³ 戸倉 大智¹, 曾雌 佰雌¹, ○早田 康成¹	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC 1. 阪大電顕セ, 2. 名大未来研 1. 阪大電顕セ, 2. 阪大院工, 3. 名大未来研 1. 筑次電顕セ, 2. 阪大院工, 3. 名大未来研 1. 筑次大学
11:00 11:15 9/17(Tr 13:00 13:15 13:30 13:45	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1 17p-D63-2 17p-D63-3 17p-D63-4	向上 電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 口頭講演 (Oral Presentation) D63 会場(Room D63) ADF STEM 法を用いた結晶表面の精密原子間距離計測技術の構築 円形絞りを用いた電子ビーム空間干渉性の定量計測 電子ビームの Wigner 関数再構成と軸上輝度式の導出	長尾 昌善², 村上 勝久² ○(M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○村上 勝久¹, 村田 博雅¹, 長尾 昌善¹ ○(D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善央², 天野 浩³ ○(M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本 貴裕³ ○小林 俊介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田 智史¹, 桑原 彰秀¹ ○山崎 順¹², 畑 「修平¹², 山崎 順¹³ 戸倉 大智¹, 曾雌 佰雌¹, ○早田 康成¹	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC 1. 阪大電顕セ, 2. 名大未来研 1. 阪大電顕セ, 2. 阪大院工, 3. 名大未来研 1. 筑次電顕セ, 2. 阪大院工, 3. 名大未来研 1. 筑次大学
11:00 11:15 9/17(To 13:00 13:15 13:30 13:45 14:00	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1 17p-D63-2 17p-D63-3 17p-D63-4 17p-D63-5	向上 電界印加された層状絶縁体における入射電子の干渉効果 「不要力にという。」 「作製プロセスの開発 グラフェン/p、Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 口頭講演 (Oral Presentation) D63会場(Room D63) ADF STEM 法を用いた結晶表面の精密原子間距離計測技術の構築 門形絞りを用いた電子ビーム空間干渉性の定量計測 電子ビームのWigner関数再構成と軸上輝度式の導出 走査電子顕微鏡の電子ビームサイズ推定用試料の提案 レーザー励起光電子顕微鏡による電子線レジストの高速	長尾 昌善², 村上 勝久² ○ (M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○ 村上 勝久¹, 村田 博雅⁴, 長尾 昌善¹ ○ (D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善央³, 天野 浩³ ○ (M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本 貴裕³ ○ 小林 俊介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田 智史¹, 桑原 彰秀¹ ○ 山崎 順¹², 畑中 修平¹ ○ (D) 畑中 修平¹², 山崎 順¹³ 戸倉 大智¹, 曾雌 侑輝⁴, ○早田 康成¹ ○ 藤原 弘和¹²²³, Bareille Cédric¹, 大川 万里生¹, 谷内 敏之²³	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC 1. 阪大電顕セ, 2. 名大未来研 1. 阪大電顕セ, 2. 阪大院工, 3. 名大未来研 1. 筑波大学 1. 東大物性研, 2. 東大院新領域, 3. 東大 MIRC
10:45 11:00 11:15 9/17(To 13:00 13:15 13:30 13:45 14:00	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1 17p-D63-2 17p-D63-3 17p-D63-4 17p-D63-5 奨 17p-D63-6	向上電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Si ショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 口頭講演 (Oral Presentation) D63 会場 (Room D63) ADF STEM 法を用いた結晶表面の精密原子間距離計測技術の構築 円形絞りを用いた電子ビーム空間干渉性の定量計測 電子ビームの Wigner 関数再構成と軸上輝度式の導出 走査電子顕微鏡の電子ビームサイズ推定用試料の提案 レーザー励起光電子顕微鏡による電子線レジストの高速 潜像イメージング 超高速時間分解SEMを用いた光伝導アンテナの局所電位	長尾 昌善², 村上 勝久² ○(M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○村上 勝久¹, 村田 博雅⁴, 長尾 昌善¹ ○(D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善央³, 天野 浩³ ○(M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本 貴裕³ ○小林 俊介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田 智史¹, 桑原 彰秀¹ ○山崎 順¹², 畑中 修平¹ ○(D) 畑中 修平¹², 山崎 順¹³ 戸倉 大智¹, 曽雌 侑輝¹, ○早田 康成¹ ○藤原 弘和¹²²³, Bareille Cédric¹, 大川 万里生¹, 谷内 敏之²³ ○(M1) 岡本 ニコライ 岳¹, 嵐田 雄介¹, 川崎 康平¹, 羽田 真毅¹, 吉田 昭二¹, 郷 サムエル¹, 赤田 圭史¹²², 藤田 淳一¹	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC 1. 阪大電顕セ, 2. 名大未来研 1. 阪大電顕セ, 2. 阪大院工, 3. 名大未来研 1. 筑波大学 1. 東大物性研, 2. 東大院新領域, 3. 東大MIRC 1. 筑波大数理, 2. JASRI
10:45 11:00 11:15 9/17(Tr 13:00 13:15 13:30 13:45 14:00 14:15	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1 17p-D63-2 17p-D63-3 17p-D63-4 17p-D63-5 獎 17p-D63-6	向上 電界印加された層状絶縁体における入射電子の干渉効果 「Raphene/h-BN/Ni-Sapphire 構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 口頭講演 (Oral Presentation) D63会場(Room D63) ADF STEM 法を用いた結晶表面の精密原子間距離計測技術の構築 円形絞りを用いた電子ビーム空間干渉性の定量計測電子ビームのWigner 関数再構成と軸上輝度式の導出 走査電子顕微鏡の電子ビームサイズ推定用試料の提案レーザー励起光電子顕微鏡による電子線レジストの高速 潜像イメージング 超高速時間分解SEMを用いた光伝導アンテナの局所電位の可視化 SOI ビクセル検出器を用いた単電子検出による電子線干渉実験 SOI ゼクセル検出器を用いた単電子検出による電子線干渉実験	長尾 昌善², 村上 勝久² ○(M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○村上 勝久¹, 村田 博雅¹, 長尾 昌善¹ ○(D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善史⁴, 天野 浩³ ○(M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本貴裕³ ○小林 俊介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田智史¹, 桑原 彰秀¹ ○山崎 順¹², 畑中 修平¹。 ○山崎 順¹², 畑中 修平¹。 ○(D) 畑中 修平¹², 山崎 順¹³ 戸倉 大智¹, 曽雌 侑輝¹, ○早田 康成¹ ○藤原 弘和¹²³。, Bareille Cédric¹, 大川 万里生¹, 谷内敏之²³。 ○(M1) 岡本 ニコライ 岳¹, 嵐田 雄介¹, 川崎 康平¹, 羽田 真毅¹, 吉田 昭二¹, 郷 サムエル¹, 赤田 圭史¹², 藤田 淳一¹。 ○石田 裕一¹, 石田 高史¹², 桑原 真人¹², 新井 康夫³, 齋藤 晃¹²。 ○石田 高史¹², 石田 裕一², 桑原 真人¹², 新井 康夫³, 齋藤 晃¹²。	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大 IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC 1. 阪大電顕セ, 2. 名大未来研 1. 阪大電顕セ, 2. 医大院工, 3. 名大未来研 1. 筑波大学 1. 東大物性研, 2. 東大院新領域, 3. 東大 MIRC 1. 筑波大数理, 2. JASRI 1. 名大院工, 2. 名大未来研, 3. KEK
10:45 11:00 11:15 9/17(Ti 33:00 13:15 13:30 13:45 14:00 14:15	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1 17p-D63-2 17p-D63-3 17p-D63-4 17p-D63-5 獎 17p-D63-6	向上電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 口頭講演 (Oral Presentation) D63 会場(Room D63) ADF STEM 法を用いた結晶表面の精密原子間距離計測技術の構築 円形絞りを用いた電子ビーム空間干渉性の定量計測電子ビームの Wigner 関数再構成と軸上輝度式の導出走査電子顕微鏡の電子ビームサイズ推定用試料の提案レーザー励起光電子顕微鏡による電子線レジストの高速潜像イメージング 超高速時間分解 SEM を用いた光伝導アンテナの局所電位の可視化 SOI ビクセル検出器を用いた単電子検出による電子線干渉実験	長尾 昌善², 村上 勝久² ○(M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○村上 勝久¹, 村田 博雅³, 長尾 昌善¹ ○(D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善史⁴, 天野 浩³ ○(M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本 貴裕³ ○小林 後介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田 智史¹, 桑原 彰秀¹ ○山崎 順¹², 畑中 修平¹ ○(D) 畑中 修平¹², 山崎 順¹³ 戸倉 大智¹, 曽雌 侑輝¹, ○早田 康成¹ ○藤原 弘和¹²³, Bareille Cédric¹, 大川 万里生¹, 谷内 敏之²³ ○(M1) 岡本 ニコライ 岳¹, 嵐田 雄介¹, 川崎 康平¹, 羽田 真毅¹, 吉田 昭二¹, 鄭 サムエル¹, 赤田 圭史¹², 藤田 淳一¹ ○石田 裕一¹, 石田 高史¹², 桑原 真人¹², 新井 康夫³, 齋藤 晃¹²	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大 IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC 1. 阪大電顕セ, 2. 名大未来研 1. 阪大電顕セ, 2. 医大院工, 3. 名大未来研 1. 筑波大学 1. 東大物性研, 2. 東大院新領域, 3. 東大 MIRC 1. 筑波大数理, 2. JASRI 1. 名大院工, 2. 名大未来研, 3. KEK
10:45 11:00 11:15 9/17(Till 33:00 13:15 13:30 13:45 14:00 14:15	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1 17p-D63-2 17p-D63-3 17p-D63-4 17p-D63-5 獎 17p-D63-6	向上電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源作製プロセスの開発 グラフェン/p-Si ショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランブの開発 口頭講演 (Oral Presentation) D63 会場 (Room D63) ADF STEM 法を用いた結晶表面の精密原子間距離計測技術の構築 円形絞りを用いた電子ビーム空間干渉性の定量計測電子ビームのWigner 関数再構成と軸上輝度式の導出走査電子顕微鏡の電子ビームサイズ推定用試料の提案レーザー励起光電子顕微鏡による電子線レジストの高速潜像イメージング 超高速時間分解 SEM を用いた光伝導アンテナの局所電位の可視化 SOI ビクセル検出器を用いた単電子検出による電子線干渉実験 SOI ゼクセル検出器を用いた単電子検出による電子線干渉実験 SOI 世分セル検出器を用いた単電子検出による電子線干渉実験 SOI 技術を用いた高速撮影可能なダイレクト電子検出器の開発	長尾 昌善², 村上 勝久² ○(M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○村上 勝久¹, 村田 博雅¹, 長尾 昌善¹ ○(D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善史⁴, 天野 浩³ ○(M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本貴裕³ ○小林 俊介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田智史¹, 桑原 彰秀¹ ○山崎 順¹², 畑中 修平¹。 ○山崎 順¹², 畑中 修平¹。 ○(D) 畑中 修平¹², 山崎 順¹³ 戸倉 大智¹, 曽雌 侑輝¹, ○早田 康成¹ ○藤原 弘和¹²³。, Bareille Cédric¹, 大川 万里生¹, 谷内敏之²³。 ○(M1) 岡本 ニコライ 岳¹, 嵐田 雄介¹, 川崎 康平¹, 羽田 真毅¹, 吉田 昭二¹, 郷 サムエル¹, 赤田 圭史¹², 藤田 淳一¹。 ○石田 裕一¹, 石田 高史¹², 桑原 真人¹², 新井 康夫³, 齋藤 晃¹²。 ○石田 高史¹², 石田 裕一², 桑原 真人¹², 新井 康夫³, 齋藤 晃¹²。	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大 IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC 1. 阪大電顕セ, 2. 名大未来研 1. 阪大電顕セ, 2. 医大院工, 3. 名大未来研 1. 筑波大学 1. 東大物性研, 2. 東大院新領域, 3. 東大 MIRC 1. 筑波大数理, 2. JASRI 1. 名大院工, 2. 名大未来研, 3. KEK
10:45 11:00 11:15 9/17(Ti 13:00 13:15 13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1 17p-D63-3 17p-D63-3 17p-D63-5 獎 17p-D63-6 獎 17p-D63-7 17p-D63-8	向上電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 口頭講演 (Oral Presentation) D63 会場(Room D63) ADF STEM 法を用いた結晶表面の精密原子間距離計測技術の構築 円形絞りを用いた電子ビーム空間干渉性の定量計測電子ビームのWigner関数再構成と軸上輝度式の導出走査電子顕微鏡の電子ビームサイズ推定用試料の提案レーザー励起光電子顕微鏡による電子線レジストの高速潜像イメージング超高速時間分解 SEM を用いた光伝導アンテナの局所電位の可視化 SOI ビクセル検出器を用いた単電子検出による電子線干渉実験 SOI 技術を用いた高速撮影可能なダイレクト電子検出器の開発体熱/Break 球面電子源のクーロン効果シミュレーションフィールド・エミッタ・アレイにおけるチップの軸ズレ	長尾 昌善², 村上 勝久² ○(M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○村上 勝久¹, 村田 博雅⁴, 長尾 昌善¹ ○(D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善央³, 天野 浩³ ○(M2) 岡田 昌大¹, 根尾 陽一郎¹², 文宗鉉¹², 松本 貴裕³ ○小林 俊介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田 智史¹, 桑原 彰秀¹ ○山崎 順¹², 畑中 修平¹。 ○(D) 畑中 修平¹², 山崎 順¹³ 戸倉 大智¹, 曽雌 佰輝¹, ○早田 康成¹ ○藤原 弘和¹²²³, Bareille Cédric¹, 大川 万里生¹, 谷内 敏之²³ ○(M1) 岡本 ニコライ 岳¹, 嵐田 雄介¹, 川崎 康平¹, 羽田 真毅¹, 吉田 昭二¹, 鄭 サムエル¹, 赤田 圭史¹², 藤田 淳一¹ ○石田 裕一¹, 石田 高史¹², 桑原 真人¹², 新井 康夫³, 齋藤 晃¹² 必田 善穀¹, ○早田 康成¹ ○村田 英一¹, 川崎 祐輔¹, 鈴木 悠斗¹, 田中 崇之¹, 六	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC 1. 阪大電顕セ, 2. 名大未来研 1. 阪大電顕セ, 2. 阪大院工, 3. 名大未来研 1. 筑波大学 1. 東大物性研, 2. 東大院新領域, 3. 東大 MIRC 1. 筑波大数理, 2. JASRI 1. 名大院工, 2. 名大未来研, 3. KEK 1. 名大未来研, 2. 名大院工, 3. KEK
10:30 10:45 11:00 11:15 9/17(Total 13:00 13:15 13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1 17p-D63-2 17p-D63-3 17p-D63-4 17p-D63-5 獎 17p-D63-6 獎 17p-D63-7 17p-D63-8	向上電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 口頭講演 (Oral Presentation) D63 会場(Room D63) ADF STEM 法を用いた結晶表面の精密原子間距離計測技術の構築 円形សりを用いた電子ビーム空間干渉性の定量計測電子ビームの Wigner 関数再構成と軸上輝度式の導出走査電子顕微鏡の電子ビームサイズ推定用試料の提案レーザー励起光電子顕微鏡による電子線レジストの高速潜像イメージング超高速時間分解 SEM を用いた光伝導アンテナの局所電位の可視化 SOI ピクセル検出器を用いた単電子検出による電子線干渉実験 SOI 技術を用いた高速撮影可能なダイレクト電子検出器の開発 休憩/Break 球面電子源のクーロン効果シミュレーションフィールド・エミッタ・アレイにおけるチップの軸ズレが電子ビームに与える影響 TiN コーティングを施したボルケーノ構造フィールドエ	長尾 昌善², 村上 勝久² ○(M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³, 村上 勝久³ ○村上 勝久¹, 村田 博雅³, 長尾 昌善¹ ○(D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善央², 天野 浩³ ○(M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本 貴裕³ ○小林 俊介¹, 小井沼 厳¹, 大江 耕介¹, 仲山 啓¹, 穴田 智史¹, 桑原 彰秀¹ ○山崎 順¹², 畑中 修平¹ ○(D) 畑中 修平¹², 山崎 順¹³ 戸倉 大智¹, 曽雌 侑輝¹, ○早田 康成¹ ○藤原 弘和¹²²³, Bareille Cédric¹, 大川 万里生¹, 谷内 敏之²³ ○(M1) 岡本 ニコライ 岳¹, 嵐田 雄介¹, 川崎 康平¹, 書田 昭二¹, 鄭 サムエル¹, 赤田 圭史¹², 藤田 淳一¹ ○石田 裕一¹, 石田 高史¹², 桑原 真人¹², 新井 康夫³, 齋藤 晃¹² ○石田 高史¹², 石田 裕一², 桑原 真人¹², 新井 康夫³, 齋藤 晃¹² Ф田 幸穀¹, ○早田 康成¹ ○村田 英一¹, 川崎 祐輔¹, 鈴木 悠斗¹, 田中 崇之¹, 六田 英治¹	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC 1. 阪大電顕セ, 2. 名大未来研 1. 阪大電顕セ, 2. ھ大院工, 3. 名大未来研 1. 筑波大学 1. 東大物性研, 2. 東大院新領域, 3. 東大MIRC 1. 筑波大数理, 2. JASRI 1. 名大院工, 2. 名大未来研, 3. KEK 1. 名大未来研, 2. 名大院工, 3. KEK
10:45 11:00 11:15 9/17(Ti 13:00 13:15 13:30 13:45 14:00 14:15 14:30 14:45 15:30	17a-D63-3 17a-D63-4 17a-D63-5 17a-D63-6 ue.) 13:00 - 17:15 17p-D63-1 17p-D63-3 17p-D63-4 17p-D63-5 髮 17p-D63-7 17p-D63-8 17p-D63-9 17p-D63-10 髮 17p-D63-11	向上電界印加された層状絶縁体における入射電子の干渉効果 Graphene/h-BN/Ni-Sapphire 構造を有する平面型電子源 作製プロセスの開発 グラフェン/p-Siショットキー接合型電子放出デバイスから放出する電子のエネルギー分析 異なるアルカリ金属を用いた InGaNフォトカソードの電子放出特性 水熱合成法による深紫外線蛍光体を用いたフィールドエミッションランプの開発 口頭講演 (Oral Presentation) D63 会場(Room D63) ADF STEM 法を用いた結晶表面の精密原子間距離計測技術の構築 円形絞りを用いた電子ビーム空間干渉性の定量計測電子ビームの Wigner 関数再構成と軸上輝度式の導出走査電子顕微鏡の電子ビームサイズ推定用試料の提案レーザー励起光電子顕微鏡による電子線レジストの高速潜像イメージング超高速時間分解 SEM を用いた光伝導アンテナの局所電位の可視化 SOI ビクセル検出器を用いた単電子検出による電子線干渉実験 SOI 技術を用いた高速撮影可能なダイレクト電子検出器の開発 休憩/Break 球面電子源のクーロン効果シミュレーションフィールド・エミッタ・アレイにおけるチップの軸ズレが電子ビームに与える影響	長尾 昌善²,村上 勝久² ○(M2) 六川 蓮¹³, 鷹尾 祥典¹, 山本 将也²³, 根尾 陽一郎², 村田 博雅³, 長尾 昌善³,村上 勝久³ ○村上 勝久¹,村田 博雅¹, 長尾 昌善¹ ○(D) 出射 幹也¹, 佐藤 大樹², 小泉 淳², 西谷 智博²³, 本田 善央², 天野 浩³ ○(M2) 岡田 昌大¹, 根尾 陽一郎¹², 文 宗鉉¹², 松本 責裕³ ○小林 俊介¹, 小井沼 厳¹, 大江 耕介¹,仲山 啓¹, 穴田 智史¹, 桑原 彰秀¹ ○山崎 順¹²,畑中 修平¹。山崎 順¹³ 戸倉 大智¹, 曽雌 侑輝¹,○早田 康成¹ ○藤原 弘和¹²³。, Bareille Cédric¹, 大川 万里生¹, 谷内 敏之²³ ○(M1) 岡本 ニコライ 岳¹, 嵐田 雄介¹,川崎 康平¹,羽田 真穀¹,吉田 昭二¹,郷 サムエル¹,赤田 圭史¹²,藤田 淳一² ○石田 裕一¹,石田 高史¹²,桑原 真人¹²,新井 康夫³,齋藤 晃¹² ○石田 高史¹²,石田 裕一²,桑原 真人¹²,新井 康夫³,齋藤 晃¹² ○石田 高史¹²,石田 裕一²,秦原 真人¹²,新井 康夫³,齊藤 晃¹²	1. 横国大, 2. 静岡大, 3. 産総研 1. 産総研 1. 名大院工, 2. Photo electron Soul, 3. 名大IMaSS 1. 静岡大院工, 2. 静岡大電研, 3. 名古屋市立大 1. JFCC 1. 阪大電顕セ, 2. 名大未来研 1. 阪大電顕セ, 2. 极大院工, 3. 名大未来研 1. 筑波大学 1. 名大未来研, 2. 名大未来研, 3. KEK 1. 名大未来研, 2. 名大未来研, 3. KEK

16.20	17- D(2 14	表面酸化六ホウ化セリウム電界放出電子源の放出電流評	○柳 旅誌』朝田 詩亚』 芝井 亮卦』 →相 むか』 かん	1 公分十級四
16:30	•	価	木 正洋1, 山田 洋一1	
16:45	17p-D63-15	電界誘起酸素エッチングによって先鋭化されたW電界放 出陰極のエネルギー分布	○志摩 惇紀 ', 岩田 達夫 ', 永井 滋一 '	1.三重大院工
17:00	17p-D63-16	Ga-In液体金属の気化熱によるジュール熱補償電界放射 陰極	○(M1)佐藤 宏樹 ^{1,2} , 根尾 陽一郎 ^{1,2} , 文 宗絃 ^{1,2} , 小田 陸人 ^{1,2}	1. 静岡大院工, 2. 静岡大電研
		造形成技術 / Micro/Nano patterning and fabrication		
9/17(⁻ 13:30		口頭講演 (Oral Presentation) D62 会場 (Room D62) 水素雰囲気中における高強度 EUV 照射による EUV マス ク吸収体の評価	○石田 隼登¹, 原田 哲男¹, 山川 進二¹	1.兵庫県立大高度研
13:45 14:00	奨 17p-D62-2 奨 17p-D62-3	主鎖切断型レジストのEUV照射による現像特性評価 EUVレジストにおける反射型軟X線共鳴散乱を用いた凝 集構造と感度特性の関係性の検討	○(M1)志賀 竜太¹,山川 進二¹,原田 哲男¹ ○江渕 友梨¹,志賀 竜太¹,山川 進二¹,原田 哲男¹	1. 兵庫県立大工 1. 兵庫県立大学
14:15	17p-D62-4	軟X線照射によるPDMS架橋体生成とX線エネルギー依	○中川 清子¹, 大原 麻希², 横谷 明徳², 宇佐美 徳子³	1. 都産技研, 2. 量研機構, 3. 高エネ研
14:30	17p-D62-5	存性 EUVリソグラフィ用有機無機ハイブリッドレジストのリ ソグラフィ特性における基礎研究	〇山本 洋揮 $^{\rm l}$, 伊藤 (筒井) 裕子 $^{\rm 2}$, 岡本 一将 $^{\rm 2}$, 古澤 孝 弘 $^{\rm 2}$	1. 量研高崎, 2. 阪大産研
14:45	W 17 D(0)	休憩/Break		
15:00 15:15	奨 17p-D62-6 17p-D62-7	知的財産情報からの先端フォトレジストの技術遷移特性 電子ビーム露光による傾斜モールドの作製と転写	○(M1) 柴崎 尚也¹,海野 徳幸¹,谷口 淳¹	1.山口大院, 2.大阪大院, 3.日本工大院 1.東理大先進工電子
15:30		ハイブリットソフトレプリカモールドを用いた残膜レス		1.東理大先進工
	24 F	銀微細配線	0 1 1 1 1 2 7 A 1 1 1	
15:45	17p-D62-9	形状補正平面レチクルを用いた回転放物面鏡立体面リソ グラフィの検討	○堀内 敏行¹, 岩崎 順也¹, 小林 宏史¹	1. 東京電機大工
		・加速器ビーム分析、7.4 イオンビーム一般のコードシェ	ア / Code-sharing Session of 2.3 & 7.4	
9/18(V 13:30	,	口頭講演 (Oral Presentation) D62会場(Room D62) Auナノ粒子を内包するSiO ₂ フリースタンディング膜の	○久保田 真歩¹, 一宮 正義², 番 貴彦², 柳澤 淳一²	1. 滋賀県立大院工, 2. 滋賀県立大工
13:45	18p-D62-2	作製と特性評価 反応性ガス雰囲気下 GCIB 照射によるエッチングのガス	○(M1C)伊藤 汰一¹, 竹内 雅耶¹, 豊田 紀章¹	1. 兵庫県立大学工
14:00	奨 18p-D62-3	分圧および基板温度依存性 中性ガスクラスタービームを用いたCu膜のドライエッチ		1. 兵庫県立大工
14:15	18p-D62-4	ング X-ray PEEM測定用液体セルに向けたGCIB照射による極	章¹ [○竹内 雅耶¹, 豊田 亜里紗¹, 豊田 紀章¹	1. 兵庫県立大工
14:30	18p-D62-5	薄SiNxメンブレンの応力制御 自立グラフェン膜への水クラスターイオンビーム照射効		1. 兵県大工, 2.NPO分析産業人ネット
14:45	奨 18p-D62-6	果 CIDにおける有機分子解離メカニズムに関する研究	夫¹ ○(M1)西坂 光貴¹,瀬木 利夫¹,松尾 二郎¹	1. 京大院工
15:00 15:15	18p-D62-7	休憩/Break THz加速のための狭線幅差周波光源開発	○竹家 啓 ^{1, 2} , Yahia Vincent ^{1, 2} , 石月 秀貴 ^{2, 1} , 平等 拓	1. 分子研, 2. 理研
15:30	18p-D62-8	LiF 蒸着フォイルを用いた透過型検出器の検出効率向上		1. 京府大生命環, 2. 京大院工
15:45	18p-D62-9	JAEA-AMS-TONO における加速器質量分析装置に関す	安田 啓介¹ ○藤田 奈津子¹, 神野 智史¹, 南谷 史菜¹, 三宅 正恭¹,	1.原子力機構, 2.ペスコ, 3.ビームオペレーション
		る研究開発; 2024年秋	松原 章浩², 前田 祐輔¹, 木田 福香¹, 小川 由美¹, 西尾 智博², 大前 昭臣³, 宇野 定則³, 渡邊 隆広¹, 木村 健 -1 , 島田 耕史 1	
16:00	18p-D62-10	微量放射性炭素測定のための前処理技術の開発	○ (P) 南谷 史菜¹, 藤田 奈津子¹, 神野 智史¹, 西尾 智博², 渡邊 隆広¹	1.原子力機構, 2.ペスコ
16:15 16:30		都市大タンデムの現状 〜分析用ビームラインの状況〜 東京大学 MALT の現状 〜2024 秋〜	○羽倉尚人¹ ○山形 武靖¹, 徳山 裕憲¹, 土屋 陽子¹, 戸谷 美和子¹, 斉 遠志¹, 松崎 浩之¹	1. 都市大 1. 東大MALT
16:45 17:00	18p-D62-13	休憩/Break ³⁶ Clの加速器質量分析における妨害同重体 ³⁶ Sのイオン源 での抑制	○笹 公和1.2, 松村 万寿美1, 吉田 哲郎1, 高橋 努1	1. 筑波大応用加速器, 2. 筑波大数物
17:15	18p-D62-14	ハイマツ試料中放射性炭素濃度の年変動に関する研究VI	〇武山 美麗 1,2 , 森谷 透 1,2 , 櫻井 敬久 2 , 宮原 ひろ子 3 , 門叶 冬樹 1,2	1.山形大AMSセンター, 2.山形大理, 3.武蔵美
17:30 17:45	18p-D62-15 奨E 18p-D62-16	自然環境におけるヨウ素同位体システムの研究3 Temporal Changes of Iodine-129 in the Canada Basin Over the Past Decade	○松崎 浩之¹, 戸谷 美和子¹, 斉 遠志¹, 山形 武靖¹ ○ (P)Yuanzhi Qi¹, Takeyasu Yamagata¹, Hiroyuki Matsuzaki¹, Hisao Nagai², Yuichiro Kumamoto³,	1. 東大MALT 1.The Univ. of Tokyo, 2.Nihon Univ., 3.JAMSTEC
18:00	奨 E 18p-D62-17	Vertical distributions of ¹²⁹ I and insight of current in the Southern Canada Basin	Qiuyu Yang ¹ , Xinru Xu ¹ (M1)Xinru Xu ¹ , Yuanzhi Qi ¹ , Takeyasu Yamagata ¹ , Hirovuki Matsuzaki ¹ , Yuichiro Kumamoto ²	1.Univ. of Tokyo, 2.JAMSTEC
[CS.9]	6.5 表面物理・真空	こ、7.5 原子・分子線およびビーム関連新技術のコードシェ	<u> </u>	
9/16(N	Mon.) 13:00 - 17:45	口頭講演 (Oral Presentation) D63会場 (Room D63)	-	
13:00	16p-D63-1	LEED および XPS による Au(111) 基板上の Fe $_3$ O $_4$ (111) 薄膜の評価	貴生¹,城内英大¹,八田英嗣¹,末岡和久¹	
13:15	16p-D63-2	InSb(111)A上のスタネン成長に向けたSn蒸着量の影響	○横尾 雄士¹, フロランス アントワーヌ¹, 高村 (山 田) 由起子¹	1.北陸先端大
13:30	奨 16p-D63-3	人工光合成触媒 ${ m Ag/Ga_2O_3}$ の活性に伴う電子状態と反応機構	○(M1)琴川 雄史¹, 小川 智史¹, 保井 晃³, 池永 英 司¹.²	1.名大院工, 2.名大IMaSS, 3.JASRI
13:45 14:00	16p-D63-4 16p-D63-5	基板面方位制御によるZnO薄膜の熱電特性操作 Si基板上B20-CoSi薄膜のエピタキシャル成長法の開発	○小松原 祐樹 ¹ , 石部 貴史 ¹ , 成瀬 延康 ² , 中村 芳明 ¹ ○石部 貴史 ^{1,2} , 佐藤 和則 ³ , 山下 雄一郎 ⁴ , 中村 芳 明 ^{1,2}	1. 阪大院基礎工, 2. 滋賀医科大 1. 阪大院基礎工, 2. 阪大OTRI, 3. 阪大院工, 4. 産総研
14:15 14:30	16p-D63-6	休憩/Break 4D-XPSスペクトルビッグデータのNoise2Noiseデノイ ジングによる多層積層薄膜構造パラメータの高精度抽出	越章隆4,鈴木哲5,横山和司5,箕輪卓哉6,小椋厚	1.シエンタオミクロン, 2.SP8サービス, 3.マツダ, 4.原 子力機構, 5.兵庫県大, 6.明治大, 7.MREL
14:45	16p-D63-7	脂質二分子膜と支持基板との間の相互作用	志 ^{6,7} ,町田雅武 ¹ ○住友 弘二 ¹ ,吉水 寛人 ¹ ,大嶋 梓 ² ,山口 真澄 ² ,部家 彰 ¹	1.兵庫県立大工, 2.NTT 物性基礎研・BMC
15:00	16p-D63-8	ポリグリセリンアクリル膜と原子状水素との表面反応	彰¹ ○部家 彰¹, 藤野 雄飛¹, 住友 弘二¹	1.兵庫県立大工
15:15	16p-D63-9	ナノ構造中電子の量子振動の局在プラズモンへの効果 II	○市川 昌和¹	1.東大院工
15:30	16p-D63-10	窒化物半導体表面におけるエレクトロンカウンティング 則の検証:ステップおよびキンクを含む表面での検討	○秋山 亨¹, 河村 貴宏¹	1.三重大院工
15:45		休憩/Break		
16:00 16:15	16p-D63-11 16p-D63-12	ルチルTiO2の表面下に存在する酸素空孔の凝集可能性 溶融Ga中Au-Ga合金結晶成長過程の原子スケールAFM		1. 東大生研 1. 京大院工
		分析	之1	

おける気相OHラジカルの空間分布計測

律速過程の解明

奨 20p-A32-10 大気圧ブラズマ | 水溶液界面を横切るファラデー電流の ○(M2)木下陽介 ¹, 佐々木 浩一 ², 横山 悠子 ¹, 西 直 1. 京大院工, 2. 北大院工 律連過程の解明 哉¹, 作花 哲夫 ¹

16:00

16:30		0.2%Be-Cu材料を用いた超高真空容器による積層膜作製 と溶接加工	黒岩 雅英 ² , 大兼 幹彦 ³	
16:45 17:00		β-FeSi₂コア/Siシェル量子ドットの形成と室温PL特性 二酸化チタンの表面酸素欠損の配列解析	 ○牧原 克典¹, 斎藤 陽斗¹ 坪倉 奏太¹.², 河野 翔也³, 野間 春生², 日置 尋久¹, ○ 	1.名大院工 1.京大人禮 2.立命大情報理工 3.九工大 4.分子研
			湊 丈俊 4	
7:15	•	超音速 NO 分子線で照射された NO のアナターゼ型 ${ m TiO_2}(001)$ 表面における反応		3. 横浜国大院工, 4. 原子力機構, 5. 高知工大
7:30	16p-D63-17	一段階酸化Loop Aと二段階酸化Loop Bの反応キネティクス: p-Si(001)と n-Si(001)表面の比較	○津田 泰孝¹, 吉越 章隆¹, 小川 修一², 髙桑 雄二¹.3	1.原子力機構, 2.日本大学, 3.東北大学
		ロニクス / Plasma Electronics はプログラム冒頭にございます。		
		Plasma production and diagnostics		
9/19(T		ポスター講演 (Poster Presentation) P会場 (Room P)	○(p) ★◆ > ☆ l ~ 、 、	1 克加克市 2 曲桥针对上
		大気圧プラズマジェットで生成するイオンに対する添加 ガスの影響	弘史 ²	
		大気圧H2O/Arプラズマのジェット部におけるOHとHの絶対密度		1.北大工
	19p-P02-3	大気圧プラズマジェットの不均一・時間変動現象	○松本 理奈¹,ペナード キースニールソン¹,和田 元¹,吉川 治周¹	1.同志社大理工
	19p-P02-4	低温大気圧プラズマジェットにおけるガス流挙動と発光 伝播現象の関係	○山田 大将¹, 小野 伸幸¹	1. 長野高専
	19p-P02-5	大気圧プラズマジェットにおける荷電粒子挙動の安定性 と周囲温度の関係	○知久 颯馬¹, 野沢 拓登¹, 坂本 翔馬¹, 山田 大将¹	1. 長野高専
	19p-P02-6	構造感度解析を用いた化学反応ネットワーク縮約手法の 大気圧低温プラズマへの適用	○(M1)西海翔¹,東直樹¹,富岡智¹	1.北大院工
	19p-P02-7	高速ビエゾバルブを用いた液体材料供給のパルス制御と計測	○紀平 侑樹¹, 中家 佑吾¹, 森山 匠¹, 占部 継一郎²	1. 堀場エステック, 2. 京大院工
	19p-P02-8	局所誘導結合型原子源で生成される水素原子の発光分光 測定	○大槻 龍騎¹,井ノ口 雄矢¹,和田 元¹,粕谷 俊郎¹	1. 同志社大
	19p-P02-9	調定 誘導結合型水素プラズマ照射下のポリイミド表面近傍の 水素原子計測	○南谷 将平¹, 竹田 圭吾¹, 平松 美根男¹	1. 名城大理工
		タングステン中性粒子の速度分布計測		1. 阪大院工
	19p-P02-11	深振動マグネトロンスパッタリング (DOMS) プラズマにおける発光分光分析 (OES) を用いた Ar 原子の励起発光過	方 真臣 1 , 戸名 正英 2 , 山本 宏晃 2 , 塚本 恵三 2 , 冨宅 喜	
	19p-P02-12	程に関する解析 深振動マグネトロンスパッタリングにおいて生成する中	代一³,大下慶次郎⁴,美齊津文典⁴ ○中川悠幹¹,小林宏輝¹,横山英佐¹,西宮信夫¹,實	1.東京工芸大学, 2.(株) アヤボ, 3.神戸大, 4.東北大院
		性Ti粒子のレーザー誘起蛍光	方 真臣 1 ,戸名 正英 2 ,山本 宏晃 2 ,塚本 恵三 2 ,冨宅 喜 代一 3 ,大下 慶次郎 4 ,美齊津 文典 4	
	19p-P02-13	リフレクトロン型飛行時間質量分析計を用いた深振動マ グネトロンスパッタリングの多成分同時検出エネルギー	方 真臣 1 , 戸名 正英 2 , 山本 宏晃 2 , 塚本 恵三 2 , 冨宅 喜	1.東京工芸大, 2.(株) アヤボ, 3.神戸大, 4.東北大院理
9/200	(Fri) 9·00 - 12·00	分布計測 口頭講演 (Oral Presentation) A32 会場 (Room A32)	代一3,大下慶次郎4,美齊津文典4	
:00	奨 20a-A32-1	ドップラー分光によるECRプラズマから放出される水素 原子の速度分布関数測定	○(M2) 井ノ口 雄矢¹, 和田 元¹, 粕谷 俊郎¹	1. 同志社大理工
:15	20a-A32-2	多方向視野像を用いた不均一プラズマ発光の再構築		1.名大工, 2.名大低温プラズマ, 3.核融合研
:30	20a-A32-3	対向円筒ターゲットを用いた高周波リング状磁化プラズ マ生成に及ぼす磁石配置の影響	○近藤 文太¹, 大津 康徳¹	1.佐賀大学
:45	20a-A32-4	PFA ターゲットを用いた高周波マグネトロンプラズマの 空間分布	○久野 凌平¹, 大津 康徳¹, 安永 健², 池上 康之³	1. 佐大院理工, 2. 阪神通電, 3. 佐大海エネ
0:00	奨 20a-A32-5	トモグラフィック発光分光計測とアルゴン衝突輻射モデルにもとづく $CF_4/O_2/Ar$ プラズマの電子温度・電子密度・ EEDF の位置分布診断		1.東工大, 2. 学振 DC, 3. アルバック
0:15	20a-A32-6	溶鉄上のアークプラズマの発光スペクトル及び温度分布 に対する雰囲気温度の影響		1. 東大院新領域
0:30		休憩/Break		
0:45	20a-A32-7	実空間・速度空間・位相空間における荷電粒子のドリフ ト速度	○真壁 利明¹	1. 慶応大学
1:00	20a-A32-8			
1:15	20a-A32-9	誘電体バリア放電の数値解析における次元の影響の考察 裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化	〇大塩 亮太 1 , 船越 貫太郎 1 , 八田 章光 1 , スクマ ワイ	1. 都立大院システムデザイン 1. 高知工科大, 2. 九大
	20a-A32-9	裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化	○大塩 亮太¹, 船越 貫太郎¹, 八田 章光¹, スクマ ワイ ユ フィットリアーニ²	1.高知工科大, 2.九大
1:30	20a-A32-9 奨 20a-A32-10	裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化 光電子制御プラズマの閉じ込めの初期電極構造依存性 蛍光微粒子を用いたプラズマシースの可視化と微粒子・	 ○大塩 亮太¹, 船越 貫太郎¹, 八田 章光¹, スクマ ワイユ フィットリアーニ² ○(B) 内藤 陽大¹, 西山 輝¹, 渡辺 貴之², 鷹林 将¹ ○(M1) 王 天翔¹, 井上 雅彦¹, 田口 俊弘², 小田 靖久¹, 	1. 高知工科大, 2. 九大 1. 有明高専, 2. 田辺工業
1:30 1:45	20a-A32-9 奨 20a-A32-10 20a-A32-11	裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化 光電子制御プラズマの閉じ込めの初期電極構造依存性	 ○大塩 亮太¹, 船越 貫太郎¹, 八田 章光¹, スクマ ワイユ フィットリアーニ² ○(B) 内藤 陽大¹, 西山 輝¹, 渡辺 貴之², 鷹林 将¹ 	1. 高知工科大, 2. 九大 1. 有明高専, 2. 田辺工業
1:30 1:45 9/20()	20a-A32-9 奨 20a-A32-10 20a-A32-11	裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化 光電子制御プラズマの閉じ込めの初期電極構造依存性 蛍光微粒子を用いたプラズマシースの可視化と微粒子・ シース間引力 口頭講演 (Oral Presentation) A32 会場(Room A32) 協同的トムソン散乱法を利用したレーザー生成EUV光源	 ○大塩 亮太¹, 船越 貫太郎¹, 八田 章光¹, スクマ ワイユ フィットリアーニ² ○(B) 内藤 陽大¹, 西山 輝¹, 渡辺 貴之², 鷹林 捋¹ ○(M1) 王 天翔¹, 井上 雅彦¹, 田口 俊弘², 小田 靖久¹, 廣 大輔¹, 朴 商云¹ ○(M2) 中山 珠樹¹, 富田 健太郎¹, バン イーミン¹, 	1. 高知工科大, 2. 九大 1. 有明高専, 2. 田辺工業 1. 摂南大学, 2. 日本原子力開発研究機構
1:30 1:45 9/ 20 (0	型 20a-A32-9 要 20a-A32-10 20a-A32-11 (Fri.) 13:30 - 16:30	裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化 光電子制御ブラズマの閉じ込めの初期電極構造依存性 蛍光微粒子を用いたブラズマシースの可視化と微粒子・ シース間引力 口頭講演 (Oral Presentation) A32 会場(Room A32) 協同的トムソン散乱法を利用したレーザー生成 EUV 光源 用 Sn ブラズマ内電子温度・密度の能動的制御	 ○大塩 亮太¹, 船越 貫太郎¹, 八田 章光¹, スクマ ワイユ フィットリアーニ² ○(B) 内藤 陽大¹, 西山 輝¹, 渡辺 貴之², 鷹林 捋¹ ○(M1) 王 天翔¹, 井上 雅彦¹, 田口 俊弘², 小田 靖久¹, 廣 大輔¹, 朴 商云¹ 	1. 高知工科大, 2. 九大 1. 有明高専, 2. 田辺工業 1. 摂南大学, 2. 日本原子力開発研究機構 1. 北海道大学
1:30 1:45 9/20() 3:30 3:45	奨 20a-A32-9 奨 20a-A32-10 20a-A32-11 (Fri.) 13:30 - 16:30 20p-A32-1	裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化 光電子制御ブラズマの閉じ込めの初期電極構造依存性 蛍光微粒子を用いたプラズマシースの可視化と微粒子・ シース間引力 口頭講演 (Oral Presentation) A32 会場(Room A32) 協同的トムソン散乱法を利用したレーザー生成 EUV 光源 用Sn プラズマ内電子温度・密度の能動的制御 赤外レーザー吸収分光法による低圧水蒸気プラズマ中の 水分子密度計測 窒素/水蒸気誘導結合プラズマにおける中性分子の絶対	○大塩 亮太¹, 船越 貫太郎¹, 八田 章光¹, スクマ ワイユ フィットリアーニ² ○(B)内藤 陽大¹, 西山 輝¹, 渡辺 貴之², 鷹林 捋¹ ○(M1) 王 天翔¹, 井上 雅彦¹, 田口 俊弘², 小田 靖久¹, 廣 大輔¹, 朴 商云¹ ○(M2) 中山 珠樹¹, 富田 健太郎¹, バン イーミン¹, 篠田 樹¹ ○小渡 祐樹¹, 紀平 侑樹¹, 王 啓明¹, 波田 美耶子¹, 森	1. 高知工科大, 2. 九大 1. 有明高専, 2. 田辺工業 1. 摂南大学, 2. 日本原子力開発研究機構 1. 北海道大学
1:30 1:45 9/20(1 3:30 3:45 4:00	奨 20a-A32-9 奨 20a-A32-10 20a-A32-11 (Fri.) 13:30 - 16:30 20p-A32-1 20p-A32-2	裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化 光電子制御プラズマの閉じ込めの初期電極構造依存性 蛍光微粒子を用いたプラズマシースの可視化と微粒子・シース間引力 口頭講演(Oral Presentation) A32会場(Room A32) 協同的トムソン散乱法を利用したレーザー生成 EUV 光源 用Snプラズマ内電子温度・密度の能動的制御 赤外レーザー吸収分光法による低圧水蒸気プラズマ中の 水分子密度計測 窒素/水蒸気誘導結合プラズマにおける中性分子の絶対 密度 ターゲット有効利用のための回転型マルチマグネトロン	 ○大塩 亮太¹, 船越 貫太郎¹, 八田 章光¹, スクマワイユ フィットリアーニ² ○(B) 内藤 陽大¹, 西山 輝¹, 渡辺 貴之², 鷹林 将¹ ○(M1) 王 天翔¹, 井上 雅彦¹, 田口 俊弘², 小田 靖久¹, 廣 大輔¹, 朴 商云¹ ○(M2) 中山 珠樹¹, 富田 健太郎¹, バンイーミン¹, 篠田 樹¹ ○小渡 祐樹¹, 紀平 侑樹¹, 王 啓明¹, 波田 美耶子¹, 森山 匠¹, 坂口 有平¹, 両角 潤樹², 笹倉 美知瑠², 占部 継一郎² ○(M2) 喜多 恭平¹, 稲垣 慶修¹, 佐々木 浩一¹ 	 高知工科大, 2. 九大 有明高専, 2. 田辺工業 摂南大学, 2. 日本原子力開発研究機構 北海道大学 (株) 堀場エステック, 2. 京大院工
1:30 1:45 9/20(1 3:30 3:45 4:00 4:15	奨 20a-A32-9 奨 20a-A32-10 20a-A32-11 (Fri.) 13:30 - 16:30 20p-A32-1 20p-A32-2 奨 20p-A32-3	裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化 光電子制御プラズマの閉じ込めの初期電極構造依存性 蛍光微粒子を用いたプラズマシースの可視化と微粒子・ シース間引力 口頭講演 (Oral Presentation) A32会場(Room A32) 協同的トムソン散乱法を利用したレーザー生成 EUV光源 用Snプラズマ内電子温度・密度の能動的制御 赤外レーザー吸収分光法による低圧水蒸気プラズマ中の 水分子密度計測 窒素/水蒸気誘導結合プラズマにおける中性分子の絶対 密度	 ○大塩 亮太¹, 船越 貫太郎¹, 八田 章光¹, スクマワイユ フィットリアーニ² ○(B)内藤 陽大¹, 西山 輝¹, 渡辺 貴之², 鷹林 将¹ ○(M1) 王 天翔¹, 井上 雅彦¹, 田口 俊弘², 小田 靖久¹, 廣 大輔¹, 朴 商云¹ ○(M2) 中山 珠樹¹, 富田 健太郎¹, バンイーミン¹, 篠田 樹¹ ○小渡 祐樹¹, 紀平 侑樹¹, 王 啓明¹, 波田 美耶子¹, 森山 匠¹, 坂口 有平¹, 両角 潤樹², 往倉 美知曜², 占部 継一郎² ○(M2) 喜多 恭平¹, 稲垣 慶修¹, 佐々木 浩一¹ ○梅田 姫子¹, 大津 康徳¹ 	 高知工科大,2.九大 有明高専,2.田辺工業 摂南大学,2.日本原子力開発研究機構 北海道大学 (株) 堀場エステック,2.京大院工 北大工
1:30 1:45 9/20(1 3:30 3:45 4:00 4:15 4:30	奨 20a-A32-9 奨 20a-A32-10 20a-A32-11 (Fri.) 13:30 - 16:30 20p-A32-1 20p-A32-2 奨 20p-A32-3 20p-A32-4	裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化 光電子制御ブラズマの閉じ込めの初期電極構造依存性 蛍光微粒子を用いたプラズマシースの可視化と微粒子・シース間引力 口頭講演 (Oral Presentation) A32 会場(Room A32) 協同的トムソン散乱法を利用したレーザー生成 EUV 光源 用Sn プラズマ内電子温度・密度の能動的制御 赤外レーザー吸収分光法による低圧水蒸気プラズマ中の 水分子密度計測 窒素/水蒸気誘導結合プラズマにおける中性分子の絶対 密度 ターゲット有効利用のための回転型マルチマグネトロン スバッタ装置の開発	 ○大塩 亮太¹, 船越 貫太郎¹, 八田 章光¹, スクマワイユ フィットリアーニ² ○(B)内藤 陽大¹, 西山 輝¹, 渡辺 貴之², 鷹林 将¹ ○(M1) 王 天翔¹, 井上 雅彦¹, 田口 俊弘², 小田 靖久¹, 廣 大輔¹, 朴 商云¹ ○(M2) 中山 珠樹¹, 富田 健太郎¹, バンイーミン¹, 篠田 樹¹ ○小渡 祐樹¹, 紀平 侑樹¹, 王 啓明¹, 波田 美耶子¹, 森山 匠¹, 坂口 有平¹, 両角 潤樹², 往倉 美知曜², 占部 継一郎² ○(M2) 喜多 恭平¹, 稲垣 慶修¹, 佐々木 浩一¹ ○梅田 姫子¹, 大津 康徳¹ 	 高知工科大, 2. 九大 有明高専, 2. 田辺工業 摂南大学, 2. 日本原子力開発研究機構 北海道大学 (株) 堀場エステック, 2. 京大院工 北大工 佐大院理工
1:30 1:45 9/20() 9/20() 3:30 3:45 4:00 4:15 4:30 4:45	奨 20a-A32-9 奨 20a-A32-10 20a-A32-11 (Fri.) 13:30 - 16:30 20p-A32-1 20p-A32-2 奨 20p-A32-3 20p-A32-4	裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化 光電子制御プラズマの閉じ込めの初期電極構造依存性 蛍光微粒子を用いたプラズマシースの可視化と微粒子・ シース間引力 口頭講演 (Oral Presentation) A32 会場 (Room A32) 協同的トムソン散乱法を利用したレーザー生成 EUV 光源 用Snプラズマ内電子温度・密度の能動的制御 赤外レーザー吸収分光法による低圧水蒸気プラズマ中の 水分子密度計測 窒素/水蒸気誘導結合プラズマにおける中性分子の絶対 密度 ターゲット有効利用のための回転型マルチマグネトロン スパッタ装置の開発 円筒・リング型ハイブリッドホロー電極と磁石を用いた 高密度水素 RF プラズマの生成 休憩/Break 高気圧へリウムプラズマにおけるガラスセルを用いた空	 ○大塩 亮太¹, 船越 貫太郎¹, 八田 章光¹, スクマワイユ フィットリアーニ² ○(B) 内藤 陽大¹, 西山 輝¹, 渡辺 貴之², 鷹林 捋¹ ○(M1) 王 天翔¹, 井上 雅彦¹, 田口 俊弘², 小田 靖久¹, 廣 大輔¹, 朴 商云¹ ○(M2) 中山 珠樹¹, 富田 健太郎¹, バン イーミン¹, 篠田 樹¹ ○小渡 祐樹¹, 紀平 侑樹¹, 王 啓明¹, 波田 美耶子¹, 森山 匠¹, 坂口 有平¹, 両角 潤樹², 笹倉 美知瑠², 占部 継一郎² ○(M2) 喜多 恭平¹, 稲垣 慶修¹, 佐々木 浩一¹ ○梅田 姫子¹, 大津 康徳¹ ○田爪 健悟¹, 大津 康徳¹ ○岸本 航一¹, 豊田 みなみ¹, 江利口 浩二¹, 占部 継一 	 高知工科大、2.九大 有明高専、2.田辺工業 摂南大学、2.日本原子力開発研究機構 北海道大学 (株) 堀場エステック、2.京大院工 北大工 佐大院理工 佐大院理工
1:30 9/20(1 9/20(1 3:30 3:45 4:00 4:15 4:30 4:45 5:00	奨 20a-A32-9 奨 20a-A32-10 20a-A32-11 (Fri.) 13:30 - 16:30 20p-A32-1 20p-A32-2 奨 20p-A32-3 20p-A32-4 20p-A32-5	裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化 光電子制御ブラズマの閉じ込めの初期電極構造依存性 蛍光微粒子を用いたブラズマシースの可視化と微粒子・ シース間引力 口頭講演 (Oral Presentation) A32 会場(Room A32) 協同的トムソン散乱法を利用したレーザー生成 EUV 光源 用Sn ブラズマ内電子温度・密度の能動的制御 赤外レーザー吸収分光法による低圧水蒸気ブラズマ中の 水分子密度計測 窒素/水蒸気誘導結合ブラズマにおける中性分子の絶対 密度 ターゲット有効利用のための回転型マルチマグネトロン スパッタ装置の開発 円筒・リング型ハイブリッドホロー電極と磁石を用いた 高密度水素RF ブラズマの生成 休憩/Break 高気圧ヘリウムブラズマにおけるガラスセルを用いた空気不純物濃度制御と放電状態遷移に関する研究 大気圧Ar/H2プラズマジェットの放電停止後における残	 ○大塩 亮太¹, 船越 貫太郎¹, 八田 章光¹, スクマワイユ フィットリアーニ² ○(B) 内藤 陽大¹, 西山 輝¹, 渡辺 貴之², 鷹林 捋¹ ○(M1) 王 天翔¹, 井上 雅彦¹, 田口 俊弘², 小田 靖久¹, 廣 大輔¹, 朴 商云¹ ○(M2) 中山 珠樹¹, 富田 健太郎¹, バン イーミン¹, 篠田 樹¹ ○小渡 祐樹¹, 紀平 侑樹¹, 王 啓明¹, 波田 美耶子¹, 森山 匠¹, 坂口 有平¹, 両角 潤樹², 笹倉 美知瑠², 占部 継一郎² ○(M2) 喜多 恭平¹, 稲垣 慶修¹, 佐々木 浩一¹ ○梅田 姫子¹, 大津 康徳¹ ○田爪 健悟¹, 大津 康徳¹ ○岸本 航一¹, 豊田 みなみ¹, 江利口 浩二¹, 占部 継一郎¹ 	 高知工科大、2.九大 有明高専、2.田辺工業 摂南大学、2.日本原子力開発研究機構 北海道大学 (株) 堀場エステック、2.京大院工 北大工 佐大院理工 佐大院理工
1:15 1:30 1:45 9/20(1 3:30 3:45 4:00 4:15 4:30 4:45 5:00 5:15	類 20a-A32-9 類 20a-A32-10 20a-A32-11 (Fri.) 13:30 - 16:30 20p-A32-1 20p-A32-2 類 20p-A32-3 20p-A32-4 20p-A32-5 類 20p-A32-6	裏面照射ナノ膜厚金薄膜光電陰極の膜厚最適化 光電子制御ブラズマの閉じ込めの初期電極構造依存性 蛍光微粒子を用いたプラズマシースの可視化と微粒子・ シース間引力 口頭講演 (Oral Presentation) A32 会場(Room A32) 協同的トムソン散乱法を利用したレーザー生成 EUV 光源 用Sn ブラズマ内電子温度・密度の能動的制御 赤外レーザー吸収分光法による低圧水蒸気ブラズマ中の 水分子密度計測 窒素/水蒸気誘導結合プラズマにおける中性分子の絶対 密度 ターゲット有効利用のための回転型マルチマグネトロン スバッタ装置の開発 円筒・リング型ハイブリッドホロー電極と磁石を用いた 高密度水素 RF ブラズマの生成 休憩/Break 高気圧へリウムプラズマにおけるガラスセルを用いた空 気不純物濃度制御と放電状態遷移に関する研究	 ○大塩亮太¹, 船越貫太郎¹, 八田章光¹, スクマワイユ フィットリアーニ² ○(B)内藤陽大¹, 西山輝¹, 渡辺貴之², 鷹林将¹ ○(M1)王天翔¹, 井上雅彦¹, 田口俊弘², 小田靖久¹, 廣大輔¹, 朴 商云¹ ○(M2)中山珠樹¹, 宮田健太郎¹, バンイーミン¹, 篠田樹¹ ○小渡 祐樹¹, 紀平 侑樹¹, 王 啓明¹, 波田美耶子¹, 森山匠¹, 坂口有平¹, 両角 潤樹², 笹倉美知曜², 占部継一郎² ○(M2)喜多恭平¹, 稲垣慶修¹, 佐々木浩一¹ ○梅田姫子¹, 大津康徳¹ ○田爪健悟¹, 大津康徳¹ ○田爪健悟¹, 大津康徳¹ ○衛垣慶修¹, 山川司¹, 佐々木浩一¹ 	 高知工科大、2.九大 有明高専、2.田辺工業 摂南大学、2.日本原子力開発研究機構 北海道大学 (株) 堀場エステック、2.京大院工 北大工 佐大院理工 京大院工 北大工

16:15 奨 20p-A32-11 スピントラップ法を用いたプラズマ / 液相界面ラジカル 〇井上 健一 1 , 近藤 隆 1 , 石川 健治 1 , 堀 勝 1 1.名大低温プラズマ科学研究センター

16:15	奨 20p-A32-11	スピントラップ法を用いたプラズマ/液相界面ラジカル の実時間検出	〇井上 健一', 近滕 隆', 石川 健治', 堀 勝'	1.名大低温プラズマ科学研究センター
8.2 プラ	・ズマ成膜・エッチ:	ング・表面処理 / Plasma deposition of thin film, plasma e	etching and surface treatment	
9/16(N		ポスター講演 (Poster Presentation) P会場(Room P)		
	16p-P02-1	C_xH_y+Ar プラズマ CVD を用いた水素化アモルファス カーボン膜の エッチング耐性に対する材料分子の比較		1.九大シス情
	46 7000	the Community of the August of	自谷正治1	
	16p-P02-2	芳香環を含む製膜寄与種で堆積した a-C:H 膜の ${\rm sp^2/sp^3}$ 結合構造に対するイオン照射の効果	○(M1) 惠利 眞人', 小野 晋次郎', 奧村 賢直', 山卜 尚人¹, 鎌滝 晋礼¹, 木山 治樹¹, 板垣 奈穂¹, 古閑 一 憲¹, 白谷 正治¹	1.九大
	16p-P02-3	粉体ターゲットを用いた成膜機構とターゲット表面の関		1.佐世保高専
	16p-P02-4	係II 大電力パルスマグネトロンスパッタリングプラズマにお	○阿部 元暉 ¹ , 柿沼 慧多 ¹ , 太田 貴之 ² , 小田 昭紀 ¹	1. 千葉工大, 2. 名城大
	16p-P02-5	ける放電特性のターゲット電圧依存性 プラズマスパッタリング LiLaZrO 薄膜の結晶性制御	○丹羽 亮斗¹, 村瀬 瑠汰¹, 石原 雅之¹, 大前 知輝¹, 中田 智久¹. 横井 玲音¹, 内田 儀一郎¹	1.名城大理工
	16p-P02-6	フッ素終端Si基板によるMoS2合成の核形成抑制	□ (M1) 鬼頭 怜太郎¹, 荻野 明久¹	1.静大院工
	16p-P02-7	空気混合水素プラズマ処理によるマグネシウム系材料の		1. 静大院工
	10p-1 02-7	水素化	(MI) 石川 双连,秋野 竹八	1. 时人凡上
	16p-P02-8	水素終端ダイヤモンド陰極のイオン衝突耐性	○田代 承太郎¹, 木村 重哉², 宮崎 久生², 荻野 明久¹	1.静大院工, 2.(株) 東芝研究開発センター
	16p-P02-9	Ar/O₂直流放電プラズマ照射による Si と Ge 基板の極低温酸化	. ○山本 悠矢¹, 加藤 広大¹, 佐藤 哲也¹, 王谷 洋平²	1.山梨大, 2. 諏訪東京理科大
	16p-P02-10	CH_3 ⁺ イオンビーム照射したPTFE表面における銅薄膜の付着性	○ (M1C) 横川 稔弘 ¹, 鷹野 一朗 ²	1.工学院大院, 2.工学院大工
	16p-P02-11	プラスチックの印刷品質向上に向けた異なる駆動周波数 で生成した大気圧プラズマに関する研究	○野沢 拓登¹, 知久 颯馬¹, 坂本 翔馬¹, 山田 大将¹	1.長野高専
	16p-P02-12	繊維織物の染色への低温大気圧プラズマの影響	○坂本 翔馬¹, 野沢 拓登¹, 知久 颯馬¹, 小野 伸幸¹, 山	1.長野高専
			田 大将 ¹	
		口頭講演 (Oral Presentation) A31会場 (Room A31)		A CLUB LATTING
9:00	18a-A31-1	反応性スパッタリングによるナノ構造SnO₂負極膜の作製 とLiイオン電池への展開	村瀬 瑠汰 ¹, 山崎 稜介 ¹, 内田 儀一郎 ¹	
9:15	18a-A31-2	反応性スパッタリングプロセス中に発生するプラズマ発 光による 成長中の酸化鉄薄膜の価数及び成膜速度予測	○南 麟太朗 ', 喜多 英治 ', 柳原 英人 '	1.筑波大
9:30	18a-A31-3	Liイオン電池応用に向けた固体電解質 LiLaZrO 薄膜のイオン伝導率の評価	○村瀬 瑠汰¹,上田 竜雄¹,寺田 圭吾¹,長谷川 祥之¹, 藤掛 大貴¹,山崎 稜介¹,丹羽 亮斗¹,内田 儀一郎¹	1.名城大理工
9:45	18a-A31-4	固体電解質 LiAlGePON 薄膜の開発と Li イオン電池 Ge 負極へのキャップ効果の検証		1. 名城大理工
10:00	18a-A31-5	Liイオン電池性能における Si/C粒子混合負極への LiPON膜カバーの効果	○寺田圭吾¹,石原雅之¹,上田竜雄¹,長谷川祥之¹,藤掛大貴¹,村瀬瑠汰¹,山崎稜介¹,内田儀一郎¹	1. 名城大理工
10:15	18a-A31-6	EBEP CVD法を用いたBN膜形成における基板種の影響		1.岐阜大, 2.名大低温プラズマ科学研究センター
10:30		休憩/Break	RE1D , 7M 1D7	
10:45	奨 18a-A31-7	金属元素が立方晶窒化ホウ素膜中の遷移層形成に及ぼす		
11:00	奨 18a-A31-8	影響に関する研究 AICrN 膜形成用真空アーク蒸着における陰極点円軌道運	山下 満 ⁴ , 占部 継一郎 ¹ , 江利口 浩二 ¹ ○大根田 みらの ¹ , 渡辺 聖也 ¹ , 佐野 絃貴 ¹ , 滝川 浩	ンター 1. 豊橋技科大, 2. オーエスジー (株)
		動の速度制御液中プラズマ表面改質と電界配向を用いた組織構造制御	史¹,杉田 博昭²,服部 貴大²,儀間 弘樹²	
11:15	奨 18a-A31-9	成中ノノスマ表間以貢と電外配向を用いた組織構造制御 による金属クラスの熱伝導性とエラストマークラスの柔 軟性を併せもった複合材料の開発		1. 東京八子, 2. 生秘切るヘノント OIL
11:30	奨 18a-A31-10	プラズマ形成金属ナノ構造が金属樹脂間接合特性に与える影響		1. 阪大院工
11:45	奨 18a-A31-11	異なるガスで生成したプラズマの同時照射による金属の	○櫻田尚月¹,白井晶都¹,大澤泰樹¹,八井田朱音¹,	1. 東工大未来研, 2. 阪大工
9/18/M	/ed) 13·30 - 18·30	親水化実験 口頭講演 (Oral Presentation) A31会場 (Room A31)	大久保 雄司², 佐藤 千明¹, 沖野 晃俊¹	
13:30	18p-A31-1	大気圧窒素プラズマの放電と熱特性	○呉 準席¹, 白藤 立¹	1.大阪公立大工
13:45	18p-A31-2	PE-MBF法によるPTFEへのOH基付与	○田口 貢士¹, 富川 弥奈¹, 山原 基裕¹, 登尾 一幸¹	1.株式会社魁半導体
14:00	18p-A31-3	SAM形成によるPTFE粉体へのOH基付与	○田口 貢士¹, 富川 弥奈¹, 山原 基裕¹, 登尾 一幸¹	1.株式会社魁半導体
14:15	18p-A31-4	電子線支援原子層エッチングにおけるGaN表面フッ素化 反応	泉 祐輔¹, ○堤 隆嘉¹, 近藤 博基², 関根 誠¹, 石川 健 治¹, 堀 勝¹	1.名古屋大学, 2.九州大学
14:30	18p-A31-5	酸素プラズマとギ酸蒸気によるPtの原子層エッチング時 の表面反応		1.名大低温プラズマ, 2.AGC(株)
14:45	18p-A31-6	プラズマ誘起欠陥の発生と修復 ~希ガス種(He,Ar,Xe) による違い~	○布村 正太 ¹ ,鎌滝 晋礼 ² ,古閑 一憲 ² ,白谷 正治 ²	1. 産総研, 2. 九大
15:00	18p-A31-7	プラズマ誘起欠陥の発生と修復~アニールにおける雰囲 気ガスの効果~	○布村 正太¹, 堤 隆嘉², 堀 勝²	1. 産総研, 2. 名大
15:15	奨 18p-A31-8	SiO ₂ /Si構造におけるプラズマ誘起ダメージによる電流電 圧特性変化の統計的解析	○黒沼 舜也¹, 郷矢 崇浩¹, 占部 継一郎¹, 江利口 浩 二¹	1. 京大院工
15:30	奨 18p-A31-9	GaN塩素プラズマ加工におけるダメージ発生に対する添	○増田 康平¹, 石野 嵩弥¹, 財前 義史¹, 釘宮 克尚¹, 萩	1.ソニーセミコンダクタソリューションズ(株)
15:45	奨 18p-A31-10	加ガス種依存 紫外光照射時のGaN表面エッチング反応機構	本賢哉¹,岩元勇人¹ ○(M2)高橋 遼人¹,酒井 流星¹,石川 健治²,関根 誠², 母 陰 克² 姆 滕²	1.名大工, 2.名大低温プラズマ
16:00		休憩/Break	堤 隆嘉², 堀 勝²	
16:15	奨 18p-A31-11	CF ₃ *イオン照射によるタングステン系マスクのエッチングイールド評価	○KANG HO JUN¹, 川畑 竣大¹, Mauchamp Nicolas A.¹, 伊藤 智子¹, Tinacba Erin Joy Capdos¹, Kang Song-Yun², Son Jiwon², Lee Dongkyu², 唐橋 一浩¹, 浜口 智志¹	1. 阪大院工, 2.Samsung Electronics
16:30	奨 18p-A31-12	酸素及び塩素イオンによるルテニウム表面のエッチング 反応		1. 阪大院工, 2. 日立製作所
16:45	奨 18p-A31-13	反応性大気圧熱プラズマジェットを用いたフォトレジストの超高速エッチングにおける表面温度計測		1. 広大先進理工
17:00	奨 18p-A31-14	高アスペクト比ホール内におけるラジカルの付着確率の 輸送への影響		1.名大院工, 2.名大プラズマ
17:15	奨 18p-A31-15	欄送された音 Si₃N₄およびSiのNF₃/SF₅誘導結合プラズマ照射による Self-limitationエッチングプロセス	○小澤 一貴¹, 佐藤 哲也¹, 清水 昭貴²	1.山梨大工, 2.東京エレクトロン (TTS)
17:30	奨 18p-A31-16	Self-limitation エッテンクノロセス 【注目講演】 $F_2/Ar/H_2$ ガス系を用いた SiO_2 膜のクライオ エッチングにおける反応メカニズム解明	○加藤 有真¹, 片岡 淳司¹, 斎藤 僚², 飯野 大輝¹, 福水 裕之¹, 佐藤 哲也², 栗原 一彰¹	1.キオクシア株式会社, 2.山梨大・エ
		一ノノマノにおりる区心ノルーへム胜明	山た,凡除日巴,木原一彩	

17:45	奨 18p-A31-17	CF₄/H₂プラズマによるSiO₂低温エッチングのRFバイア		1.名大院工, 2.名大低温プラズマ科学センター
18:00	18p-A31-18	ス依存性 $\mathrm{HF/CH_3OH}$ 混合ガスによるプラズマ SiO2 膜の低温ガス	治², 堀 勝² ○今村 翼¹, 山田 将貴¹	1.日立研開
18:15	18p-A31-19	エッチング PF ₃ /H ₂ プラズマを用いた Poly-Si に対する SiO ₂ の選択	○馬 緻宇¹, 蕭 世男¹, Britun Nikolay¹, 関根 誠¹, 堀	1.名大低温プラズマ科学研究センター
8.3 プラ	ズマナノテクノロ	エッチング ジー / Plasma nanotechnology	勝	
9/19(7 9:00	Thu.) 9:00 - 11:00 19a-A36-1	口頭講演 (Oral Presentation) A36 会場(Room A36) カーボンナノウォール成長時の構造制御と基板温度効果	ゴクアンミン¹, ノ ヴァンノン², 小田 修², ○石川 健 治², 堀 勝²	1.名大工, 2.名大プラズマ
9:15	奨 19a-A36-2	アモルファスカーボン膜へのカーボンナノ粒子挿入による応力低減に対するカーボンナノ粒子堆積特性の寄与		1.九大シス情
9:30	19a-A36-3	TEOS/O $_2/{\rm Ar}$ プラズマ CVD 発光分光分析を用いた SiO $_2$ 薄膜特性の機械学習予測		1. 九大シス情, 2. 九大マスフォア研
9:45	奨 19a-A36-4	水素プラズマ誘起シリコンナノコーン構造にポストア ニール処理が及ぼす影響	○坂本健¹,垣内弘章¹,大参宏昌¹	1.大阪大工
10:00 10:15	19a-A36-5	休憩/Break Ge/LiAlGePO複合材料によるSEI層の安定化とLiイオ ン電池負極性能の改善	○大前知輝¹,藤掛大貴¹,石原雅之¹,中田智久¹,丹羽亮斗¹,横井玲音¹,内田儀一郎¹	1. 名城大理工
10:30	19a-A36-6	2元スパッタリングによるSiナノワイヤーへのGe添加と	○上田 竜雄¹, 大前 知輝¹, 藤掛 大貴¹, 寺田 圭吾¹, 長	1.名城大理工
10:45	19a-A36-7	Liイオン電池負極への応用 Ni,Fe添加Si膜の粒径制御と高容量Liイオン電池負極へ	谷川 祥之 1 , 山崎 稜 1 , 村瀬 瑠 1 , 内田 儀一郎 1 〇山崎 稜 1 , 上田 竜雄 1 , 寺田 圭吾 1 , 長谷川 祥之 1 ,	1.名城大理工
9/19/T	hu) 13·30 - 15·30	の応用 ポスター講演 (Poster Presentation) P会場(Room P)	藤掛 大貴¹, 村瀬 瑠汰¹, 横井 玲音¹, 内田 儀一郎¹	
9/19(1	19p-P03-1	多層カーボンナノチューブのイソシアネート基修飾にお けるプラズマ密度の効果	○(M1)渡邊翔斗¹,中村圭二¹,小川大輔¹	1. 中部大工
	19p-P03-2	斜入射反応性スパッタリング法により作製した微細構造 化Cu ₂ OおよびCuO薄膜の光学的特性評価	○坂本 大和¹, 井上 泰志¹, 高井 治²	1.千葉工大院工, 2. 関東学院大材料表面研
	19p-P03-3	CVD法により堆積したSiO:CH微粒子膜の微細構造に対する成膜時間の影響	駒崎 陸¹, ○西尾 舞雪¹, 井上 泰志¹, 高井 治²	1.千葉工大工, 2. 関東学院大
	19p-P03-4	RFスパッタリング法を用いた GeSn 薄膜のナノ形態制御 とLiイオン電池負極への応用	羽 亮斗¹, 内田 儀一郎¹	
	19p-P03-5	高圧スパッタリングによるGeSiナノ粒子薄膜の堆積とLi イオン電池負極への応用	〇中田 智久 1 , 石原 雅之 1 , 大前 知輝 1 , 丹羽 亮斗 1 , 横井 玲音 1 , 内田 儀一郎 1	1.名城大理工
		ンス / Plasma life sciences ポスター講演 (Poster Presentation) P会場(Room P)		
3/ 13(1	19p-P04-1	プラズマ遺伝子導入機序の解明に向けたプラズマを照射 した細胞膜の構造解析	○(M1) 辻 隆之介¹, 安東 優人¹, 熊谷 慎也¹	1. 名城大理工
	19p-P04-2	非熱平衡大気圧プラズマを用いた細胞成長促進システム の開発	○沖野 隼大¹,熊谷 慎也¹	1. 名城大学
	19p-P04-3	高周波プラズマによるバイオフィルム中細菌芽胞不活化 特性	○ (M1) 藤本 大樹¹, 山中 綺良々¹, 林 信哉¹.², 木村 駿 太³	1. 九大総理工, 2. 九大国際宇宙惑星環境研究センター, 3. JAXA
	19p-P04-4	多孔質膜液中酸素プラズマによるサイトカインの特性変 化		
	E 19p-P04-5	Enhancement of Antioxidative Activity of Mung Bean by Oxygen Plasma Irradiation on Seeds	Hayashi ¹ , Kanako Itagaki ² , Satoshi Shindo ²	1.Kyushu Univ., 2.Daisey Co. Ltd.
	19p-P04-6	"スマートプラズマ農業"システム活用による稲穂へのプ ラズマ照射の酒米品質向上	○橋爪博司¹,北野英己¹,水野寛子¹,蕭世男¹,湯浅元気²,東野里江²,田中宏昌¹,松本省吾¹,榊原均¹,広末庸治²,前島正義¹,水野正明¹,齋藤邦彰²,堀勝¹	
9/20(9:00	(Fri.) 9:00 - 11:45 20a-A33-1	口頭講演 (Oral Presentation) A33 会場 (Room A33) 大気圧グロープラズマによる難分解質リグニンの分解特性	○(M2)石川 雄偉¹,加藤 大志¹,清水 元亨¹,加藤 雅 士¹,伊藤 昌文¹	1. 名城大学
9:15	20a-A33-2	大気圧空気グロー放電処理したセロビオースの分解特性 評価		1. 名城大
9:30	20a-A33-3	大気圧直流放電プラズマ照射によるアルブミン凝集	○清水 鉄司 ¹ , 田中 颯 ^{1,2} , 榊田 創 ^{2,3}	1. 産総研, 2. 筑波大, 3. 名城大
9:45	奨 20a-A33-4	低圧水プラズマによる宇宙機表面の滅菌メカニズムの解 明		1. 九大総理工
10:00	20a-A33-5	温度制御した酸素ラジカル活性化ピロール溶液の殺菌効 果	伊藤 昌文1	1.名城大, 2.名古屋大
10:15	20a-A33-6	酸素ラジカル活性化インドール溶液による中性pH領域 での殺菌効果	○(M1)北川 大慈¹, 渡邊 拓哉¹, 志水 元亨¹, 加藤 雅 士¹, 石川 健治², 堀 勝², 伊藤 昌文¹	1. 名城大, 2. 名大
10:30 10:45	20a-A33-7	休憩/Break プラズマによる選択的細胞死誘導の数理モデリング	齋藤 壱平¹, 富田 基裕¹, ○村上 朝之¹	1.成蹊大
11:00	奨 20a-A33-8	低温大気圧プラズマ照射による細胞内の電力が細胞死に 及ぼす影響の数値解析		
11:15	奨 20a-A33-9	プラズマ・パルス電場複合遺伝子導入法における電気刺激の効果		1.東北大院工
11:30	奨 20a-A33-10		〇小野 浩毅 1 , 田中 文子 1 , 石川 健治 1 , 竹内 和歌奈 2 , 上原 賢一 3 , 安原 重雄 3 , 堀 勝 1 , 田中 宏昌 1	1.名大,2.愛工大,3.ジャパンアドバンストケミカルズ
9/20(F 13:30	Fri.) 13:30 - 17:00 奨 20p-A33-1	口頭講演 (Oral Presentation) A33 会場(Room A33) 大気圧酸素プラズマが炎症性マクロファージの免疫応答		1. 九大, 2. 佐賀大医
13:45	20p-A33-2	に及ぼす影響 酸素ラジカル活性L-トリプトファン溶液による線維芽細	下 佳雄 ² ○ (M2) 田島 慶人 ¹ , 石川 健治 ² , 堀 勝 ² , 伊藤 昌文 ¹	1. 名城大, 2. 名古屋大
14:00	20p-A33-3	胞の増殖促進効果 ラジカル活性化乳酸リンゲル液による肺がん細胞の不活		1. 名城大理工, 2. 名大工
14:15	奨 20p-A33-4	性化効果 プラズマ活性乳酸リンゲル液による正常細胞のマイト	勝², 伊藤 昌文¹ ○(M2)森 皓平¹, 石川 健治², 田中 宏昌², 堀 勝²	1.名大院工, 2.名大
14:30	20p-A33-5	ファジー誘導評価 マンモスフェア由来細胞を標的としたプラズマ活性溶液 の影響	○ (M2) 鈴木 崇矢¹, 山川 太嗣¹, 田中 文子², 水野 正明², 豊國 伸哉², 梶山 広明², 中村 香江², 石川 健治²,	1. 名大院工, 2. 名大
14:45	奨 20p-A33-6	の影響 Heプラズマジェットを用いた直接照射による豚皮膚への	堀 勝², 田中 宏昌²	1.名大院工 2.名大
LF.F1	∠ 20h-1199-0	Reプラスマンェットを用いた直接照別による豚及肩への 影響	世。 (M1) 山田 其帆, 中村 眷在, 梶田 広切, 壹國 中	1. 日ス肉によ, 2. 日ス

15:00		20p-A33-7	プラズマ活性乳酸リンゲル液(PAL)が及ぼすプラナリ	○(M2)小島陽太¹,石川健治²,橋爪博司²,堀勝²,	1. 名大院工, 2. 名大
		•	アの再生評価	田中 宏昌2	
15:15 15:30	鞖	20p-A33-8	休憩/Break 空気プラズマ合成五酸化二窒素の溶解効率と窒素施肥効	○(M2)武士 将熙¹. 高島 圭介¹. 佐々木 渉太¹. 東谷	1. 東北大院工, 2. 東北大院生命
			果の実験的評価	篤志 ² , 金子 俊郎 ¹	
15:45		20p-A33-9	イネ種皮のブラズマ駆動化学種透過性評価	○奥村 賢直¹, 史 合平¹, アタリ バンカジ¹, 山下 大輔¹, 鎌滝 晋礼¹, 山下 尚人¹, 板垣 奈穂¹, 古閑 一憲¹, 白谷 正治¹	1.九大
16:00		20p-A33-10	植物への大気圧低温プラズマ照射効果と細胞内初期応答 反応の解析		1.東京理科大・総研, 2.九大・シス情, 3.東京理科大・ 理工
16:15	奨	20p-A33-11	大気圧プラズマによる珪藻の増殖とその機構	★ 1○ (M2) 田 優真¹, 高橋 和生¹	1.京工繊大
16:30	奨		電池を構成する緑藻への大気圧プラズマ照射	○(M1C)土取 尚瑛¹, 高橋 和生¹	1.京工繊大
16:45		20p-A33-13	タマネギ中ポリフェノールへの大気圧低温空気プラズマ ジェット照射効果	〇谷内 滉 ', 川上 列生 ', 向井 理恵 '	1. 徳島大学理工, 2. 徳島大生物資源
8.5 プ	ラズマ	現象・新応用	· 融合分野 / Plasma phenomena, emerging area of plasm	nas and their new applications	
9/16(Mon.)	13:30 - 15:30 16p-P03-1	ポスター講演 (Poster Presentation) P会場 (Room P) 誘電体表面から射出される準大気圧Arプラズマの伝播特	○(M2)川西 元細 ¹ 粉亦 烃伍 ¹ 山大 斑山 ² 巴 淮	1.大阪公大工, 2.大阪市大工
		10p-1 03-1	性と連続多孔質誘電体の親水化処理への応用	席 ^{1,2} , 白藤 立 ^{1,2}	1.人國五八工,2.人國中八工
		16p-P03-2	石英被覆内部電極型大気圧プラズマジェットの放電特性		1.大阪公立大公
		16p-P03-3	SiC-MOSFETによる高dV/dtのパルス電圧を用いた大気 圧面発射型プラズマの電力評価	〇(M1)黑田 辛可,釵綵 伴間,川四 儿雕,只 华吊, 白藤 立 ¹	1.人败公人上
	Е	16p-P03-4	Plasma generation by gas-liquid discharge under	○LIN GUAN¹, Yoshio Iwatani¹, Ryoko Asada¹,	1.Osaka Metr Univ.
			atmospheric pressure and detection of its radicals with their environmental applications	Masafumi Akiyoshi ¹ , Hiroto Matsuura ¹	
		16p-P03-5	低温大気圧プラズマジェットを用いた人工骨の親水処理	○(M1)山下 晃平¹,森 優斗²,豊田 宏光³,中村 博亮³,	1.大阪公大工, 2.大阪市大工, 3.大阪公大医, 4.京大医
		16n-D02 6	芝口にトス気波公離な延用! なっえりロゴニゴーーンク	三輪 徹 ^{3,4} , 角南 貴司子 ³ , 白藤 立 ^{1,2} , 呉 準席 ^{1,2}	1 +版小+工 9 +版本+工 9 抽戸+学院+
		16p-P03-6	差圧による気液分離を援用したマイクロプラズマコンタ クタによる液体処理	〇加滕 晴輝',新歩 和明',吉田 佳柘",澤 穀臣",岡 秀 亮²,高岡 素子 3 ,呉 席席 1,2 ,白藤 立 1,2	1. 八败公八上, 4. 八败甲八上, 3. 怦尸女子阮天
		16p-P03-7	マイクロプラズマコンタクターを用いたフコイダンの低		1.大阪公大工, 2.大阪市大工, 3.神戸女学院大
		16p-P03-8	分子量化 湿潤CO ₂ プラズマを用いた二酸化炭素分解	岡 秀亮 ² , 呉 準席 ^{1,2} , 高岡 素子 ³ , 白藤 立 ^{1,2} ○乙部 響 ¹ , Pankaj Attri ¹ , 奥村 賢直 ¹ , 鎌滝 晋礼 ¹ , 山	1.九州大学
		•	-	下 大輔1, 板垣 奈穂1, 古閑 一憲1, 白谷 正治1	
		16p-P03-9	Evaluation of Cu-EDTA Decomposition by Streamer Discharge in Contact with Liquid	Tabassum Most Tauhida¹, 中川 雄介¹, ○杤久保 文嘉¹	1.都立大院システムデザイン
9/18(Wed.)	13:30 - 18:45	口頭講演 (Oral Presentation) A32会場(Room A32)	新	
13:30	招	18p-A32-1	「第56回講演奨励賞受賞記念講演」 プラズマ生成原子状水素による低温CO ₂ メタネーション	〇金 大永 ¹ , 古川 森也 ² , 野崎 智洋 ¹	1.東京工業大学, 2.大阪大学
13:45		18p-A32-2	の促進 プラズマ支援メタネーションにおけるモレキュラーシー ブの役割	○都甲 捋¹, 奧村 賢直², 鎌滝 晋礼², 竹中 弘祐¹, 古閑 一憲², 白谷 正治², 節原 裕一¹	1. 阪大接合研, 2. 九大シス情
14:00		18p-A32-3	溶鉄のレーザー誘起ブレークダウン分光法(LIBS)におけるレーザー・アーク重畳による増強率の測定	○宗岡 均¹, 伊藤 剛仁¹, 寺嶋 和夫¹	1. 東大院新領域
14:15		18p-A32-4	次世代LiB特性向上に資するSiナノ粒子生成最適化のためのプラズマスプレー整流性指標の検討 固体電解質LiPON膜のイオン導電率評価とLiイオン電	田 健一¹, 神原 淳²	
14:50		18p-A32-5	池への応用	井 玲音 1 , 寺田 圭吾 1 , 内田 儀一郎 1	1. 台城八垤土
14:45		18p-A32-6	誘導結合プラズマによるリチウムインターカレーション 負極活物質の合成 休憩/Break	○佐藤 龍行¹, 小松 昌恵¹, 大堀 拓海¹, 下位 法弘¹	1.東北工大院
15:15	奨	18p-A32-7	大気圧プラズマ誘起電解反応によって生じるガスの pH 依存性	○(M2)白土 宏太郎¹,白井 直機¹,佐々木 浩一¹	1. 北大工
15:30	奨	18p-A32-8	大気圧直流グロー放電における自己組織化した発光模様 の形成における酸素ガスの役割	○(D)宮崎 俊明¹, 佐々木 浩一¹, 白井 直機¹	1.北大工
15:45	奨	18p-A32-9	メチレンブルー水溶液を用いた大気圧プラズマジェット 由来の短寿命活性酸素種の計測	〇鳥居 岳大 1 , 上念 祐輝 2 , 栗田 弘史 3 , 白藤 立 $^{1.2}$, 呉 準席 $^{1.2}$	1.大阪公大工, 2.大阪市大工, 3. 豊橋技科大工
16:00	奨	18p-A32-10	誘電体バリア放電と液体の相互作用による微小液滴生成 メカニズム	○(D)渡邊 良輔¹, 菅田 菜月¹, 吉野 大輔¹	1.東京農工大
16:15	奨	18p-A32-11	大気圧プラズマ液体相互作用を利用したベンゼン - フェ ノール変換における生成フェノール濃度の作動ガス種依	〇林 ロバート勇斗 1 , 稲垣 慶修 1 , 高草木 達 2 , 佐々木 浩 $-^1$, 白井 直機 1	1. 北大工, 2. 北大触媒研
16:30	奨	18p-A32-12	存性 プラズマ活性水中の活性酸素窒素種の生成におけるガス 依存性	○(M2)東尚希¹, 細井 牡馬², 白藤 立¹², 呉 準席¹²	1.大阪公立大工, 2.大阪市立大工
16:45	y	40	休憩/Break	O (DO)GO DENISTE E E	4 m 1
17:00	奨 E	18p-A32-13	Investigation of Carbon Sulfonation Mechanism by Plasmas in Contact with Liquid	○ (DC)SIQI DENG¹, Kaixun Yao¹, Manabu Kodama¹, Katsuyuki Takahashi², Kosuke Tachibana³, Junko Hieda⁴, Oi Lun Li⁵, Nozomi Takeuchi¹	1.Tokyo tech, 2.Iwate Univ., 3.Oita Univ., 4.Nagoya Univ., 5.Pusan National Univ.
17:15	奨	18p-A32-14	表面発射型Arプラズマ弾丸における弾丸伝搬特性	○ (M2) 数森 祥悟 ¹ , 川西 元輝 ¹ , 好本 瑞生 ² , 呉 準 席 ^{1, 2} , 白藤 立 ^{1, 2}	1.大阪公大工, 2.大阪市大工
17:30 17:45	奨	18p-A32-15 18p-A32-16	残留ガス回収型プラズマ源の活性酸素種の影響範囲評価 二層バリア放電における高湿度空気中高濃度トルエンの 分解実験	○數原 瑠威¹, 白藤 立¹, 呉 準席¹ ○廣瀬 大稀¹, 大澤 泰樹¹, 住谷 祐樹¹, 八井田 朱音¹, 冲野 晃俊¹	1.大阪公大工 1.東工大未来研
18:00		18p-A32-17	が解え映開放大気中におけるマイクロアレイ電極を用いた窒素大気圧プラズマの放電特性		1.大阪公立大工, 2.旭ポリスライダー, 3.大阪市大工
18:15		18p-A32-18	電子照射および水素プラズマ暴露による低仕事関数材料 表面の活性化	Cartry Gilles³, Om Raval³, 中野 治久⁴	1.同志社大理工, 2.同志社大・研究開発推進機構, 3.Aix-Marseille Univ., 4.核融合研
18:30 8.6 Pla	asm <u>a</u> l	18p-A32-19 Electronics En	酸素の電子衝突断面積セットの検討 glish Session	○川口 悟¹, 髙橋 一弘¹, 佐藤 孝紀¹	1.室闌工大
	Mon.)	13:30 - 15:30	ポスター講演 (Poster Presentation) P会場(Room P)		
	Е	16p-P04-1	A Novel Design Method of Impedance Converting Network for Multi-level/High Frequency Pulse Power Supply	○ Lee Jaejoong¹, Yongwon Cho¹, Younghwan Choi¹, Hwasoo Seok¹, Meehyun Lim¹, Sungyeol Kim¹	1.MR, SAMSUNG
			口頭講演 (Oral Presentation) A32 会場 (Room A32)	0(00)0.0 10.1	17
18:45	Е	18p-A32-20	Investigation of Metal-Organic Plasma Enhanced Chemical Vapor Deposition for Yttrium Oxide film using a Microwave Excited Atmospheric Pressure Plasma Jet	○ (DC)Bat-Orgil Erdenezaya¹, Hirochika Uratani¹, Ruka Yazawa¹, Md. Shahiduzzaman¹, Tetsuya Taima¹, Yusuke Nakano¹, Yasunori Tanaka¹, Tatsuo Ishijima¹	1.Kanazawa University

/16(Mon.) 10:00 - 11:	ニクス分科内招待講演 / Plasma Electronics Invited Talk		
	30 口頭講演 (Oral Presentation) A41会場 (Room A41)	OF the Obed Broad Park and the Control of the Contr	1 Please Pieceian P. J. C
0:00 招 E 16a-A41-1		© Eun Ha Choi ¹ , Jinsung Choi ¹ , Youn June Hong ¹ , Ihn Han ¹	1.Plasma Bioscience Research Center, Kwangwoon Univ.
	Nonthermal Atmospheric Pressure Plasma and its Nitric oxide (NO) Water for Agriculture and	Inn Han	Univ.
	Environmental Sciences		
0:45 招 E 16a-A41-2		○ Magdaleno Jr Vasquez¹	1.University of the Philippines Diliman
	Utilizing Custom-built Plasma Sources for Natural		
0/17/T \ 11.00 11	Materials Processing		
9/17(Tue.) 11:00 - 11:4 1:00 招 17a-C41-3	15 口頭講演 (Oral Presentation) C41会場(Room C41)	○浜口 智志 ¹	1. 阪大工
1:00 fi 1/a-C41-3	「分科内招待講演」 オングストロームノード世代における半導体製造プラズ	〇浜口 省心	1. 放入工
	マプロセスの物理		
8 プラズマエレクトロ	ニクス賞受賞記念講演 / Plasma Electronics Division Award	Speech	
	0 口頭講演 (Oral Presentation) C41会場 (Room C41)		
:30 招 17a-C41-1	「第22回プラズマエレクトロニクス賞受賞記念講演」	〇内田 儀一郎¹, 益本 幸泰¹, 榊原 幹人¹, 池邊 由美	1.名城大理工, 2.九州大院シス情, 3.大阪大接合研
	中圧低温プラズマスパッタリングによる Si/Sn ナノワイ	子1,小野晋次郎2,古閑一憲2,小澤隆弘3	
	ヤー膜のシングルステップ堆積と高容量 Li イオン電池の		
	安定駆動		
0:00 招 17a-C41-2		〇久保井 信行 ¹	1. ソニー
	成膜プロセスにおける大規模パターンでのカバレッジお		
÷=====================================	よび膜質分布の予測		
	ed Materials Science		
	ムはプログラム冒頭にございます。		
9/20(Fri.) 13:30 - 15:3 20p-P02-1	0 ポスター講演 (Poster Presentation) P会場 (Room P) Ba Sr Co V O の結島構造及び誘電特性	○(M1) 増川 奈々美¹, 濵嵜 容丞¹, 伊藤 満², 安井 伸	1 防衛大学校 2 亩 亩 工 業 大 学
20p-P02-1	Ba _{1-x} Sr _x Co ₂ V ₂ O ₈ の結晶構造及び誘電特性	○(MI) 項川 佘々美,演奇 谷丞,伊滕 满,女开 伸 太郎 ² , 澤井 眞也 ¹	1. 四国八丁仅, 4. 宋尔上未八子
20p-P02-2	マイクロ流路デバイスを用いた金ナノ粒子の新奇三次元		1. 東邦大院理
20p-1 02-2	構造の構築	○Ⅲ/1 丝/八,□/1 区图,木// 杉/八	ALVIN BY ADDRESS.
20p-P02-3	形状異方 Ni-ferrite ナノ微粒子の作製	○阿部 凌大¹, 天野 広希¹, 楠本 悠羽¹, 長谷川 万里	1. 横国大院理工, 2. 阪大院基礎工
		萌¹, 渡邉 将太郎¹, 一柳 優子¹.2	,
20p-P02-4	クライオミリングと液中レーザー溶融法を組み合わせた		1.名工大院
	球状シリコンナノ結晶の作製と Mie 共鳴の観測 Ⅱ		
20p-P02-5	SiC 添加 SiO _x 薄膜の酸素含有量と酸素不純物による可視	○岩崎 颯太¹, 勝俣 裕¹	1. 明大理工
	発光の相関		
20p-P02-6	MnZnFe ₂ O ₄ ナノ微粒子の第三高調波応答における Gd	○楠本悠羽¹,飯島涼太²,阿部凌大¹,天野広希¹,長	1.横国大院理工, 2.横国大理工, 3.阪大院基礎工
	ドープの効果と周波数依存性	谷川 万理萌¹, 渡邉 将太郎¹, 一柳 優子¹.2.3	
20p-P02-7	銅を用いた光触媒の薄膜化の評価と酸化銅ナノワイヤー	○神例 音絵 ', 滝沢 辰洋 '	1.信大繊維
E 20 D02 0	の生成 FCC: ALC: L LC:NW D: C ALC	OW: 1 I IN I'E I I	1 MANIA NUMC
E 20p-P02-8	Efficient Al-Catalyzed SiNW Dimension Control for	○ Wipakorn Jevasuwan¹, Naoki Fukata¹	1.MANA, NIMS
	Device Downscaling of Si/Ge Core-Multishell Heterostructures		
E 20p-P02-9	Effect of Surface damage of Si nanostructures on SiC	○ Pengyu ZHANG ^{1, 2} , Yonglie Sun ¹ , Wipakorn	1.NIMS, 2.Tsukuba Univ.
L 20p 1 02)	formation	Jevasuwan ¹ , Naoki Fukata ^{1, 2}	1.1VIIVIO, 2.13ukuba Olliv.
20p-P02-1			1.東京電機大, 2.防衛大
	ンサ特性	隆 ² , 平栗 健二 ¹	
E 20p-P02-1	Hole gas accumulation and fabrication of SWIR	○ (D)Guanghui WANG ^{1, 2} , Chao Le ^{1, 2} , Wipakorn	1.Univ. of Tsukuba, 2.NIMS
	photodetector using Ge/Si core-shell nanostructure	JEVASUWAN², Naoki Fukata ^{1, 2}	
20p-P02-1	2 光透過性・導電性・熱耐性を有するn型半導体ハイブリッ	\cap \bigcirc $(M2)$ 松谷 洸之介 1 , 石崎 学 1 , 栗原 正人 1	1. 山形大院理工
	ド電極の湿式作製		
20p-P02-13			
	物の構造安定化	田 典樹¹, Ibrahim A.⁵, 久富木 志郎⁵, Khalyavin	大, 6.ISIS, 7.Amsterdam大, 8.阪大
00 700 4	4 H)7)*) -5)*) WE	D.D. ⁶ , Manuel P. ⁶ , de Visser A. ⁷ , 阿部 浩也 ⁸	A. L. A. Ada I. William
20p-P02-1	4 共通ゲート三重ドット単電子デバイスがポンプ動作する	〇吉田 充紀 ', 今井 茂 '	1.立命館大理工
20- D02 1	ために必要なゲート容量分布 5 2重ゲートSETによるNANDゲートの構築	○(M2)尾坂 洋輝¹, 今井 茂¹	1.立命館大理工
20p-P02-19 20p-P02-10			
20p-r02-10			1. 小八四十十十, 4. 生恥明
		工田 电位、 各类川 动口、川加 叶子、	
20n-P02-1		太田 道広 ² , 長谷川 将克 ¹ , 川西 咲子 ¹ ○高尾 侑希 ¹ , 竹内 久太 ¹ , 石橋 広記 ¹ , 久保田 佳基 ¹ ,	1. 阪公大理
20p-P02-1	m ハイエントロビー化 GeTe 系材料の形成相と熱電特性	 ○高尾 侑希¹,竹内 久太¹,石橋 広記¹,久保田 佳基¹, 小菅 厚子¹ 	1. 阪公大理
20p-P02-1 ²	7 ハイエントロピー化 GeTe 系材料の形成相と熱電特性	〇高尾 侑希 1 ,竹内 久太 1 ,石橋 広記 1 ,久保田 佳基 1 ,	
	7 ハイエントロピー化 GeTe 系材料の形成相と熱電特性	〇高尾 侑希 1 ,竹内 久太 1 ,石橋 広記 1 ,久保田 佳基 1 , 小菅 厚子 1	
	7 ハイエントロビー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相	 ○高尾 侑希¹,竹内 久太¹,石橋 広記¹,久保田 佳基¹, 小菅 厚子¹ ○(M1)竹内 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹, 	
20p-P02-1	7 ハイエントロビー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹, 小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹, 久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李 哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井 一郎¹,大貫	1. 阪公大理, 2. 島根大材エネ
20p-P02-1 20p-P02-1 20p-P02-2	7 ハイエントロビー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いたα-MgAgSbの合成 0 ニッケルブルシャンブルー類似体における酸化還元電位 の温度係数のナトリウム濃度依存性	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹, 小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹, 久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李 哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井 一郎¹,大貫 等¹	 版公大理, 2. 島根大材エネ 産総研 東京海洋大
20p-P02-14 20p-P02-14 20p-P02-24 20p-P02-2	7 ハイエントロビー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いたα-MgAgSbの合成 1 ニッケルブルシャンブルー類似体における酸化還元電位 の温度係数のナトリウム濃度依存性 ショットキー型ゼーベック効果を用いた熱センサの提案	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹, 小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹, 久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李 哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井一郎¹,大貫 等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研
20p-P02-1: 20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロピー化 GeTe 系材料の形成相と熱電特性 3 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いたα-MgAgSbの合成 0 ニッケルブルシャンブルー類似体における酸化還元電位 の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT膜の長期空気安定性と超音波分散の最適化	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹, 小菅 厚子¹ ○ (M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹, 久保田 佳基¹,小菅 厚子¹ ○ 大島 博典¹,高島 泰子¹,後藤 陽介¹,李 哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井 一郎¹,大貫 等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗¹,山本 久敏¹,三宅 修吾²,高尻 雅之¹	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 摂南大学
20p-P02-1: 20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロビー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いたα-MgAgSbの合成 0 ニッケルブルシャンブルー類似体における酸化還元電位 の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 3 Ge増感型熱利用電池の銅イオン含有ポリエチレングリ	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹, 小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹, 久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李 哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井一郎¹,大貫 等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研
20p-P02-1: 20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロピー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位 の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 3 Ge増感型熱利用電池の銅イオン含有ボリエチレングリ コール電解液に対する紫外線照射の影響	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李哲虎¹ ○細野 稜¹,柴田 恭幸¹,桂 知也¹,長井一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗³,山本 久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 有紀¹,松下 祥子¹.²	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 損南大学 1. 東工大物質, 2.(株) elle Thermo
20p-P02-1: 20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロビー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位 の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 3 Ge増感型熱利用電池の銅イオン含有ポリエチレングリ コール電解液に対する紫外線照射の影響 4 三次電池のデバイス構造の検討	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○同野 裕太朗¹,山本 久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 有紀¹,松下 祥子¹.²	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 損南大学 1. 東工大物質, 2. (株) elle Thermo 1. 海洋大
20p-P02-1: 20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロビー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 Ge 増感型熱利用電池の銅イオン含有ポリエチレングリコール電解液に対する紫外線照射の影響 1 三次電池のデバイス構造の検討 1 ボリエチレングリコール中の塩化銅の分光分析	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李 哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井 一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗¹,山本 久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 有紀¹,松下 祥子¹² ○尾崎 映志¹,柴田 恭幸¹,長井 一郎¹,大貫等¹ ○(M1)田村 知仁¹,松下 祥子²,生方 俊¹	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 損南大学 1. 東工大物質, 2. (株) elle Thermo 1. 海洋大 1. 横国大院理工, 2. 東工大院物質理工
20p-P02-1: 20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロビー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位 の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 3 Ge増感型熱利用電池の銅イオン含有ポリエチレングリ コール電解液に対する紫外線照射の影響 4 三次電池のデバイス構造の検討	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李 哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井 一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗¹,山本 久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 有紀¹,松下 祥子¹² ○尾崎 映志¹,柴田 恭幸¹,長井 一郎¹,大貫等¹ ○(M1)田村 知仁¹,松下 祥子²,生方 俊¹	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 損南大学 1. 東工大物質, 2. (株) elle Thermo 1. 海洋大
20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロビー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 Ge 増感型熱利用電池の銅イオン含有ポリエチレングリコール電解液に対する紫外線照射の影響 1 三次電池のデバイス構造の検討 1 ボリエチレングリコール中の塩化銅の分光分析 1 ガラス上にバターニング形成されたナノ凹凸の表面物性とその応用	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李哲虎¹ ○縄野 後¹,柴田 恭幸¹,桂 知也¹,長井 一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗¹,山本 久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 有紀¹,松下 祥子¹.² ○尾崎 映志¹,柴田 恭幸¹,長井 一郎¹,大貫等¹ ○(M1)田村 知仁¹,松下 祥子²,生方 俊¹ ○岩尾 克¹,木下 沢泉¹,藤田 直樹¹	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 損南大学 1. 東工大物質, 2. (株) elle Thermo 1. 海洋大 1. 横国大院理工, 2. 東工大院物質理工
20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロピー化 GeTe 系材料の形成相と熱電特性 3 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いたα-MgAgSbの合成 0 ニッケルブルシャンブルー類似体における酸化還元電位 0 温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 3 Ge増感型熱利用電池の銅イオン含有ポリエチレングリコール電解液に対する紫外線照射の影響 4 三次電池のデバイス構造の検引 ボリエチレングリコール中の塩化銅の分光分析 5 ガラス上にバターニング形成されたナノ凹凸の表面物性とその応用	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李哲虎¹ ○縄野 後¹,柴田 恭幸¹,桂 知也¹,長井 一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗¹,山本 久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 有紀¹,松下 祥子¹.² ○尾崎 映志¹,柴田 恭幸¹,長井 一郎¹,大貫等¹ ○(M1)田村 知仁¹,松下 祥子²,生方 俊¹ ○岩尾 克¹,木下 沢泉¹,藤田 直樹¹	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 摂南大学 1. 東工大物質, 2. (株) elle Thermo 1. 海洋大 1. 横国大院理工, 2. 東工大院物質理工 1. 日本電気硝子
20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロピー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 3 Ge増感型熱利用電池の銅イオン含有ポリエチレングリコール電解液に対する紫外線照射の影響 4 三次電池のデバイス構造の検討 5 ポリエチレングリコール中の塩化銅の分光分析 6 ガラス上にバターニング形成されたナノ凹凸の表面物性とその応用 7 ナノ秒パルスレーザー照射による TlGaSe₂の表面形状変化	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹, 小菅 厚子¹ ○ (M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹, 久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗¹,山本久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 有紀¹,松下 祥子¹² ○尾崎 映志¹,柴田 恭幸¹,長井一郎¹,大貫等¹ ○ (M1) 田村 知仁¹,松下 祥子²,生方 俊¹ ○岩尾 克¹,木下 沢泉¹,藤田 直樹¹ ○ (M2)美野 領太¹, Mamedov Nazim²,沈 用球¹	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 摂南大学 1. 東工大物質, 2. (株) elleThermo 1. 海洋大 1. 横国大院理工, 2. 東工大院物質理工 1. 日本電気硝子 1. 大阪公大, 2. アゼルバイジャン科学アカデミー
20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロピー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 3 Ge増感型熱利用電池の銅イオン含有ポリエチレングリコール電解液に対する紫外線照射の影響 4 三次電池のデバイス構造の検討 5 ポリエチレングリコール中の塩化銅の分光分析 6 ガラス上にバターニング形成されたナノ凹凸の表面物性とその応用 7 ナノ秒パルスレーザー照射による TlGaSe₂の表面形状変化	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹, 小菅 厚子¹ ○ (M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹, 久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗¹,山本久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 有紀¹,松下 祥子¹² ○尾崎 映志¹,柴田 恭幸¹,長井一郎¹,大貫等¹ ○ (M1) 田村 知仁¹,松下 祥子²,生方 俊¹ ○岩尾 克¹,木下 沢泉¹,藤田 直樹¹ ○ (M2)美野 領太¹, Mamedov Nazim²,沈 用球¹	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 摂南大学 1. 東工大物質, 2. (株) elleThermo 1. 海洋大 1. 横国大院理工, 2. 東工大院物質理工 1. 日本電気硝子 1. 大阪公大, 2. アゼルバイジャン科学アカデミー
20p-P02-1: 20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロピー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 3 Ge増感型熱利用電池の銅イオン含有ポリエチレングリコール電解液に対する紫外線照射の影響 4 三次電池のデバイス構造の検討 5 ポリエチレングリコール中の塩化銅の分光分析 6 ガラス上にバターニング形成されたナノ凹凸の表面物性とその応用 7 ナノ秒パルスレーザー照射による TlGaSe₂の表面形状変化	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李哲虎¹ ○維野 稜¹,柴田 恭幸¹,桂 知也¹,長井一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗¹,山本 久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 再紀¹,松下 祥子¹.² ○尾崎 映志¹,柴田 恭幸¹,長井一郎¹,大貫等¹ ○(M1)田村 知仁¹,松下 祥子²,生方 後¹ ○岩尾 克¹,木下 沢泉¹,藤田 直樹¹ ○(M2)美野 領太¹,Mamedov Nazim²,沈用球¹ 飯野 千秋¹,籔田 莉名¹,○小田 捋人¹,村口 正和²,早川 虹雪²³,本田 充紀³²,石井 宏幸⁴	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 摂南大学 1. 東工大物質, 2.(株) elle Thermo 1. 海洋大 1. 横国大院理工, 2. 東工大院物質理工 1. 日本電気硝子 1. 大阪公大, 2. アゼルバイジャン科学アカデミー 1. 和歌山大シスエ, 2. 北海道科学大工, 3. 原子力機構質科学, 4. 筑波大数物
20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロビー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位 の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 3 Ge増感型熱利用電池の銅イオン含有ポリエチレングリコール電解液に対する紫外線照射の影響 1 三次電池のデバイス構造の検討 5 ポリエチレングリコール中の塩化銅の分光分析 6 ガラス上にバターニング形成されたナノ凹凸の表面物性とその応用 7 ナノ秒バルスレーザー照射による TlGaSe₂の表面形状変化 1 風化黒雲母中における層間原子の拡散ボテンシャル 1 スルーホール構造をもつ陽極酸化アルミナテンブレートを用いた MoS2ナノチューブの作製と湿度応答性評価	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李哲虎¹ ○維野 稜¹,柴田 恭幸¹,桂 知也¹,長井一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗¹,山本 久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 再紀¹,松下 祥子¹.² ○尾崎 映志¹,柴田 恭幸¹,長井一郎¹,大貫等¹ ○(M1)田村 知仁¹,松下 祥子²,生方 後¹ ○岩尾 克¹,木下 沢泉¹,藤田 直樹¹ ○(M2)美野 領太¹,Mamedov Nazim²,沈用球¹ 飯野 千秋¹,籔田 莉名¹,○小田 捋人¹,村口 正和²,早川 虹雪²³,本田 充紀³²,石井 宏幸⁴	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 摂南大学 1. 東工大物質, 2.(株) elle Thermo 1. 海洋大 1. 横国大院理工, 2. 東工大院物質理工 1. 日本電気硝子 1. 大阪公大, 2. アゼルバイジャン科学アカデミー 1. 和歌山大シスエ, 2. 北海道科学大工, 3. 原子力機構質科学, 4. 筑波大数物
20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロピー化 GeTe 系材料の形成相と熱電特性 3 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いたα-MgAgSbの合成 0 ニッケルブルシャンブルー類似体における酸化還元電位 0 温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 3 Ge増感型熱利用電池の銅イオン含有ポリエチレングリコール電解液に対する紫外線照射の影響 4 三次電池のデバイス構造の検討 1 ポリエチレングリコール中の塩化銅の分光分析 5 ガラス上にバターニング形成されたナノ凹凸の表面物性とその応用 7 ナノ秒パルスレーザー照射によるTIGaSe₂の表面形状変化 8 風化黒雲母中における層間原子の拡散ボテンシャル 9 スルーホール構造をもつ陽極酸化アルミナテンプレートを用いた MoS2ナノチューブの作製と湿度応答性評価 Dielectrics, ferroelectrics	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗³,山本 久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 有紀¹,松下 祥子¹.² ○尾崎 映志¹,柴田 恭幸¹,長井一郎¹,大貫等¹ ○(M1)田村 知仁¹,松下 祥子²,生方 後¹ ○岩尾 克¹,木下 沢泉¹,藤田 直樹¹ ○(M2)美野 領太¹,Mamedov Nazim²,沈用球¹ 飯野 千秋¹,數田 莉名¹,○小田 捋人¹,村口 正和²,早川 虹雪²³,本田 充紀³²,石井 宏幸⁴ ○広野 翔一¹,松村 多奈¹,伊藤 健¹,新宫原 正三¹,清	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 摂南大学 1. 東工大物質, 2.(株) elle Thermo 1. 海洋大 1. 横国大院理工, 2. 東工大院物質理工 1. 日本電気硝子 1. 大阪公大, 2. アゼルバイジャン科学アカデミー 1. 和歌山大シスエ, 2. 北海道科学大工, 3. 原子力機構質科学, 4. 筑波大数物
20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロピー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT 膜の長期空気安定性と超音波分散の最適化 3 Ge 増感型熱利用電池の銅イオン含有ポリエチレングリコール電解液に対する紫外線照射の影響 4 三次電池のデバイス構造の検討 5 ポリエチレングリコール中の塩化銅の分光分析 6 ガラス上にバターニング形成されたナノ凹凸の表面物性とその応用 7 ナノ秒パルスレーザー照射による TlGaSe₂の表面形状変化 8 風化黒雲母中における層間原子の拡散ボテンシャル 9 スルーホール構造をもつ陽極酸化アルミナテンブレートを用いた MoS2ナノチューブの作製と湿度応答性評価 Dielectrics, ferroelectrics 15 口頭講演 (Oral Presentation) C301 会場 (Room C301)	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井 一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗¹,山本久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 有紀¹,松下 祥子¹² ○尾崎 映志¹,柴田 恭幸¹,長井 一郎¹,大貫等¹ ○(M1)田村 知仁¹,松下 祥子²,生方 俊¹ ○岩尾 克¹,木下 沢泉¹,藤田 直樹¹ ○(M2)美野 領太¹,Mamedov Nazim²,沈 用球¹ 飯野 千秋¹,飯田 莉名¹,○小田 将人¹,村口 正和²,早川 虹雪²³,本田 充紀⁵²,石井 宏幸⁴	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 摂南大学 1. 東工大物質, 2. (株) elleThermo 1. 海洋大 1. 横国大院理工, 2. 東工大院物質理工 1. 日本電気硝子 1. 大阪公大, 2. アゼルバイジャン科学アカデミー 1. 和歌山大シスエ, 2. 北海道科学大工, 3. 原子力機構質科学, 4. 筑波大数物 1. 関西大工
20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2:	7 ハイエントロピー化 GeTe 系材料の形成相と熱電特性 3 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT膜の長期空気安定性と超音波分散の最適化 3 Ge 増感型熱利用電池の銅イオン含有ポリエチレングリコール電解液に対する紫外線照射の影響 4 三次電池のデバイス構造の検討 5 ポリエチレングリコール中の塩化銅の分光分析 6 ガラス上にバターニング形成されたナノ凹凸の表面物性とその応用 7 ナノ秒パルスレーザー照射によるTIGaSe₂の表面形状変化 8 風化黒雲母中における層間原子の拡散ボテンシャル 9 スルーホール構造をもつ陽極酸化アルミナテンブレートを用いたMoS2ナノチューブの作製と湿度応答性評価 Dielectrics、ferroelectrics 15 口頭講演 (Oral Presentation) C301 会場 (Room C301) 交流分極反転による強弾性ドメイン総状構造の形成機構	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井 一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗¹,山本久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 有紀¹,松下 祥子¹² ○尾崎 映志¹,柴田 恭幸¹,長井 一郎¹,大貫等¹ ○(M1)田村 知仁¹,松下 祥子²,生方 俊¹ ○岩尾 克¹,木下 沢泉¹,藤田 直樹¹ ○(M2)美野 領太¹,Mamedov Nazim²,沈 用球¹ 飯野 千秋¹,飯田 莉名¹,○小田 将人¹,村口 正和²,早川 虹雪²³,本田 充紀⁵²,石井 宏幸⁴	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東京大院工, 2. 摂南大学 1. 東工大物質, 2.(株) elle Thermo 1. 海洋大 1. 横国大院理工, 2. 東工大院物質理工 1. 日本電気硝子 1. 大阪公大, 2. アゼルバイジャン科学アカデミー 1. 和歌山大シスエ, 2. 北海道科学大工, 3. 原子力機構・質科学, 4. 筑波大数物
20p-P02-1: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-2: 20p-P02-3: 20p-P02-2: 20p-P02-3: 20p-P02-3: 20p-P03-3: 20p-P03-3: 20p-P03-3: 20p-P03-3: 20p-P03-3: 20p-P03-3:	7 ハイエントロピー化 GeTe 系材料の形成相と熱電特性 8 結晶/非晶の混相からなる熱電材料の形成相 9 溶融法を用いた α - MgAgSb の合成 0 ニッケルブルシャンブルー類似体における酸化還元電位の温度係数のナトリウム濃度依存性 1 ショットキー型ゼーベック効果を用いた熱センサの提案 2 n型単層 CNT 膜の長期空気安定性と超音波分散の最適化 3 Ge 増感型熱利用電池の銅イオン含有ポリエチレングリコール電解液に対する紫外線照射の影響 4 三次電池のデバイス構造の検討 5 ポリエチレングリコール中の塩化銅の分光分析 6 ガラス上にバターニング形成されたナノ凹凸の表面物性とその応用 7 ナノ秒パルスレーザー照射による TlGaSe₂の表面形状変化 8 風化黒雲母中における層間原子の拡散ボテンシャル 9 スルーホール構造をもつ陽極酸化アルミナテンブレートを用いた MoS2ナノチューブの作製と湿度応答性評価 Dielectrics, ferroelectrics 15 口頭講演 (Oral Presentation) C301 会場 (Room C301)	○高尾 侑希¹,竹內 久太¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○(M1)竹內 久太¹,廣井 慧²,高尾 侑希¹,石橋 広記¹,久保田 佳基¹,小菅 厚子¹ ○大島 博典¹,高島 泰子¹,後藤 陽介¹,李哲虎¹ ○縄野 稜¹,柴田 恭幸¹,桂 知也¹,長井一郎¹,大貫等¹ ○上田 彩貴¹,上沼 睦典²,浦岡 行治¹ ○岡野 裕太朗¹,山本久敏¹,三宅 修吾²,高尻 雅之¹ ○尾崎 再紀¹,松下 祥子¹² ○尾崎 映志¹,柴田 恭幸¹,長井一郎¹,大貫等¹ ○(M1)田村 知仁¹,松下 祥子²,生方 俊¹ ○岩尾 克¹,木下 沢泉¹,藤田 直樹¹ ○(M2)美野 領太¹, Mamedov Nazim²,沈 用球¹ 飯野 千秋¹,籔田 莉名¹,○小田 捋人¹,村口 正和²,早川 虹雪²³,本田 充紀³²,石井 宏幸⁴ ○広野 翔一¹,松村 多奈¹,伊藤 健¹,新宫原 正三¹,清水智弘¹	1. 阪公大理, 2. 島根大材エネ 1. 産総研 1. 東京海洋大 1. 奈良先端大, 2. 産総研 1. 東海大院工, 2. 摂南大学 1. 東工大物質, 2. (株) elle Thermo 1. 海洋大 1. 横国大院理工, 2. 東工大院物質理工 1. 日本電気硝子 1. 大阪公大, 2. アゼルバイジャン科学アカデミー 1. 和歌山大シスエ, 2. 北海道科学大工, 3. 原子力機構・質科学, 4. 筑波大数物 1. 関西大工 1. 東大院工, 2. 北大院工

13:30		18p-C301-3	強誘電体ドメイン壁自由エネルギーの温度・空孔濃度依	○吾妻 真光¹,尾形 修司¹,小林 亮¹,浦長瀬 正幸¹,都	1.名工大工
12.45		19- 6201 4	存性に関する分子動力学法計算 第一原理分子動力学シミュレーションによる強誘電体の	築 貴寛1, 小川 智央1	1.東大理, 2.QST, 3.Quemix
13:45		18p-C301-4	ドメイン構造解析	○石頂主相,明石 远川,四谷 悄村 ,松下 雄一郎 ^{1.2.3}	1. 宋人座, 2.Q51, 5.Quemix
14:00 14:15	402	18p-C301-5	休憩/Break (Al, Nb)共ドープSrTiO ₃ セラミックスの誘電特性	○(M2)川崎 三葉¹, 谷口 博基², 藤原 忍¹, 萩原 学¹	1 奥士理工 2 女士理
14:30	夹	18p-C301-6	遷移金属ドープBaTiO3強誘電体セラミックスにおける 欠陥双極子の制御	○ (M27)川町 二来,廿日	
14:45		18p-C301-7	ビスマス系フェリ誘電体セラミックスにおける電場誘起 相転移の制御		1.熊本大, 2. 茨城大, 3. 総合科学研究機構
15:00		18p-C301-8	$(Bi_{1/2}K_{1/2})TiO_3$ – $(Bi_{1/2}Li_{1/2})TiO_3$ リラクサー強誘電体のエネルギー貯蔵特性		1.熊本大, 2.大阪公立大, 3.サイモンフレイザー大
15:15 15:30		18p-C301-9	休憩/Break ナノ粒子の反応焼結によるBiFeO ₃ -(Bi _{1/2} K _{1/2})TiO ₃ 系非鉛	○橋本 朋樹¹, 藤原 忍¹, 萩原 学¹	1. 慶大理工
15:45		18p-C301-10	圧電セラミックスの作製 固相結晶成長法により育成した Mn ドーブ Pb(Mg _{1/2} Nb _{2/3})O ₃ -Pb(Zr,Ti)O ₃ 単結晶の交流ポーリング	〇真岩 宏司 1 , 山形 湧志 1 , 向 宇 1 , 陳 希 1 , 山下 洋 $\bigwedge^{1,2}$, Lee Ho-Yong 3	1.湘南工大工, 2.ノースカロライナ州立大, 3.セラコンボ
16:00	, *** ¬		と圧電特性 KTa _{1-x} NbO ₃ 結晶の応力影響下での誘電特性	高橋 大冴¹, ○今井 欽之¹	1. 京都先端科学大工
			・ナノシート / Nanoparticles, Nanowires and Nanosheet 口頭講演 (Oral Presentation) C301会場(Room C301)	S	
13:00			「分科内招待講演」	○夫 勇進¹, 榎本 航之¹, Miranti Retno¹	1. 理研 CEMS
10.00		47 0004 0	コロイド量子ドットの1次元、2次元、3次元的集合制御		a de l'aver o a loy l'herritate o l'Italiano
13:30		•	元素間相溶性を駆動力とした前例のない規則合金相の安定化	西 利治 1.4	1.京大化研, 2.名桜大健康情報, 3.九大超顕微センター, 4.京大院理
13:45		10р-С301-3	金属・有機複合太陽電池の新規発電メカニズムの考察	○松本 渚¹, 加藤 岳仁².3	1.MAS, 2.小山高専, 3.NPO法人エナジーエデュケー ション
14:00		16p-C301-4	種々の親水性有機分子で表面終端した Si 微粒子のエネル ギーギャップ評価	\bigcirc (M1) 松下 大成 1 , 田中 颯 1 , 太田 優 $-^1$, 水野 斎 1 , 松本 公久 1	1. 富山県立大学
14:15		16p-C301-5	Ge コア Si 量子ドットを内包したマイクロディスクから の室温発光特性	○(M2)細井 康揮 ¹ , Yamamoto Yuji ² , Wen Wei- chen ² , 牧原 克典 ¹	1.名大院工, 2.IHP
14:30 14:45	奨	16p-C301-6	体憩/Break 塗布型半導体薄膜作製を目指した金属酸化物ナノ粒子分 散液の作製	○(M2) 齊藤 蓮¹, 石崎 学¹, 栗原 正人¹	1.山形大学大学院
15:00	奨 E	16p-C301-7	Correlation Between Assembly Orders and Performance of PbS Colloidal Quantum Dot Photodetectors	○ (D)Dadan Suhendar¹, Yuto Aoki¹, Ricky Dwi Septianto².¹, Satria Zulkarnaen Bisri¹.²	1.Tokyo Univ. Agri. & Tech., 2.RIKEN CEMS
15:15	奨 E	16p-C301-8	Finding Evidence of Quantum Confinement Effect in Colloidal AgBiS ₂ Quantum Dots for Optoelectronic Devices	○ (M1)Fidya Mawaddah¹, Thanyarat Phutthaphongloet².³.¹, Satria Zulkarnaen Bisri¹.³	1.Tokyo Univ. Agri. & Tech., 2.Tokyo Tech, 3.RIKEN CEMS
15:30	奨 E	16p-C301-9	A Low-Cost Solution-Processable SnTe Nanocrystals for Optoelectronics	○ (D)Thanyarat Phutthaphongloet ^{1,2,3} , Ricky D. Septianto ^{1,3} , Nobuhiro Matsushita ² , Yoshihiro Iwasa ¹ , Satria Z. Bisri ^{1,3}	$1. RIKEN\ CEMS,\ 2. Tokyo\ Inst.\ of\ Tech.,\ 3. Tokyo\ Univ.$ of Agri. & Tech.
15:45	奨 E	16p-C301-10	Solar-heat and UV blocker hybrid thin films with ITO nanoparticles and carbon dots	○ (D)Adrija Das ^{1, 2} , Barun Kumar Barman ¹ , Tadaaki Nagao ^{1, 2}	1.NIMS, 2.Hokkaido University
16:00			休憩/Break		
16:15	招	16p-C301-11	「分科内招待講演」 半導体ナノ構造の機能化による電子・エネルギー素子応 用	○深田 直樹 ^{1.2}	1.物質・材料研究機構, 2.筑波大学
16:45	奨	16p-C301-12	IrO_2 ナノシートを用いた CH_4 センサの開発および評価	○(M2) 欧陽 剣¹, 豊島 遼¹, 内田 建¹	1.東大工
17:00			六方晶 (NH₄) _x WO₃ナノワイヤの酸素アニールによる新奇な電子濃度制御技術		1.東大工
17:15	奨	16p-C301-14	金属酸化物表面とのvan der Waals相互作用に基づく脂肪 族カルボン酸分子識別	○(DC)雷文瑾¹,細見拓郎¹,劉江洋¹,田中航¹,高 橋綱己¹,柳田剛¹.²	1. 東大院工, 2. 九大先導研
17:30	奨	16p-C301-15	ZnOナノワイヤアレイにおける表面積の限界打破と分子 センサデバイス応用		1.北大総合化学院, 2.北大電子研, 3.阪大産研
17:45		16p-C301-16	溶液成長 ZnOナノワイヤの成長後処理による電気絶縁性 向上とその機構解明		1.信州大学, 2.信州大学IFES
18:00		16p-C301-17	ポリスチレン微小球単層最密配列を利用した超高面密度 Siナノワイヤ配列の作製	○(M1)岩田 拓樹 ¹ , 渡辺 健太郎 ^{1,2}	1.信州大学, 2.信州大学 ICCER IFES
18:15	/ T.L.		銀ナノワイヤの金表面における特徴的形状変化 / Nanoelectronics	○渡邉 雄一¹, 栗原 一徳¹, 野村 健一¹	1. 産総研
			口頭講演 (Oral Presentation) D63会場 (Room D63)		
9:00		19a-D63-1	Particle Computation に学ぶ単電子論理ゲートの改良と 進展	○(M1) 水野 創樹 ¹, 大矢 剛嗣 ¹.2	1.横国大院理工, 2.横国大IMS
9:15		19a-D63-2	連展 複数論理ゲートを表現する単電子反応拡散回路に関する 研究	○(M2)田村 啓一朗¹,大矢 剛嗣¹.2	1. 横国大院理工, 2. 横国大 IMS
9:30		19a-D63-3	断元 単電子拡散律速凝集モデルのためのブラウン運動回路の 改良	○宮越 遼河¹, 大矢 剛嗣¹.²	1. 横国大院理工, 2. 横国大IMS
9:45		19a-D63-4	巡回セールスマン問題を解く単電子粘菌回路の性能向上 検討	○竹本 椋¹, 大矢 剛嗣¹.²	1. 横国大理工, 2. 横国大 IMS
10:00		19a-D63-5	検討 熱雑音を利用する三連単電子箱回路の設計と増幅回路へ の応用	○(B)田口 愛梨 ¹ , 大矢 剛嗣 ^{1,2}	1. 横国大理工, 2. 横国大IMS
10:15 10:30		19a-D63-6	休憩/Break 逆積分変換法による1/f雑音の電子トラップ時定数分布 の抽出	○谷田部 然治 ¹, 葛西 誠也 ²	1.熊本大, 2.北大量集センター
10:45		19a-D63-7	静電結合したシリコンナノドット中の単電子熱運動の交 差相関測定	○知田 健作¹, アンドリュー アントワン¹, 西口 克彦¹	1.NTT物性研
	402 T2	19a-D63-8	AC Signal Sensing 6 Orders of Magnitude above Cutoff	○ (P)Chloe Salhani¹, Kensaku Chida¹, Toshiaki Hayashi¹, Katsuhiko Nishiguchi¹	1.NTT BRL
11:00	哭 L		Frequency in Non-equilibrium DRAM	rrayasiii , ixatsuiiikU ivibiligutiii	
11:00	契 L	19a-D63-9	Frequency in Non-equilibrium DRAM DRAM セルのエネルギー効率限界:単電子計数を用いた 真糖度測定		1.NTT 物性基礎研
11:15			DRAMセルのエネルギー効率限界:単電子計数を用いた 高精度測定		1.NTT物性基礎研
11:15	Thu.)	13:00 - 15:15	DRAM セルのエネルギー効率限界:単電子計数を用いた		1.NTT物性基礎研 1.東工大研究院
11:15	Thu.) 招	13:00 - 15:15	DRAM セルのエネルギー効率限界:単電子計数を用いた 高精度測定 口頭講演 (Oral Presentation) D63会場(Room D63) 「分科内招待講演」	○清水 貴勢 ¹ ,知田 健作 ¹ ,山端 元音 ¹ ,西口 克彦 ¹ ○真島 豊 ¹	1.東工大研究院

13:45	19p-D63-3	$Cu_{1.8}S$ ナノブレートトランジスタ	○田中 晴¹, Yin Dongbao¹, 伊澤 誠一郎¹, 猿山 雅亮², 寺西 利治², 真鳥 豊¹	1.東工大フロ研, 2.京大化研
14:00		休憩/Break		
14:15	E 19p-D63-4	Trapping single-C ₆₀ molecules in liquid by static sub-nm gap electrodes	Hongsen Qiu¹, Yue Tian², Xiaohang Qiao⁴, Kazuhiko Hirakawa².³, ○ Shaoqing Du¹.²	1.SIMIT-CAS, 2.IIS, UTokyo, 3.INQIE, UTokyo, 4.UOL
14:30	E 19p-D63-5	Ortho-Para Nuclear Spin Isomer Fluctuations of H ₂ O molecule in H ₂ O@C ₆₀ Single Molecule Transistors	○ (D)Tian Yue¹, Shaoqing Du¹.³, Katsushi Hashimoto⁵, Yoshifumi Hashikawa⁴, Murata	1.IIS, Univ.of Tokyo, 2.INQIE, Univ.of Tokyo, 3.SIMIT, CAS, 4.ICR, Kyoto Univ., 5.Phys. Dept., Tohoku Univ.
14:45	19p-D63-6	AuPd合金ナノギャップ電極の混合比と電気特性の関係	Yasujiro ⁴ , Yoshiro Hirayama ⁵ , Kazuhiko Hirakawa ^{1,2} 〇佐藤 拓真 ¹ , 筒井 優貴 ¹ , 竹井 慎登 ¹ , 内藤 泰久 ² , 塚 越 一仁 ³ , 菅 洋志 ¹	1. 千葉工大, 2. 産総研, 3. 物材機構
15:00	19p-D63-7	原子移動を用いた微細化によるPt/TiOx接合型水素センサの高性能化	〇内藤 泰久¹, 島 久¹, 秋永 広幸¹	1.産総研
	電変換 / Thermoele			
9/17(口頭講演 (Oral Presentation) C301会場(Room C301) 「第56回講演奨励賞受賞記念講演」	○坂根 駿也¹, 鮎川 瞭仁¹, 切通 望¹, 山本 若葉², 安原	1. 茨大院理工, 2. 日本電子, 3. 産総研
13:45	E 17- C201 2	歪み緩和したエピタキシャルMg ₃ Sb ₂ 薄膜の熱電特性	聡 ² , 山下 雄一郎 ³ , 鵜殿 治彦 ¹ ○ (DC)Kenneth Magallon Senados ^{1, 2} , Takashi	1.Tsukuba Uni., 2.NIMS
15:45	E 17p-C301-2	Effects of Annealing on the Stability and Thermoelectric Properties of Li-doped Mg ₂ Sn Epitaxial Films	Aizawa ² , Isao Ohkubo ² , Takeaki Sakurai ¹ , Takao Mori ^{1,2}	1. ISUKUDA OII., Z.INIVIS
14:00	17p-C301-3	RTAの合金化プロセスにおける熱電ホイスラー合金 Fe ₂ VAI薄膜の作製	○飯田 大介¹, 髙村 陽太¹, 中川 茂樹¹	1.東工大工
14:15	17p-C301-4	歪・欠陥制御したZnO薄膜/r-Al ₂ O ₃ のゼーベック係数増	○小松原 祐樹¹, 石部 貴史¹, 佐藤 和則², 中村 芳明¹	1. 阪大院基礎工, 2. 阪大院工
14:30	17p-C301-5	大 特異なバンド構造を有するエピタキシャルB20-CoSi薄膜 /Siの熱電特性	○石部 貴史 ^{1.2} , 佐藤 和則 ³ , 山下 雄一郎 ⁴ , 中村 芳明 ^{1.2}	1. 阪大院基礎工, 2. 阪大OTRI, 3. 阪大院工, 4. 産総研
14:45	15 0001 (休憩/Break		4 L. L.Brighten
15:00	17p-C301-6	コルーサイト系熱電変換材料の電子構造	高橋 聖弥 ⁴ , 西堀 英治 ⁴ , 吉矢 真人 ² , 大瀧 倫卓 ¹	1. 九大院総理工, 2. 阪大院工, 3. 九大院工, 4. 筑波大数理
15:15 15:30	17p-C301-7 17p-C301-8	Fe添加Geクラスレートの作製とその熱電特性の調査 Starrydataにおける過去の熱電材料研究の化学組成分布 体憩/Break	○ (M1) 木村 雄飛¹, 橋國 克明², 阿武 宏明¹ ○桂 ゆかり ^{1,2,3} , 間藤 智也¹, 小山 栄二¹, 田中 敦美¹, Dewi Yana¹, 藤田 絵梨奈 ^{1,4} , 細野 史一¹, 高田 悠¹, 木 村 薫⁴, 熊谷 将也 ^{3,5}	 1.山陽小野田市立山口東理大, 2.九大院工 1.物材機構, 2.筑波大, 3.理研, 4. 統数研, 5. さくらインターネット
15:45 16:00	奨 17p-C301-9	$K_3[\mathrm{Fe}(\mathrm{CN})_6]/K_4[\mathrm{Fe}(\mathrm{CN})_6]$ 水溶液を電解液として用いた	○西井 大雅¹, 松下 祥子¹.2	1.東工大物質, 2.(㈱エレサーモ
16:15	奨 17p-C301-10	半導体増感型熱利用電池の検証 半導体増感型熱利用電池用Ge粉末電極の作製		1.東京工業大学物質理工学院, 2.ローザンヌ連邦工科大
16:30	奨 E 17p-C301-11	Toxic-Element-Free Inverse-Perovskite Oxide Ba ₃ BO (B	チ ² , 松下 祥子 ^{1,3} ○ (PC)XINYI HE ¹ , Shigeru Kimura ¹ , Takayoshi	学, 3.株式会社エレサーモ 1.MDX ES, Tokyo Tech, 2.NIMS
	•	= Si, Ge) with Low Thermal Conductivity and High Thermoelectric Performance	Katase ¹ , Terumasa Tadano ² , Satoru Matsuishi ¹ , Hidenori Hiramatsu ¹ , Hideo Hosono ¹ , Toshio	
[CS.11	】9.4 熱電変換、22	.1 合同セッションM「フォノンエンジニアリング」のコー	Kamiya ¹ ドシェア / Code-sharing Session of 9.4 & M	
9/18(口頭講演 (Oral Presentation) C301会場 (Room C301) SiGe界面と短周期フォノニック結晶ナノ構造による Si薄	○柳澤 喜人¹ 小田皂 綾菇¹² 廿 L 喜炊² 澤野 寒土	1 東大小平 2 東京都市大
		膜の σ/κ 比の向上	郎 1, 2, 野村 政宏 1	
9:15	18a-C301-2	Stranski-Krastanov成長を用いて形成したエピタキシャル Si系ナノドット含有 Ge 薄膜の熱電特性	○柴垣 新', 平田 悠海', 石部 貴史'', 中村 芳明'''	1. 阪大院基礎工, 2. 阪大 OTRI
9:30	E 18a-C301-3	Investigation of Heat Flux Sensitivity of Silicon-Large Scale Integrated Thermoelectric Device	○ (DC)Md MehdeeHasan Mahfuz¹, Taisei Mito¹, Tatsuya Hayashi¹, Takeo Matsuki¹, Takanobu Watanabe¹	1.Waseda Univ.
9:45	18a-C301-4	プレーナ型集積マイクロ熱電発電デバイス発電性能のSi ナノワイヤ幅依存性		1.早大理工
10:00	奨 18a-C301-5	実用熱電材料 $Bi_2Te_{3x}Se_x$ のラマン振動モードのエネルギーと半値幅に対する Se 置換の影響	○劉 鋭安¹,宮田全展¹,小矢野 幹夫¹	1.北陸先端大
10:15 10:30	18a-C301-6	休憩/Break 酸化を抑制したナノバルクSi-Ge系熱電材料の熱電特性	○(M1) 石原 崚伍¹, 奧村 拓真¹, 平田 圭佑¹, 松波 雅	1.豊田工大
10:45	18a-C301-7	多相からなるAg ₃ SnP ₇ 焼結体における複合効果の検討	治¹, 竹内 恒博¹ ○(DC) 中村 太一¹, 宮田 全展¹, 小矢野 幹夫¹	1.北陸先端大
11:00	18a-C301-8	非化学量論組成制御によるCo添加ハーフ・ホイスラー合		1.横国大理工
11:15	E 18a-C301-9		$\bigcirc(M2)UmarFarooq^1,SopheapSam^2,RioOshita^1,\\HiroshiNakatsugawa^1$	1.Yokohama Nat Univ, 2.Nat Inst for Mat Sci
9/19(Thu.) 13:30 - 17:15	口頭講演 (Oral Presentation) C301会場 (Room C301)		
13:30	招 E 19p-C301-1	[The 56th Young Scientist Presentation Award Speech] Mechanochromic polydiacetylene: a breakthrough in	○ Jianlu Zheng, Kaori Sugihara ¹	1.Institute of Industrial Science, The University of Tokyo
13:45	奨 E 19p-C301-2	bio- and force-sensors Boosting CO ₂ Reduction Reaction via Synergistic Photo-Piezocatalysis in Ag-Doped BaTiO ₃ /TiO ₂ Heterostructures	\bigcirc (B)YenChang Chen 1 , TingHan Lin 1 , KuoPing Chiang 1 , JiaMao Chang 1 , MingChung Wu 1	1.Chang Gung Univ.
14:00	E 19p-C301-3	Performance of In-Material Reservoir Computing in a Ferroelectric YMnO ₃ Single Crystal	○ Muzhen Xu¹, Kyoka Furuta², Ahmet Karacali³, Yuki Umezaki², Yuki Usami¹¹³, Yoichi Horibe¹², Hirofumi Tanaka¹¹³	1.Neumorph Center, Kyushu Inst. Tech., 2.Mater. Sci. Eng., Kyushu Inst. Tech., 3.LSSE, Kyushu Inst. Tech,
14:15	奨 E 19p-C301-4	Performance of MoSe2-SWNT in-material reservoir computing device on time-series prediction tasks		1.Kyutech, 2.Waseda University (IPS), 3.Neuromorphic Center
14:30	奨 19p-C301-5	computing device on time-series prediction tasks van der Waals マルチフェロイクス CuCrP ₂ S ₆ の単結晶育成と光電特性評価	○村田 陵河¹, 笹川 崇男¹	1.東工大フロンティア研
14:45	奨 19p-C301-6 奨 E 19p-C301-7	TaSe ₂ の結晶多形制御と磁気輸送特性評価 Electronic structures in magnetic shape memory alloys	○前田 誠貴¹, 笹川 崇男¹ ○(D)Artur Akatov¹, Masao Obata¹, Jakub Lustinec¹,	1.東工大フロンティア研 1.Kanazawa Univ., 2.Tottori Univ.
15:00	-	Fe_3X (X=Pd, Pt) by quasiparticle self-consistent GW	Rinku Majumder ¹ , Takao Kotani ² , Tatsuki Oda ¹	
15:00				
	19p-C301-8	休憩/Break 準粒子自己無撞着 GW 法のよる透明超伝導体の光学特性 研究	○(M1)丹羽陽弥¹,小幡正雄¹,小谷岳生²,小田竜樹¹	1. 金沢大理工, 2. 鳥取大工
15:00 15:15	19p-C301-8 19p-C301-9	準粒子自己無撞着GW法のよる透明超伝導体の光学特性 研究	樹 ¹	

16:15	19p-C301-11 セラ	ミック湿度センサー材料へむけた溶融塩法を用いた	○本田 充紀 ¹.², 早川 虹雪 ¹.², 馬酔木 ゆめの ², 村口	1.原子力機構・物質科学,2.北海道科学大学・工,3.和
	粘土	鉱物からの和田石合成	正和2,小田将人3,飯野千秋3,石井宏幸4	歌山大学・シスエ, 4. 筑波大学・数物
16:30	19p-C301-12 Na-Σ	XゼオライトにおけるPLのAg置換数依存性	○北澤 祐人¹, 鳴海 旬哉¹, 宮永 崇史¹, 鈴木 裕史¹	1. 弘前大院理工研
16:45	19p-C301-13 Na-Y	YゼオライトにおけるPLのAg置換数依存性および	○鳴海 旬哉¹,北澤 祐人¹,宮永 崇史¹,鈴木 裕史¹	1. 弘前大学大学院理工学研究科
	Ag/C	Cu共置換		
17:00	19p-C301-14 Zeol	lite-AにおけるPLのAg置換数依存性	〇鈴木 裕史 1 , 鳴海 旬哉 1 , 佐藤 大和 1 , 目黒 晴輝 1 , 宮	1. 弘前大学大学院理工

17:00	19p-C301-14	Zeolite-AにおけるPLのAg置換数依存性	〇鈴木 裕史 1 , 鳴海 旬哉 1 , 佐藤 大和 1 , 目黒 晴輝 1 , 宮永 崇史 1	1. 弘前大学大学院理工
10 スピ	ントロニクス	ス・マグネティクス / Spintronics and Magn		
シンポジウ	7ムのプログラム	はプログラム冒頭にございます。		
9/19(Thu	19p-P06-1	ポスター講演 (Poster Presentation) P会場(Room P) Y ₂ O ₃ ナノ粒子の磁気特性	○(B)石山和樹¹,府川明弘²,中澤拓斗²,伊藤 風音²,馮小介²,谷川哲彦¹,犬井響熙¹,植木健太¹,高瀬浩⁻¹	1. 日大理工, 2. 日大院理工
	19p-P06-2	MoO ₃ ナノ粒子の室温強磁性	風 活一 〇中澤 拓斗 1 ,府川 明弘 1 ,馮 子介 1 ,伊藤 風音 1 ,石山 和樹 2 ,犬井 響熙 2 ,植木 健太 2 ,高瀬 浩一 2	1. 日大院理工, 2. 日大理工
	19p-P06-3	ZnS、ZnSeナノ粒子の磁気特性	○伊藤 風音 1 , 府川 明弘 1 , 中澤 拓斗 1 , 馮子 1 , 高瀬 浩一 2	1. 日大院理工, 2. 日大理工
	19p-P06-4	電子および正孔スピンの同時注入下における逆スピン Hall効果	○酒井 政道¹	1.埼玉大理工
	19p-P06-5	電子-正孔散乱による運動量緩和の影響を受けたスピン 輸送	○酒井 政道1	1. 埼玉大理工
	19p-P06-6	Fe添加 CdTe/(Cd,Mg)Te量子井戸におけるFeの電荷揺らぎによる励起子発光スペクトルの分裂	○深海 宏太¹, 黒田 眞司¹, 蓬莱 健志郎¹, 古川 園佳¹, Besombes Lucien², Boukari Herve²	
	19p-P06-7	Bi(Fe,Co)Oxにおける超軌道分裂の理論的アプローチ	○福島 鉄也 ¹ , 新屋 ひかり ² , 永沼 博 ^{3,4}	1. 産総研, 2. 東大, 3. 東北大, 4. 名古屋大
	19p-P06-8 19p-P06-9	二酸化バナジウム薄膜中のスピン輸送の温度依存性 電界印加下における半導体超格子バリアの電子スピン輸	 ○ (M2) 西村 匠¹, 神吉 輝夫², 仕幸 英治¹ ○江藤 亘平¹, 樋浦 諭志¹, 高山 純一¹, アグス スバ 	1. 阪公大院工, 2. 阪大産研 1. 北大院情報科学
	•	送特性	ギョ¹, 末岡 和久¹, 村山 明宏¹	
	E 19p-P06-10	Observation of drain current in carbon nanotube transistor with magnetic electrode for organic spin transistor	○ Yuichiro Kurokawa ¹ , Naoki Tanaka ^{2, 3} , Masafumi Inaba ¹ , Naoto Yamashita ¹ , Hiromi Yuasa ¹	1.ISEE, Kyushu Univ., 2.Grad. Sch. Eng, Kyushu Univ., 3.WPI-I2CNER, Kyusyu Univ.
	19p-P06-11	透明導電膜の逆スピンホール効果によるスピン流検出を 用いる有機分子薄膜のスピン輸送特性評価	\bigcirc (M2) 松川 裕利 1 , 山田 奨貴 1 , 高松 恵人 1 , 手木 芳男 1 , 仕幸 英治 1	1.大阪公大院工
	E 19p-P06-12	Experimentally realizable topological chiral edge spin wave on magnonic crystal	\bigcirc (D)Juha Do 1 , Jae Yong CHO 1 , Chun-Yeol YOU 1	1.Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
	19p-P06-13	マグノニック結晶におけるマグノニックバンドギャップ の障壁材料依存性		1. 福岡大理
	19p-P06-14	マグノニック結晶のバンドギャップの障壁高さ依存性	○城門太一¹,洞口泰輔¹,眞砂卓史¹	1.福岡大理
	19p-P06-15	有機金属分解法で作製したイットリウム鉄ガーネット薄膜のスピン波の測定	○(M2)今村 圭佑¹, 真砂 卓史¹, 笠原 健司²	1.福大理, 2.近大産業理工
	E 19p-P06-16	Effects of Magnon Spin-Polarization on Magnon Lifetime in Antiferromagnetic Insulator NiO	Nakamura Kohji ¹	1. Mie Univ.
	19p-P06-17	強磁性層状物質 CrX ₃ (X = Cl, Br, I) の交換相互作用力と 結晶磁気異方性の電子論的考察 Manipulation of the interfacial Dzyaloshinskii-Moriya	○村田尚登¹, Andi Gumarilang¹, 名和 憲嗣¹², 中村浩次¹ ○ (D)Cho Jaeyong¹, Lee Soobeom¹.², Kim	
	E 19p-P06-18	interaction via the ionic gate voltage adaptation 二元系合金の軌道ホール伝導度に関する第一原理的考察	Dongryul ¹ , You Chun-Yeol ¹ ○辻出 裕至 ¹ , 名和 憲嗣 ^{1,2} , 中村 浩次 ¹	1.Department of Physics and Chemistry, DGIST, 2.Basic Science Research Center, DGIST 1. 三重大院工, 2. 物材機構
	E 19p-P06-20	Observation of Spin Seebeck Effect in YIG/Rh	○(B)Shuto Sahara¹, Yuichiro Kurokawa¹, Hiromi	1. 上重人列上,2. 拉拉拉斯 1. Kyushu Univ.
	19p-P06-21	Field-free spin-orbital torque magnetization switching in gallium-doped thulium iron garnet	Yuasa ¹ 〇山下尚人 ^{1,2} , Ngaloy Roselle ² , 黒川 雄一郎 ¹ , 湯浅 裕美 ¹ , Dash Saroj ²	1.九大シス情, 2.チャルマース工科大
	E 19p-P06-22	Spin-current generation by ultrashort laser pulses in a heavy-metal/rare-earth iron garnet heterojunction	○ (M1) Shunsuke Takahashi¹, Yuga You², Kazuto Yamanoi², Yukio Nozaki², Takuya Satoh¹, Kihiro Yamada¹	1.Tokyo Tech, 2.Keio Univ.
	19p-P06-23	MgO(001) 上 CoFe 多層膜の結晶磁気異方性の機械学習と 解釈可能性: 有効な回帰モデルと記述子の探索から		1. 三重大, 2.NIMS
	E 19p-P06-24	Magnetism of $L1_0$ -FePd from angle-dependent XMCD: Theory and experiments	○ Kenji Nawa ^{1, 2} , Samuel Vergara ^{3, 4} , Tetsuro Ueno ⁵ , Hirofumi Nomachi ¹ , Kohji Nakamura ¹ , Hiroshi Naganuma ^{4, 6}	1.Mie Univ., 2.NIMS, 3.ENS-Paris, 4.Tohoku Univ., 5.QST, 6.Nagoya Univ.
	19p-P06-25	第一原理計算によるL1 ₀ 合金の角度依存X線磁気円二色性とスピン・軌道磁気モーメントの解析	○野町 宙史 ¹ , 名和 憲嗣 ^{1,2} , 中村 浩次 ¹	1.三重大院工, 2.物材機構
	19p-P06-26	第一原理計算による (Mn, Fe, Ni) 窒化物の磁気特性の理 論的考察	○中村 考志¹, 梅津 理恵², 石崎 学³, 栗原 正人³	1. 産総研, 2. 東北大, 3. 山形大
	E 19p-P06-27	Dynamic magnetic properties in RuO ₂ /Co-Fe-B stack film	Naganuma ^{1, 2} , Duong Vu ³ , Shoji Ikeda ^{1, 2} , Tetsuo Endoh ^{1, 2, 4, 5}	1.CSIS, Tohoku Univ., 2.CIES, Tohoku Univ., 3.IoP, VAST, 4.ECEI, Tohoku Univ., 5.RIEC, Tohoku Univ.
	19p-P06-28	フェリ磁性 Co_2Mn_2C 薄膜における侵入炭素サイトの解明	上慎二1	1. 物材機構, 2.RRCAT, 3. 高エネ研
	E 19p-P06-29	Effect of hydrogen annealing in CoFeB/MgO system	○ (M1)Noriyuki Seki¹, Toshiaki Morita¹, Daichi Chiba¹. ².³, ⁴, Tomohiro Koyama¹. ².³, ⁵	1.SANKEN, Osaka Univ., 2.CSRN, Osaka Univ., 3. OTRI, Osaka Univ., 4.SRIS, Tohoku Univ., 5.JST PRESTO
	19p-P06-30 19p-P06-31	CoPt 合金ナノ粒子の磁気プラズモニック特性 電子ビーム蒸着法で作製した (100) 配向 β - Sn/M (M = Ni,Cu) 積層膜の超伝導と磁性	○(M2)張晨¹,石田 拓也¹,イスンヒョク¹,立間 徹¹○熊澤 宏紀¹,山田 啓介¹,嶋 睦宏¹	1.東大生研 1.岐阜大院自
	E 19p-P06-32	Investigation of magnetic properties in gallium-doped epitaxial thulium iron garnet using Brillouin light scattering	○ (D)Soojung KIM¹, Naoto YAMASHITA², Soobeom LEE¹, Chun-Yeol You¹	1.Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea, 2.Faculty of Information Science and Electrical Engineering, Kyushu Univ., Japan
	19p-P06-33	フェライト垂直磁化絶縁層の作製	男², 日原 岳彦¹, 壬生 攻¹	1. 名工大工, 2. 京大化研
	19p-P06-34	二元化合物 $\operatorname{Cr}_{1\cdot\delta}$ Te 薄膜の MBE 成長 \sim 成長温度による結晶構造変化		1. 筑波大数理物質, 2. 高エネ研
	19p-P06-35	希薄磁性半導体粉末における強磁性発現条件の解明	○矢野智識¹,村山真理子¹.²,趙新為¹	1.東理大理, 2.東洋大工技研
	19p-P06-36	強磁性共鳴下の強磁性金属膜に発生する起電力を利用した充電技術 ※執磁気記録を用いた微細磁区の形成を性の検討	○ (M2) 藤井 龍徳', 辻井 浩佑', 仕幸 英治' ○本間 拓真¹, 坂口 穂貴¹, 野中 尋史², 鷲見 聡³, 粟野	1.大阪公立大学
	19p-P06-37	光熱磁気記録を用いた微細磁区の形成条件の検討	○本間 拍具 ', 坂口 槵頁 ', 野中 尊史 ', 寫見 恥 ', 楽野 博之 ³ , Chafi Fatima Zahra ¹ , 石橋 隆幸 ¹	1. 区門12件人, 5. 复加工人, 5. 豆田工人

	19p-P06-38	座屈状自己組織化磁性粒子を利用した外部環境記憶マイクロロボット	○井口 恵吾¹, 斎木 敏治¹	1. 慶大理工
	19p-P06-39	Ni ₇₈ Fe ₂₂ /Erq ₃ /FeCo分子スピントロニクスデバイスにお けるスピン信号の観測	〇宮本 龍之介 1 , 松坂 美月 1 , 谷口 真理 1 , 上田 拓海 1 , 橋本 千佳 1 , 鹿嶋 倖太郎 1 , 安藤 和也 $^{1.2}$, 海住 英生 $^{1.2}$	1.慶大理工, 2.慶大スピンセンター
	E 19p-P06-40	Fabrication of nanoscale magnetoresistance devices using chiral molecules	○ Mizuki Matsuzaka ¹ , Ryunosuke Miyamoto ¹ , Kotaro Kashima ¹ , Takumi Ueda ¹ , Takashi Yamamoto ¹ , Kohei Sambe ² , Tomoyuki Akutagawa ² , Hideo Kaiju ^{1,3}	1.Keio Univ., 2.IMRAM, Tohoku Univ., 3.CSRN, Keio Univ.
	E 19p-P06-41	Tunnel Magnetoresistance devices fabricated on polyimide		1.Kyushu Univ.
	19p-P06-42	film attached to PDMS 磁気渦スピントルク発振器のポテンシャルがダイナミク	↑ (D) 堀住 耕太¹, 千葉 貴裕²³, 小峰 啓史¹	1. 茨城大院, 2. 東北大工, 3. 東北大学際研
	19p-P06-43 E 19p-P06-44	スに及ぼす影響 磁気トンネル接合を用いた高出力電圧磁気センシング Investigation of exchange bias field in magnetic multilayer	-	1. 慶大理工 , 2. ブラウン大物理 , 3. 慶大スピンセンター 1.Kyushu Univ.
	E 19p-P06-45	fabricated by coating Dielectric constant and VCMA effect of epitaxial MgO tunnel barrier	Hiromi Yuasa¹ ○ Tomohiro Nozaki¹, Hiroshige Onoda¹, Shingo Tamaru¹, Hiroyasu Nakayama¹, Makoto Konoto¹, Takayuki Nozaki¹, Shinji Yuasa¹	1.AIST
	E 19p-P06-46	Data-writing and shift processes toward a vertical domain wall motion memory with perpendicular magnetic anisotropy	○ Feifan Ye ¹ , Heechan Jang ¹ , Yoichi Shiota ^{1, 2} , Hideki Narita ¹ , Ryusuke Hisatomi ^{1, 2} , Shutaro Karube ^{1, 2} , Satoshi Sugimoto ³ , Shinya Kasai ³ , Teruo Ono ^{1, 2}	1.ICR, Kyoto Univ., 2.CSRN, Kyoto Univ., 3.NIMS
	19p-P06-47	GdFe磁性細線における電流駆動磁壁の磁気光学検出系の構築	○ (M2) 鈴木 紀行 ¹ , Mojtaba Mohammadi ¹ , 鷲見 聡 ¹ , 田辺 賢士 ¹ , 粟野 博之 ¹	1. 豊田工大
	19p-P06-48	GdFe磁性細線メモリにおける磁界記録磁壁と光磁気記録磁壁の電流駆動速度比較		1. 豊田工大
	E 19p-P06-49	Effect of Pulse Duration on Domain Wall Motion in	$\bigcirc(P)$ Mojtaba Mohammadi $^{\!1}$, Satoshi Sumi $^{\!1}$, Kenji	1.Spintronics Laboratory, Toyota Technological Institute
	19p-P06-50	Ferrimagnetic GdFe Nanowires 3次元デバイスを目指した凹凸構造側面部への垂直磁化	Tanabe ¹ , Hiroyuki Awano ¹ 〇安田 優也 ¹ , 黒川 雄一郎 ² , 鷲見 聡 ¹ , 粟野 博之 ¹ , 田	Nagoya 468-8511, Japan 1. 豊田工大工, 2. 九州大工
.0.1 新	物質・新機能創成(膜の作製 作製・評価技術)/ Emerging materials in spintronics and	辺賢士 ¹ magnetics (including fabrication and characterizati	on methodologies)
	(Fri.) 9:00 - 11:30	口頭講演 (Oral Presentation) D61会場 (Room D61)		
9:00	E 20a-D61-1	【注目講演】Room-temperature flexible manipulation of the quantum-metric structure in a topological chiral antiferromagnet	○ Jiahao Han ^{1, 2} , Tomohiro Uchimura ^{1, 3} , Yasufumi Araki ⁴ , Ju-Young Yoon ^{1, 3} , Yutaro Takeuchi ² , Yuta Yamane ^{1, 5} , Shun Kanai ^{1, 2, 3, 6, 7, 8, 9} , Junichi Ieda ⁴ , Hideo Ohno ^{1, 2, 3, 8, 10} , Shunsuke Fukami ^{1, 2, 3, 8, 11}	1.RIEC, Tohoku Univ., 2.AIMR, Tohoku Univ., 3.Eng., Tohoku Univ., 4.ASRC, JAEA, 5.FRIS, Tohoku Univ., 6.PRESTO, JST., 7.DEFS, Tohoku Univ., 8.CSIS, Tohoku Univ., 9.QST, 10.CIES, Tohoku Univ., 11.InaRIS
9:15	E 20a-D61-2	Magnetic Phase Diagram of Non-Collinear $Antiferromagnet\ Mn_{3+x}Sn_{1-x}\ Thin\ Films$	○ Katarzyna Gas ^{1,2} , Ju-Young Yoon ^{3,4} , Yuma Sato ^{3,4} , Hiroki Kubota ^{3,4} , Jaroslaw Z. Domagala ² , Piotr Dluzewski ² , Yadhu K. Edathumkandy ² , Yutaro Takeuchi ^{3,5,6} , Shun Kanai ^{1,3,4,5,7,8,9} , Hideo Ohno ^{1,3,5,10} , Maciej Sawicki ^{2,3} , Shunsuke Fukami ^{1,3,4,5,10}	1.CSIS, Tohoku Univ., 2.Institute of Physics PAS, 3. Laboratory for Nanoelectronics and Spintronics, RIEC, Tohoku Univ., 4.Graduate School of Engineering, Tohoku Univ., 5.WPI-AIMR, Tohoku Univ., 6.ICYS, NIMS, 7.PRESTO, JST, 8.DEFS, Tohoku Univ., 9. NIQST, 10.CIES, Tohoku Univ
9:30	E 20a-D61-3	Improved magnetic properties in CoFeB/MgFeO multilayers with Fe segregated interfaces	○ Tomohiro Ichinose¹, Tatsuya Yamamoto¹, Takayuki Nozaki¹, Kay Yakushiji¹, Shingo Tamaru¹, Shinji Yuasa¹	1.AIST
9:45	E 20a-D61-4	Characterization of spin polarization in ordered Co-based full Heusler $Co_2FeAl_{0.35}Si_{0.67}$ alloy thin films using nano-contact Andreev reflection technique	○ (M2)Syunki Kameoka ¹ , Togo Miyake ¹ , Jin Ow ¹ , Yota Takamura ¹ , Shigeki Nakagawa ¹	1.Tokyo Tech.
10:00 10:15	E 20a-D61-5	Large Magnetoresistance and High Spin-Transfer Torque Efficiency of $Co_2Mn_xFe_{1\cdot x}Ge$ ($0 \le x \le 1$) Heusler Alloy Thin Films Obtained by High-Throughput Compositional Optimization Using Combinatorially Sputtered Composition-Gradient Film 体態/Break	○ (PC)Vineet Barwal ¹ , Hirofumi Suto ¹ , Ryo Toyama ¹ , Taisuke Sasaki ¹ , Yuya Sakuraba ¹	1.NIMS
0:30	E 20a-D61-6	Positive and negative anomalous Nernst coefficients in	○ (P)Nanhe Kumar Gupta ¹ , Ryo TOYAMA ¹ ,	1.Research Center for Magnetic and Spintronic
		2-dimensional layered MnAlGe thin films with large magnetic anisotropy	Benugopal BAIRAGYA ¹ , Keisuke MASUDA ¹ , Yuya SAKURABA ¹	Materials, National Institute for Materials Science
10:45	E 20a-D61-7	Direct-Contact Seebeck-Driven Transverse Magneto- Thermoelectric Generation in Magnetic / Thermoelectric Bilavers	\bigcirc Weinan Zhou $^{\rm l},$ Taisuke Sasaki $^{\rm l},$ Ken-ichi Uchida $^{\rm l},$ Yuya Sakuraba $^{\rm l}$	1.NIMS
1:00	奨 E 20a-D61-8	Anomalous Nernst effect and magnetic structures of Pd/ Co multilayers	○ (M2)Hayato Kudo¹, Yasuo Takeichi², Shohei Yamashita³, Bowen Qiang¹, Toshio Miyamachi¹, Kanta Ono², Masaki Mizuguchi¹	1.Nagoya Univ., 2.Osaka Univ., 3.KEK-IMSS
11:15	奨 E 20a-D61-9	Observation of the giant anomalous Nernst effect in the Weyl ferromagnet Co_2MnGa polycrystalline films	○ (P)Ryota Uesugi ^{1, 2} , Tomoya Higo ^{1, 2, 3} , Satoru Nakatsuji ^{1, 2, 3, 4, 5}	1.Dep. of Phys., Univ. of Tokyo, 2.ISSP, Univ. of Tokyo, 3.CREST, JST, 4.TSQS, Univ. of Tokyo, 5.IQM, JHU
9/20(13:00	Fri.) 13:00 - 17:00 20p-D61-1	口頭講演 (Oral Presentation) D61会場(Room D61) Magnetic compensation of epitaxial Mn _{4-x} Cu _x N at room	○安田 智裕¹, 旗手 蒼¹, 雨宮 健太², 末益 崇¹	1. 筑波大, 2. 高エネ研
13:15	E 20p-D61-2	temperature $\label{eq:constraints} Anomalous \ Nernst \ effect \ in \ heavy-metal-substituted \ Fe_4N$	○ Keita Ito¹, Takeshi Seki¹.²	1.IMR, Tohoku Univ., 2.CSIS, Tohoku Univ.
13:30	E 20p-D61-3	films All-in-one evaluation method for transverse thermoelectric properties of a single magnetic thin film	\bigcirc Takumi Yamazaki¹, Norihiko L. Okamoto¹, Tetsu Ichitsubo¹, Takeshi Seki¹.²	1.IMR, Tohoku Univ., 2.CSIS, Tohoku Univ.
3:45	E 20p-D61-4	device Low-temperature measurements of the anomalous Ettingshausen effect using lock-in thermography	○Takumi Imamura ^{1, 2} , Takamasa Hirai ² , Ken-ichi Uchida ^{1, 2, 3}	1.Univ. of Tsukuba, 2.NIMS, 3.Univ. of Tokyo
4:00 4:15	E 20p-D61-5	休憩/Break Detecting Compensated Magnetic Moments in	○ Jun Okabayashi¹, Zhenchao Wen², Cong He²,	1.UTokyo, 2.NIMS, 3.Kyoto Inst. Tech.
14:30	E 20p-D61-6	$\label{eq:continuous} Altermagnetic RuO_2 \\ X-ray helicity-dependent ultrafast demagnetization in a \\ Pt/Co/Pt multilayer \\$	Yoshio Miura³, Seiji Mitani² ○ Kihiro Yamada¹, Rei Kobayashi², Itaru Sugiura³, Yuya Kubota⁴,⁵, Aoi Gocho⁶, Yusuke Akiyama², Kaiki Takemura², Sota Sasakura⁶, Keisuke Kaneshima⁶, Takuo Ohkouchi⁴,⁶, Iwao Matsudaˀ, Teruo Ono³, Tadashi Togashi⁴,⁵, Yoshihito Tanaka⁶, Motohiro Suzuki²	1.Tokyo Tech, 2.Kuwansei Univ., 3.ICR, Kyoto Univ., 4.JASRI, 5.RIKEN, 6.Hyogo Univ., 7.U Tokyo
	20p-D61-7	イオン注入によりSi中に形成した強磁性マンガンシリサ		1.NTT物性研

15:00	E 20p-D61-8	Hydrogen annealing effect on ferromagnetic ultra-thin films	\bigcirc Tomohiro Koyama 1,2,3,4 , Noriyuki Seki 1 , Daichi Chiba 1,3,4,5	1.SANKEN, Osaka Univ., 2.JST PRESTO, 3.CSRN, Osaka Univ., 4.OTRI, Osaka Univ., 5.SRIS, Tohoku Univ.
15:15	奨 E 20p-D61-9	Strain induced reversible sign change of the anomalous Hall effect	\bigcirc Toshiaki Morita $^{\!1}$, Tomohiro Koyama $^{\!1,2,3,4}$, Daichi Chiba $^{\!1,2,3,5}$	
15:30 15:45	E 20p-D61-10	休憩/Break $ Preparation \ and \ characterization \ of \ Fe_3O_4 \ thin \ films \ on $ $ graphene $	○ Shodai Iwasaki¹, Agus Subagyo¹, Eko Ishihara¹, Katsuyuki Yagi¹, Koki Nakane¹, Hidehiro Jonai¹, Eiji Hatta¹, Kazuhisa Sueoka¹	1.IST, Hokkaido Univ.
16:00	E 20p-D61-11	Perspective high-temperature oxides: theoretical study	○ (D)Martin Heczko¹, Masao Obata², Renaud Patte³, Denis Ledue³, Tatsuki Oda², Martin Zeleny¹	1.Brno Univ. of Tech., 2.Kanazawa Univ., 3.Univ. Rouen Normandy
16:15	*	L10秩序合金/2次元物質界面の原子スケール構造の第一原理計算	ミュエル ^{2,3} ,新屋 ひかり ⁴ ,永沼 博 ^{3,5} ,小野 倫也 ¹	1. 神戸大工, 2. バリ高等師範, 3. 東北大, 4. 東京大, 5. 名 古屋大
16:30		第一原理計算による FeNi/2D materials 界面の原子構造予測 First-principles study of magnetostriction and damping in	但1	1. 神戸大工 1. NIMS, 2.IMR, Tohoku Univ., 3.CSIS, Tohoku Univ.
		$\mathrm{Fe}_{4x}\mathrm{Co}_{4-4x}\mathrm{N}$ 『的デバイス技術 / Fundamental and exploratory device te	Yoshio Miura ¹	TAVANO, ZAMAN, TOROKO ORIV., OCOMO, TOROKO ORIV.
9/16	(Mon.) 9:00 - 11:15	口頭講演 (Oral Presentation) D61会場 (Room D61)		
9:00	奨 E 16a-D61-1	Growth and evaluation of highly textured BiSb(001) topological insulator on Si/SiO _x	O (M1) Wentao Li ¹ , Huy H.H. ¹ , S. Takahashi ² , Y. Hirayama ² , Y. Kato ² , Nam Hai Pham ¹	1. Tokyo Tech, 2. Samsung Japan Corp.
9:15	E 16a-D61-2	Spin Hall effect in annealed BiSb topological thin films deposited on $\mathrm{Si/SiO_x}$ substrates	\bigcirc (D)HOANGHUY HO¹, WENTAO L.¹, TAKAHASHI S.², HIRAYAMA Y.², KATO Y.², NAM HAI PHAM¹	1.Tokyo Tech., 2.Samsung Japan Corp.
9:30	奨 E 16a-D61-3	Enhancement of SOT-driven domain wall motion in wide heavy metal width structure	$\bigcirc(DC)KimDongryul^1$, Sooboem Lee 1 , Chun-Yeol You^1	1.DGIST
9:45	16a-D61-4	ビエゾエレクトロニック磁気抵抗素子における円環型圧 電印加構造が誘起する応力の有限要素法解析 休憩/Break	○(M2)山田 海衆¹, 高村 陽太¹, 中川 茂樹¹	1.東工大工
10:15	招 16a-D61-5	「第56回講演奨励賞受賞記念講演」 非線形電気伝導におけるキラルな軌道テクスチャ	○廣部 大地¹, 奥村 卓¹, 田中 隆太郎¹	1.静岡大理
10:30 10:45	16a-D61-6 E 16a-D61-7	【注目講演】電圧制御された単一磁性体による連想記憶 Reservoir Computing Utilizing Transient Dynamics of Spin-Hall Nano-Oscillators	○谷口 知大 ¹ , 今井 悠介 ² ○ Aakanksha Sud ^{2, 1} , Akash Kumar ^{3, 6} , Maha Khademi ⁷ , Johan Akerman ^{1, 6} , Shunsuke Fukami ^{1, 3, 4, 5}	1. 産総研, 2. 東大 1.RIEC, Tohoku Univ., 2.FRIS, Tohoku Univ., 3. CSIS, Tohoku Univ., 4.CIES, Tohoku Univ., 5.WPI- AIMR, 6.Univ. of Gothenburg, 7.Chalmers Univ.
11:00	E 16a-D61-8	Investigating the origin of cluster spin glass behavior in low-damped garnet-based ferrimagnet towards neuromorphic computation	○ (PC)shamim sarker¹, Haining Li², EMK Ikball Ahamed¹, Hiroyasu Yamahara¹, Siyi Tang¹, Zhiqiang Liao¹, Tetsuya Iizuka¹, Munetoshi Seki¹, Hitoshi Tabata¹	1.Tokyo Univ
		口頭講演 (Oral Presentation) D61会場 (Room D61)	0(=)= 1== 1== 1== 1== 1== 1== 1== 1== 1==	
13:00	奨 E 16p-D61-1	MgO thickness dependence of the intrinsic Gilbert damping in the V/Fe/MgO multilayer	○ (D)Jieyi Chen¹, Shoya Sakamoto¹, Hidetoshi Kosaki¹, Erkang Wei¹, Tempei Hatajiri¹, Shinji Miwa¹.²	1.ISSP, Univ. Tokyo, 2.TSQS, Univ. Tokyo
13:15	E 16p-D61-2	Magnetic damping of epitaxial Fe/Pt/MgO and Pt/Fe/MgO multilayers	○ (M2)Erkang Wei¹, Shoya Sakamoto¹, Jieyi Chen¹, Hidetoshi Kosaki¹, Tempei Hatajiri¹, Shinji Miwa¹.²	1.ISSP-UTokyo, 2.TSQS-UTokyo
13:30	E 16p-D61-3	Magnetic damping of NiFe thin films grown on two- dimensional chiral hybrid lead-iodide perovskites	Tempei Hatajiri¹, Shoya Sakamoto¹, Hidetoshi Kosaki¹, Zikang Tian¹, Miuko Tanaka¹, Toshiya Ideuœ¹, Keiichi Inouœ¹, Daigo Miyajima²³, ○ Shinji Miwa¹.⁴	1.ISSP, Univ. Tokyo, 2.CEMS, RIKEN, 3.CUHK, 4. TSQS, Univ. Tokyo
13:45	16p-D61-4	静磁モードスピン波におけるマグノンホール効果の観測	本 聡 ^{1, 3, 4} , Back Christian ²	1. 東北大, 2. ミュンヘン工科大, 3. 東北大CSIS, 4.NIMS
14:00	16p-D61-5	イットリウム鉄ガーネットを用いた完全バンドギャップ を示す二次元マグノニック結晶 休憩/Break	○後藤 太一¹,森 冠太¹,渡邉 聡明²,高口 拓己¹,宮下響¹,井上 光輝¹,石山 和志¹	1.東北大通研, 2.信越化
14:30	奨 E 16p-D61-6	Dynamic control of spin wave propagation by electric field in space inversion symmetry broken Iron Oxide Garnet thin films	○ (D)EMK IKBALL AHAMED¹, Md Shamim Sarker¹, Hiroyasu Yamahara¹, Haining Li¹, Siyi Tang¹, Munetoshi Seki¹, Hitoshi Tabata¹	1.Univ. of Tokyo
14:45	E 16p-D61-7	Magnonic Band Gap Control by The Wall Width Modulation in a 1D Magnonic Crystal	○ Taisuke Horaguchi¹, Yuma Takeda¹, Takushi Manago¹	1.Fukuoka Univ.
15:00	奨 16p-D61-8	Enhanced non-linear growth of magnon transconductance in a Bi-doped YIG with a perpendicular anisotropy	○河野 竜平¹, Kyongmo An¹, Eric Clot¹, Vladimir Naletov¹, Nicolas Thiery¹, Laurent Vila¹, Richard Schlitz², Nathan Beaulieu³, Jamal Ben Youssef³, Abdelmadjid Anane⁴, Vincent Cros⁴, Hugo Merbouche⁴, Thomas Hauet⁵, Vlad Demidov⁴, Sergej Demokritov⁴, Gregoire de Leubens⁴, Olivier Klein¹	1. グルノーブル・アルプ大, 2. スイス連邦工科大学 チューリッヒ校, 3. ブルターニュ・オキシダンタル大, 4. バリ・サクレー大, 5. ロレーヌ大, 6. ミュンスター大
15:15	E 16p-D61-9	eq:magnetoelastic transmission of surface acoustic-waves on a YIG/GGG substrate	~	1.NTT BRL
15:30 15:45	奨 E 16p-D61-10	休憩/Break Anomalous Nernst effect in Fe/Au/Fe trilayers	(D)JUNUEI CHAN¹, BOWEN QIANG¹, Toshio	1.Nagoya university
	NS P 16 D(1 11	Thickness dependence of the anomalous Nernst effect in	Miyamachi ¹ , Masaki Mizuguchi ¹ O Soichiro Mochizuki ¹ , Itaru Sugiura ² , Tetsuya	1.Tokyo Tech, 2.Kyoto Univ.
16:00	奨 E 16p-D61-11	Co thin films studied by local laser heating	Narushima ¹ , Teruo Ono ² , Takuya Satoh ¹ , Kihiro	
16:00 16:15	乗 E 16p-D61-11 16p-D61-12		Yamada ¹	1. 豊田工大, 2. リーズ大, 3. 九大

		ミメモリ・ストレージ技術 / Spin devices, magnetic memo	ries and storages	
9/170 9:00	(Tue.) 9:00 - 11:30 E 17a-D61-1	口頭講演 (Oral Presentation) D61 会場 (Room D61) Searching for Cu-X spacers with a half-metallic Co ₂ FeGa _{0.5} Ge _{0.5} electrode to boost magnetoresistance in CPP-GMR devices using first-principles calculations	○ (D)Kodchakorn SIMALAOTAO ^{1,2} , Ivan Kurniawan², Yoshio Miura ^{2,3} , Yuya Sakuraba ^{1,2}	1.Univ. of Tsukuba, 2.NIMS, 3.KIT
9:15	E 17a-D61-2	Theoretical approach for the TMR oscillation as a function of the barrier thickness	○ Keisuke Masuda¹, Thomas Scheike¹, Hiroaki Sukegawa¹, Yusuke Kozuka¹, Seiji Mitani¹, Yoshio Miura¹.²	1.NIMS, 2.KIT
9:30	E 17a-D61-3	Ab-initio study on spin-transport properties of Fe/Mn/MgO/Mn/Fe and Co/Mn/MgO/Mn/Co magnetic tunnel iunctions	○ Tufan Roy¹, Masahito Tsujikawa², Masafumi	1.CSIS, Tohoku Univ., 2.RIEC, Tohoku Univ.
9:45	E 17a-D61-4	Fel(001) magnetic tunnel junctions using MgO terminations as a Ga diffusion barrier	○ (D)Rombang Rizky Sihombing ^{1,2} , Thomas Scheike ¹ , Zhenchao Wen ¹ , Jun Uzuhashi ¹ , Tadakatsu Ohkubo ¹ , Seiji Mitani ^{1,2} , Hiroaki Sukegawa ¹	1.NIMS, 2.Univ. Tsukuba
0:00	17a-D61-5 E 17a-D61-6	磁気トンネル接合のフラッシュランプアニーリングと微 細構造観察 Low magnetic damping recording layer for reducing	○今井 亜希子¹, 太田 進也¹² 山崎 順³, 荒木 徽平¹, 金井 康¹.⁴.⁶, 小山 知弘¹.⁵.⁶, 関谷 毅¹, 千葉 大地¹.⁴.⁵.ۉ ○ Tatsuya Yamamoto¹, Tomohiro Ichinose¹,	1. 阪大産研, 2. 東大物工, 3. 阪大電顕セ, 4. 東北大 SRIS 5. 阪大 CSRN, 6. 阪大 OTRI 1.AIST
0.20	NG P 17 DC1 7	write-errors in voltage-driven magnetization switching	Takayuki Nozaki ¹ , Shingo Tamaru ¹ , Kay Yakushiji ¹ , Hitoshi Kubota ¹ , Shinji Yuasa ¹	ADDITION THE HE AG LIGHT THE
10:30	奨 E 17a-D61-7	Probabilistic computing accuracy with various types of random telegraph noise from stochastic magnetic tunnel junctions	○ Haruna Kaneko ^{1, 2} , Shun Kanai ^{1, 2, 3, 4, 5, 6, 7} , Hideo Ohno ^{5, 8} , Shunsuke Fukami ^{1, 2, 5, 6, 8, 9}	1.RIEC, Tohoku Univ., 2.Grad. School of Eng., Tohoku Univ., 3.JST PRESTO, 4.DEFS, Tohoku Univ., 5.CSIS, Tohoku Univ., 6.WPI-AIMR, Tohoku Univ., 7.QST, 8.CIES, Tohoku Univ., 9.InaRIS
0:45	奨 E 17a-D61-8	Chaotic dynamics of spintronic oscillator with tunable anharmonic potential	○ (M1)Ryo Tatsumi¹, Takahiro Chiba¹, Takash Komine², Hiroaki Matsueda¹	1.Tohoku Univ., 2.Ibaragi Univ.
11:00	E 17a-D61-9	Microwave control of chiral spin rotation in a non-collinear antiferromagnet Mn_3Sn	○ Shoya Sakamoto ¹ , Takuya Nomoto ² , Tomoya Higo ^{3,1} , Yuki Hibino ⁴ , Tatsuya Yamamoto ⁴ , Shingo Tamaru ⁴ , Yoshinori Kotani ⁵ , Hidetoshi Kosaki ¹ , Masanobu Shiga ¹ , Daisuke Nishio-Hamane ¹ , Tetsuya Nakamura ^{6,5} , Takayuki Nozaki ⁴ , Kay Yakushiji ⁴ , Ryotaro Arita ^{2,7} , Satoru Nakatsuji ^{3,1,8,9} , Shinji Miwa ^{1,8}	1.ISSP, Univ. of Tokyo, 2.RCAST, Univ. of Tokyo, 3. Phys. Dept., Univ. of Tokyo, 4.AIST, 5.JASRI, 6.SRIS, Tohoku Univ., 7.RIKEN, 8.TQSI, Univ. of Tokyo, 9. Johns Hopkins Univ.
11:15	17a-D61-10	Co/Ni積層膜における磁歪効果に起因した垂直スピン軌 道トルクの生成		1. 物材機構, 2. 京大化研
		・超伝導・強相関スピントロニクス / Spintronics in semi	iconductor, topological material, superconductor, and	d multiferroics
	Wed.) 13:00 - 18:45 奨E 18p-D61-1	口頭講演 (Oral Presentation) D61会場(Room D61) Giant Odd-parity Magnetoresistance in an α-Sn/	○ Harunori Shiratani¹, Yuta Okuyama¹, Le Duc	1.Department of Electrical Engineering and Information
		(In,Fe)Sb Heterostructure	Anh ^{1, 2} , Masaaki Tanaka ^{1, 2}	Systems, The Univ. of Tokyo, 2.CSRN, The Univ. of Tokyo
3:15	18p-D61-2	Fe ₃ Si/FeSi ₂ 超格子の温度と磁場による磁気構造変化	○ 花島 隆泰 1 , 鈴木 淳市 1 , 加倉井 和久 2 3 1 , 宮田 登 1 , 堺 研一郎 4 , 出口 博之 5 , 原 嘉昭 6 , 竹市 悟志 7 , 吉武 剛 8	1.CROSS, 2. 東北大, 3.理研, 4.久留米高専, 5.九工大, 6. 茨城高専, 7. 佐世保高専, 8. 九州大学
13:30	E 18p-D61-3	Magnetoelectric switching phenomena in electron-doped hexagonal improper ferroelectrics displaying topologically protected magnetoelectric vortex state	○ Hena Das ^{1,2}	1.Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina 243-0435, Japan, 2.Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503 Japan
3:45	奨 E 18p-D61-4	Interlayer electron transfer from WS_2 monolayers to III–V semiconductor substrates enhanced by surface treatments		1.Grad. Sch. Eng., Tohoku Univ., 2.NTT Basic Researd Laboratories, 3.CSIS, Tohoku Univ., 4.QST
4:00	18p-D61-5	Observation of superconducting diode effect in a Fe(Se,Te)/FeTe heterostructure device	○塩貝 純一 1.2, 小林 友祐 1, 野島 勉 3, 松野 丈夫 1.2	1. 阪大理, 2. 阪大 OTRI, 3. 東北大金研
4:15	奨 E 18p-D61-6	Nonreciprocal transport in FeSe superconducting thin films	○ (M2)Mio Hashimoto¹, Tomoki Kobayashi¹, Tomoyuki Yokouchi¹, Takako Konoike², Shinya Uji², Atsutaka Maeda¹, Yuki Shiomi¹	1.The Univ. of Tokyo, 2.NIMS
4:30	奨 E 18p-D61-7	Oscillatory conduction behavior and its magnetic-field-induced enhancement in an all-epitaxial La _{2/3} Sr _{1/3} MnO ₃ /SrTiO ₃ /Nb:SrTiO ₃ tunneling heterostructure 休憩/Break	○ (DC)Tatsuro Endo¹, Masaaki Tanaka¹.², Shinobu Ohya¹.²	1.EEIS, Univ. of Tokyo, 2.CSRN, Univ. of Tokyo
5:00	奨 E 18p-D61-8	Electron spin dynamics in dilute nitride InGaAsN quantum dots grown at different temperatures	○Ayano Morita¹, Satoshi Hiura¹, Junichi Takayama¹, Akihiro Murayama¹	1.Hokkaido Univ.
5:15	奨 E 18p-D61-9	Room temperature voltage control of optical spin polarization maintaining photoluminescence intensity using 0D-2D semiconductor nanostructure	○ Hiroto Kise¹, Satoshi Hiura¹, Junichi Takayama¹, Kazuhisa Sueoka¹, Akihiro Murayama¹	1.IST, Hokkaido Univ.
5:30	E 18p-D61-10	Effect of spin diffusion on spin dynamics under persistent spin helix regime in a GaAs/AlGaAs semiconductor	○ Koga Akagi ^¹ , Jun Ishihara ^¹ , Sota Yamamoto ^¹ , Yuzo Ohno ^² , Makoto Kohda ^{¹, 3, 4, 5}	1.Grad. Sch. of Eng., Tohoku Univ., 2.Univ. of Tsukuba 3.CSIS, Tohoku Univ., 4.DEFS, Tohoku Univ., 5. QUARC, QST
5:45	奨 E 18p-D61-11	quantum well Drift-Induced Wavelength Modulation of Electron Spin Waves in Quasi-One-Dimensional GaAs/AlGaAs Quantum Well	○ Futa Sugawara¹, Keito Kikuchi¹, Jun Ishihara¹, Sota Yamamto¹, Yuzo Ohno², Makoto Kohda¹.³.⁴.⁵	QUARC, QS1 1.Grad. Sch. of Eng., Tohoku Univ., 2.Univ. of Tsukuba 3.CSIS, Tohoku Univ., 4.DEFS, Tohoku Univ., 5. QUARC, QST
6:00	奨 E 18p-D61-12	Enhancement of Rashba Spin-Orbit Interaction Based on Quaternary InGaAsP/InGaAs Single Quantum Well by Bayesian Optimization	○ Keito Kikuchi¹, Kohei Yoshizumi¹, Sota Yamamoto¹, Jun Ishihara¹, Makoto Kohda¹.².³.⁴	1.Grad. Sch. of Eng., Tohoku Univ., 2.CSIS, Tohoku Univ., 3.DEFS, Tohoku Univ., 4.QUARC, QST
6:15	奨 E 18p-D61-13	Optical Observation of Electron Spin Wave Interference in a GaAs/AlGaAs Quantum Well	○ Miari Hiyama¹, Keito Kikuchi¹, Sota Yamamoto¹, Jun Ishihara¹, Yuzo Ohno², Makoto Kohda¹.³.⁴.⁵	1.Grad. Sch. of Eng., Tohoku Univ., 2.Univ. of Tsukuba 3.CSIS, Tohoku Univ., 4.DEFS, Tohoku Univ., 5. QUARC, QST
16:30	奨 E 18p-D61-14	Spin-orbit-torque magnetization switching in a ferromagnetic $\rm SrRuO_3$ single layer with a spontaneous oxygen atomic displacement	○ (D)Hiroto Horiuchi¹, Wakabayashi Yuki K.², Araki Yasufumi³, Ieda Jun'ichi³, Yamanouchi Michihiko⁴, Kaneta-Takada Shingo¹, Taniyasu Yoshitaka², Yamamono Hideki², Krockenberger Yoshiharu², Tanaka Masaaki¹.⁵, Ohya Shinobu¹.⁵	1.The Univ. of Tokyo, 2.NTT BRL, 3.JAEA, 4.Hokkaid Univ., 5.CSRN
6:45		休憩/Break	,	

17:00	E 18p-D61-15	Spin injection through a ferromagnetic Fe/Mg/SiN/ <i>n</i> -Si tunnel junction with ohmic-like current-voltage characteristics for non-degenerated <i>n</i> -Si	○ Shoichi Sato ^{1, 2} , Masaaki Tanaka ^{1, 2} , Ryosho Nakane ^{3, 1}	1.Tokyo Univ., 2.CSRN, 3.d.lab
17:15	奨 E 18p-D61-16	Spin-valve effect with two easy-magnetization axes in a spin-MOSFET based on perovskite-oxide $La_{0.67}Sr_{0.33}MnO_3$	○ Aoi Nakamura¹, Tatsuro Endo¹, Masaaki Tanaka¹.², Shinobu Ohya¹.²	1.Tokyo Univ., 2.CSRN, Tokyo Univ.
17.30	将 F 18n-D61-17	with a LaMnO ₃ buffer layer Long-lived valley-polarization in suspended WSe2	○ Giacomo Mariani¹, Yoji Kunihashi¹, Louis Smet¹,	1 NTT-RRI - 2 Tabaku Univ
17.30	英 L 10p-D01-17	monolayers strained by electrostatic pressure	Taro Wakamura ¹ , Satoshi Sasaki ¹ , Jun Ishihara ² ,	1.IVI I-BKL, 2. IOHOKU CHIV.
17:45	奨 E 18p-D61-18	Electrical spin injection into GaAs from perpendicularly	Makoto Kohda ² , Junsaku Nitta ^{1, 2} , Haruki Sanada ¹ O (M2) Kotaro Nara ¹ , Mineto Ogawa ¹ , Michihiko	1.IST. Hokkaido Univ.
18:00	18p-D61-19	magnetized Mn/Co bilayers 遷移金属ダイカルコゲナイド層間における異種磁性原子	Yamanouchi ¹ , Tetsuya Uemura ¹ ○備前 匠光 ¹ , 大根 誓哉 ¹ , 中村 太一 ¹ , 小矢野 幹夫 ¹	1.北陸先端大
16:00	1op-D01-19	意移並属タイカルコグライト層間におりる典種蠍性原丁 の磁性相互作用Ⅱ	○補削 匹元,入恨 含成,中们 太一,小大野 轩天	1. 礼陛元璋人
18:15	18p-D61-20	トポロジカル結晶絶縁体Pb _{1.x} Sn _x Teにおける非線形プラナーホール効果	○玉井優¹, 西嶋 泰樹¹, 小林 純也², 庄司 啓人², 安藤 裕一郎³, 大島 諒¹, 黒田 眞司², 白石 誠司¹	1. 京大院工, 2. 筑波大院数理物質, 3. 大公大院工
18:30	奨 18p-D61-21	Observation of bulk and multiple surface states in a thick topological Dirac semimetal α -Sn film by quantum	○牧秀樹¹, 堀田 智貴¹, 福岡 蒼一朗¹, Le Duc Anh¹.², 田中 雅明¹.²	1. 東大工, 2. 東大 CSRN
10.5 磁步	場応用 / Application	transport n of magnetic field		
		口頭講演 (Oral Presentation) C301会場 (Room C301)	○座田 建去1 四盐 小夫2 伊盐 #2	1 NIMC 2 E.A.
9:00	19a-C301-1	高勾配磁気分離におけるフィルターワイヤー上への粒子 堆積過程に関する研究	○廣田 憲之,伊滕 水鬼,女縢 务。	1.NIMS, 2.日大
9:15	19a-C301-2	Fe基アモルファス合金に対する磁場中低温焼鈍の効果	○小野寺 礼尚¹,喜多 英治²,高橋 弘紀³	1. 茨城高専, 2. 筑波大数理, 3. 東北大金研
9:30	奨 E 19a-C301-3	Change of Enhancement/Suppression Effects on Solid-phase Reaction on Mn-Sb under High Magnetic Field	○ Kosuke Saito¹, Ryota Kobayashi², Yoshifuru Mitsui¹, Rie Umetsu³, Kohki Takahashi³, Keiichi Koyama¹	1.Kagoshima Univ., 2.NIT, Kurume college, 3.IMR, Tohoku Univ.
9:45 10:00	19a-C301-4	休憩/Break In situ X 線回折測定による変調回転磁場及び等速回転磁	○木村 史子¹, カハガッラ ビュマーリ バモーダ¹, 足	1 古邦生認科学士工
10:00	19a-C301-4	m shu A 緑回引側とによる変調回転		1. 水
10:15 10:30	19a-C301-5 19a-C301-6	ゼオライト含有高分子複合膜の磁場配向と気体透過特性 量子化学計算を援用したセルロース合成酵素サブユニッ	○山登 正文 ¹ , 牛島 栄造 ¹ , 高橋 弘紀 ² ○久住 亮介 ¹	1. 都立大院都市環境, 2. 東北大金研 1. 森林総研
10:45	19a-C301-7	トの三次元磁場配向NMRシミュレーション 交流磁場下における液中磁性ナノ粒子の配向運動に及ぼ す粒子間相互作用の観測	○諏訪 雅頼¹, 塚原 聡¹	1. 阪大理
	伝導 / Superco	onductivity		
		はプログラム冒頭にございます。		
9/1/(1	17p-P03-1	ポスター講演 (Poster Presentation) P会場(Room P) 液体窒素温度における高周波電磁波照射ジョセフソン接	○木村 壮汰¹,及川 大¹,都築 啓太¹,杉浦 藤虎¹,安藤	1.豊田高専
	17p-P03-2	合に生じるカオス現象の応用 固有ジョセフソン接合を用いたTHz発振器における同期	浩哉¹, 塚本 武彦¹, 小松 弘和¹ ○高橋 晃叶¹, 及川 大¹, 都築 啓太¹, 杉浦 藤虎¹, 安藤	1. 豊田高専
	17p-P03-3	現象の数値解析 Pr系銅酸化物における単結晶育成の温度過程と生成相に	浩哉 1 ,塚本 武彦 1 〇村岡 智幸 1 ,佐藤 涼介 1 ,武田 祐汰 1 ,大村 彩子 1 ,石	1.新潟大
	17p-P03-4	関する研究 Pr ₂ Ba ₄ Cu ₇ O _{15- δ} の超伝導性に対するPr欠損の効果	川 文洋¹ ○武田 祐汰¹, 佐藤 涼介¹, 村岡 智幸¹, 大村 彩子¹, 石	1.新潟大
	17p-P03-5	アルミニウム鋳包み法によるCaKFe4As4超電導バルクの	川 文洋 1 \bigcirc 川島 健司 1 , 神谷 良久 1 , 石田 茂之 2 , 荻野 拓 2 , 鬼頭	1.イムラ・ジャパン株式会社, 2.産総研
	17p-P03-6	金属被覆処理と静水圧下熱処理 磁性ジョセフソン接合障壁層のための窒化ニッケル薄膜	聖², 伊豫 彰², 永崎 洋², 吉田 良行² ○赤池 宏之¹, 梶田 一真¹, 野村 伊吹¹	1.大同大工
	17- D02 7	の作製 超伝導量子ビット応用に向けた立方晶系 Al/AlN/Al/TiN		1 完上语
	17p-P03-7	超伝導重丁ピット応用に回りに立方商系AI/AIN/AI/ IIN のヘテロエピタキシャル成長	○山口 序一,怀 頁一即, 边膝 入雄, 工肥 我康,佐藤 信太郎 ¹	1. 畠士旭
	17p-P03-8	REBCO-CCの中間層に向けた KOH フラックス $(Pr_{l-}$ $_{u}RE_{u})_{l-x}Ca_{x}CoO_{3}$ 膜の金属 - 絶縁体転移特性	〇舩木 修平 1 , 山本 樹輝 1 , 山田 容士 1 , 田橋 正浩 2 , 吉田 隆 3 , 一野 祐亮 4	1. 島根大, 2. 中部大, 3. 名古屋大, 4. 愛工大
	17p-P03-9	PLD法を用いた LaNiO₃ 導電性膜上への YBCO 超伝導エ ピタキシャル薄膜の作製と評価	〇坂本 龍哉 1 , 田岡 紀之 1 , 清家 善之 1 , 森 竜雄 1 , 一野 祐亮 1	1.愛知工大院
	17p-P03-10	フッ素フリーMOD法を用いたGdBCO薄膜作製におけ	○山本 涼介¹, 喜多 隆介², 武田 正典¹	1. 静大院総合, 2. 静大イノベ
	17p-P03-11	る MOD 溶液の状態依存性 銅酸化物超伝導体 GdBa ₂ Cu ₃ O _{7- δ} 薄膜の電気抵抗の異方	○ (M1C) 守永 昂世¹, 畑野 敬史², 生田 博志².³, 飯田 和艮¹	1. 目大, 2. 名大院工, 3. 名大RCCME
	17p-P03-12	性 Bi 系酸化物高温超伝導体 Bi $_{1.75}$ Pb $_{0.35}$ Sr $_{1.9}$ Ca $_x$ Cu $_{x+1}$ O $_y$ ($x \ge 2$)	和昌 ¹ ○大森 竣介 ¹ , Mendoza Marina ¹ , 鄭 雨萌 ^{2,1} , 堺 健	1. 同志社大, 2. 東京理科大, 3. 物材研
		の合成に関する研究 PLD法におけるアブレーションプルームのモニタリング	司 1 , 佐藤 祐喜 1 , 吉門 進三 1 , 松本 凌 3 , 高野 義彦 3 〇松田 遼太郎 1 , 佐々 文彌 1 , 藤田 竜也 1 , 田岡 紀之 1 ,	
		システムの構築	清家 善之 ¹ , 森 竜雄 ¹ , 一野 祐亮 ^{1.5} , 堀尾 恵一 ^{3.5} , 一瀬 中 ^{4.5} , 堀出 朋哉 ^{2.5} , 松本 要 ^{2.5} , 吉田 隆 ^{2.5}	
		R面サファイア基板上のNb薄膜の作製と特性評価 YBCO薄膜の初期結晶成長鳥の密度に着目した結晶成長 シミュレーションのバラメータ最適化	○(D)平間 友博¹, 石黒 康志¹, 立木 隆¹	1. 防衛大 1. 愛工大, 2. 名大, 3. 九工大, 4. 電中研, 5.JST-CREST
	17p-P03-16	無線電力伝送用高温超伝導バルク共振器アンテナへの導	中4.5, 堀出 朋哉2.5, 松本 要2.5, 吉田 隆2.5	1. 山形大工, 2. 富士電機
	·	波器装荷による伝送効率評価 Spiral-MKIDs アレイによる 2 次元 THz 波イメージング	木 俊哉 ¹, 成田 克 ¹, 大音 隆男 ¹, 齊藤 敦 ¹	
	•	に関する研究 マイクロ波回路シミュレータを用いた力学インダクタン	田克¹,大音隆男¹,齊藤敦¹	1. 静大院総合
	·	ス進行波型パラメトリック増幅器の利得解析		
	礎物性 / Fundamen Mon)9:00 - 12:00	ntal properties 口頭講演 (Oral Presentation) A35 会場(Room A35)		
9:00	16a-A35-1	パッチアンテナ構造を用いたBi2212-THz波発振器の開	○榎本 裕樹¹, 山内 悠希¹, 前島 健太郎¹, 葛見 佳彦¹,	1. 筑波大学数理物質, 2. 阪公大 IQMC
9:15	16a-A35-2	発 高温超伝導体Bi2212単結晶を用いたテラヘルツ波発振素 子のアレイ化に向けた素子構造に関する研究	島 健太郎1,小林 未来1,前田 敦彦2,倉島 優一2,高木	1. 筑波大数理物質, 2. 産総研, 3. 阪公大 IQMC
9:30	16a-A35-3	THz 波発振器用超伝導結晶チップ作製技術の改良に関する研究	秀樹 1 , 南 英俊 1 , 柏木 隆成 1,3 三上 千春 1 , ○小林 未来 1 , 榎本 裕樹 1 , 山内 悠希 1 , 葛 見 佳彦 1 , 前島 健太郎 1 , 大坪 健人 1 , 南 英俊 1 , 柏木 隆 成 1,2	

9:45	16a-A35-4	小型冷凍機を用いた高温超伝導体テラヘルツ波発振器に よるイメージングシステムの開発 ${\mathbb I}$	〇山内 悠希 1 , 榎本 裕樹 1 , 前島 健太郎 1 , 葛見 佳彦 1 , 大坪 健人 1 , 小林 未来 1 , 柴田 將史 2 , 豊崎 次郎 2 , 竹内 孝行 2 , 南 英俊 1 , 柏木 隆成 $^{1.3}$	
10:00	16a-A35-5	高速・広帯域周波数変調を目指したジョセフソンプラズ マエミッタの開発		1. 京大院工, 2. 産総研
10:15	奨 16a-A35-6	異方的誘電体モデルにもとづくジョセフソンプラズマエ ミッタの構造最適化およびその実装	○(DC)小林 亮太¹, 掛谷 一弘¹	1.京大院工
10:30 10:45	16a-A35-7	休憩/Break 過剰酸素量がBi2212-THz波発振素子のデバイス特性に 及ぼす影響に関する研究 II	葛見佳彦¹,大坪健斗¹,石田茂之²,永崎洋²,中尾裕	
11:00	16a-A35-8	Bi2212 単結晶を用いた THz 波発振素子の材料評価に関する研究	則³, 南英俊¹, 柏木隆成¹.⁴ ○柏木隆成¹.², 中尾 裕則³, 前島 健太郎¹, 小林 未来¹, 榎本 裕樹¹, 山内 悠希¹, 葛見 佳彦¹, 大坪 健人¹, 石田 茂之⁴, 永崎 洋⁴, 茂筑 高士⁵, 南 英俊¹	1. 筑波大学数理物質 , 2. 阪公大 IQMC, 3.KEK 物構研 PF, 4. 産総研 , 5.NIMS
11:15	16a-A35-9	NdFeAsO系超伝導薄膜のナノストリップ加工と超伝導特性評価		1.名大工,2.名大クリスタルエンジニアリング研究センター
11:30	16a-A35-10	鉄系超伝導体NdFeAs(O,H)の異方性の水素置換量依存性II	○畑野 敬史¹, 日比野 絢斗¹, 宮本 洸希¹, 冨岡 隼也¹, 吉川 淳朗¹, 生田 博志¹	· ·
11:45	招 16a-A35-11	「第56回講演奨励賞受賞記念講演」 極薄膜FeSe/SrTiO ₃ におけるネルンスト効果	○小林 友輝 ¹ , 小川 亮 ¹ , 岡田 達典 ² , 前田 京剛 ¹	1. 東大院総合, 2. 東北大金研
9/17(Tue.) 9:00 - 12:00	口頭講演 (Oral Presentation) C31会場 (Room C31)		
9:00	17a-C31-1	2 段階放電プラズマ焼結を用いた K ドープ $BaFe_2As_2$ 多結晶バルクの臨界電流特性	○石渡 翔大¹, 霜山 郁弥¹, Ayukaryana Nur Rahmawati¹, 山本 明保¹	1.農工大
9:15	奨 17a-C31-2	鉄系超伝導体 (Ba,K)Fe ₂ As ₂ 単一人工粒界の作製	○(D)秦 東益¹,郭 子萌², Tarantini Chiara³, 波多 聰², 内藤 方夫¹, 山本 明保¹	1. 農工大工, 2. 九大, 3. 米国国立強磁場研
9:30	17a-C31-3	MBE法による電子ドープニッケル酸化物の作製	〇香田 匡貴 1 , 納 謙吾 1 , 迫田 將仁 1 , 下田 周平 2 , 市村 晃 $-^1$	1.北大工, 2.北大触研
9:45	奨 17a-C31-4	Nd:YAGレーザーを用いたPLD法によるニッケル酸化物 準購の作制ととせてミカル署元が用	○(M1)森田 航太¹,山下 琉斗¹,土橋 礼奈¹,岡部 博幸²,³,中村 惇平³,桑原 英樹¹,門野 良典³,足立 匡¹	1. 上智大理工, 2. 東北大金研, 3.KEK 物構研
10:00	奨 17a-C31-5	薄膜の作製とトポケミカル還元効果 超伝導候補新規物質 Sr ₃ Ni ₂ O ₅ Cl ₂ の高圧合成と物性評価	幸~°, 中村 惇平°, 桑原 英樹', 門野 艮典°, 足立 匡' 〇(D) 山根 和樹¹², 足立 伸太郎³, 松本 凌¹, 寺嶋 健 成¹, 櫻井 裕也¹, 高野 義彦¹.²	1. 物材機構, 2. 筑波大, 3. KUAS
10:15 10:30	17a-C31-6	高圧合成・構造解析・物性測定機能付き DAC を用いた T_c = 20 K級新規超伝導体の発見 休憩/Break		1.NIMS, 2. 筑波大, 3. 愛媛大
	奨 E 17a-C31-7	Development of automatic synthesis system for superconducting alloys	○ (D)WeiSheng Wang ^{1, 2} , Kensei Terashima ¹ , Yoshihiko Takano ^{1, 2}	1.NIMS, 2.Univ. of Tsukuba
11:00	奨 17a-C31-8	$(Y_{1,x}Dy_x)Ba_2Cu_3O_y$ の二軸磁場配向挙動の樹脂硬化時間依存性		1. 京都先端科学大工
11:15	奨 E 17a-C31-9	Relationship between tri-axial orientation degrees and magnetic field strength of MRF on $(Y_{1-x}Dy_x)124$ with	() (M1)Pamoda Piyumali Kahagalla ¹ , Shintaro Adachi ¹ , Fumiko Kimura ¹ , Ataru Ichinose ² , Shigeru Horii ¹	1.KUAS, 2.CRIEPI
11:30	17a-C31-10	various tri-axial magnetic anisotropies. 試料搬送型の変調回転磁場印加による REBa ₂ Cu ₃ O _y 磁場配向の検討	〇足立 伸太郎¹, 木村 史子¹, 堀井 滋¹	1.京都先端科学大・エ
11:45	17a-C31-11	首振り回転磁場下における REBa ₂ Cu ₃ O ₇ 粉末 (RE = Y, Er) の配向度と首振り角度の関係	○堀井 滋¹, 野津 乃祐², 土井 俊哉²	1. 京都先端科学大・工, 2. 京大院エネ科
		口頭講演 (Oral Presentation) C31会場 (Room C31)		
9:00	19a-C31-1	ゾルゲル法による無線電力送電用 Bi ₂ Sr ₂ CaCu ₂ O _x (Bi-2212) 超伝導線材作製に関する研究	○(M2) 夜久 敬大¹, 長尾 雅則¹, 丸山 祐樹¹, 綿打 敏ョ¹	1.山梨大
9:15	19a-C31-2	$YBa_{2x}La_xCu_3O_y$ $(x \le 0.1)$ における酸素欠損減少による T_c 向上	○藤原晶¹,加藤雅恒¹,山下太郎¹	1. 東北大院工
9:30	19a-C31-3	Y247の物性に対するPrおよびZn置換の本質的な効果	○新津 遥都¹, 松下 哲哉¹, 元木 貴則¹, 下山 淳一¹	1. 青学大理工
9:45 10:00	19a-C31-4 19a-C31-5	RE247(RE = Nd, Gd) の相安定領域と超伝導特性 c軸配向 RE124超伝導体の作製と物性	○松下 哲哉¹, 新津 遥都¹, 元木 貴則¹, 下山 淳一¹ ○田口 寛人¹, 新津 遥都¹, 松下 哲哉¹, 髙木 佑大¹, 元	1.青学大理工
			木貴則1,下山淳一1	
10:15 11.2 薄	19a-C31-6 膜,厚膜,テープ作	SDMG法小型REBCOバルク磁石の中低温捕捉磁場特性 製プロセスおよび結晶成長 / Thin and thick superconduc		1.青山学院大学 h
		口頭講演 (Oral Presentation) C31会場 (Room C31)	(341) 上岩 上河 l 2 四 H H 双 坡 l 2 丁 坡 占 目 2/3 在	1 林工士 2 開刊 DAD 2 支北土 4 NICT
13:30	19p-C31-1	暗黒物質探索用 KID の作製に関する研究	○(M1)大前太河 ^{1,2} ,田井野 徹 ^{1,2} ,石徹白 晃治 ³ ,亀井 雄斗 ^{2,3} ,伊藤 凌太 ^{2,3} ,大谷知行 ^{2,3} ,美馬 覚 ⁴	
13:45	19p-C31-2	$10 \mathrm{keV}$ プロトン照射が $\mathrm{FeSe}_{0.5}\mathrm{Te}_{0.5}$ 薄膜の超伝導特性に与える影響	崎 壽紀 ¹	
14:00	19p-C31-3	低エネルギー Ar イオン照射が $GdBa_2Cu_3O_y$ 線材の超伝導 特性に与える影響	○尾崎 壽紀¹, 森川 陽向¹, 岡崎 宏之², 越川 博², 山本 春也², 八巻 徹也², 佐伯 盛久², 末吉 哲郎³, 坂根 仁⁴	
14:15	奨 19p-C31-4	ブルーム画像からの薄膜生成プロセス条件推定における ブルーム動画像の移動平均に関する考察		1. 九工大, 2. 名大, 3. 愛工大, 4. 電中研, 5.JST-CREST
14:30	19p-C31-5	直接拡散接合法によるREBCO線材の低抵抗接続法の検討(4)	1-22	1. 大阪大レーザー研, 2. 核融合研
14:45 15:00	奨 19p-C31-6	休憩/Break 中間熱処理がTFA-MOD法REBa ₂ Cu ₃ O _y +BaHfO ₃ 線材の		1. 成蹊大, 2.AIST, 3.JST-FOREST
15:15	19p-C31-7	磁場中J _c 特性に及ぼす影響 ホール濃度制御(Y _{0.77} Gd _{0.23})Ba ₂ Cu ₃ O _y 薄膜の超伝導特性	匠¹, 和泉 輝郎², 三浦 正志¹¹³ ○藤本 竜那¹, 大木元 勇貴¹, 鈴木 匠¹, 三浦 正志¹²	1.成蹊大, 2.JST-FOREST
15:30	19p-C31-8	TFA-MOD法 $(Y_{0.77}Gd_{0.23})Ba_2Cu_3O_y$ 線材における J_c の曲		1.成蹊大学, 2.JST-FOREST
15:45	19p-C31-9	げひずみ依存性 自己配向 $LaNiO_3$ を利用した Si 基板上への c 軸配向	○中村 匡佑 1 , 三田 祐 1 , 島村 一利 1 , 河原 正美 2 , 川江	1. 金沢大理工, 2. (株) 高純度化学研究所
16:00	19p-C31-10			1. 青学大理工
11.3 覧	界電流. 超伝導パワ	用性 7一応用 / Critical Current, Superconducting Power Applic	口 寛人¹, 畠 直輝¹, 元木 貴則¹ ations	
9/19(7	Thu.) 10:30 - 12:00	口頭講演 (Oral Presentation) C31会場 (Room C31)		
10:30	奨 19a-C31-7	ナノコンポジットバッファ層を用いた $YBa_2Cu_3O_y$ -pure薄膜への欠陥ピンイングセンターの導入	○奥村 慎¹, 伊藤 駿汰¹, 堀出 朋哉¹, 一瀬 中², 吉田 降¹	1. 名大工, 2. 電中研
10:45	19a-C31-8	展への欠陥ピンインクセンターの導入 重イオン照射した人工ピン入り高温超伝導線材の磁束ク リーブ特性		1. 九産大, 2. 関学大, 3. 島根大, 4. 住重アテックス, 5. 原子力機構
11:00 11:15	19a-C31-9	休憩/Break REBCO iGS接合における臨界電流の磁場印加角度依存	〇武田 泰明¹, 西島 元¹, 元木 貴則², 下山 淳一², 北口	
		性	仁	

11:30	19a-C31-10	曲げひずみ印加によるREBCOコート線材の面内ドメイ	○岡田 達典¹, 島村 雄飛¹, 淡路 智¹	1.東北大金研
1:45	19a-C31-11	ン制御とその超伝導特性への影響 高速磁気顕微鏡観察によるREBCO線材内の局所不均一	○呉 澤宇¹, 今村 和孝¹, 東川 甲平¹, 木須 降暢¹	1. 九大院シス情
		性の機械学習自動検出における解像度、試料線幅、プロセス依存の影響に関する検討		
4 アフ	ナログ応用および関	関連技術 / Analog applications and their related technolog	ies	
		口頭講演 (Oral Presentation) B5 会場 (Room B5)	O + 15 1/4 1 1/4 88 75 1 1 88 (A) 1/4 1 1	
3:00	招 18p-B5-1	「第56回講演奨励賞受賞記念講演」 高Q値超伝導共振器を用いた高効率電界共振結合方式無 線電力伝送	○高橋 俊一 ¹ , 作間 啓太 ¹ , 關谷 尚人 ¹	1.山梨大工
3:15	奨 18p-B5-2	YBCO 薄膜コプレーナ線路のマイクロ波透過特性を用いた超伝導パラメトリック増幅器の利得評価	○髙橋 惟吹¹, 島影 尚¹	1. 茨城大
3:30	18p-B5-3	分離型中空構造を用いた超伝導共振器による薄膜評価法 に関する研究	太 ^{2,3} , 美馬 覚 ⁴ , 田井野 徹 ^{1,2}	1.埼玉大院, 2. 理研 RAP, 3. 東北大理, 4.NICT
3:45 4:00	奨 18p-B5-4 奨 18p-B5-5	超伝導アンテナの広帯域化による耐電力特性向上の検討 超伝導細線三端子素子のパルス電流応答シミュレーショ ン	 ○ (M2) 武田 航太郎¹, 作間 啓太¹, 關谷 尚人¹ ○安川 直輝¹, 山梨 裕希², 吉川 信行², 西尾 太一郎¹, 馬渡 康徳³ 	1. 山梨大工 1. 東理大, 2. 横国大, 3. 産総研
4:15 4:30	18p-B5-6	休憩/Break 量子ジョセフソン電圧標準素子の電流供給方法の提案	○山森 弘毅¹, 松丸 大樹¹, 丸山 道隆¹, 浦野 千春¹, 金	1.産総研
4:45	18p-B5-7	In/Nbバンプを用いた常温接合に関する研究について	子 晋久¹ ○(M1) 石山 照瑛¹², 藤野 真久², 仲川 博², 荒賀 佑 樹², 菊地 克弥², 田井野 徹¹	1.埼玉大学院, 2. 産総研
5:00	18p-B5-8	3次元実装超伝導デバイスに向けたNbバンプ配置変更に よる接合荷重均一化	,	1.埼玉大院, 2. 産総研
5:15	18p-B5-9	基板ノイズ低減に向けたSTJ検出器のBuffer層に関する研究		1. 産総研, 2. 埼玉大
5:30	18p-B5-10	ニオブ酸リチウム基板を用いた超伝導検出器MKIDの開発		1. 東北大院理, 2. 理研 RAP, 3. 埼玉大院理工, 4.NICT, 5. 東北大 RCNS
5:45 6:00	奨 18p-B5-11	休憩/Break アパーチャー付き可視光TESの作成と評価		1. 産総研, 2. 立教大, 3. 高エネ研QUP, 4. 産総研・東ナ
6:15	E 18p-B5-12	Two-level System Loss of SiO ₂ Measured at 4 K with	哲也¹, 上土井 猛¹.⁵, 福田 大治¹.⁴ ○ Wenlei Shan¹, Shohei Ezaki¹	オペランド計測 OIL, 5. 東大工 1.NAOJ
6:30	18p-B5-13	Millimeter Superconducting Thin-film Resonators SISミキサ増幅器励起用 150 GHz帯ジョセフソンアレイ 発振器	○川上 彰 ¹ , 村山 洋佑 ² , 鵜澤 佳徳 ^{2,3} , 牧瀬 圭正 ^{2,3,4} , 増井 翔 ² , 小嶋 崇文 ^{2,3} , 宮地 晃平 ² , Shan Wenlei ² , 江 輪 翔平 ²	1. 情通機構, 2. 国立天文台, 3. 総研大, 4. 産総研
5:45	18p-B5-14	バランスドSISミキサを用いた150 GHz帯ジョセフソン アレイ発振器の特性評価		1.国立天文台, 2.情通機構, 3.総研大, 4.産総研
7:00	18p-B5-15	波長2μmにおける超伝導ワイドストリップ光子検出器 の特性評価		1.情通機構
		zスおよびディジタル応用 / Junction and circuit fabricatio	n process, digital applications	
9/18(V :00	Ned.) 9:00 - 11:45 18a-B5-1	口頭講演 (Oral Presentation) B5会場 (Room B5) 高臨界電流密度プロセスを用いた単一磁束量子回路に基	○宮嶋 茂之¹, 寺井 弘高¹, 藪野 正裕¹, 三木 茂人¹.²	1. 情通機構, 2. 神戸大
:15	奨 18a-B5-2	づく同時計数回路 インバルス駆動型メモリにおけるセル選択用バルスの光 速伝搬実証	○佐藤 太一¹,李 峰¹,田中 雅光¹,藤巻 朗¹	1.名古屋大学
:30	奨 18a-B5-3	確率的クロスバーアレイを構築するための超伝導シナプスの動作実証	○羅 文輝 ¹ , 竹内 尚輝 ² , 陳 オリビア ³ , 吉川 信行 ¹	1. 横浜国大 IAS, 2. 産総研 G-QuAT, 3. 九州大学
:45	18a-B5-4	単一磁束量子多数決論理ゲートを用いたバタフライ演算 回路の設計		1. 横国大院理工
):00):15	18a-B5-5	単一磁束量子回路の放射線耐性測定に向けたエラー率試 験回路の設計 休憩/Break	○刑部 一斗¹, 山梨 裕希¹, 吉川 信行¹	1. 横国大院理工
0:30	18a-B5-6	分子線エピタキシー法による単結晶 Nb 薄膜の作製と量子デバイス応用	○辻本学¹,浦出芳郎¹,藤田裕一¹,知名史博¹,野崎友大¹,野崎隆行¹,猪股邦宏¹,水林亘¹	1. 産総研
):45	18a-B5-7	Nbベースジョセフソンパラメトリックオシレーターの特性評価	· ○沈 泓翔¹, 吉川 信行¹.²	1. 横浜国立大学, 2. 横国大院理工
1:00	18a-B5-8	断熱量子磁束パラメトロンを用いた位相判別回路の低臨 界電流密度 Josephson プロセスにおける設計		1. 横国大院理工, 2. 横国大IAS
1:15 1:30	奨 18a-B5-9 18a-B5-10	π接合を用いた多段接続磁束伝送回路の評価 0-0-π SQUIDの周回電流の向きが半磁束量子論理ゲートに及ぼす影響	○堀 裕貴¹, 佐藤 太一¹, 李 峰¹, 田中 雅光¹, 藤巻 朗¹ ○出口 創万¹, 佐藤 太一¹, 堀 裕貴¹, 西崎 海¹, 李 峰¹, 田中 雅光¹, 藤巻 朗¹	
		ナエレクトロニクス / Organic Molecules an	d Bioelectronics	
		はプログラム冒頭にございます。 prications and Structure Controls		
		rications and Structure Controls ポスター講演 (Poster Presentation) P会場(Room P)		
	16p-P05-1	マグネシウムフタロシアニン系ナノ・バルク単結晶にお ける対イオンの効果	芥川 智行 ³	
	16p-P05-2	インクジェット法を用いた分布ブラッグ反射鏡の作製に おける溶媒調整による成膜面の均一化	善之 ¹	
	16p-P05-3	バイオセンサー応用を目指した溶液塗布熱分解法による 酸化バナジウム薄膜構造・電子状態とpHセンサー感度 の関係		1.大阪工大ナノ材研, 2.神奈川産技術研, 3.東北大 AIMR
	16p-P05-4	気体透過測定と分子動力学計算を用いたイオン液体膜の CO ₂ 透過性解析	\bigcirc (D) 加藤 将貴¹, 安藤 輝紀¹, 和泉 廣樹¹², 横倉 聖 也¹², 島田 敏宏¹²	1.北大院総化, 2.北大院工
	16p-P05-5	長鎖アルキルイミダゾリウム系イオン液体薄膜のポスト アニール過程における構造変化と準安定スメクチック液 晶相		1. 東北大院工
	16p-P05-6	3元共重合構造をもつ誘電体ポリマーの薄膜構造と電気 物性	田 育之², 石田 謙司¹	
	16p-P05-7	異なる官能基を有する屈曲型極性分子の分子配向の評価 極性官能基の修飾位置に着目した自発配向分子の設計	○(B) 杉本 鈴奈¹, 田中 正樹¹ ○(B) 宮本 珠羽¹, 田中 正樹¹	1. 東京農工大 1. 農工大工
	16p-P05-8 16p-P05-9	極性目能基の修飾位直に着目した目発配向分子の設計 自己組織化単分子膜上に成膜した真空蒸着薄膜の配向分 極性性		1.農工大工

極特性

	16p-P05-10	ペンタセン薄膜の低温成長における核密度と異方的な核 成長の解析	○(M2)井櫻 泰雅¹,松原 亮介¹,久保野 敦史¹	1.静岡大院総科
	16p-P05-11	亜鉛フタロシアニン一軸配向ナノワイヤの作製と評価	○千代延 祐希 ¹ , 小柴 康子 ^{1,2} , 堀家 匠平 ^{1,2,3} , 石田 謙 司 ⁴ , 舟橋 正浩 ^{1,2}	1.神戸大院工, 2.神戸大先端膜工学セ, 3.神戸大環境セ4.九大院工
	16p-P05-12	真空蒸着法による色素分子薄膜の吸収スペクトルシフト と凝集状態の関係		1.静岡大院総科
	16p-P05-13	蒸着重合法を用いた高分子薄膜形成におけるモノマー反 応性との関係	○大隅 萌香¹, 田畑 諒², 村下 聖佳¹, 松原 亮介¹, 久保 野 敦史¹.²	1. 静岡大院総科, 2. 静岡大院自然科学
	16p-P05-14	ル社との関係 油脂材料の単結晶育成と放射光X線による構造評価		1. 岩手大院総合, 2. 日清オイリオグループ(株), 3. 九州 シンクロトロン
	16p-P05-15	酵素分解可能なDNAペーストを用いたバイオプラス チック作製	古本 則之 ¹ 藤田 隆誠 ¹ , 小西 星歌 ¹ , ティティ レイ ¹ , 森田 勇人 ¹ , ○阪田 知巳 ¹	1. 城西大理
	16p-P05-16	バーコートを利用したカーボンナノチューブ/ポリマー コンポジット配向自立膜の作製		1.神戸大院工, 2.神戸大先端膜工学セ, 3.神戸大環境セ
	16p-P05-17	ジアミン架橋剤による強誘電性高分子の架橋ネットワーク化と構造・物性評価		1.神戸大院工, 2.神戸大先端膜工学セ, 3.神戸大環境セ 4.九大院工
	16p-P05-18	高分子スタンプ法によるPBTTTホモ接合トランジスタ の作製と評価		1. 慶應大理
	16p-P05-19	塗布型有機フローティングゲート層の構造制御による有機トランジスタメモリの高性能化	○シ ウテイ¹, 小林 隆史¹.², 内藤 裕義¹.².³, 永瀬 隆¹.²	1.大阪公立大学, 2.大阪公立大 分子エレクトロニック バイス研, 3.立命館大 RISA
	16p-P05-20	青色半導体レーザー光還元法による高精細銀メッシュ型 透明電極の開発	○島田 青空¹, 隼瀬 真衣¹, 小野 篤史¹	1.静岡大学
	16p-P05-21	キラル部位を有するTTF誘導体/F ₄ TCNQ錯体からなる 分子集合体電磁ナノコイル構造の作製と電気物性評価		1.農工大院工, 2.東大生研, 3.広島大院先進理工, 4.JST
		その場測定に向けたポータブルナノポアデバイス開発	○植垣 史恩 1, 山崎 洋人 1.2	さきがけ、5.東北大多元研、6.北大電子研 1.長岡技大、2.産学トップランナー
		多段階界面制御法で作製する有機無機層状ハイブリッド ペロブスカイト薄膜の表面形態		1. 浜松医大医, 2. 理研 RAP, 3. 上智大理工
	•	ヨウ化ドデシルアンモニウムのバルクと薄膜における相 変化		
		ペロブスカイト薄膜の作製における前駆体溶液温度の影響		1.京都工芸繊維大工
		レーザープロセッシングによる構造の次元性を制御した 臭化鉛ペロブスカイトの合成		1.名工大院, 2.室蘭工大
	16p-P05-27	光 - 原子移動ラジカル重合によるポリマーブラシ被覆ペロブスカイトナノ結晶の合成	○石川 凜太朗¹, 松井 淳², 江部 日南子²	1.山大院理工, 2.山大理
9/18(9:00	(Wed.) 9:00 - 11:30 E 18a-C32-1	口頭講演 (Oral Presentation) C32 会場(Room C32) Anisotropic Emission of Self-Assembled Cubic Perovskite	(D) Dotton Minoratile 2 Donatons Vocational Vocation	1 DIVEN CEME 2 DDIN
9:00	E 16a-C52-1	Nanocrystals	Enomoto ¹ , Daishi Inoue ¹ , Yong-Jin Pu ¹	I.RIREN CEMS, 2.DRIN
9:15	18a-C32-2	近接蒸着法による CsPbBr ₃ 結晶の成長	○澤村隆将¹,稲田雄飛¹,山下兼一¹,山雄健史¹	1. 京工繊大
9:30	18a-C32-3	KCl基板上にエピタキシャル成長させた有機結晶の偏光 発光特性	○上芝 晃貴¹, 水野 斎², 稲田 雄飛¹, 山雄 健史¹	1.京工繊大, 2.富山県立大
9:45	18a-C32-4	特異的に高い垂直配向を示すアントラセン蛍光分子	○小松龍太郎1,夫勇進1	1. 理研 CEMS
10:00	18a-C32-5	n 型有機半導体のための電子吸引基とピラジンを導入した π 共役系分子の合成と結晶化	〇(MI)田 秀悟', 横倉 聖也"', 机泉 廣樹"', 島田 敏宏 ^{1,2}	1. 北大院総化, 2. 北大院上
0:15	18a-C32-6	休憩/Break 微細細孔を有するPTFE膜への蒸着重合モノマーの侵入	○田畑 諒¹, 大隅 萌香², 松原 亮介², 久保野 敦史¹.²	1. 静岡大院自然科学, 2. 静岡大院総科
10:45	18a-C32-7	傾向の調査 $Hf_{0.5}Zr_{0.5}O_2$ ゲート絶縁膜上への Ph -BTBT- C_a 薄膜成膜と構造評価	北村 太慈 1,2 , 中澤 斗翔 1 , 高瀬 寛士 1 , 武本 凌河 1 , 酒 井 悠太 1 , 河野 裕太 1,2 , 小池 一步 1,2 , ○廣芝 伸哉 1,2	1.大阪工大・工,2.大阪工大・ナノ材研
1:00	18a-C32-8	フラーレン蒸着同時電子線照射によるフラーレン重合反 応の制御		1. 名大院工
11:15	18a-C32-9	加熱処理フラーレン・三酸化モリブデン複合膜のX線吸収微細構造解析	○山本 駿¹, 中谷 真人¹, 小川 智史¹, 尾上 順¹	1.名大院工
9/18(\	Wed.) 13:00 - 18:00	口頭講演 (Oral Presentation) D63会場(Room D63)		
13:00	IT 40 B00 4			
	招 18p-D63-1	「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」	○田中 正樹1	1. 農工大院工
13:30	招 18p-D63-1 18p-D63-2	「第22回有機分子・バイオエレクトロニクス分科会 奨励	○赤池 幸紀¹, 下位 幸弘¹, 細貝 拓也¹, 小野 裕太郎²,	
		「第22回有機分子・パイオエレクトロニクス分科会 奨励 賞受賞記念講演」 自発配向分極を示すフッ化アルキル極性分子の開発 カフェ酸の巨大表面電位 棒状分子による高密度な表面偏析単分子膜の形成と非対	〇赤池 幸紀 1 ,下位 幸弘 1 ,細貝 拓也 1 ,小野 裕太郎 2 ,山田 洋一 2	
13:45	18p-D63-2	「第22回有機分子・パイオエレクトロニクス分科会 奨励 賞受賞記念講演」 自発配向分極を示すフッ化アルキル極性分子の開発 カフェ酸の巨大表面電位 棒状分子による高密度な表面偏析単分子膜の形成と非対 称な電気伝導特性の発現	〇赤池 幸紀 1 ,下位 幸弘 1 ,細貝 拓也 1 ,小野 裕太郎 2 ,山田 洋一 2 〇横山 高穂 1 ,但馬 敬介 1	1.産総研, 2.筑波大
13:45 14:00	18p-D63-2 奨 18p-D63-3	「第22回有機分子・パイオエレクトロニクス分科会 奨励 賞受賞記念講演」 自発配向分極を示すフッ化アルキル極性分子の開発 カフェ酸の巨大表面電位 棒状分子による高密度な表面偏析単分子膜の形成と非対	○赤池 幸紀 1 , 下位 幸弘 1 , 細貝 拓也 1 , 小野 裕太郎 2 , 山田 洋一 2 ○横山 高穂 1 , 但馬 敬介 1 ○杉本 恵美 1 , 塩谷 暢貴 1 , 岡 昂徹 1 , 長谷川 健 1	 1. 産総研, 2. 筑波大 1. 理研CEMS 1. 京大化研
13:45 14:00 14:15	18p-D63-2 奨 18p-D63-3 奨 18p-D63-4	「第22回有機分子・パイオエレクトロニクス分科会 奨励 賞受賞記念講演」 自発配向分極を示すフッ化アルキル極性分子の開発 カフェ酸の巨大表面電位 棒状分子による高密度な表面偏析単分子膜の形成と非対 称な電気伝導特性の発現 低温下におけるペリレンジイミド蒸着膜の分子配向成長 赤外分光法と X 線回折法で解明する Ph-BTBT-10 薄膜ト	○赤池 幸紀¹,下位 幸弘¹,細貝 拓也¹,小野 裕太郎², 山田 洋一² ○横山 高穂¹,但馬 敬介¹ ○杉本 恵美¹,塩谷 暢貴¹,岡 昂徹¹,長谷川 健¹ ○(D)岡 昂徹¹,塩谷 暢貴¹,中野 博貴²,飯野 裕明², 長谷川 健¹	1. 産総研, 2. 筑波大 1. 理研CEMS 1. 京大化研 1. 京大化研, 2. 東工大未来研
13:45 14:00 14:15 14:30	援 18p-D63-2 奨 18p-D63-3 奨 18p-D63-4 奨 18p-D63-5	「第22回有機分子・パイオエレクトロニクス分科会 奨励 賞受賞記念講演」 自発配向分極を示すフッ化アルキル極性分子の開発 カフェ酸の巨大表面電位 棒状分子による高密度な表面偏析単分子膜の形成と非対 称な電気伝導特性の発現 低温下におけるペリレンジイミド蒸着膜の分子配向成長 赤外分光法と X 線回折法で解明する Ph-BTBT-10 薄膜ト ランジスタの最適なアニール条件 液晶相温度で加熱後の Ph-BTBT-10 多結晶薄膜における	○赤池 幸紀¹,下位 幸弘¹,細貝 拓也¹,小野 裕太郎², 山田 洋一² ○横山 高穂¹,但馬 敬介¹ ○杉本 恵美¹,塩谷 暢貴¹,岡 昂徹¹,長谷川 健¹ ○(D)岡 昂徹¹,塩谷 暢貴¹,中野 博貴²,飯野 裕明², 長谷川 健¹ ○中野 博貴¹,岡 昂徹²,塩谷 暢貴²,長谷川 健²,飯野	1. 産総研, 2. 筑波大 1. 理研 CEMS 1. 京大化研 1. 京大化研 1. 京大化研, 2. 東工大未来研 1. 東工大未来研, 2. 京大化研
13:45 14:00 14:15 14:30 14:45 15:00	援 18p-D63-2 奨 18p-D63-3 奨 18p-D63-4 奨 18p-D63-5	「第22回有機分子・パイオエレクトロニクス分科会 奨励 賞受賞記念講演」 自発配向分極を示すフッ化アルキル極性分子の開発 カフェ酸の巨大表面電位 棒状分子による高密度な表面偏析単分子膜の形成と非対 称な電気伝導特性の発現 低温下におけるベリレンジイミド蒸着膜の分子配向成長 赤外分光法と X 線回折法で解明する Ph-BTBT-10薄膜ト ランジスタの最適なアニール条件 液晶相温度で加熱後の Ph-BTBT-10 多結晶薄膜における 高移動度を示すための最適な熱アニール処理条件 C8-BTBT薄膜における液晶状態からの結晶化挙動の膜	○赤池 幸紀¹,下位 幸弘¹,細貝 拓也¹,小野 裕太郎², 山田 洋一² ○横山 高穂¹,但馬 敬介¹ ○杉本 恵美¹,塩谷 暢貴¹,岡 昂徹¹,長谷川 健¹ ○(D)岡 昂徹¹,塩谷 暢貴¹,中野 博貴²,飯野 裕明², 長谷川 健¹ ○中野 博貴¹,岡 昂徹²,塩谷 暢貴²,長谷川 健²,飯野 裕明¹ ○(M1)中野 佑亮¹,丸山 伸伍¹,神永 健一¹,松本 祐 司¹	1. 産総研, 2. 筑波大 1. 理研 CEMS 1. 京大化研 1. 京大化研 1. 京大化研, 2. 東工大未来研 1. 東工大未来研, 2. 京大化研
13:45 14:00 14:15 14:30 14:45 15:00 15:15	援 18p-D63-2 髮 18p-D63-3 髮 18p-D63-4 髮 18p-D63-5 18p-D63-6 髮 18p-D63-7	「第22回有機分子・パイオエレクトロニクス分科会 奨励 賞受賞記念講演」 自発配向分極を示すフッ化アルキル極性分子の開発 カフェ酸の巨大表面電位 棒状分子による高密度な表面偏析単分子膜の形成と非対 称な電気伝導特性の発現 低温下におけるペリレンジイミド蒸着膜の分子配向成長 赤外分光法と X 線回折法で解明する Ph-BTBT-10 薄膜ト ランジスタの最適なアニール条件 液晶相温度で加熱後の Ph-BTBT-10 多結晶薄膜における 高移動度を示すための最適な熱アニール処理条件 C8-BTBT 薄膜における液晶状態からの結晶化挙動の膜 厚による制御 体態/Break 集光レーザービームを用いたフラーレン結晶化の時空間 制御	○赤池 幸紀¹,下位 幸弘¹,細貝 拓也¹,小野 裕太郎²,山田 洋一² ○横山 高穂¹,但馬 敬介¹ ○杉本 恵美¹,塩谷 暢貴¹,岡 昂徹¹,長谷川 健¹ ○(D)岡 昂徹¹,塩谷 暢貴¹,中野 博貴²,飯野 裕明²,長谷川 健¹ ○中野 博貴¹,岡 昂徹²,塩谷 暢貴²,長谷川 健²,飯野 裕明¹ ○(M1)中野 佑宠¹,丸山 伸伍¹,神永 健一¹,松本 祐司¹ ○伏本 航¹,高橋 秀実¹,丸山 美帆子¹,鈴木 凌²,橘膀²,杉山 輝樹³,吉川 洋史¹	1. 産総研, 2. 筑波大 1. 理研CEMS 1. 京大化研 1. 京大化研 1. 京大化研, 2. 東工大未来研 1. 東工大未来研, 2. 京大化研 1. 東北大院工 1. 阪大院工, 2. 横市大院生命ナノ, 3. 陽交大応化
13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45	援 18p-D63-2 奨 18p-D63-3 奨 18p-D63-4 奨 18p-D63-5 18p-D63-6 奨 18p-D63-7	「第22回有機分子・パイオエレクトロニクス分科会 奨励 賞受賞記念講演」 自発配向分極を示すフッ化アルキル極性分子の開発 カフェ酸の巨大表面電位 棒状分子による高密度な表面偏析単分子膜の形成と非対 称な電気伝導特性の発現 低温下におけるペリレンジイミド蒸着膜の分子配向成長 赤外分光法と X 線回折法で解明する Ph-BTBT-10 薄膜ト ランジスタの最適なアニール条件 液晶相温度で加熱後の Ph-BTBT-10 多結晶薄膜における 高移動度を示すための最適な熱アニール処理条件 C8-BTBT 薄膜における液晶状態からの結晶化挙動の膜 厚による制御 休憩/Break 集光レーザービームを用いたフラーレン結晶化の時空間 制御 ブルー相液晶の異方的結晶成長と核成長起点の制御 界面対称性により誘起される強誘電性ネマティック液晶	○赤池 幸紀¹,下位 幸弘¹,細貝 拓也¹,小野 裕太郎², 山田 洋一² ○横山 高穂¹,但馬 敬介¹ ○杉本 恵美¹,塩谷 暢貴¹,岡 昂徹¹,長谷川 健¹ ○(D)岡 昂徹¹,塩谷 暢貴¹,中野 博貴²,飯野 裕明², 長谷川 健¹ ○中野 博貴¹,岡 昂徹²,塩谷 暢貴²,長谷川 健²,飯野 裕明¹ ○(M1)中野 佑亮¹,丸山 伸伍¹,神永 健一¹,松本 祐司¹ ○伏本 航¹,高橋 秀実¹,丸山 美帆子¹,鈴木 凌²,橘 勝²,杉山 輝樹³,吉川 洋史¹ ○(DC) 仲嶋 一真¹,尾崎 雅則¹ ○上藤 大和¹²,仲嶋 一真¹²,中瀬 蒔優¹,塚本 脩仁¹,	1. 産総研, 2. 筑波大 1. 理研 CEMS 1. 京大化研 1. 京大化研 1. 京大化研 1. 東工大未来研 1. 東工大未来研 1. 東北大院工 1. 阪大院工, 2. 横市大院生命ナノ, 3. 陽交大応化 1. 阪大大工
13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45	援 18p-D63-2 獎 18p-D63-3 獎 18p-D63-4 獎 18p-D63-5 18p-D63-6 獎 18p-D63-7 獎 18p-D63-8 獎 18p-D63-9	「第22回有機分子・パイオエレクトロニクス分科会 奨励 賞受賞記念講演」 自発配向分極を示すフッ化アルキル極性分子の開発 カフェ酸の巨大表面電位 棒状分子による高密度な表面偏析単分子膜の形成と非対 称な電気伝導特性の発現 低温下におけるペリレンジイミド蒸着膜の分子配向成長 赤外分光法と X 線回折法で解明する Ph-BTBT-10 薄膜ト ランジスタの最適なアニール条件 液晶相温度で加熱後の Ph-BTBT-10 多結晶薄膜における 高移動度を示すための最適な熱アニール処理条件 C8-BTBT 薄膜における液晶状態からの結晶化挙動の膜 厚による制御 休憩/Break 集光レーザービームを用いたフラーレン結晶化の時空間 制御 ブルー相液晶の異方的結晶成長と核成長起点の制御	○赤池 幸紀¹,下位 幸弘¹,細貝 拓也¹,小野 裕太郎², 山田 洋一² ○横山 高穂¹,但馬 敬介¹ ○杉本 恵美¹,塩谷 暢貴¹,岡 昴徹¹,長谷川 健¹ ○(D)岡 昴敝¹,塩谷 暢貴¹,中野 博貴²,飯野 裕明², 長谷川 健¹ ○中野 博貴¹,岡 昴敝²,塩谷 暢貴²,長谷川 健²,飯野 裕明¹ ○(M1)中野 佑亮¹,丸山 伸伍¹,神永 健一¹,松本 祐司¹ ○伏本 航¹,高橋 秀実¹,丸山 美帆子¹,鈴木 凌²,橋 膀²,杉山 輝樹³,吉川 洋史¹ ○(DC) 仲嶋 一真¹,尾崎 雅則¹	1. 産総研, 2. 筑波大 1. 理研 CEMS 1. 京大化研 1. 京大化研 1. 京大化研 1. 東工大未来研 1. 東工大未来研 1. 東北大院工 1. 阪大院工, 2. 横市大院生命ナノ, 3. 陽交大応化 1. 阪大大工
13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45	援 18p-D63-2 獎 18p-D63-3 獎 18p-D63-4 獎 18p-D63-5 18p-D63-6 獎 18p-D63-7 獎 18p-D63-8 獎 18p-D63-9 獎 18p-D63-10 獎 E 18p-D63-11	「第22回有機分子・パイオエレクトロニクス分科会 奨励 賞受賞記念講演」 自発配向分極を示すフッ化アルキル極性分子の開発 カフェ酸の巨大表面電位 棒状分子による高密度な表面偏析単分子膜の形成と非対 称な電気伝導特性の発現 低温下におけるベリレンジイミド蒸着膜の分子配向成長 赤外分光法と X 線回折法で解明する Ph-BTBT-10 薄膜トランジスタの最適なアニール条件 液品相温度で加熱後のPh-BTBT-10 多結晶薄膜における 高移動度を示すための最適な熱アニール処理条件 C8-BTBT 薄膜における液晶状態からの結晶化挙動の膜 厚による制御 休憩/Break 集光レーザービームを用いたフラーレン結晶化の時空間 制御 ブルー相液晶の異方的結晶成長と核成長起点の制御 界面対称性により誘起される強誘電性ネマティック液晶 の分極状態 Observation of Precursor Film Growth from Smectic Liquid Crystal State of Vacuum-deposited 4.4'-Didodecyloxyazoxybenzene Thin Film	○赤池 幸紀¹,下位 幸弘¹,細貝 拓也¹,小野 裕太郎²,山田 洋一² ○横山 高穂¹,但馬 敬介¹ ○杉本 恵美¹,塩谷 暢貴¹,岡 昂徹¹,長谷川 健¹ ○(D)岡 昂微¹,塩谷 暢貴¹,中野 博貴²,飯野 裕明²,長谷川 健¹ ○中野 博貴¹,岡 昂微²,塩谷 暢貴²,長谷川 健²,飯野 裕明¹ ○(M1)中野 佑亮¹,丸山 伸伍¹,神永 健一¹,松本 祐司¹ ○伏本 航¹,高橋 秀実¹,丸山 美帆子¹,鈴木 凌²,橘膀²,杉山 輝樹³,吉川 洋史¹ ○(DC) 仲嶋 一真¹,尾崎 雅則¹ ○上藤 大和¹², 仲嶋 一真¹,²,中瀬 蒔優¹,塚本 脩仁¹,菊池 裕嗣³,尾崎 雅則¹ ○上藤 大和¹², 中嶋 一真¹²,中瀬 蒔優¹,塚本 脩仁¹,菊池 裕嗣³,尾崎 雅則¹	1. 産総研, 2. 筑波大 1. 理研CEMS 1. 京大化研 1. 京大化研 1. 京大化研 1. 東工大未来研 1. 東工大未来研 1. 東北大院工 1. 阪大院工, 2. 横市大院生命ナノ, 3. 陽交大応化 1. 阪大工 1. 阪大に、2. 特別研究員 DC1, 3. 九大先導研 1. Tohoku Univ.
13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45	援 18p-D63-2 獎 18p-D63-3 獎 18p-D63-4 獎 18p-D63-5 18p-D63-6 獎 18p-D63-7 獎 18p-D63-8 獎 18p-D63-9 獎 18p-D63-10 獎 E 18p-D63-11	「第22回有機分子・パイオエレクトロニクス分科会 奨励 賞受賞記念講演」 自発配向分極を示すフッ化アルキル極性分子の開発 カフェ酸の巨大表面電位 棒状分子による高密度な表面偏析単分子膜の形成と非対 称な電気伝導特性の発現 低温下におけるペリレンジイミド蒸着膜の分子配向成長 赤外分光法と X 線回折法で解明する Ph-BTBT-10 薄膜トランジスタの最適なアニール条件 液晶相温度で加熱後の Ph-BTBT-10 多結晶薄膜における 高移動度を示すための最適な熱アニール処理条件 C8-BTBT 薄膜における液晶状態からの結晶化挙動の膜 厚による制御 体想/Break 集光レーザービームを用いたフラーレン結晶化の時空間 制御 ブルー相液晶の異方的結晶成長と核成長起点の制御 界面対称性により誘起される強誘電性ネマティック液晶 の分極状態 Observation of Precursor Film Growth from Smectic Liquid Crystal State of Vacuum-deposited 4.4・Didodecyloxyazoxybenzene Thin Film 有機無機ハイブリッド含水結晶の擬似可逆クロミズム 温度応答性共重合体と PEDOT:PSS ブレンド膜による	○赤池 幸紀¹,下位 幸弘¹,細貝 拓也¹,小野 裕太郎², 山田 洋一² ○横山 高穂¹,但馬 敬介¹ ○杉本 恵美¹,塩谷 暢貴¹,岡 昂徹¹,長谷川 健¹ ○(D)岡 昂徹¹,塩谷 暢貴¹,中野 博貴²,飯野 裕明², 長谷川 健¹ ○中野 博貴¹,岡 昂徹²,塩谷 暢貴²,長谷川 健²,飯野 裕明¹ ○(M1)中野 佑亮¹,丸山 伸伍¹,神永 健一¹,松本 祐 司¹ ○伏本 航¹,高橋 秀実¹,丸山 美帆子¹,鈴木 凌²,橘 勝²,杉山 輝樹³,吉川 洋史¹ ○(DC) 仲嶋一真¹,尾崎 雅則¹ ○上藤 大和¹²,仲嶋一真¹²,中瀬 蒔優¹,塚本 脩仁¹, 菊池 裕嗣³,尾崎 雅則¹ ○ MEIYU CHEN¹, Shingo Maruyama¹, Keita Aizawa¹, Naoya Otsuka¹, Eita Shoji¹, Kenichi	1. 産総研, 2. 筑波大 1. 理研 CEMS 1. 京大化研 1. 京大化研 1. 京大化研 1. 東工大未来研 1. 東工大未来研 1. 東北大院工 1. 阪大院工, 2. 横市大院生命ナノ, 3. 陽交大応化 1. 阪大 エ 1. 阪大 に 1. ない
13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45	援 18p-D63-2 獎 18p-D63-3 獎 18p-D63-4 獎 18p-D63-5 18p-D63-6 獎 18p-D63-7 獎 18p-D63-8 獎 18p-D63-9 獎 18p-D63-11 獎 18p-D63-11	「第22回有機分子・パイオエレクトロニクス分科会 奨励 賞受賞記念講演」 自発配向分極を示すフッ化アルキル極性分子の開発 カフェ酸の巨大表面電位 棒状分子による高密度な表面偏析単分子膜の形成と非対 称な電気伝導特性の発現 低温下におけるペリレンジイミド蒸着膜の分子配向成長 赤外分光法と X 線回折法で解明する Ph-BTBT-10薄膜トランジスタの最適なアニール条件 液晶相温度で加熱後の Ph-BTBT-10 多結晶薄膜における 高移動度を示すための最適な熱アニール処理条件 C8-BTBT 薄膜における液晶状態からの結晶化挙動の膜 厚による制御 休憩/Break 集光レーザービームを用いたフラーレン結晶化の時空間 制御 ブルー相液晶の異方的結晶成長と核成長起点の制御 界面対称性により誘起される強誘電性ネマティック液晶 の分極状態 Observation of Precursor Film Growth from Smectic Liquid Crystal State of Vacuum-deposited 4,4'-Didodecyloxyazoxybenzene Thin Film 有機無機ハイブリッド含水結晶の擬似可逆クロミズム	○赤池 幸紀¹,下位 幸弘¹,細貝 拓也¹,小野 裕太郎²,山田 洋一² ○横山 高穂¹,但馬 敬介¹ ○杉本 恵美¹,塩谷 暢貴¹,岡 昂徹¹,長谷川 健¹ ○(D)岡 昂徹¹,塩谷 暢貴¹,中野 博貴²,飯野 裕明²,長谷川 健¹ ○中野 博貴¹,岡 昂徹²,塩谷 暢貴²,長谷川 健²。飯野 裕明¹ ○(M1)中野 佑宠¹,丸山 伸伍¹,神永 健一¹,松本 祐司¹ ○伏本 航¹,高橋 秀実¹,丸山 美帆子¹,鈴木 凌²,橘膀²,杉山 輝樹³,吉川 洋史¹ ○(DC) 仲嶋一真¹,尾崎 雅則¹ ○上藤 大和¹²,仲嶋一真¹,尾崎 雅則¹ ○上藤 大和1²,仲嶋一真¹,尾崎 雅則¹ ○MEIYU CHEN¹,Shingo Maruyama¹,Keita Aizawa¹,Naoya Otsuka¹,Eita Shoji¹,Kenichi Kaminaga¹,Yuji Matsumoto¹	1. 産総研, 2. 筑波大 1. 理研CEMS 1. 京大化研 1. 京大化研 1. 京大化研 1. 東工大未来研 1. 東工大未来研 1. 東北大院工 1. 阪大院工, 2. 横市大院生命ナノ, 3. 陽交大応化 1. 阪大に 1. 阪大院工, 2. 特別研究員 DC1, 3. 九大先導研 1. Tohoku Univ. 1. 高知工大理工, 2. 高知工大総研

17:15	E 18p-D63-	15 Relationship between molecular packing and high degree of orientation in azo dye films	(D)Jian Yu ^{1, 2} , Atsuya Muranaka ³ , Kiyohiro Adachi ⁴ , Masamitsu Ishitobi ⁵ , Hirohito Umezawa ⁶ , Masanobu Uchiyama ³ , Daisuke Hashizume ⁴ , Yutaka Yamagata ² , Toshihiko Tanaka ² , Shinya Matsumoto ^{1, 2} ,	1.Yokohama Nat. Univ., 2.RIKEN RAP, 3.RIKEN CSRS, 4.RIKEN CEMS, 5.Central Glass Co., Ltd., 6.NIT, Fukushima College.
17:30	18p-D63-	16 浮遊薄膜転写法を用いた高分子偏光電気化学発光セルの	Tetsuya Aoyama ² ○長尾 永遠¹, 安川 雅城¹, パンディ シャム¹, 三崎 雅	1.九州工大, 2.奈良高專
17:45	18p-D63-	作製 17 浮遊薄膜転写法を用いた p-i-n 構造室内光有機薄膜光電池	裕², 永松 秀一¹ セ ○中道 龍信¹, パンディ シャム¹, 永松 秀一¹	1. 九州工大
9/19(Thu) 0:15 - 11:	の作製 30 口頭講演 (Oral Presentation) A34会場(Room A34)		
9:15	19a-A34-		○(M1)相原和貴¹,平馬拓真¹,竹井慎登¹,菅洋志¹, 塚越一仁²	1. 千葉工学, 2. 物材機構
9:30	19a-A34-2	2 3回対称軸を持ち分子末端にキラル部位を有するディスク状TTF誘導体からなる螺旋らせん組織体の作製	〇廣瀬 史哉 1 , 西原 禎文 2 , 南 豪 4 , 芥川 智行 5 , 中村 貴義 2 6, 帯刀 陽子 1	1.農工大院工, 2.広島大院先進理工, 3.JST さきがけ, 4.東大生産研, 5.東北大多元研, 6.北大電子研
9:45	19a-A34-3	3 イオン液体充填による金属有機構造体の骨格変調効果~ アニオン種依存性~	○(M2)小関海斗¹,鄭雨萌¹,齋藤智彦¹,木下健太郎¹	1.東理大先進工
10:00	19a-A34-		〇天野 健太郎 ¹ , 小関 海斗 ¹ , 鄭 雨萌 ¹ , 齋藤 智彦 ¹ , 木 下 健太郎 ¹	1. 東理大先進工
10:15	19a-A34-			1.北大院総化, 2.北大院工
10:30 10:45	19a-A34-	休憩/Break 有機溶媒中3D-AFMを用いた材料表面がDMF溶媒和に	○正木 南萌¹, 森本 将行¹, 淺川 雅¹	1. 金沢大
11:00	19a-A34-	与える影響の評価 PEDOT:PSS薄膜への接着性高分子ポリドーバミンの表	○阿部 咲響¹, 山本 俊介².¹, 三ツ石 方也¹	1. 東北大院工, 2. 京大院工
11:15	19a-A34-8	面修飾 交互吸着法による PEDOT: PSS 薄膜上への金属有機構造	○渡辺 壮之亮¹, 山本 俊介¹², 三ツ石 方也¹	1. 東北大院工, 2. 京都大院工
10.0 ===	/m ++ 744 44- 14- /	体薄膜の成長		
		Characterization and Materials Physics :30 口頭講演 (Oral Presentation) B6会場(Room B6)		
13:00	16p-B6-1	GDM に現れる移動度の電場依存性を支配する空間相関	○大野玲¹,新田武父³,半那純一²,飯野裕明²	1. 新居浜高専, 2. 東工大, 3. 東京高専
13:15	16p-B6-2	ジメシチルボリルエチニルアントラセン誘導体非晶質膜 が示す電子移動度の温度依存性	○三柴 健太郎 ^{1,3} , 永田 晃基 ¹ , 田中 裕也 ² , 飯野 裕明 ³	1. 都産技研, 2. 東工大化生研, 3. 東工大未来研
13:30	16p-B6-3	原子スイッチナノ粒子ネットワークの電気的機能モデリ ング	○宇佐美 雄生 ^{1,2} , Dang Thien Tan ¹ , 田中 啓文 ^{1,2}	1. 九工大院生命体工, 2. 九工大 Neumorph センター
13:45	16p-B6-4	P3HT及びP3HT複合体ネットワークの電気特性	○樋口 歩高¹, 三坂 朝基¹, 大山 浩¹, 松本 卓也¹	1. 阪大院理
14:00 14:15	16p-B6-5 16p-B6-6	PEDOT/PSSナノグレインネットワークの電気特性 金微粒子架橋による共鳴トンネル神経型デバイスの構築	 ○(M2)西村優汰¹,大山浩¹,松本卓也¹ ○(M1)若松慈久¹,松尾将矢¹,大山浩¹,松本卓也¹ 	1. 阪大院理
		と特性		
14:30 14:45	奨 E 16p-B6-7	休憩/Break Enhancing Computational Efficiency and Functionality in oriented RR-P3HT thin films	○ (PC)Moulika Desu ^{1,2} , Usami Yuki ^{1,2} , Hirofumi Tanaka ^{1,2}	1.Neuromorph Center, 2.LSSE,Kyutech
15:00	奨 16p-B6-8	ポリ (3-ヘキシルチオフェン -2,5- ジイル) を用いたリザ	□ (DC) 中岡 佑輔¹, デス モウリカ¹, 宇佐美 雄生¹², 田中 啓文¹.²	1. 九工大生命体工, 2. 九工大 Neumorph センター
15:15	奨 E 16p-B6-9	バー演算素子の配向性と演算性能の関係に関する研究 Nonlinear Electrical Conduction in Au Adsorbed PCBM for Neuromorphic Physical Computing	O Dong Han ¹ , Takashi Yamada ¹ , Tomoki Misaka ¹ , Hiroshi Ohoyama ¹ , Takuya Matsumoto ¹	1.Osaka Univ.
15:30	奨 E 16p-B6-1			1.Osaka Univ., 2.Univ. of Lodz, 3.Wakayama Univ.
15:45	奨 16p-B6-1		Osuga³, Yoshitada Morikawa¹, Yuji Kuwahara¹	1. 千葉大融合, 2. 千葉大先進, 3. 千葉大MCRC
16:00	奨 16p-B6-1	価 2 高真空ケルビンプローブと熱平衡モデルシミュレーショ	夫 ^{1,2,3} ○(M2)古川 侑生 ¹ , 吉田 弘幸 ^{1,2}	1. 千葉大院工, 2. 千葉大MCRC
		ンを用いたPTCDAのギャップ内準位測定		
16:15 16:30	16p-B6-1	休憩/Break 3 カルバゾールデンドリマー蒸着膜の自発的配向分極	中尾 晃平 ¹ , 角町 駿太 ² , 久村 絵理 ¹ , 安達 千波矢 ² , 中	1. 九大先導研 . 2. 九大 OPERA
			野谷 −², ○アルブレヒト 建¹	
16:45	16p-B6-1	ethylenedioxythiophene):poly(4-styrenesulfonate)	○ (D) 下川 大地¹, 古川 行夫¹, 朝野 剛²	1.早大院・先進理工, 2.ENEOS株式会社
17:00	16p-B6-1		下坂 凌丘¹, ○名和 靖矩¹, 田和 圭子¹	1. 関西学院大 院理工
17:15	16p-B6-1	の構造依存性 6 DNTT薄膜相の結晶構造解析	○塩谷 暢貴¹, 長谷川 健¹	1. 京大化研
17:30	E 16p-B6-1		○ (D)Md Bulu Rahman ¹ , Toshifumi Iimori ¹	1.Muroran Tech.
17:45	16p-B6-1	Stark Spectroscopy 3 テンダーX線吸収分光による高分子電解質膜の電子状態	○(PC)倉橋 直也¹, 菅 大暉²	1.分子研, 2.高輝度光科学研究センター
40	-	解析		
18:00 18:15	16p-B6-1	休憩/Break ラ Spiro-OMeTAD に対するイオン変調ラジカルドーピンク	* 川島 雅哉¹, Tiankai Tiankai². Wang Feng². Gao	1.千葉大院工, 2. リンショーピング大学, 3.千葉大
18:30	16p-B6-2	による仕事関数と電子準位の同時制御について	Feng², Fahlman Matz², ○吉田 弘幸 1.3	MCRC 1. 千葉大院工, 2. 千葉大 MCRC
18:45	16p-B6-2	ト上の有機半導体薄膜の鏡像準位エネルギーバンド構造		
		緩和過程の検討	代2	
19:00	16p-B6-2	2 熱活性化遅延蛍光材料における分子の過渡的構造の観測	○(M2)塩谷海斗¹,高田亜美²,西郷将生²,五十幡康弘³,宮田潔志²,木幡真太郎⁴,齋田友梨¹,鈴木弘朗⁵,石川忠彦⁴,桑原真人²,山田洋一¹,林靖彦⁵,腰原伸也°,後藤仁志³,中野谷一⁴,恩田健²,安達千波矢⁴,羽田真毅¹	
19:15	16p-B6-2	3 角度分解低エネルギー逆光電子分光法による導電性ポリマーPBTTTの伝導帯エネルギーバンド構造測定	○駿河 太一¹, 伊藤 駿一郎², 竹延 大志², 吉田 弘幸¹.3	1.千葉大院工, 2.名大院工, 3.千葉大MCRC
9/18(V	Ved.) 13:30 - 15 18p-P04-	:30 ポスター講演 (Poster Presentation) P会場 (Room P)	○熊谷 怜士 ^{1,2} , Taemaitree Farsai ^{1,2} , 平井 健二 ^{1,2} , 雲	1.北大院情報, 2.北大電子研
	18p-P04-		林院 宏 ^{1,2} □ (M1) 野島 拓樹¹, Chan Feng-Yueh², 小谷 崇博¹,	1.北大情報科学, 2.名大院理
	18p-P04-	システム 3 リチウム内包 C ₇₀ 薄膜の電子状態計測	利光 大雅 ¹ , 内橋 貴之 ² , 岡嶋 孝治 ¹ ○(M1)河野 優輝 ¹ , 鶴田 諒平 ¹ , 上野 裕 ² , 山田 洋一 ¹	1 第波大数理 2 東北大
	10p-PU4-	,	○ (1711) 四對	1

	18p-P04-4	${\rm Ag}(110)$ 上での ${\rm PhC_2\text{-}BQQDI}$ の高配向多層膜成長	幸 ^{2,3,4} , 熊谷 翔平 ⁵ , 岡本 敏宏 ⁵ , 山田 洋一 ¹	1. 筑波大数理, 2. 千葉大院融合, 3. 千葉大院工, 4. 千葉 MCRC, 5. 東工大物質理工
	18p-P04-5	光電子収量分光における自動解析の検討 - N・P型Siスペクトルの解析 -	○柳生 進二郎¹, 長田 貴弘¹, 劉 雨彬², 中島 嘉之²	1.NIMS, 2.理研計器
	18p-P04-6		○中島 嘉之¹, 劉 雨彬¹, 柳生 進二郎², 長田 貴弘²	1. 理研計器, 2.NIMS
	18p-P04-7		○ (PC) 下ヶ橋 龍之介¹,², Lee Wei Chuang², Liu Fupin³, Popov Alexey A.³, Muntwiler Matthias⁴, Delley Bernard⁴, Kruger Peter⁵, Greber Thomas²	1.分子研, $2.$ チューリッヒ大物研, $3.$ ライブニッツ固杉研, $4.$ バウルシェラー研, $5.$ 千葉大院理工
	18p-P04-8	分子双極子の配向秩序による摩擦発電過程:双極子配向 分極による自由エネルギーモデル	○田口大¹,間中孝彰¹,岩本光正¹	1.東工大
	18p-P04-9	Tender XAFS測定による有機半導体薄膜評価(II)	〇瀬戸山寛之 1 ,渡辺剛 2 ,竹内雄賀 3 ,胡啓太 3 ,藤崎聡美 3 ,吉本則之 3 ,廣派一郎 1	·
	18p-P04-10	気相法による Si(111) 表面へのエポキシアルカン SAM形成		1.京大院工
	·	ナミクス	○(M1)佐藤 滉也¹,田村 直哉¹,欅田 英之¹,橋本 剛¹, 早下 隆士¹,江馬 一弘¹	
	E 18p-P04-12	Disposable Surface Plasmon Resonance Sensor Utilizing UiO-66-NH ₂ Modification Surface for Heavy Metal Detection	○ (D)Wisansaya Jaikeandee¹, Chutiparn Lertvachirapaiboon², Dechnarong Pimalai², Kazunari Shinbo¹, Keizo Kato¹, Akira Baba¹	1.Niigata Univ., 2.NANOTEC, THAILAND
	E 18p-P04-13	Surface plasmon resonance-enhanced photoelectrochemical flexible biosensor using	\bigcirc (D)Charin Seesomdee 1 , Sachiko Jonai 1 , Kazunari Shinbo 1 , Keizo Kato 1 , Akira Baba *1	1.Niigata Univ.
	18p-P04-14	PEDOT:PSS thin film with AuNPs on PDMS substrate キラル 2D ペロブスカイトにおける光ガルバノ効果の偏 光依存性	○(M2)三木 哲平¹, 音 賢一¹, 山田 泰裕¹	1. 千葉大院理
	18p-P04-15	ミリスチン酸ラングミュア膜の2相共存領域における異なるサイズ階層間での成長相関	○鈴木 八雲¹, 八田 英嗣¹, 末岡 和久¹, アグス スバ ギョ¹	1.北大院情
		竟、12.2 評価・基礎物性のコードシェア / Code-sharing So		
	fue.) 13:00 - 18:30 招 E 17p-B4-1	口頭講演 (Oral Presentation) B4会場 (Room B4) [The 56th Young Scientist Presentation Award Speech] High-Spatial-Resolution Mass Spectrometry Imaging of Mouse Retina by Improved Tapping-mode Scanning Probe Electrospray Ionization	· · · · · · · · · · · · · · · · · · ·	1.Graduate school of science, Osaka Univ, 2.Nations Center for Global Health and Medicine
3:15	招 17p-B4-2	「第56回講演奨励賞受賞記念講演」 ガラス絶縁電析Au探針による電気化学走査トンネル顕微 鏡計測と探針増強ラマン分光への応用	〇小林 柚子 $^{1.2}$, 横田 泰之 1 , 高橋 康史 $^{3.4}$, 竹谷 純 $^{-5}$, 金 有沫 $^{1.6}$	1. 理研, 2.JST さきがけ, 3.名大工, 4.金大ナノ生命科研, 5.東大新領域, 6.東大工
3:30	奨 17p-B4-3	3D-SFMとMDシミュレーションによるアニオン界面活性剤結晶/水界面構造の分子スケール解析	垣 篤典², Ygor Morais Jaques³, Adam S. Foster³, 柿澤	1. 金沢大, 2. ライオン (株), 3.Aalto 大
3:45	奨 17p-B4-4	加熱銅製ノズルを通して蒸着したAu(111)基板上のヘキ サブロモトリフェニレン分子のSTM観察	恭史²,福間剛士¹ ○山口 真広¹,坂上 弘之¹,富成 征弘²,田中 秀吉²,鈴 木仁¹	1. 広島大先進理工, 2. 情通研機構
4:00	奨 17p-B4-5	DPh-BTBT の 1 次元構造における HOMO と HOMO-1 の軌道混成		1. 筑波大, 2. 京大, 3. 和歌山大
4:15	奨 E 17p-B4-6	Negative Differential Resistance in Single-Molecule Junctions Based on Heteroepitaxial Spherical Au/Pt Nanogap Electrodes	(D)Dongbao Yin¹, Miku Furushima², Haru Tanaka¹, Seiichiro Izawa¹, Tomoya Ono², Ryo Shintani³, Yutaka Majima¹	1.Tokyo Tech, 2.Kobe Univ., 3.Osaka Univ.
4:30	17p-B4-7	原子層磁石観察に向けた qPlus AFM/MFM開発 (1)	○(M1) 赤松 瞬', 市川 稜', 石井 榛', Wulfhekel Wulf', Haghighirad Amir-Abbas², 益井 絵美里³, 稲見 栄一³, 西脇 悠人⁴, 時任 秀慈⁴, 一井 崇⁴, 山田 豊和¹.5	1. 千葉大院工, 2. カールスルーエ工科大, 3. 高知工大, 4. 京大院工, 5. 千葉大分子キラ研
4:45 5:00	17p-B4-8	休憩/Break STM誘起発光を用いたキラルPTCDI分子の光学活性評 価	\bigcirc (M2) 春名 泰成 1 , 服部 卓磨 1 , 松羅 翔大 2 , 齋藤 彰 1 , 大須賀 秀次 2 , 桑原 裕司 1	1.阪大院工, 2.和歌山大システムエ
5:15 5:30	17p-B4-9 17p-B4-10	二次元ハニカム格子磁石の表面合成 液中AFMによる半導体ウェーハ絶縁膜表面の吸着力計測	○山田 豊和¹, 石井 榛¹	1. 千葉大院工 1. 金沢大, 2. 荏原製作所
5:45	17p-B4-11	全固体電池における活物質間接触と電池容量に関する3	田 一輝¹, 宇野 恵², 高東 智佳子², 福間 剛士¹ ○前田 泰¹, 山岸 裕史¹, 蒲生 浩忠¹	1. 産総研
6:00	17p-B4-12	次元シミュレーション解析 基準電位制御法を導入した時間分解静電引力顕微鏡によ	○竹木 閱去¹ 佐藤 排¹ 石橋 亮去¹ 嘉橋 硋 ¬ ¹.2	1.東大生研, 2.東大ナノ量子機構
	·	る太陽電池材料評価		
6:15	17p-B4-13	ヘテロダインボンププローブケルビンプローブフォース 顕微鏡による有機薄膜トランジスタのキャリアダイナミ クス評価	○	1.京大工
6:30	E 17p-B4-14	PEDOT-PSS network layers for neuromorphic physical computing	○ meien Sou¹, Yuma Murano¹, Dock-chil Che¹, Syusaku Nagano², Takuya Matsumoto¹	1.Osaka Univ., 2.Rikkyo Univ.
6:45 7:00	E 17p-B4-15	体憩/Break AFM observation of microparticle latex film under tensile strain	Sasaki ² , Natsuki Watanabe ¹ , Daisuke Suzuki ² ,	1.Nagoya Univ., 2.Okayama Univ., 3.ExCELLS
7:15	17p-B4-16	【注目講演】原子間力顕微鏡による単一椀状分子の機械的 構造反転	Takayuki Uchihashi ^{1,3} ○ (PC) 岩田 孝太 ¹ , 久能 欄丸 ² , 濱田 幾太郎 ² , 櫻井 英博 ² , 杉本 宜昭 ¹	1. 東大新領域, 2. 阪大院工
7:30	17p-B4-17	σ - 非局在系を有する分子接合の電荷輸送特性	○藤井 慎太郎¹, 瀬古 紗弥², 田中 泰地², 吉原 勇輝¹, 古川 俊輔², 西野 智昭¹, 斎藤 雅一²	1. 東工大, 2. 埼玉大
7:45 8:00	17p-B4-18 17p-B4-19	単一分子架橋系の整流特性の第一原理計算による研究 CNT探針を用いた DNA の液中 FM-AFM 計測	 ○古島弥来¹,植本光治¹,小野倫也¹ ○水野雄介¹,宮澤佳甫¹.²,寺前圭吾¹,児島亮平¹,福間剛士¹.² 	1. 神戸大工 1. 金大院, 2.WPI-NanoLSI
8:15	17p-B4-20	原子間力顕微鏡を用いたシロイヌナズナ細胞の力学特性 評価		1. 奈良先端大物質, 2. 奈良先端大バイオ, 3. 奈良先端 CDG, 4. 奈良先端大MLC
		イス / Functional Materials and Novel Devices	13 144) ([120] Alle	C. C., LANDAUMACHINA
9/18(Wed.) 9:30 - 11:30 18a-P05-1	ポスター講演 (Poster Presentation) P会場 (Room P) 蒸着ジアリールエテン膜巨大表面電位の紫外光照射による低下メカニズムと光耐久性	○辻岡 強¹,川島 弘之²,小池 健仁²,松本 直樹²,沈 君 偉³,中村 振一郎³	1.大阪教育大学, 2.東ソー(株), 3.熊本大学
	18a-P05-2 E 18a-P05-3	スピロピラン蒸着アモルファス膜における熱着色反応 Transient Spectroscopy Study of Thiophene/Phenylene	○辻岡 強¹, 沈 君偉², 中村 振一郎² ○ (D)Andi Marwanti Panre¹, Hitoshi Mizuno¹.²,	1.大阪教育大学, 2.熊本大学院先導機構 1.NAIST, 2.Toyama Pref. Univ.
			Tomomi Jinjyo ¹ , Garrek Stemo ¹ , Hiroyuki Katsuki ¹	
	18a-P05-4	Co-oligomer Nanocrystals ピラジン縮環型イソチアナフテンキノイドの開発	○山本 恵太郎 ^{1,2} , 陣内 青萌 ² , 家 裕隆 ²	1. 都産技研, 2. 阪大産研

	18a-P05-6	ケーブル型圧電センサを用いた1次元位置検出システム	○(M1)山添 雄介¹,中嶋 宇史¹, 伊勢 健冬², 東 維成², 寺師 大助²	1. 東理大物工, 2.(株) フジクラ
	18a-P05-7			1. 東理大物工
	18a-P05-8		○小林 泰 ¹, 西久保 綾佑 ¹.², 佐伯 昭紀 ¹.²	1. 阪大院工, 2. 阪大ICS-OTRI
	18a-P05-9		○董 海韵¹, 神谷 衣里², 奈良 健汰¹, 堀 真由香¹, 関根智仁¹²	1.山形大院有機, 2.山形大工
	18a-P05-1			1. 山形大院有機, 2. 山形大工, 3. 山形大 INOEL
	18a-P05-1	物センシング応用 1 柔軟性を有する貼付型薄膜湿度センサの開発と植物の蒸 散活動計測		1.東工大生命理工, 2. 産総研SSRC, 3. 早大理工
	18a-P05-1		○木村 知喜¹, Pandey Manish¹, 辨天 宏明¹, 中村 雅	1. 奈良先端大
	18a-P05-1	3 ルブレン単結晶の巨大ゼーベック効果に対する化学ドー ピングの影響(2)	○木村 英明¹, 服部 修也¹, 阿部 竜¹, Pandey Manish¹, 辨天 宏明¹, 平本 昌宏¹, 中村 雅一¹	1. 奈良先端大
	18a-P05-1	4 マルチレドックスシステムによる温度変化発電デバイス		1.神戸大院工,2.産総研ナノ材,3.筑波大院理,4.神戸大 先端膜工学セ,5.神戸大環境セ
	18a-P05-1	5 P(VDF-TrFE)/CNT 積層型赤外線センサによる動的/静 的熱源の同時検出		
	18a-P05-1			
	18a-P05-1			1.農工大院工
	18a-P05-1		○(M1) 米田 朗人¹, 下村 武史¹	1. 農工大院工
	18a-P05-1	9 PEDOT:PSS自立膜の形成プロセスにおける溶媒種類依 存性	○松本 こもも¹, 山本 裕也¹, 岸 直希¹	1.名工大
	18a-P05-2	0 脱水材を利用した湿式紡糸法によるPEDOT:PSS導電繊維の作製と評価	○河原 慧太¹, 岸 直希¹	1.名工大
		1 耐久性に優れた導電糸を用いた人工筋肉の作製	○多田 和也1	1. 兵庫県立大工
	18a-P05-2	モード共振器におけるプラズモン消光効果の抑制	岡 1	
	18a-P05-2	ド共振器を用いた伝搬型表面プラズモンによる発光増幅	○宮本 晟那¹,今田 和希²,横松 得滋³,前中 一介³,小 簑 剛²	
	18a-P05-2	フリースタンディングなシリカ/π共役系分子複合球体	○松尾 匠¹, 谷久保 泰樹¹, 林 正太郎¹	1.高知工大
	18a-P05-2		橋 駿¹,山下兼一¹	
	18a-P05-2	6 CsPbBr ₃ 微小共振器における共鳴光励起による室温ポラ リトン凝縮	\bigcirc 小倉 大暉 1 ,犬飼 剛也 1 ,岡田 大地 1 ,高橋 駿 1 ,山下 兼 $-^1$	1.京都工芸繊維大工
	E 18a-P05-2	Single Crystals of a Cyano-substituted Thiophene/ phenylene Co-oligomer	Marwanti Panre ¹ , Tomomi Jinjyo ¹ , Garrek Stemo ¹ , Hiroyuki Katsuki ¹	1.NAIST, 2.Toyama Pref. Univ.
	18a-P05-2	8 積層磁石を用いた液晶ファブリ・ペロー共振器のミリ波 透過特性	○笹山 有輝¹, 本間 道則¹, 伊東 良太¹, 能勢 敏明¹	1.秋田県大システム
	18a-P05-2	9 液晶素子に形成されるステップ状の大きな屈折率勾配と その電気光学特性	○大林 玄虎¹, 森武 洋¹, 井上 曜¹	1.防衛大
	18a-P05-3	6 段階的光重合を利用した極角方向の液晶配向分布形成手法		1.防衛大
	18a-P05-3 18a-P05-3		○ (M1) 河内 奏太¹, 新保 一成¹, 大平 泰生¹ ○高山 雪音¹, 古川 一暁¹	1.新潟大 1.明星大院理工
9/19(9:00	Thu.) 9:00 - 11:3 19a-B6-1	30 口頭講演 (Oral Presentation) B6 会場(Room B6) 有機光検出器の電子輸送層用 ZnO膜のドライアニール効	○多川 友作¹, 染谷 隆夫¹, 横田 知之¹	1.東大工
9:15	奨 19a-B6-2	果 極薄ゴム基板を用いた着脱可能な構造を有する有機光検	○(M2)佐々木 光生¹,山岸 健人¹,染谷 隆夫¹,横田	1 東大院
9:30	奨 19a-B6-3	出器の開発 異なる波長域光を選択的に検出可能な有機光検出器の作	知之1	
9:45	奨 19a-B6-4	製 光学式流量計測のための有機受光素子一体型容器の作製	之 ¹	
10:00	X 174 D0 1	休憩/Break	郎	TIME TELLE
10:15	奨 19a-B6-5	一段階溶液プロセスを用いた電荷移動錯体 - ベロブスカイトナノ結晶複合膜の創出	○服部 秀生¹, 松井 淳², 江部 日南子²	1.山形大院理工, 2.山形大理
10:30	奨 19a-B6-6	双性イオン配位子の置換基間隔の制御によるベロブスカ イト量子ドットの光安定性の向上	○(B)飯塚 琢朗¹, 森川 結策², 千葉 貴之³, 6, 柏木 幹文⁴, 浅倉 聡⁵, 增原 陽人 ^{6,2}	1.山形大工,2.山形大院理工,3.山形大院有機シス,4.日 本ゼオン,5.伊勢化学,6.山形大有機材料シスセ
10:45	19a-B6-7	光刺激により硬さが変化するポリシロキサンの触覚提示 応用		1.NHK 技研, 2. 東京大学
11:00	19a-B6-8	シャッタで仕切られた2槽水槽内での2個の自己推進型 イオンゲルの分布制御	○棚橋 達紀¹, 古川 一暁¹	1. 明星大院理工
11:15	19a-B6-9	アルギン酸カルシウムハイドロゲルを構成する糸状構造 体の構造観察	○青柳 稔¹	1.日工大
9/19(7	Γhu.) 13:00 - 18:	15 口頭講演 (Oral Presentation) B6会場 (Room B6)		
13:00	19p-B6-1	流動する液体表面上における高分子半導体超薄膜の分子 配向制御およびトランジスタ応用	彦 ^{1,2,3} , 山下 侑 ^{1,2}	1. 東大院新領域, 2. 物材機構, 3. 東理大院理工
13:15	奨 19p-B6-2	ひずみセンサ応用のための有機単結晶半導体のp型ドー プ状態の安定化	渡邉 俊一郎1,竹谷 純一1.2	
13:30	19p-B6-3	フレキシブル圧電体と高急峻 FET を用いた高感度圧力セ ンサの開発	○ (M2) 首藤 龍馬¹, 二階堂 圭¹, 井上 悟¹, 長谷川 達 生¹	1.東大院工
13:45	E 19p-B6-4	Smart socks with all textile-based pressure sensors	○ Jingyi Jiang¹, Wakako Yukita¹, Kento Yamagishi¹, Tomoyuki Yokota¹, Takao Someya¹	ŕ
14:00	19p-B6-5	自己ドープ型PEDOTを用いたナノシート電極による生 体計測	谷隆夫1	1.東大工
14:15	奨 19p-B6-6	S-PEDOTを用いた導電性ナノメッシュの開発	○(B)中込 満博¹, 福澤 亮太¹, 山岸 健人¹, 横田 知 之¹, 染谷 隆夫¹	1.東大工
14:30		休憩/Break		
14:45	奨 19p-B6-7	薄膜金電極を用いた電気化学アプタマーセンサのセンシ ング能評価	○(M1) 寺井 健人¹, 孫 健¹², 藤枝 俊宣¹	1.東工大生命理工, 2.カリフォルニア大サンタバーバラ 校

15:00	19p-B6-8	シアノ基導入液晶エラストマーの弾性率温度性	○ (M2) 本松 大翼¹, 石田 謙司¹, 日高 芳樹¹, 河野 真也¹, 岡部 弘高¹	1. 九大院工
15:15	19p-B6-9	2 スリット Young の実験系での自己整合液晶光制御素子		1.富山大工
15:30		の否定論理動作 休憩/Break		
15:45	奨 19p-B6-10	本思/Dreak 室温作製可能なチオフェン/フェニレンコオリゴマー単 結晶レーザー	○松尾 匠¹, 林 正太郎¹	1.高知工大
16:00	奨 19p-B6-11	可逆的熱応答性と柔軟性を示す堅牢なアントラセン結晶	○(M1) 野老山 瑞希 ¹ 松尾 匠 ^{2,3} 林 正太郎 ^{2,3}	1.高知工大院工, 2.高知工大理工, 3.高知工大総研
16:15	19p-B6-12	リング型およびディスク型WGMマイクロ共振器の作製およびその自然放射増幅光閾値の比較		
16:30		休憩/Break		
16:45	19p-B6-13	極性液晶中におけるレーザー発振の第二次高調波変換 交流駆動型有機ELの周波数に対する発光と電流の挙動	○岡田 大地 ^{1,2} ,西川 浩矢 ² ,荒岡 史人 ² ○筒井 真裕 ¹ ,稲田 雄飛 ¹ ,山雄 健史 ¹ ,堀田 収 ¹	1.京都工芸繊維大学, 2.理化学研究所 1.京工繊大
17:00 17:15	19p-B6-14 19p-B6-15	交流駆動下における有機薄膜発光トランジスタの電流お		1.京工繊大
17:30	19p-B6-16	よび発光強度の周波数依存性 有機結晶表面に同心四分円回折格子を加工した分布帰還	○多井 草布¹, 稲田 雄飛¹, 山雄 健史¹, 堀田 収¹	1.京工繊大
17:45	19p-B6-17	型レーザーの発光特性 変位電流評価法による加圧下にある Alq。有機 MIS型素子 の電荷挙動観察	○ (M1) 伊藤 蒼生¹, 鈴木 孝明¹, 田中 有弥¹	1.群馬大院理工
18:00	19p-B6-18	巨大表面電位を有する蒸着有機膜表面における自発的な 水滴の動き	○辻岡 強¹, 川島 弘之², 小池 健仁², 松本 直樹², 沈 君 偉³, 中村 振一郎³	1.大阪教育大学, 2.東ソー(株), 3.熊本大学
9/20(F	Fri.) 9:00 - 11:30	口頭講演 (Oral Presentation) B6会場 (Room B6)	年,于11 xx xx	
9:00	奨 20a-B6-1	カチオン包接体を導入したハイドロゲルの熱化学電池へ の応用	○(M2)五百川 創志 ¹ , 蒲谷 勇樹 ¹ , 木戸脇 匡俊 ² , 下 村 武史 ¹	1. 農工大院工, 2. 芝浦工大院理工
9:15	奨 20a-B6-2	有機熱電デバイスの原理検証と高性能化	○亀山 真奈¹, 今岡 健太郎¹, 安達 千波矢¹.²	1. 九大 OPERA, 2. 九大 WPI-I2CNER
9:30	奨 20a-B6-3	半導体性カーボンナノチューブを用いた高感度赤外熱電 センサ	○(M2)石原 誠之¹, 鈴木 大地², 山雄 健史¹, 野々口 斐之¹	1. 京工繊大院工芸, 2. 産総研
9:45	20a-B6-4	n型導電性高分子PBFDOの電気特性および熱電素子への応用	○古賀 聡一郎¹, 古川 行夫¹, 渡邉 孝信², 朝野 剛³	1.早大先進理工, 2.早大基幹理工, 3.ENEOS 株式会社
10:00 10:15	奨 20a-B6-5	休憩/Break 機械学習を搭載したデータ補完型 V_2O_5 ナノワイヤ温度センシングシステム	○中村 悠希 ¹ , 江崎 遼太 ² , 松村 紅怜 ² , 福井 暁人 ² , 桐谷 乃輔 ³ , 竹井 邦晴 ¹	1.北大,2.大阪公立大学,3.東大
10:30	奨 20a-B6-6	濡れ状態下での高感度信号検出を指向した指紋型すべり		1.山形大院有機, 2.山形大 INOEL, 3.Piezotech. 4.ア/
		覚センサ	Fabrice Domingues Dos Santos³, 宮保 淳⁴, 関根 智仁¹	
0:45	20a-B6-7	印刷法を用いた自己封止型温度センサの開発	○吉田 綾子¹, Wang Yi-Fei¹, 竹田 泰典¹, 奥山 義浩¹, 熊木 大介¹, 時任 静士¹	1.山形大学 INOEL
1:00	20a-B6-8	アニール処理時電界印加によるP(VDF/TrFE) 薄膜の焦電性向上の評価	○酢谷 陽平¹, 福住 正文¹, 泉 宏和¹	1.兵庫県立工業技術センター
1:15	20a-B6-9	フェニル基を含むハイブリッドペロブスカイトの複合化	○近藤 雅¹, 平井 將輝¹, Aghnia Dinan¹, Manish	1. 奈良先端大
		によるCNT紡績糸の熱伝導率への影響	Pandey ¹ ,辨天 宏明 ¹ ,中村 雅一 ¹	
		口頭講演 (Oral Presentation) B6 会場 (Room B6)	OAL MANA 12 THE PROPERTY SELECTION 2 SECTION SERVICE	1 Webby 0 to 1 Per 0 to 1 Per
3:00	奨 20p-B6-1	ボリマー半導体の水溶液を用いた化学ドーピングにおける 溶存酸素とアニオン吸着の影響	\bigcirc 並 方 作 \bigcirc , 有 开 以 \bigcirc , 相 开 健 \bigcirc , 相 开 资 例 , 竹 谷 純 \bigcirc , 有 賀 克 $\widehat{\mathrm{E}}^{1.2.3}$, 山 下 侑 $\widehat{\mathrm{E}}^{1.3}$	1. 物材研, 2. 果理人阮, 3. 果人阮
3:15	奨 20p-B6-2	オクタシアノ銅フタロシアニンの合成と物性評価	○ (M2) 磯部 桃花¹, 阿部 史弥¹, 大井 裕翔¹, 金井 要¹	1. 東理大創域理工物理
3:30	奨 20p-B6-3	鉄フタロシアニンポリマーの合成と物性評価	○(M1)大井 裕翔¹, 磯部 桃花¹, 岸川 莉子¹, 阿部 史 弥¹, 森下 玄寬¹, 高木 俊輔¹, 中山 頌太¹, 金井 要¹	1. 東理大創域理工物理
13:45	奨 20p-B6-4	【注目講演】スルホン化ポリイミド薄膜のLiイオン電池 用有機溶媒滴下による組織構造形成とリチウムイオン伝 導度の向上		1. 北陸先端大, 2. 香川大創造工, 3. 名工大院工, 4. 信大 クア・リジェネレーション機構, 5. 信大工, 6. 立教大阪 理
14:00	20p-B6-5	ナノ液体ネットワーク形成のための局在表面プラズモン	○(M1)細坪 航大¹,新保 一成¹,大平 泰生¹	1.新潟大
4:15		によるアゾボリマー微粒子操作 休憩/Break		
4:30	奨 20p-B6-6	機械学習による有機半導体の充填構造予測	○關 拓和¹, 篠崎 雄大¹, 佐藤 俊輔¹, 伊藤 良将¹, 竹谷 純一², 岡本 敏宏⁴, 渡辺 豪¹, 5,6	1.北里大院理, 2.東大院新領域, 3.物材機構, 4.東工大質理工, 5.北里大未来工, 6.神奈川県産総研
4:45	奨 20p-B6-7	計算科学と機械学習に立脚した有機半導体結晶の高効率 かつ高精度な結晶構造予測		1.北里大院理,2.東大院新領域,3.物材機構,4.東工大質理工,5.北里大未来工,6.神奈川産総研
5:00	奨 20p-B6-8	お椀型分子が形成する集合体構造に対する分子動力学シ		1. 北里大院理, 2. 理研 CEMS, 3. 香港中文大理工, 4. 北
5:15	20p-B6-9	ミュレーションによる構造安定性の比較解析 電極界面における Nafion 薄膜のプロトン伝導度の評価	○長尾 祐樹¹, Bhardwaj Rahul¹, 四反田 功²	大未来工,5.神奈川県産総研 1.北陸先端大,2.東理大創域理工
.2.4 有機		マ / Organic light-emitting devices and organic transistor 口頭講演 (Oral Presentation) B6会場 (Room B6)		1.礼性儿神八, 5. 木生八配《在上
9:00	E 17a-B6-1	Efficient Transparent Quantum-Dot Light-Emitting	○ Mian Wei ^{1, 2} , Junyu Ren ¹ , Huaibin Shen ¹	1.Henan Univ., 2.UTokyo
		Diodes Using Polyethylenimine-Ethoxylated Buffer Layer		
9:15	奨 17a-B6-2	小粒径 CsPbBr ₃ を用いた純青色発光 LED	○五十嵐 優奈¹, 千葉 貴之¹	1. 山形大院有機
9:30	奨 17a-B6-3	頭部・尾部に着目した配位子設計によるペロブスカイト 量子ドットの表面不動態化とデバイス応用	○木村 汰勢¹,吉田 謙伸¹,奈良崎 航平²,浅倉 聡³,千 葉 貴之².⁴,增原 陽人¹.⁴	1.山形大院理工, 2.山形大院有機, 3.伊勢化学, 4.山形院有機材料シスセ
9:45	奨 17a-B6-4	スズ系 CsSnBr ₃ ペロブスカイトナノ結晶の開発と応用	○小林 亮太¹, 柿崎 紗那¹, 千葉 貴之¹	1.山形大院有機
0:00	奨 17a-B6-5	Sn/Geハライドナノ結晶の開発と混合ハロゲン組成による発光波長制御		1.山形大院有機
0:15		休憩/Break		
0:30	奨 17a-B6-6	波長変換技術を用いた高輝度赤色 $CsPbI_3$ ナノ結晶 LED の開発	○(M2) 横田 大輔¹, 阿部 遥², 齋藤 心護¹, 柳橋 健人², 千葉 貴之², 大音 隆男¹	1.山形大院理工, 2.山形大院有機
0:45	17a-B6-7	銀ナノ粒子を用いた CsPbI ₃ ナノ結晶の青色光吸収の増大	千葉 貴之², 大音 隆男¹	
11:00	17a-B6-8	量子ドットを用いた有機光電気化学トランジスタのESR 研究	○(M2)何 文皓¹,山口 世力¹.²,王 佳曦¹,岡部 沙代¹,陳 奕舟¹,下位 幸弘¹,丸本 一弘¹.².³	1. 筑波大院数物, 2. 筑波大量子スピン研, 3. 筑波大エス 物質科学セ
11:15	17a-B6-9	界面機能化ペロブスカイトトランジスタのESR研究		1. 筑波大院数物, 2. 筑波大量子スピン研, 3. 筑波大エス 物質科学セ
		口頭講演 (Oral Presentation) B6会場 (Room B6)		
13:00	招 17p-B6-1	「第22回有機分子・バイオエレクトロニクス分科会 論 文賞受賞記念講演」	○硯里 善幸¹	1.山形大INOEL
13:30	E 17p-B6-2	ウェットプロセスによる水蒸気ハイバリア構造 Photoreaction and Photo-densification Process of PHPS	○ Luyang Song¹, He Sun¹, Yoshiyuki Suzuri¹	1.Yamagata Univ.
13:45	髮 17p-B6-3	rhotoreaction and Photo-densincation Process of PHF3 under High-power VUV 垂直相分離により自発形成させたドナー/アクセプター		 1. Tamagata Omv. 1. 大阪公立大, 2. 大阪公立大分子エレクトロニックデ
13.43	₹ 11h-n0-9	要担付が離により自発形成させたドナー/ ナクセノター 層を有する塗布型低電圧有機発光ダイオード	○ 大山 明 十 , 小 作 性 天	1.人阪公立人, 2.人阪公立人分于エレクトロニックティイス研, 3.立命館大RISA

14:00	奨 17p-B6-4	TTU過程におけるアントラセンダイマーの濃度依存性	○(M1)原口 葵 ^{1,2} , 合志 憲一 ^{2,3} , 佐々木 祥真 ^{1,2} , 安達	1. 九大工, 2. 九大 OPERA, 3. 九大 I-CNER
14:15	奨 17p-B6-5	紫外有機半導体レーザーの開発	Sebastien ⁷ , Poriel Cyril ^{2, 4} , Mathevet Fabrice ^{1, 2, 3} , 安	1. 九大OPERA, 2.CNRS, 3. ソルボンヌ大, 4. レンヌ大, 5. 九大I2CNER, 6. 九大CMS, 7. ソルボンヌバリ北大
14:30	奨 17p-B6-6	低閾値発振に向けた高速放射速度定数を有するレーザー	達千波矢 ^{1.5} ○(M2)永野昌宏 ^{1.2} ,合志憲一 ^{2.3} ,安達千波矢 ^{2.3}	1. 九大工, 2. 九大 OPERA, 3. 九大 I-CNER
14:45	奨 17p-B6-7	分子の開発 広波長域発光を示す多層発光型近赤外有機 EL	○阪 凜太郎¹, 佐野 健志¹.², 花山 貴則¹, 高下 太一¹, 三村 龍之介¹, 笹部 久宏¹.³, 城戸 淳二¹.².³	1.山形大院有機, 2.山形大INOEL, 3.山形大FROM
15:00 15:15	奨 17p-B6-8	休憩/Break TADF 分子を増感剤に用いた高効率・長寿命・狭半値幅 緑色有機 EL	〇三村 龍之介 1 ,中村 剛 1 , 蒋 德豪 1 , 郡 悠 1 , 城戸 淳二 1,2,3 , 笹部 久宏 1,2,3	1.山形大院有機, 2.山形大有機エレ研セ, 3.山形大有機 材料セ
15:30	奨 17p-B6-9	フェノキサジン含有多重共鳴型TADF材料群と高効率・	○年眞 遥生¹, 郡 悠真¹, 目黒 直樹¹, 三村 龍之介¹, 城	1.山形大院有機, 2.山形大有機エレ研セ, 3.山形大有機
15:45	奨 17p-B6-10	長寿命・緑色有機 EL 熱活性化遅延蛍光を示す可溶性アルミニウム錯体群と塗 布型有機 EL	戸 淳二 1,2,3 , 笹部 久宏 1,2,3 〇千葉 祐大 1 ,星 京吾 1 ,山田 拳輝 1 ,城戸 淳二 1,2,3 , 笹部 久宏 1,2,3	材料セ 1.山形大院有機,2.山形大有機エレ研セ,3.山形大有機 材料セ
16:00	奨 17p-B6-11	メシチレン含有多重共鳴型TADF材料と高効率・挟半値 幅水色有機EL		
16:15	奨 E 17p-B6-12	Investigation on phtophysical properties of 1,3,2,4 - Diazadiboretidine	○ (B)Hyunje Jung¹, Youichi Tsuchiya¹, Keito Mizukoshi¹, Yoshiaki Shoji².³, Takanori Fukushima².³, Chihaya Adachi¹.⁴	1.OPERA, Kyushu Univ., 2.ASMat, Tokyo Tech., 3.CLS, Tokyo Tech., 4.I2CNER, Kyushu Univ.
16:30	17p-B6-13	同一平面上でHOMOとLUMO が重ならない分子設計	○夫 勇進¹	1. 理研 CEMS
16:45	17p-B6-14	変位電流評価法を用いた青色有機発光ダイオードのキャ リア挙動の観測	○(M1) 小池 遼¹, 鈴木 孝明¹, 田中 有弥¹	1.群馬大院理工
17:00	17p-B6-15	PVCz:α-NPD分子分散型ハイブリッド有機 E L の光学 解析	○石川 幸輝¹, 石山 湧斗¹, 三上 明義¹	1. 金沢工業大学
17:15	17p-B6-16	MoO ₃ 堆積による有機整流素子の作製	○(M2)松本 崚誠¹,惟村 直輝¹,幡野 貫太¹,親松 謙	1.山梨大
9/18(Wed.) 9:00 - 11:45	口頭講演 (Oral Presentation) B6会場 (Room B6)	臣¹, 小野島 紀夫¹	
9:00	18a-B6-1	層状有機半導体pTol-BTNT-C _n 系の位置異性体効果による極性/反極性型配列の制御	〇井上 悟 ¹, 東野 寿樹 ², 二階堂 圭 ¹, 大野 亮汰 ¹, 都築 誠二 ¹, 堀内 佐智雄 ², 長谷川 達生 ¹	1. 東大院工, 2. 産総研
9:15	18a-B6-2	n型有機半導体ペリレンジイミドにおけるπスタック型 配列構造の安定性	○ (D) 大野 亮汰¹, 都築 誠二¹, 井上 悟¹, 長谷川 達 生¹	1.東大院工
9:30	18a-B6-3	極性の異なる含フッ素置換基を有するn型有機半導体の 塗布型単結晶トランジスタ特性		1. 東工大物質理工, 2. 東大院新領域, 3. 北里大未来工, 4. 神奈川県産総研, 5.JST CREST
9:45	18a-B6-4	ビチアゾールジオン骨格を有する半導体ポリマーの物性 と電荷輸送性	○三木江 翼¹, 土井 修平¹, 石井 宏幸², 尾坂 格¹	1.広大院先進理工, 2.筑波大数物
10:00	18a-B6-5	アセンのメチルチオ化と結晶構造制御:herringbone から π -stack 系へ	○Bulgarevich Dmitrievich Kirill ¹ , Shin Jisoo ² , 金澤輝石 ³ , 瀧宮 和男 ^{1, 2, 3}	1. 理研, 2. 東北大AIMR, 3. 東北大
10:15 10:30	18a-B6-6	休憩/Break 等方的なレンガ塀結晶構造を基盤とした非対称置換n型	〇熊谷 翔平 1 , 小澤 悠馬 1 , 岡本 敏宏 1,2	1.東工大物質理工, 2.JST CREST
10:45	18a-B6-7	有機半導体の開発と塗布型単結晶トランジスタ 分子混合効果による層状有機半導体の極性結晶構造の発		1. 東大院工, 2. 理研 CEMS
11:00	18a-B6-8	現と制御 SiO ₂ 表面のプラズマ窒化処理によるチャネル層形成効率	郎 1,2 , 井上 悟 1 , 長谷川 達生 1 〇後藤 直樹 1 , 富士谷 大生 1 , 岩崎 好孝 1 , 上野 智雄 1	1.農工大院工
11:15	18a-B6-9	の向上 無機ポリマー絶縁膜を有するカーボンナノチューブ薄膜 トランジスタの作製と評価	○(M1) 黑宮 英斗 ¹ , 内山 晴貴 ¹ , 松永 正広 ² , 荒井 俊 人 ³ , 片浦 弘道 ⁴ , 大野 雄高 ^{1,2}	1.名大工, 2.名大未来研, 3.物質・材料研究機構, 4.産総研
11:30	18a-B6-10	高誘電率ポリマー誘電体の大気コーティングによる有機	,	
9/18(\	Wed.) 13:00 - 15:00	薄膜トランジスタの低電圧動作 口頭講演 (Oral Presentation) B6 会場(Room B6)	2	
13:00	18p-B6-1	摩擦力顕微鏡による多結晶有機半導体膜内の秩序化挙動 の可視化	川達生1	
13:15	奨 18p-B6-2	高急峻スイッチング有機単結晶トランジスタにおける電 極の仕事関数に依存したキャリア注入	○(M2) 土田 真嗣¹, 村田 啓人¹, 永山 裕一¹, 井上 悟¹, 長谷川 達生¹	1.東大院工
13:30	奨 18p-B6-3	分子混合による極性構造制御と圧電性有機半導体のひず みゲージ特性		1. 東大院工, 2. 理研 CEMS
13:45	奨 18p-B6-4	高撥液ゲート絶縁層からなるボトムコンタクト型有機トランジスタの短チャネル化		1. 東大院工, 2. 産総研
14:00	奨 18p-B6-5	液晶性を用いた超高速ブレードコートによる結晶薄膜の 形成とそのトラジスタ特性評価		1. 東工大未来研
14:15	18p-B6-6	High-k 絶縁膜によるチャネル層のキャリア蓄積能力の改善	〇冨士谷 大生 1 , 後藤 直樹 1 , 岩崎 好孝 1 , 上野 智雄 1 , 並木 美太郎 1	1.農工大院工
14:30	18p-B6-7	ナノメッシュ基板上に作製した有機フォトトランジスタ	知之1	1. 東大院工
14:45	18p-B6-8	アンチ・アンバイポーラトランジスタを用いたニューロ モルフィック素子の開発	○山本 勇帆 1.2, 早川 竜馬 1, 山田 洋一 2, 若山 裕 1	1.物材機構, 2. 筑波大
9/18(\		ポスター講演 (Poster Presentation) P会場(Room P)		
	18p-P08-1	Ir(mppy)₃をゲスト分子に用いた発光電気化学セルの電荷 状態の電子スピン共鳴研究	○南藤 理花¹, 山口 世力¹², 中島 美華¹, 羅 超然¹, 下 位 幸弘¹, 丸本 一弘¹².3	1. 筑波大院数物, 2. 筑波大量子スピン研, 3. 筑波大エネ 物質科学セ
	18p-P08-2	状態の電子スピン共鳴研究 液晶性半導体を用いた有機電気化学トランジスタ内部に おける分子配向の ESR 研究		
	18p-P08-3	有機半導体における電荷キャリア移動度のゲート電圧依 存性の直接観察		1.京大院工
	18p-P08-4	α - (BEDT-TTF) $_2$ I $_3$ における金属 - 絶縁体相転移ダイナミクスの計算	〇綿貫 凌 1 , 安東 龍 $-^1$, 渡邉 拓郎 1 , 小林 亮大 1 , 酒井 正俊 1	1. 千葉大院工
	18p-P08-5	変位電流測定法によるエキサイプレックスアップコン バージョン型有機ELデバイスの特性評価	○(M1) 永濱 輝 ¹ , 森本 勝大 ² , 中 茂樹 ²	1. 富山大院理工, 2. 富山大学術研究部工学系
	18p-P08-6	置換基の異なる可溶性フラーレンを用いたアップコン バージョン有機発光ダイオードのデバイス特性	\bigcirc (M1) 小島 和綺 1 , 奥田 萌斗 1 , 小林 隆史 $^{1.2}$, 内藤 裕 義 $^{1.2.3}$, 永瀬 隆 $^{1.2}$	1.大阪公立大,2.大阪公立大 分子エレクトロニックデバイス研,3.立命館大 RISA
	18p-P08-7	Exciplex upconversion型有機 ELへの強アクセプタ性正孔		1.富山大院理工, 2.富山大学術研究部工学系
	18p-P08-8	注入層の挿入と膜厚依存性 Exciplex Upconversion-type Green OLEDsにおけるアッ	○(M1)神谷 壮¹, 森本 勝大², 中 茂樹²	1. 富山大院理工, 2. 富山大学術研究科工学系
	18p-P08-9	プコンバージョン層の探索 Exciplex Upconversion-type OLEDsにおける塗布型アッ	○(M1)前川 遊¹, 森本 勝大², 中 茂樹²	1. 富山大院理工, 2. 富山大学術研究部工学系
	18p-P08-10	プコンバージョン層の濃度依存性 スパッタ法によるMgAg陰極成膜した有機EL素子の評価	○菅原 洋紀¹, 内田 敏治¹, 松本 行生¹	1.キヤノントッキ(株)

	18p-P08-11	フローティングゲート有機トランジスタメモリのシナブ ス特性の制御	○服部 秀政 1 , 小林 隆史 $^{1.2}$, 内藤 裕義 $^{1.2.3}$, 永瀬 隆 $^{1.2}$	1.大阪公立大, 2.大阪公立大 分子エレクトロニックデバイス研, 3.立命館大 RISA
	18p-P08-12	有機 FET におけるゲート絶縁膜界面のみを変化させたときの接触抵抗の変化	〇松本 理希 ¹, Pandey Manish², 辨天 宏明 ¹, 中村 雅 一 ¹	1.奈良先端大, 2.インド工科大
	18p-P08-13	ペンタフルオロフェニル基を有するアントラセン誘導体 を用いた有機薄膜デバイス特性	○安田 剛¹, 佐藤 亮太², 神原 貴樹², 桑原 純平².3	1.NIMS, 2. 筑波大院数理物質, 3. 筑波大TREMS
	18p-P08-14	高移動度有機半導体に向けた移動積分の大きい環状構造 の探索	○(M2)尾沢 昂輝¹,岡田 智悠¹,松井 弘之¹	1. 山形大 ROEL
	18p-P08-15	液晶性有機半導体Ph-BTBT-C10薄膜の液晶転移温度近 傍におけるリアルタイムAFM観察	○(M2)池島 大智¹,松井 弘之¹	1. 山形大 ROEL
	18p-P08-16	電子写真プリンテッドエレクトロニクスによるマイクロエレクトロニクス回路の描画	○押田陽 ¹ ,上月 魁人 ¹ ,ウチェンイ ¹ ,花崎 来希 ¹ ,松 岡 政暁 ¹ ,イ カンウク ¹ .酒井 正俊 ¹	1. 千葉大院工
	18p-P08-17	有機太陽電池積層ペンタセン薄膜ホトトランジスタにおける表面プラズモン共鳴と光応答		1. 新潟大工, 2. 長岡高専
		バイオセンシングデバイスを目指した有機トランジスタ マルチアレイの開発		1. 長岡高専, 2. 新潟大学
		陽電池 / Organic and hybrid solar cells		
9:00	招 18a-A41-1	口頭講演 (Oral Presentation) A41会場(Room A41) 「第56回講演奨励賞受賞記念講演」 軽量・柔軟な宇宙用電源に向けた超薄型ペロブスカイト 太陽電池	○甚野 裕明 ^{1,2,3} , 來福 至 ⁴ , 横田 知之 ²	1.JAXA宇宙研, 2.東大院工, 3.JST-ACTX, 4. 青学大理工
9:15	18a-A41-2	曲げ可能なペロプスカイト/Siヘテロ接合タンデムセルの高Voc化	○齊藤 公彦¹, 宍戸 寛崇¹, 石川 亮佑¹	1.東京都市大総研
9:30	18a-A41-3	シリコーン封止材を用いたペロブスカイト/Siタンデム	○山崎 花恵¹,本間 宙生¹,五反田 武志².³,大和田 寛	1. 新潟大工, 2. 東芝エネルギーシステムズ, 3. 東芝, 4. 信
9:45	18a-A41-4	太陽電池モジュールにおける水蒸気浸入抑止法の開発 タンデム太陽電池モジュールにおける長波長光の活用お よび意匠性の向上に寄与するバックシート	人4,後藤和泰1.5,増田淳1.5	越化学工業,5.新潟大カーボンニュートラルセンター
10:00	E 18a-A41-5	PEDOT: PSS free interconnecting layer for all perovskite tandem solar cells		
10:15	10 47	休憩/Break	○本田 表睹] 平 本阿 1 12 四 元 1 ・・・	1 - 人
10:30	18a-A41-6	ベロブスカイト太陽電池モジュール光照射・暗所保管の 温度依存性	○菱川 善博 ', 東 孝樹 ', 松岡 京 ', Mavlonov Abdurashid ¹ , 原 知彦 ¹ , 根上 卓之 ¹ , 河野 悠 ¹ , 早川 明 伸 ² , 峯元 高志 ¹	1. 立命館大, 2. 積水化学工業
10:45	18a-A41-7	ダブルカチオンペロブスカイト太陽電池の放射線耐性そ の場評価	和志², 宮坂 力², 石神 龍哉³, 廣瀬 和之¹	1.JAXA, 2.桐蔭横浜大, 3.WERC
1:00	18a-A41-8	スロットダイこーコートによるペロプスカイト太陽電池 の作製	○沼田 陽平1,柴山 直之²,宮坂 力²	1. 東大先端研, 2. 桐蔭大院工
11:15	18a-A41-9	シクロオクタテトラエン骨格を用いたベロブスカイト太 陽電池の正孔回収単分子膜材料の開発	○ Truong Minh Anh¹, ユーベリッケ ルーカス¹, 舟崎司¹, 足立 裕太¹, 平 翔太¹, 中村 智也¹, マーディーリチャード¹, 若宮 淳志¹	1. 京大化研
11:30	E 18a-A41-10	Plasmonic Behavior of Silver Nanoparticle Embedded in ${ m TiO_2}$ Layer of MAPbI ₃ Solar	○ (DC)Joseph Baki Kaore¹, Sachiko Jonai¹, Akira Baba¹, Kazunari Shinbo¹, Keizo Kato¹	1.Niigata University
11:45	E 18a-A41-11	Physical vapor co-deposition of lead-free halide perovskite $CsSn_{1-x}Zn_xBr_3$ and fabrication of inverted solar cell	○ (D)Hanbo Jung¹, Zihao Liu¹, Masato Sotome², Kazutero Nonomura², Gaurav Kapil³, Shuji Hayase³,	1.School of Eng., Univ. of Tokyo, 2.RCAST, Univ. of Tokyo, 3.Univ. of Electro-Communications
			Takashi Kondo ^{1, 2}	, -,
9/18(W	ed.) 16:00 - 18:00	ポスター講演 (Poster Presentation) P会場(Room P)	Takashi Kondo ^{1, 2}	
9/18(W	ed.) 16:00 - 18:00 18p-P09-1	ポスター講演 (Poster Presentation) P会場(Room P) 気固相反応による SbSI 薄膜の結晶性・膜形態制御法の開 発	Takashi Kondo ^{1,2} ○村山 彰祐 ¹ , 西久保 綾佑 ¹ , 佐伯 昭紀 ¹	1. 阪大大学院工応用化学
9/18(W		ポスター講演 (Poster Presentation) P会場(Room P) 気固相反応によるSbSI 薄膜の結晶性・膜形態制御法の開	Takashi Kondo ^{1,2} ○村山 彰祐 ¹ , 西久保 綾佑 ¹ , 佐伯 昭紀 ¹	
9/18(W	18p-P09-1	ポスター講演 (Poster Presentation) P会場(Room P) 気固相反応によるSbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセプターに用いた有機 太陽電池 "非フラーレンハイブリッド型"新規フラーレン誘導体の 開発	Takashi Kondo ^{1, 2} ○村山 彰祐 ¹ , 西久保 綾佑 ¹ , 佐伯 昭紀 ¹ ○(D) 小野 裕太郎 ^{1, 2} , 山田 洋一 ² , 赤池 幸紀 ¹ ○田中 絢大 ¹ , 三木江 翼 ¹ , 尾坂 格 ¹	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3 18p-P09-4	ボスター講演 (Poster Presentation) P会場(Room P) 気固相反応によるSbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセプターに用いた有機 太陽電池 "非フラーレンハイブリッド型"新規フラーレン誘導体の 開発 電子輸送層に PDINO を用いた非フラーレン有機薄膜太 陽電池における劣化機構の電子スピン共鳴研究	Takashi Kondo ^{1,2} ○村山 彰祐 ¹ , 西久保 綾佑 ¹ , 佐伯 昭紀 ¹ ○(D) 小野 裕太郎 ^{1,2} , 山田 洋一 ² , 赤池 幸紀 ¹ ○田中 絢大 ¹ , 三木江 翼 ¹ , 尾坂 格 ¹ ○井上 開渡 ¹ , 山口 世力 ^{1,2} , 佐藤 睦 ¹ , 陳 奕舟 ¹ , 斎藤 慎彦 ³ , 尾坂 格 ³ , 下位 幸弘 ¹ , 丸本一弘 ^{1,2,4}	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3	ボスター講演 (Poster Presentation) P会場(Room P) 気固相反応によるSbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセブターに用いた有機 太陽電池 "非フラーレンハイブリッド型"新規フラーレン誘導体の 開発 電子輸送層にPDINO を用いた非フラーレン有機薄膜太 陽電池における劣化機構の電子スピン共鳴研究 π拡張ジケトピロロピロールを骨格に含む新規 p型ポリ マーを用いた半透明有機薄膜太陽電池の作製と特性評価	Takashi Kondo ^{1,2} ○村山 彰祐 ¹, 西久保 綾佑 ¹, 佐伯 昭紀 ¹ ○(D) 小野 裕太郎 ¹,², 山田 洋一², 赤池 幸紀 ¹ ○田中 絢大 ¹, 三木江 翼 ¹, 尾坂 格 ¹ ○井上 開渡 ¹, 山口 世力 ¹,², 佐藤 睦 ¹, 陳 奕舟 ¹, 斎藤 慎彦 ³, 尾坂 格 ³, 下位 幸弘 ¹, 丸本 一弘 ¹,²,4 ○山岡 泰喜 ¹, 西山 智貴 ¹, 鬼頭 宏任 ¹, 田中 仙君 ¹, 大 久保 貴志 ¹	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3 18p-P09-4 18p-P09-5 18p-P09-6	ポスター講演 (Poster Presentation) P会場(Room P) 気固相反応による SbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセブターに用いた有機 太陽電池 "非フラーレンハイブリッド型"新規フラーレン誘導体の開発 電子輸送層に PDINO を用いた非フラーレン有機薄膜太陽電池における劣化機構の電子スピン共鳴研究 本拡張ジケトピロロピロールを骨格に含む新規 P型ポリマーを用いた半透明有機薄膜太陽電池の作製と特性評価フェムトリアクターで作製した有機薄膜太陽電池の活性 層の特性評価	Takashi Kondo ^{1,2} ○村山 彰祐¹, 西久保 綾佑¹, 佐伯 昭紀¹ ○(D) 小野 裕太郎¹², 山田 洋一², 赤池 幸紀¹ ○田中 絢大¹, 三木江 翼¹, 尾坂 格¹ ○井上 開渡¹, 山口 世力¹², 佐藤 睦¹, 陳 奕舟¹, 斎藤 慎彦³, 尾坂 格³, 下位 幸弘¹, 丸本 一弘¹²².4 ○山岡 泰喜¹, 西山 智貴¹, 鬼頭 宏任¹, 田中 仙君¹, 大久保 貴志¹ ○江頭 雅之¹, 渡邊 康之¹	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ 1. 近畿大理工 1. 公立諏訪東理大
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3 18p-P09-4 18p-P09-5	ボスター講演 (Poster Presentation) P会場 (Room P) 気固相反応によるSbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセブターに用いた有機 大陽電池 "非フラーレンハイブリッド型" 新規フラーレン誘導体の開発 電子輸送層にPDINOを用いた非フラーレン有機薄膜太陽電池における劣化機構の電子スピン共鳴研究 エ拡張ジケトピロロピロールを骨格に含む新規 p型ボリマーを用いた半透明有機薄膜太陽電池の作製と特性評価 フェムトリアクターで作製した有機薄膜太陽電池の活性層の特性評価 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発	Takashi Kondo ^{1,2} ○村山 彰祐¹, 西久保 綾佑¹, 佐伯 昭紀¹ ○(D) 小野 裕太郎¹², 山田 洋一², 赤池 幸紀¹ ○田中 絢大¹, 三木江 翼¹, 尾坂 格¹ ○井上 開渡¹, 山口 世力¹², 佐藤 睦¹, 陳 奕舟¹, 斎藤 慎彦³, 尾坂 格³, 下位 幸弘¹, 丸本 一弘¹²² ○山岡 泰喜¹, 西山 智貴¹, 鬼頭 宏任¹, 田中 仙君¹, 大久保 貴志¹ ○江頭 雅之¹, 渡邊 康之¹ ○小路 拓海¹, Shahiduzzaman Md.¹², 辛川 誠¹.²³, 當摩 哲也¹.²³, 中野 正浩¹	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ 1. 近畿大理工 1. 公立諏訪東理大 1. 金沢大院自, 2. 金沢大 NaonoMari, 3. 金沢大 Infiniti
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3 18p-P09-4 18p-P09-5 18p-P09-6 18p-P09-7	ボスター講演 (Poster Presentation) P会場(Room P) 気固相反応による SbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセブターに用いた有機 太陽電池 "非フラーレンバイブリッド型" 新規フラーレン誘導体の開発 電子輸送層に PDINO を用いた非フラーレン 有機薄膜太陽電池における劣化機構の電子スピン共鳴研究 本拡張ジケトピロロピロールを骨格に含む新規 P型ポリマーを用いた半透明有機薄膜太陽電池の作製と特性評価フェムトリアクターで作製した有機薄膜太陽電池の活性 層の特性評価 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発	Takashi Kondo ^{1,2} ○村山 彰祐¹, 西久保 綾佑¹, 佐伯 昭紀¹ ○(D) 小野 裕太郎¹², 山田 洋一², 赤池 幸紀¹ ○田中 絢大¹, 三木江 翼¹, 尾坂 格¹ ○井上 開渡¹, 山口 世力¹², 佐藤 睦¹, 陳 奕舟¹, 斎藤 慎彦³, 尾坂 格³, 下位 幸弘¹, 丸本 一弘¹²² ○山岡 秦喜¹, 西山 智貴¹, 鬼頭 宏任¹, 田中 仙君¹, 大久保 貴志¹ ○江頭 雅之¹, 渡邊 康之¹ ○小路 拓海¹, Shahiduzzaman Md.¹², 辛川 誠¹²³, 當摩哲也¹²²³, 中野 正浩¹ ○横山 彰人¹, 中野 正浩¹, Md Shahiduzzaman¹², 當摩 哲也¹²³, 山口 孝浩¹, 辛川 誠¹²³	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ 1. 近畿大理工 1. 公立諏訪東理大 1. 金沢大院自, 2. 金沢大 NaonoMari, 3. 金沢大 Infiniti 1. 金沢大院自, 2. 金沢大新学術, 3. 金沢大ナノマリ
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3 18p-P09-4 18p-P09-5 18p-P09-6	ボスター講演 (Poster Presentation) P会場 (Room P) 気固相反応によるSbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセブターに用いた有機 大陽電池 "非フラーレンハイブリッド型" 新規フラーレン誘導体の開発 電子輸送層にPDINOを用いた非フラーレン有機薄膜太陽電池における劣化機構の電子スピン共鳴研究 エ拡張ジケトピロロピロールを骨格に含む新規 p型ボリマーを用いた半透明有機薄膜太陽電池の作製と特性評価 フェムトリアクターで作製した有機薄膜太陽電池の活性層の特性評価 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発	Takashi Kondo ^{1,2} ○村山 彰祐¹, 西久保 綾佑¹, 佐伯 昭紀¹ ○(D) 小野 裕太郎¹², 山田 洋一², 赤池 幸紀¹ ○田中 絢大¹, 三木江 翼¹, 尾坂 格¹ ○井上 開渡¹, 山口 世力¹², 佐藤 睦¹, 陳 奕舟¹, 斎藤 慎彦³, 尾坂 格³, 下位 幸弘¹, 丸本 一弘¹²² ○山岡 泰喜¹, 西山 智貴¹, 鬼頭 宏任¹, 田中 仙君¹, 大久保 貴志¹ ○江頭 雅之¹, 渡邊 康之¹ ○小路 拓海¹, Shahiduzzaman Md.¹², 辛川 誠¹²², 當摩哲也¹²³, 中野 正浩¹ ○横山 彰人¹, 中野 正浩¹	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ 1. 近畿大理工 1. 公立諏訪東理大 1. 金沢大院自, 2. 金沢大 NaonoMari, 3. 金沢大 Infiniti
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3 18p-P09-4 18p-P09-5 18p-P09-6 18p-P09-7	ボスター講演 (Poster Presentation) P会場 (Room P) 気固相反応によるSbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセブターに用いた有機 太陽電池 "非フラーレンハイブリッド型" 新規フラーレン誘導体の開発 電子輸送層にPDINOを用いた非フラーレン有機薄膜太陽電池における劣化機構の電子スピン共鳴研究 和拡張ジケトピロロピロールを骨格に含む新規 P型ボリマーを用いた半透明有機薄膜太陽電池の作製と特性評価 フェムトリアクターで作製した有機薄膜太陽電池の活性層の特性評価 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池構造を用いた極薄膜光触媒素子の評価 Photovoltage Mapping of Polymer-Fullerene Solar Cells by Photo-Illuminated Kelvin Probe Force Microscopy 高分子半導体インクでの高分子鎖凝集特性 変調光電流測定による有機薄膜太陽電池のトラップ誘起	Takashi Kondo ^{1,2} ○村山 彰祐¹, 西久保 綾佑¹, 佐伯 昭紀¹ ○(D) 小野 裕太郎¹², 山田 洋一², 赤池 幸紀¹ ○田中 絢大¹, 三木江 翼¹, 尾坂 格¹ ○井上 開渡¹, 山口 世力¹², 佐藤 睦¹, 陳 奕舟¹, 斎藤 慎彦³, 尾坂 格³, 下位 幸弘¹, 丸本 一弘¹²², 化 廣 度³, 西山 智貴¹, 鬼頭 宏任¹, 田中 仙君¹, 大 久保 貴志¹ ○江頭 雅之¹, 渡邊 康之¹ ○小路 拓海¹, Shahiduzzaman Md.¹², 辛川 誠¹²², 當摩 哲也¹²²³, 中野 正浩¹ ○横山 彰人¹, 中野 正浩¹, Md Shahiduzzaman¹², 當摩 哲也¹²²³, 山口 孝浩¹, 辛川 誠¹²²。 ○(D) CHITLADA MANILATA¹, RYOTA HASEGAWA¹, MASAKAZU NAKAMURA¹, HIROAKI BENTEN¹ ○謝 文涛¹, 梁 志遠¹, 中村 雅一¹, 辨天 宏明¹	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ 1. 近畿大理工 1. 公立諏訪東理大 1. 金沢大院自, 2. 金沢大 NaonoMari, 3. 金沢大 Infiniti 1. 金沢大院自, 2. 金沢大新学術, 3. 金沢大ナノマリ 1. NAIST 1. 奈良先端大
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3 18p-P09-4 18p-P09-5 18p-P09-6 18p-P09-7 18p-P09-8 E 18p-P09-9	ボスター講演 (Poster Presentation) P会場(Room P) 気固相反応による SbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセプターに用いた有機 大陽電池 "非フラーレンバイブリッド型" 新規フラーレン誘導体の開発 電子輸送層に PDINO を用いた非フラーレン 有機薄膜太陽電池における劣化機構の電子スピン共鳴研究 本拡張ジケトピロロピロールを骨格に含む新規 p型ポリマーを用いた半透明有機薄膜太陽電池の作製と特性評価フェムトリアクターで作製した有機薄膜太陽電池の活性層の特性評価 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における音楽機薄膜大陽電池のトラップ誘起再結合過程に関する研究 Sn系ペロブスカイト膜の結晶成長に対する溶媒比	Takashi Kondo ^{1,2} ○村山 彰祐¹, 西久保 綾佑¹, 佐伯 昭紀¹ ○(D) 小野 裕太郎¹², 山田 洋一², 赤池 幸紀¹ ○田中 絢大¹, 三木江 翼¹, 尾坂 格¹ ○井上 開渡¹, 山口 世力¹², 佐藤 睦¹, 陳 奕舟¹, 斎藤 慎彦³, 尾坂 格³, 下位 幸弘¹, 丸本 一弘¹²², 化 廣 度³, 西山 智貴¹, 鬼頭 宏任¹, 田中 仙君¹, 大 久保 貴志¹ ○江頭 雅之¹, 渡邊 康之¹ ○小路 拓海¹, Shahiduzzaman Md.¹², 辛川 誠¹²², 當摩 哲也¹²²³, 中野 正浩¹ ○横山 彰人¹, 中野 正浩¹, Md Shahiduzzaman¹², 當摩 哲也¹²²³, 山口 孝浩¹, 辛川 誠¹²²。 ○(D) CHITLADA MANILATA¹, RYOTA HASEGAWA¹, MASAKAZU NAKAMURA¹, HIROAKI BENTEN¹ ○謝 文涛¹, 梁 志遠¹, 中村 雅一¹, 辨天 宏明¹	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ 1. 近畿大理工 1. 公立諏訪東理大 1. 金沢大院自, 2. 金沢大 NaonoMari, 3. 金沢大 Infiniti 1. 金沢大院自, 2. 金沢大新学術, 3. 金沢大ナノマリ 1. NAIST 1. 奈良先端大
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3 18p-P09-4 18p-P09-5 18p-P09-6 18p-P09-7 18p-P09-8 E 18p-P09-9	ボスター講演 (Poster Presentation) P会場(Room P) 気固相反応によるSbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセブターに用いた有機 太陽電池 "非フラーレンハイブリッド型" 新規フラーレン誘導体の開発 電子輸送層に PDINO を用いた非フラーレン 有機薄膜太陽電池における劣化機構の電子スピン共鳴研究 本拡張ジケトピロロピロールを骨格に含む新規p型ポリマーを用いた半透明有機薄膜太陽電池の作製と特性評価フェムトリアクターで作製した有機薄膜太陽電池の活性層の特性評価 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発有機薄膜太陽電池構造を用いた極薄膜光触媒素子の評価 Photovoltage Mapping of Polymer-Fullerene Solar Cells by Photo-Illuminated Kelvin Probe Force Microscopy 高分子半導体インクでの高分子鎖凝集特性 変調光電流測定による有機薄膜太陽電池のトラップ誘起再結合過程に関する研究 Sn系ペロブスカイト膜の結晶成長に対する溶媒比 DMSO/DMFの影響 Exceeding 15% Performance with Energy Level Tuning in	Takashi Kondo ^{1,2} ○村山 彰祐¹, 西久保 綾佑¹, 佐伯 昭紀¹ ○(D) 小野 裕太郎¹², 山田 洋一², 赤池 幸紀¹ ○田中 絢大¹, 三木江 翼¹, 尾坂 格¹ ○井上 開渡¹, 山口 世力¹², 佐藤 睦¹, 陳 奕舟¹, 斎藤 慎彦³, 尾坂 格³, 下位 幸弘¹, 丸本 一弘¹²² ○山岡 泰喜¹, 西山 智貴¹, 鬼頭 宏任¹, 田中 仙君¹, 大 久保 貴志¹ ○江頭 雅之¹, 渡邊 康之¹ ○小路 拓海¹, Shahiduzzaman Md.¹², 辛川 誠¹²², 當摩 哲也¹²²³, 中野 正浩¹ ○横山 彰人¹, 中野 正浩¹, Md Shahiduzzaman¹², 當摩 哲也¹²²³, 山口 孝浩¹, 辛川 誠¹²²³ ○(D)CHITLADA MANILATA¹, RYOTA HASEGAWA¹, MASAKAZU NAKAMURA¹, HIROAKI BENTEN¹ ○謝 文涛¹, 梁 志遠¹, 中村 雅一¹, 辨天 宏明¹ ○廣川 恭志¹, 永瀬 隆¹², 内藤 裕義²²³, 小林 隆史¹²	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ 1. 近畿大理工 1. 公立諏訪東理大 1. 金沢大院自, 2. 金沢大 NaonoMari, 3. 金沢大 Infiniti 1. 金沢大院自, 2. 金沢大新学術, 3. 金沢大ナノマリ 1. NAIST 1. 奈良先端大 1. 大阪公立大, 2. 大阪公立大 RIMED, 3. 立命館大 RISA
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3 18p-P09-4 18p-P09-5 18p-P09-6 18p-P09-7 18p-P09-8 E 18p-P09-1 18p-P09-11 18p-P09-11	ボスター講演 (Poster Presentation) P会場(Room P) 気固相反応による SbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセブターに用いた有機 太陽電池 "非フラーレンハイブリッド型"新規フラーレン誘導体の開発 電子輸送層に PDINO を用いた非フラーレン有機薄膜太陽電池における劣化機構の電子スピン共鳴研究 本拡張ジケトピロロピロールを骨格に含む新規 P型ポリマーを用いた半透明有機薄膜太陽電池の作製と特性評価フェムトリアクターで作製した有機薄膜太陽電池の活性層の特性評価 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池構造を用いた極薄膜光触媒素子の評価 Photovoltage Mapping of Polymer-Fullerene Solar Cells by Photo-Illuminated Kelvin Probe Force Microscopy 高分子半導体インクでの高分子鎖凝集特性変調光電流測定による有機薄膜太陽電池のトラップ誘起再結合過程に関する研究 Sn系ペロブスカイト膜の結晶成長に対する溶媒比 DMSO/DMFの影響 Exceeding 15% Performance with Energy Level Tuning in Tin-Based Perovskite Solar Cells Inserting the interfacial layer for improving the Voc of Sn	Takashi Kondo ^{1,2} ○村山 彰祐¹, 西久保 綾佑¹, 佐伯 昭紀¹ ○(D) 小野 裕太郎¹², 山田 洋一², 赤池 幸紀¹ ○田中 絢大¹, 三木江 翼¹, 尾坂格¹ ○井上 開渡¹, 山口 世力¹², 佐藤 睦¹, 陳 奕舟¹, 斎藤 慎彦³, 尾坂格³, 下位 幸弘¹, 鬼本 一弘¹²², ○山岡 泰喜¹, 西山 智貴¹, 鬼頭 宏任¹, 田中 仙君¹, 大久保 貴志¹ ○江頭 雅之¹, 渡邊 康之¹ ○小路 拓海¹, Shahiduzzaman Md.¹², 辛川 誠¹²², 當摩 哲也¹²²³, 中野 正浩¹ ○横山 彰人¹, 中野 正浩¹, Md Shahiduzzaman¹², 當摩 哲也¹²²³, 山口 孝浩¹, 辛川 誠¹²²。 ○(D) CHITLADA MANILATA¹, RYOTA HASEGAWA¹, MASAKAZU NAKAMURA¹, HIROAKI BENTEN¹ ○謝 文涛¹, 梁 志遠¹, 中村 雅一¹, 辨天 宏明¹ ○廣川 恭志¹, 永瀬 隆¹², 内藤 裕義²²³, 小林 隆史¹²² ○常澤 秀斗¹, 村山 真理子¹², 趙 新為¹ ○(P) Liang Wang¹, Qing Shen¹, Shuzi Hayase¹	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ 1. 近畿大理工 1. 公立諏訪東理大 1. 金沢大院自, 2. 金沢大 NaonoMari, 3. 金沢大 Infiniti 1. 金沢大院自, 2. 金沢大新学術, 3. 金沢大ナノマリ 1. NAIST 1. 奈良先端大 1. 大阪公立大, 2. 大阪公立大 RIMED, 3. 立命館大 RISA 1. 東理大理, 2. 東洋大工技研
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3 18p-P09-4 18p-P09-5 18p-P09-6 18p-P09-7 18p-P09-8 E 18p-P09-9 18p-P09-10 18p-P09-11 18p-P09-12 E 18p-P09-13	ボスター講演 (Poster Presentation) P会場(Room P) 気固相反応による SbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセブターに用いた有機 太陽電池 "非フラーレンハイブリッド型" 新規フラーレン誘導体の開発 電子輸送層に PDINO を用いた非フラーレン有機薄膜太陽電池における劣化機構の電子スピン共鳴研究 本拡張ジケトピロロピロールを骨格に含む新規 P型ポリマーを用いた半透明有機薄膜太陽電池の行製と特性評価フェムトリアクターで作製した有機薄膜太陽電池の活性層の特性評価 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池構造を用いた極薄膜光触媒素子の評価 Photovoltage Mapping of Polymer-Fullerene Solar Cells by Photo-Illuminated Kelvin Probe Force Microscopy 高分子半導体インクでの高分子鎖凝集特性変調光電流測定による有機薄膜太陽電池のトラップ誘起再結合過程に関する研究 Sn系ペロプスカイト膜の結晶成長に対する溶媒比 DMSO/DMFの影響 Exceeding 15% Performance with Energy Level Tuning in Tin-Based Perovskite Solar Cells	Takashi Kondo ^{1,2} ○村山 彰祐¹, 西久保 綾佑¹, 佐伯 昭紀¹ ○(D) 小野 裕太郎¹², 山田 洋一², 赤池 幸紀¹ ○田中 絢大¹, 三木江 翼¹, 尾坂 格¹ ○井上 開渡¹, 山口 世力¹², 佐藤 睦¹, 陳 奕舟¹, 斎藤 慎彦³, 尾坂 格³, 下位 幸弘¹, 丸本 一弘¹²².4 ○山岡泰喜¹, 西山 智貴¹, 鬼頭 宏任¹, 田中 仙君¹, 大久保 貴志¹ ○江頭 雅之¹, 渡邊 康之¹ ○小路 拓海¹, Shahiduzzaman Md.¹², 辛川 誠¹²²³, 當摩 哲也¹²²³, 中野 正浩¹, Md Shahiduzzaman¹²², 當摩 哲也¹²²³, 山口 孝浩¹, 辛川 誠¹²²³ ○(D) CHITLADA MANILATA¹, RYOTA HASEGAWA¹, MASAKAZU NAKAMURA¹, HIROAKI BENTEN¹ ○謝 文涛¹, 梁 志遠¹, 中村 雅一¹, 辨天 宏明¹ ○廣川 恭志¹, 永瀬 隆¹², 内藤 裕義²²², 小林 隆史¹²² ○常澤 秀斗¹, 村山 真理子¹², 趙 新為¹ ○(P) Liang Wang¹, Qing Shen¹, Shuzi Hayase¹	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ 1. 近畿大理工 1. 公立諏訪東理大 1. 金沢大院自, 2. 金沢大 NaonoMari, 3. 金沢大 Infiniti 1. 金沢大院自, 2. 金沢大新学術, 3. 金沢大ナノマリ 1. NAIST 1. 奈良先端大 1. 大阪公立大, 2. 大阪公立大 RIMED, 3. 立命館大 RISA 1. 東理大理, 2. 東洋大工技研 1. UEC 1. UEC
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3 18p-P09-4 18p-P09-5 18p-P09-6 18p-P09-7 18p-P09-8 E 18p-P09-10 18p-P09-11 18p-P09-12 E 18p-P09-13 E 18p-P09-14	ボスター講演 (Poster Presentation) P会場(Room P) 気固相反応による SbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセブターに用いた有機 太陽電池 "非フラーレンハイブリッド型" 新規フラーレン誘導体の開発 電子輸送層に PDINO を用いた非フラーレン有機薄膜太陽電池における劣化機構の電子スピン共鳴研究 本拡張ジケトピロロピロールを骨格に含む新規 P型ポリマーを用いた半透明有機薄膜太陽電池の作製と特性評価フェムトリアクターで作製した有機薄膜太陽電池の活性層の特性評価 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 を関連を関立を関立を関立を関立を関立を関立を関立を関立を関立を関立を関立を関立を関立を	Takashi Kondo ^{1,2} ○村山 彰祐¹, 西久保 綾佑¹, 佐伯 昭紀¹ ○(D) 小野 裕太郎¹², 山田 洋一², 赤池 幸紀¹ ○田中 絢大¹, 三木江 翼¹, 尾坂 格¹ ○井上 開渡¹, 山口 世力¹², 佐藤 睦¹, 陳 奕舟¹, 斎藤 慎彦³, 尾坂 格³, 下位 幸弘¹, 鬼本 一弘¹²², 仁 爾 安子, 西山 智貴¹, 鬼頭 宏任¹, 田中 仙君¹, 大 久保 貴志¹ ○江頭 雅之¹, 渡邊 康之¹ ○小路 拓海¹, Shahiduzzaman Md.¹², 辛川 誠¹²², 當摩 哲也¹²²³, 中野 正浩¹, Md Shahiduzzaman¹²², 當摩 哲也¹²²³, 山口 孝浩¹, 辛川 誠¹²²³。 ○(D) CHITLADA MANILATа¹, RYOTA HASEGAWA¹, MASAKAZU NAKAMURA¹, HIROAKI BENTEN¹ ○謝 文涛¹, 梁 志遠¹, 中村 雅一¹, 辨天 宏明¹ ○廣川 恭志¹, 永瀬 隆¹², 内藤 裕義¹²³, 小林 隆史¹²² ○常澤 秀斗¹, 村山 真理子¹², 趙 新為¹ ○(P) Liang Wang¹, Qing Shen¹, Shuzi Hayase¹ ○ Liu Jiaqi¹, Huan Bi¹, Liang Wang¹, Qing Shen¹, Shuzi Hayase¹ ○(D) Chunqing Li¹, Masatoshi Yanagida², Yasuhiro	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ 1. 近畿大理工 1. 公立諏訪東理大 1. 金沢大院自, 2. 金沢大 NaonoMari, 3. 金沢大 Infiniti 1. 金沢大院自, 2. 金沢大新学術, 3. 金沢大ナノマリ 1. NAIST 1. 奈良先端大 1. 大阪公立大, 2. 大阪公立大 RIMED, 3. 立命館大 RISA 1. 東理大理, 2. 東洋大工技研 1. UEC 1. UEC
9/18(W	18p-P09-1 18p-P09-2 18p-P09-3 18p-P09-4 18p-P09-5 18p-P09-6 18p-P09-7 18p-P09-8 E 18p-P09-1 18p-P09-11 18p-P09-12 E 18p-P09-13 E 18p-P09-14 E 18p-P09-15	ボスター講演 (Poster Presentation) P会場(Room P) 気固相反応による SbSI 薄膜の結晶性・膜形態制御法の開発 ウコン由来色素クルクミンをアクセブターに用いた有機 太陽電池 "非フラーレンハイブリッド型" 新規フラーレン誘導体の開発 電子輸送層に PDINO を用いた非フラーレン 有機薄膜太陽電池における劣化機構の電子スピン共鳴研究 本拡張ジケトピロロピロールを骨格に含む新規 P型ポリマーを用いた半透明有機薄膜太陽電池の作製と特性評価フェムトリアクターで作製した有機薄膜太陽電池の活性層の特性評価 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 有機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 不機薄膜太陽電池における近赤外領域での光電変換を可能にする新規スクアライン色素の開発 を調光電流測定による有機薄膜太陽電池のトラップ誘起再結合過程に関する研究 Sn系ペロプスカイト膜の結晶成長に対する溶媒比 DMSO/DMFの影響 Exceeding 15% Performance with Energy Level Tuning in Tin-Based Perovskite Solar Cells Inserting the interfacial layer for improving the Voc of Sn perovskite solar cells Preparation of quasi-2D Sn-based perovskites for photovoltaic cells (II) - Effect of nitrogen-containing additives on stability-Influence of Excess Tin (II) Iodide on Photovoltaic	Takashi Kondo ^{1,2} ○村山 彰祐¹, 西久保 綾佑¹, 佐伯 昭紀¹ ○(D) 小野 裕太郎¹², 山田 洋一², 赤池 幸紀¹ ○田中 絢大¹, 三木江 翼¹, 尾坂 格¹ ○井上 開渡¹, 山口 世力¹², 佐藤 睦¹, 陳 奕舟¹, 斎藤 慎彦³, 尾坂 格³, 下位 幸弘¹, 丸本 一弘¹²⁴ ○山岡 泰喜¹, 西山 智貴¹, 鬼頭 宏任¹, 田中 仙君¹, 大 久保 貴志¹ ○江頭 雅之¹, 渡邊 康之¹ ○小路 拓海¹, Shahiduzzaman Md.¹², 辛川 誠¹²³, 當摩 哲也¹²³, 中野 正浩¹ ○横山 彰人¹, 中野 正浩¹, Md Shahiduzzaman¹², 當摩 哲也¹²³, 山口 孝浩¹, 辛川 誠¹²³ ○(D) CHITLADA MANILATA¹, RYOTA HASEGAWA¹, MASAKAZU NAKAMURA¹, HIROAKI BENTEN¹ ○謝 文涛¹, 梁 志遠¹, 中村 雅一¹, 辨天 宏明¹ ○廣川 恭志¹, 永瀬 隆¹², 内藤 裕義²²³, 小林 隆史¹² ○常澤 秀斗¹, 村山 真理子¹², 趙 新為¹ ○(P) Liang Wang¹, Qing Shen¹, Shuzi Hayase¹ ○Liu Jiaq¹¹, Huan Bi¹, Liang Wang¹, Qing Shen¹, Shuzi Hayase¹ ○(D) Chunqing Li¹, Masatoshi Yanagida², Yasuhiro Shirai², Masahiro Fujita¹, Masahiro Rikukawa¹, Yuko Takeoka¹ ○(P) Suraya Shaban¹, Kapil Gaurav¹, Shahrir	1. 阪大大学院工応用化学 1. 産総研, 2. 筑波大 1. 広大院先進理工 1. 筑波大数物, 2. 筑波大量子スピン研, 3. 広島大院工, 4. 筑波大エネ物質科学セ 1. 近畿大理工 1. 公立諏訪東理大 1. 金沢大院自, 2. 金沢大NaonoMari, 3. 金沢大Infiniti 1. 金沢大院自, 2. 金沢大新学術, 3. 金沢大ナノマリ 1. NAIST 1. 奈良先端大 1. 大阪公立大, 2. 大阪公立大 RIMED, 3. 立命館大 RISA 1. 東理大理, 2. 東洋大工技研 1. UEC 1. UEC 1. Sophia Univ., 2. NIMS

18p-P09-19	CsPbBr3 バルク結晶のチップ増強フレクソ光起電力の観測	○(M2)檜山 雅伎¹, 山田 泰裕¹	1. 千葉大院理
18p-P09-20	CsPb(Br _{0.45} Cl _{0.55}) ₃ 受光器のデバイスシミュレーション	○五井 響平¹, 渡邉 篤人¹, Yuejie Tan¹, 宮島 晋介¹	1.東工大工
18p-P09-21	無機系ハライドペロブスカイト表面の第一原理計算	○三浦 昌平1,山口 直也2,石井 史之2	1. 金沢大院自然, 2. 金沢大 NanoMaRi
18p-P09-22	$CH_3NH_3PbI_3$ のバーコート製膜におけるコーティング バー-基板間隔と膜厚の関係	\bigcirc (M1C) 堀江 真沙綺 1 , 小山 政俊 1 , 前元 利彦 1 , 藤井 彰彦 1	1.大阪工大
18p-P09-23	ペロブスカイト層の室内環境下でのバーコート塗布法の 検討	○安藤 佑佳¹, 戸邉 智之¹³, 池上 和志¹, 宮坂 力²	1.桐蔭横浜大院工, 2.桐蔭横浜大医用工, 3.神奈川県産技総研
18p-P09-24	インクジェット法による CsFA ペロブスカイト層の貧溶 媒フリー成膜条件における加熱時間の影響	〇大津 颯隼 1 , 戸邉 智之 $^{1.4}$, 舩山 遼斗 3 , 柴山 直之 2 , 池上 和志 1 , 宮坂 力 2	1.桐蔭横浜大院工, 2.桐蔭横浜大医用工, 3.紀州技研工業, 4.神奈川県産技総研
18p-P09-25			1. 桐蔭横浜大院工, 2. 桐蔭横浜大医用工, 3. 紀州技研工業, 4. 神奈川県産技総研
18p-P09-26	インクジェット法による CsFA ペロブスカイト層の封止	○山口 翔功¹, 戸邉 智之¹.⁴, 舩山 遼斗³, 池上 和志¹,	1. 桐蔭横浜大院工, 2. 桐蔭横浜大医用工, 3. 紀州技研工
18p-P09-27	剤試験用セル作製に向けた印刷バターンの検討 半自動滴下及び加熱装置付きスピンコータを用いる CsFA ベロブスカイト層の貧溶媒フリー法による成膜条件の検		業,4.神奈川県産技総研 1.桐蔭横浜大院工,2.桐蔭横浜大医用工,3.紀州技研工 業,4.神奈川県産技総研
18p-P09-28	対 カルバゾールジチオカルバミン酸誘導体を用いたペロブ		1. 近大理工
E 18p-P09-29	スカイト太陽電池の作製 Highly Stable Solar Cells with Large Perovskite Grain and		
	High Crystallinity via Vacuum-Deposited RbI Intercalation Technology	Munkhtuul Gantumur ¹ , Yue Feng ¹ , Youichi Higashi ² , Mayu Nishimoto ² , Masahiro Nakano ¹ , Makoto Karakawa ¹ , Jean-Michel Nunzi ¹ , Tetsuya Taima ¹	
18p-P09-30	ペロブスカイト太陽電池成膜におけるスプレートリート メントによる MAPbI3層の溶媒抽出	\bigcirc (M1) 上山 堅成 ¹ , 一野 祐亮 ¹ , 森 竜雄 ¹ , 田岡 紀之 ¹ , 瀬川 大司 ² , 臼井 亮介 ² , 宮地 計二 ² , 清家 善之 ^{1,3}	1.愛知工大, 2.旭サナック, 3.la quaLab
18p-P09-31	ペロブスカイト太陽電池応用へ向けたスパッタ法による	\bigcirc 小川 ちひろ 1 , 來福 至 2 , 于 顕歓 1 , 河西 秀典 1 , 浦岡	1. 奈良先端大, 2. 青山学院大学
18p-P09-32	${ m SnO_2}$ 薄膜の検討 $lpha$ -FAP ${ m I}$ 3の安定性に及ぼす電子輸送層表面修飾の影響	行治¹ ○(M2)和田 僚平¹, 山本 知之¹	1.早大理工
18p-P09-33	正孔輸送材料にドーパントフリーポリマーを用いた鉛ベロブスカイト太陽電池における電荷状態の電子スピン共鳴研究		
18p-P09-34	ペロプスカイト太陽電池用フッ素化部分置換 PTAA 薄膜 におけるキャリア輸送の向上	○笹本 誠勝¹, 石川 良¹	1. 埼玉大院理工
18p-P09-35	グラフェン/2PACz複合膜上における均一なペロブスカ	〇坂野 好亮 1 , 中庭 礼 1 , 來福 至 1 , 黄 晋二 1 , 石河 泰 明 1	1.青山学院大
18p-P09-36	イト薄膜の形成 太陽電池応用に向けた正孔輸送材料2PACz/グラフェン	\bigcirc (M2) 中庭 礼 1 , 坂野 好亮 1 , 來福 至 1 , 渡辺 剛志 1 ,	1.青学大理工
18p-P09-37	複合膜 半透明カーボンナノチューブ薄膜をトップ電極とする有	石河 泰明¹, 黄 晋二¹ ○(M2) 渡部 生輝¹, 石崎 学¹, 栗原 正人¹	1.山形大院理工
F 10 P00 00	機・無機ペロブスカイト太陽電池	O(DO)07;	AND COLL CT 1.1
E 18p-P09-38	Dual Interface Modification on Inorganic Perovskite to Achieve Excellent Stability	○ (DC)Siliang Cao ^{1,2} , Md. Abdul Karim ¹ , Shamim Ahmmed ^{1,2} , Md. Emrul Kayesh ¹ , Takeaki Sakurai ² , Ashraful Islam ¹	1.NIMS, 2.Univ. of Tsukuba
18p-P09-39	熱ラミネータを用いる順構造フィルム型ペロブスカイト 太陽電池の作製とバリフィルムの貼合法	○田中 梨瑚¹, 戸邉 智之¹³, 池上 和志¹, 宮坂 力²	1. 桐蔭横浜大院工, 2. 桐蔭横浜大医用工, 3. 神奈川県産 技総研
18p-P09-40	機能性透明ポリイミドフィルムを基材としたペロブスカイト太陽電池の作製	○高須賀 拓志 ^{1,2} , 池上 和志 ² , 宮坂 力 ³	1.アイ.エス.テイ (株), 2. 桐蔭横浜大院工, 3. 桐蔭横 浜大医用工
18p-P09-41	355 nmレーザーマーカーでバターニングした ITO-PET フィルムへのペロブスカイト層のスピンコート成膜法の 条件検討		1.桐蔭横浜大院工,2.桐蔭横浜大医用工,3.神奈川県産 技総研,4.ベクセル・テクノロジーズ(株)
18p-P09-42	半自動滴下及び加熱装置付きスピンコータを用いる CsFA ペロブスカイト層のITO-PETフィルムの成膜条件	○高井 湖央¹, 戸邉 智之¹³, 池上 和志¹, 宮坂 力²	1.桐蔭横浜大院工, 2.桐蔭横浜大医用工, 3.神奈川県産技総研
18p-P09-43	515 nm パルスレーザーによるペロプスカイト太陽電池 P2スクライブ — ナノ〜フェムト秒領域におけるパルス	〇湯本 正樹 ¹, 田代 賢一 ¹, 高田 英行 ¹, 山本 晃平 ¹, Daniela Serien ¹, 村上 拓郎 ¹, 奈良崎 愛子 ¹	1. 産総研
18p-P09-44	幅効果の比較検討 一 ペロブスカイト /Si タンデム太陽電池用 ITO の成膜検討	〇川鍋 凜¹, 藤田 凌太朗¹, 菊池 優大¹, 久恒 圭人¹, 宮 島 晋介², 村上 拓郎³, 古郷 敦史³, 內田 史朗¹	1. 千葉工大, 2. 東工大, 3. 産総研
18p-P09-45	光タイムドメインリフレクトメトリによるベロブスカイト太陽電池の光電変換過程の時間分解解析Ⅱ	張 若雪 1 , 益子 朋晃 1 , 黑政 颯 1 , 稲川 竜也 1 , 土橋 武	1. 千葉大院工
18p-P09-46	誘電分光法によるペロブスカイト太陽電池の巨大誘電率	流 1 , 松本 陸飛 1 , 大森 達也 1 , 酒井 正俊 1 , 三野 弘文 1 朝田 太陽 1 , 堀川 賢斗 1 , 渡邊 匡弘 1 , \bigcirc 内藤 裕義 1,2,3	1.大阪公大工, 2.大阪公大分子エレ研, 3.立命館大 RISA
18p-P09-47	の観察 変調分光法によるペロブスカイト太陽電池の電子物性評	廣川 恭志 1 , 小林 隆史 1,2 , 永瀬 隆 1,2 , ○内藤 裕義 1,2,3	1.大阪公大工, 2.大阪公大分子エレ研, 3.立命館大 RISA
18p-P09-48		○松枝 息吹¹, Nguyen Dong¹, 來福 至¹, 石河 泰明¹	1.青山学院大
18p-P09-49	スカイト太陽電池の特性解析 最小二乗法に基づく電流平滑化アルゴリズムを用いた	○田村 天志』戸邉 恕ゥ1.3.2 些山 亩ゥ2 湖 ト 和士』	1. 桐蔭横浜大院工, 2. 桐蔭横浜大医用工, 3. 神奈川県産
10p-rU9-49	MPPT 法によるペロブスカイト太陽電池の耐久性試験法の提案	宮坂 力²	技総研
18p-P09-50	ペロブスカイト太陽電池の高照度単色光LED照射による 劣化因子の考察	○戸邉 智之 1.2, 柴山 直之 3, 池上 和志 1, 宮坂 力 3	1. 桐蔭横浜大院工, 2. 神奈川県産技総研, 3. 桐蔭横浜大 医用工
18p-P09-51	ペロブスカイト太陽電池への直流電圧印加による劣化機 構の検討	〇石塚 凌 1 ,鷲足 涼 1 ,來福 至 1 ,石河 泰明 1	1.青山学院大学
18p-P09-52	ドーパミン塩酸塩添加 $FAPbI_3$ ペロブスカイト膜の軟 X 線 耐性	\bigcirc (M2) 末松 亮助 ^{1,2} , 甚野 裕明 ² , 小林 大輔 ² , 廣瀬 和 之 ² , 柴山 直之 ³ , 池上 和志 ³ , 宮坂 力 ³ , 山本 知之 ¹	1.早大理工, 2.JAXA宇宙研, 3.桐蔭横浜大
18p-P09-53	超音波ホモジナイザによるペロブスカイト原料回収法の 確立に向けた基礎検討		1.桐蔭横浜大院工, 2.桐蔭横浜大医用工, 3.神奈川県産 技総研, 4.ペクセル・テクノロジーズ(株)
18p-P09-54	有機-無機ペロブスカイト化合物を用いた水素発生(III)	\bigcirc (M2C) 松見 渓太 1 , 藤田 正博 1 , 陸川 政弘 1 , 竹岡	1. 上智大理工
	- ペロブスカイト薄膜による水素発生 -	裕子1	
	口頭講演 (Oral Presentation) C302会場 (Room C302)	○ 丰士 攸 # 1 → 取 # 2 # 上 + 羽 2 四 m # 止 2	1 市理士 2 NUV 井瓜 2 ブ華上牛 準
00 獎 19a-C302-1	有機半導体中の励起子のエネルギーが発光・発電特性に 与える影響	陽翔 ¹ ,深川 弘彦 ³ ,清水 貴央 ²	
900 獎 19a-C302-1 15 獎 19a-C302-2	有機半導体中の励起子のエネルギーが発光・発電特性に 与える影響 溶液中における縮環系共役高分子の凝集および分散特性	陽翔 深川 弘彦 清水 貴央 \	1. 京大院工, 2. 広大院先進理工
900 獎 19a-C302-1 15 獎 19a-C302-2 30 獎 19a-C302-3	有機半導体中の励起子のエネルギーが発光・発電特性に 与える影響	陽翔 1 ,深川 弘彦 3 ,清水 貴央 2 \bigcirc (D) 佐藤 友揮 1 ,本澤 啓 1 ,三木江 翼 2 ,尾坂 格 2 ,大 北 英生 1 \bigcirc (M1) 江上 大智 1	

10:00	19a-C302-5	低温環境下での有機薄膜太陽電池の活用	○中野 正浩¹,大田 皓矢¹,小路 拓海¹,小西 章裕¹, Md. Shahiduzzaman¹², 當摩 哲也¹.².³, 辛川 誠¹.².³, 岩渕 哲也⁴,吉田 一三⁴,新子谷 樹哉⁵,幾原 志郎⁵,小 谷浩三⁵,高橋 光信⁵	1. 金沢大院自, 2. 金沢大 NanoMaRi, 3. 金沢大 Infiniti, 4.BME株式会社, 5. 株式会社麗光
10:15		休憩/Break		
10:30	19a-C302-6	三成分相図に基づく高分子太陽電池の光電変換素過程解 析	○全 志訓¹, 土居 青空¹, キム ヒョンド¹, 小川 紘樹², 竹中 幹人², 大北 英生¹	1. 京大院工, 2. 京大化研
10:45	19a-C302-7	金属・有機複合太陽電池の新規発電メカニズムの考察	○松本 渚¹, 加藤 岳仁 ^{2.3}	1.MAS, 2. 小山高専, 3.NPO法人エナジーエデュケー ション
11:00	19a-C302-8	有機薄膜太陽電池のバルクヘテロ接合界面における分子 配向が電子準位に及ぼす影響	○浜村 大介¹, 陣内 青萌², 家 裕隆², 吉田 弘幸¹.3	1. 千葉大院工, 2. 大阪大 SANKAEN, 3. 千葉大 MCRC
11:15	19a-C302-9	有機薄膜太陽電池のドナー・アクセプター界面電子準位 への永久四重極の効果	〇三浦 真琴 1 , 中野 恭兵 2 , 但馬 敬介 2 , 吉田 弘幸 $^{1.3}$	1.千葉大院工, 2.理研CEMS, 3.千葉大MCRC
11:30	奨 19a-C302-10	光架橋反応による有機薄膜太陽電池のドナー/アクセプター界面の制御	\bigcirc (D) 鈴木 遼 1,2 , 宮坂 誠 2 , 中野 恭兵 1 , 但馬 敬介 1	1. 理研 CEMS, 2. 東京電機大
11:45	19a-C302-11	共役共重合体のドナー・アクセプタユニット比:定量評価と太陽電池特性との関連	〇中野 恭兵 1 , 加地 由美子 1 , 鈴木 遼 1,2 , 但馬 敬介 1	1. 理研 CEMS, 2. 東京電機大
9/19(T 13:00		口頭講演 (Oral Presentation) C302会場 (Room C302) 「第12回有機分子・バイオエレクトロニクス分科会 業績賞受賞記念講演」 光電相互変換材料としての有機無機ハイブリッドベロブスカイトの基礎物性	〇金光 義彦 ¹	1. 京大化研
13:30	奨 19p-C302-2	$CH_3NH_3Pb(Br_xI_{1,x})_3$ の光誘起相分離におけるサブバンドギャップ光励起の効果	○(M2)野村 晃陽¹, 亀山 尚宜¹, 山田 泰裕¹	1. 千葉大院理
13:45	奨 19p-C302-3	多脚結合アンカーを用いた正孔輸送層・ペロブスカイト 層の一括形成によるペロブスカイト太陽電池	○(M1C) 冨田 大貴¹, 石川 良¹	1.埼玉大院理工
14:00	19p-C302-4	ヨウ素ドーピングされた CH ₃ NH ₃ PbBr ₃ 単結晶の光励起 キャリアダイナミクスに関する研究	○劉 東¹, 李 花¹, 李 玉勝¹, 王 丹丹¹, 楊 永閣¹, 魏 玉 瑶¹, 陳 世凱¹, 史 国钲¹, 豊田 太郎¹, 早瀬 修二¹, 沈 青¹	1. 電通大
14:15 14:30	招 19p-C302-5	休憩/Break 「第56回請演奨励賞受賞記念講演」 真空共蒸着によるCsPbBr ₃ /CsSnBr ₃ /CsPbBr ₃ ダブルへ テロ構造の作製	〇豊田 祥平 1 , 劉 子豪 1 , 楊 野牧 1 , 五月女 真人 2 , 松下 智紀 2 , 近藤 高志 $^{1.2}$	1. 東大工, 2. 東大先端研
14:45	E 19p-C302-6	Vapor phase deposition of tin halide perovskite CsSnBr ₃ on muscovite mica substrates	○ (D)Zihao Liu¹, Hanbo Jung¹, Yemu Yang¹, Masato Sotome², Takashi Kondo¹.²	1.School of Eng., Univ. of Tokyo, 2.RCAST, Univ. of Tokyo
15:00	奨 19p-C302-7	真空共蒸着法による無機ペロブスカイト CsPbI ₂ Br 逆型太陽電池の作製と評価	○石 仕駿 ^{1,2} , 五月女 真人 ² , 野々村 一輝 ^{2,3} , 瀬川 浩 司 ^{2,3} , 近藤 高志 ^{1,2}	1. 東大工, 2. 東大先端研, 3. 東大総合文化
15:15	19p-C302-8	非対称ジアミンを用いた有機-無機ペロブスカイト太陽 電池(Ⅲ) 一金属カチオンの影響—	○(M1C)小林 広奈¹,菱田 大蔵¹,李 春慶¹,柳田 真利²,白井 康裕²,藤田 正博¹,陸川 政弘¹,竹岡 裕子¹	1. 上智大理工, 2. 物材研
15:30	19p-C302-9	CsCl添加ペロブスカイト薄膜の成膜とペロブスカイト太 陽電池への応用		1.埼玉大院理工
15:45		休憩/Break		
16:00	•	テトラフルオロホウ酸メチルアンモニウム添加による FAPbI ₃ ペロブスカイト太陽電池のヘテロ界面改善	\bigcirc (M2) 久保田 大介 ^{1,2} , 加藤 隆二 ³ , 神田 広之 ² , 矢口 裕之 ¹ , 村上 拓郎 ² , 西村 直之 ²	
16:15		層状ペロブスカイト $(C_4H_9NH_3)_2(CH_3NH_3)Pb_2I_7$ 薄膜のソルベントアニールによる配向制御に関する研究 (II)		1.岐阜大院自然研, 2.岐阜大工
16:30	1	アルカリ金属水酸化物処理を行った高性能ペロブスカイト太陽電池		1. 九大WPI-I2CNER(CESD)
16:45	19p-C302-13	ペロブスカイト太陽電池におけるPDINOカソードバッファ層の役割	○(D)陳 奕舟¹, 山口 世力¹², 并上 開渡¹, 佐藤 睦¹, 丸本 一弘¹.².³	1. 筑波大数物, 2. 筑波大量子スピン研, 3. 筑波大エネ物 質科学セ
9/200 9:00	(Fri.) 9:00 - 12:00 20a-C302-1	口頭講演 (Oral Presentation) C302会場 (Room C302) 機械学習の探索に基づいた単純な化学構造を有する p型	○田所 聖梧¹, 石割 文崇¹, 佐伯 昭紀¹	1.阪大院工
9:15	20a-C302-2	高分子の開発と太陽電池素子への応用 ジケトピロロピロールを基調とした非対称高分子の合成		1. 阪大院工
		と二元系および三元系太陽電池特性		
9:30	20a-C302-3	ジチエノナフトビスチアジアゾール系ポリマーにおいて アルキル基導入位置が光電変換特性に及ぼす影響	○(M1) 岡崎 慶学,駿河 翔瓜,家 俗座,三木江 異, 尾坂 格 ¹	1. 丛人阮尤進理工, 2. 阪人座研
9:45	20a-C302-4	ベンゾビスチアゾールを基盤とした新規拡張π骨格とそれを有する半導体ポリマーの開発	○冨田 真由¹, 岩崎 洋人¹, 山中 滉大¹, 三木江 翼¹, 尾 坂 格¹	1.広島大学大学院
10:00	E 20a-C302-5	Rapid Densification of Polysilazane Coated Films Achieving Record-High Moisture Barrier Performance Using High-Power VUV Irradiation	○He Sun¹, Luyang Song¹, Yoshiyuki Suzuri¹	1.Yamagata Univ.
10:15	奨 20a-C302-6	π 共役系高分子を正孔輸送材料に用いた太陽電池の作製 (IV) - 共重合比の影響 -	\bigcirc (M2C)指田 結衣 1 ,藤田 正博 1 ,陸川 政弘 1 ,竹岡 裕子 1	1. 上智大理工
10:30 10:45	奨 20a-C302-7	休憩/Break 深層学習によるペロブスカイト太陽電池に用いる新規正	○関口 尚夢¹, 飯久保 智¹	1.九大総理工
11:00	20a-C302-8	孔輸送材料の探索 フラーレン誘導体を界面修飾に用いたスズ鉛ペロブスカイト太陽電池における電荷移動の電子スピン共鳴による 直接観測		1. 筑波大院数物, 2. 筑波大量子スピン研, 3. 京大化研, 4. 筑波大エネ物質科学セ
11:15	E 20a-C302-9	Elfx晚們 Vapor co-deposition of double heterostructures CsPbBr ₃ / CsSnBr ₃ /CsPbBr ₃ on mica substrate	○ (M1)Yemu Yang¹, Shohei Toyota¹, Zihao Liu¹, Masato Sotome², Takashi Kondo¹.²	1.School of Eng., Univ. of Tokyo, 2.RCAST, Univ. of Tokyo
11:30	20a-C302-10	第一原理計算を用いた材料インフォマティクスにおける		1.東工大物質理工
11:45	E 20a-C302-11	ペロブスカイト太陽電池の炭素系材料の検討 Computational Study of Optoelectronic Properties of	Manzhos Serger', 伊原 字 (M2)Kawshik Nath ¹ , Ahmed Zubair ¹	1.BUET
9/20/1	Fri.) 13:00 - 16:00	Hexagonal Nanowire Based Perovskite Solar Cell 口頭講演 (Oral Presentation) C302会場 (Room C302)		
13:00	奨 20p-C302-1	第一原理計算とその場 X線観察による CH ₃ NH ₃ SnI ₃ の高 圧相探索	〇中原健太¹, 唐永鵬¹, 王青¹, 飯尾友貴², 松下正史², 齋藤 寛之³, 飯久保智¹	1. 九大, 2. 愛媛大, 3. 量研
13:15	20p-C302-2	ハロゲン混合ペロブスカイトの結晶化過程に注目した品		1. 阪大院工, 2. 阪大 ICS-OTRI
13:30	奨 20p-C302-3	質支配因子 Cu-Bi-Sb-I 系光電変換材料とその高品質成膜プロセスの 探索	○(M1) 坂上 大地¹, 西久保 綾佑¹², 石割 文崇¹², 佐 伯 昭紀¹²	1. 阪大院工, 2.ICS-OTRI
13:45	20p-C302-4	探索 ペロブスカイト太陽電池材料のレーザー分子線堆積にお		1.神奈川大
		ける製膜条件と物性との相関		

14:00	奨 20p-C302-5	共蒸着および溶液プロセスの併用によるハイブリッド2 段階法で形成したペロプスカイト膜の光学特性及び太陽 電池特性		1.山形大院有機, 2.産総研
14:15 14:30	20p-C302-6	休憩/Break 水溶液を用いたハロゲン化鉛及び錫系ペロブスカイトの 作製	○江良正直1	1.佐大理工
14:45	20p-C302-7	下地の種類を変化させた CsBi ₃ I ₁₀ ベロブスカイト薄膜及び太陽電池の作製と評価	○水野 晴加¹,加藤 慎也¹,曽我 哲夫¹	1. 名工大院工
15:00	奨 20p-C302-8	ペロブスカイトのバーコート製膜過程におけるメニスカ ス形状と溶液流の関係性	○三宅 紹心¹, 藤井 彰彦¹.², 尾崎 雅則¹	1. 阪大院工, 2. 大阪工大
15:15	20p-C302-9	二段階蒸着法による臭化鉛系ペロブスカイト作製における水分の影響	○江良 正直¹	1. 佐大理工
15:30	20p-C302-10	フィルム型ペロブスカイト太陽電池用集電スルーホールの断面構造評価	○陶山 直樹¹, 百瀬 裕也¹, 大川 颯斗¹, 井手 翼¹, 石川 亮佑¹, 小長井 誠¹	1. 都市大総研
15:45	E 20p-C302-11	Optoelectronic Simulation of Plasmonic Star-Shaped Nano Prism Incorporated Perovskite Solar Cell	○ (M2)Arpan Sur ¹ , Ahmed Zubair ¹	1.Bangladesh University of Engineering and Technology
		デー / Nanobiotechnology 口頭講演 (Oral Presentation) C32 会場(Room C32)		
13:00	17p-C32-1	ペプチド解析にむけたアミノ酸1分子トンネル計測法の	○大城 敬人¹, 小本 祐貴¹, 谷口 正輝¹	1. 阪大産研
13:15	奨 17p-C32-2	開発 バルスレーザー変調を活用したナノボアの作製と分子検 出	○松田 杏介¹, 山崎 洋人¹.²	1.長岡技大, 2.産学トップランナー
13:30	17p-C32-3	電界効果によるナノボアのイオン選択性制御	○筒井 真楠¹, シュー ウェイルン², ガローリ デニス³, レオン イアツワイ¹, 横田 一道⁴, 大宮司 啓文², 川合 知二¹	1. 阪大産研, 2. 東大工, 3. イタリア技術研究所, 4. 産総研
13:45	奨 17p-C32-4	レーザーマニピュレーションを活用した高選択性を有す るナノポア計測		1.長岡技大,2.産学トップランナー
14:00 14:15	奨 17p-C32-5	休憩/Break ポリエチレングリコール溶液中のナノポアにおける1粒 スポージをはないようなス	○(M2)川口 大雅 ^{1,2} , 筒井 真楠 ² , 村山 さなえ ² , 小本 祐貴 ² . 谷口 正輝 ²	1. 阪大理, 2. 産業科学研究所
14:30	17p-C32-6	子電気泳動ダイナミクス ナノボア計測によるウイルスベクター識別	〇筒井 真楠 1 ,和田 美加子 2 ,有馬 彰秀 3 ,恒川 雄二 2 ,佐々木 貴子 2 ,横田 一道 4 ,馬場 嘉信 3 ,川合 知二 1 ,岡	1. 阪大産研, 2. 東大, 3. 名大工, 4. 産総研
14:45	17p-C32-7	深層学習を用いた液中ナノ粒子の散乱光輝度解析による 多クラス形状分類	田尚巳 ² ○(M2)山本 啓介 ¹ , 倉持 宏美 ¹ , 澁田 靖 ¹ , 一木 隆 節 ^{1,2}	1.東大院工,2.ナノ医療イノベーションセンター
15:00	奨 17p-C32-8	テトラゾリウム塩の電気化学応答に着目した生菌数評価	16	1.大阪公立大学院工
15:15	17 622.0	休憩/Break	○ 에 하니 에 나타니 '조효 리그램'! HB Fit'! ++m 미	1 加水川上, 9 克上陸旅路上 9 Mat+W 株 4 CCT (株)
15:30	17p-C32-9	デバイス応用へ向けたレーザー分子線堆積による DNA 薄膜の作製	大 ² , Shen Xuechen ² , 南 皓輔 ³ , 山崎 智彦 ³ , 佐藤 知 正 ¹ , 鯉沼 秀臣 ⁴ , 有賀 克彦 ^{3, 2} , 松木 伸行 ¹	1. 神奈川大, 2. 東大院新領域, 3. 物材機構, 4.SCT(株)
15:45	奨 17p-C32-10	中赤外パルスレーザーによる蛍光タンパク質の合成制御 方法の確立	〇菅原 隆世 1 , 羅 簡 2 , 長尾 翌手可 2 , 鈴木 勉 2 , 山崎 洋 人 $^{1.3}$	1.長岡技大, 2.東大工, 3.産学トップランナー
16:00	奨 17p-C32-11	集光レーザービームによる生体分子濃縮の時空間制御 ~ 界面活性剤依存性~	○ (M2) 松元 脩真¹, 深澤 元喜², 松﨑 賢寿¹, 松浦 友亮³, 吉川 洋史¹	1. 阪大院工, 2. 東工大生命理工, 3. 東工大地球生命研
16:15	17p-C32-12	ナノファイバーを形成する自己組織化ペプチドを用いた Dps タンパク質の結晶化		1.明治大, 2.CIC-nanoGUNE, 3.Komie Corp.
16:30	17p-C32-13	培養乳がん細胞から放出された単一エキソソームの蛍光 顕微鏡観察	\bigcirc (M2) 富上 \mathbf{i}_{1}^{1} , 名和 靖矩 1 , 重藤 $\mathbf{\pi}^{2}$, 山村 昌平 2 , 田和 圭子 1	1. 関西学院大理工院, 2. 産業技術総合研究所
9/18(V 13:00	Ned.) 13:00 - 16:30 18p-C32-1	口頭講演 (Oral Presentation) C32 会場 (Room C32) トリアシルグリセロール液滴と巨大ベシクルの相互作用:	○L⊠ With	1.物材機構
		二重膜自発曲率の発生		
13:15	奨 18p-C32-2	水中X線吸収分光法による脂質二重膜のイオン配位構造 解析	老龍吾1	
13:30	18p-C32-3	環境感受性色素 Laurdan による井戸構造基板上の脂質相 分離膜観察		1.NTT 物性基礎研, 2.NTT BMC
13:45	18p-C32-4	光ピンセットによる人工生体膜表在分子の局所操作	○(M2)森山俊哉¹,谷本泰士¹,增井恭子¹,細川千 絵¹	1. 阪公大院理
14:00 14:15	18p-C32-5	休憩/Break 集光フェムト秒光渦照射に伴う神経活動誘発メカニズム の解明	○瀬川 夕海¹, 増井 恭子¹, 細川 千絵¹	1. 阪公大院理
14:30	奨 18p-C32-6	金ナノ構造を用いた in situ 表面増強赤外吸収分光法によるタンパク質の二次構造解析	○山田 博之 ¹, 長尾 忠昭 ¹.2	1.物質材研, 2.北大理物
14:45	18p-C32-7	ノイラミニダーゼ阻害薬のMM-MD/FMOの相互作用解析	〇土居 英男 1 , 鉄川 大陸 1 , 濱 俊也 1 , 松岡 壮太 1 , 秋澤 和輝 1 , 奥脇 弘次 $^{1.2}$, 平野 秀典 3 , 山本 詠士 3 , 秦岡 顕 治 3 , 望月 祐志 $^{1.4}$	1. 立教大理, 2. (株) JSOL, 3. 慶応大工, 4. 東大生研
15:00	18p-C32-8	原子間力顕微鏡を用いた生体分子間相互作用力評価と探 針修飾方法の最適化(2)		1. 京都大工
15:15 15:30	奨 E 18p-C32-9	休憩/Break Development of nanoforce biosensors operating in liquids	○ (D)Fabiano Altieri¹, Kaori Sugihara¹	1.IIS for Todai
15:45	奨 18p-C32-10	and tailoring their properties by integrating additives. ポリジアセチレンのメカノクロミズムに及ぼすイオンの 影響	○玉置 励伊²-¹,杉原 加織²-¹	1. 東大工, 2. 生産研
16:00	18p-C32-11	形音 MET 受容体活性化による CHO 細胞の表面構造変化の液 中 AFM 観察	○(M1)沢田 健太 ¹ , 宮澤 佳甫 ^{1,2} , 市川 壮彦 ² , 佐藤 拓 輝 ³ , 松本 邦夫 ² . 福間 剛士 ^{1,2}	1. 金大院, 2.WPI-NanoLSI, 3. 横浜市立大
16:15	E 18p-C32-12	Study on the molecular orientation of electrospinning piezoelectric PLLA nanofiber for use as pressure sensor		1.Tokyo Univ., 2.iCONM
9/20	(Fri.) 9:30 - 11:30 20a-P03-1	ポスター講演 (Poster Presentation) P会場(Room P) ナノ物質検出のためのナノポア通過速度の低速化法の開		1.長岡技大, 2.産学トップランナー
	20a-P03-2	発 レーザー局所加熱による熱泳動現象を活用した低濃度ナ	○桑原 光 ¹, 山崎 洋人 ¹.²	1. 長岡技大, 2.産学トップランナー
	20a-P03-3 20a-P03-4	ノボア計測法 脂質膜コートナノビベットの作製とエクソソーム検出 プラズモニックチップによる異なる捕捉抗体でのエキソ	○楫 千咲恵¹, 平本 薫², 平野 愛弓³ ○(M1)岩村 樹¹, 富上 眞¹, 名和 靖矩¹, 田和 圭子¹	1. 東北大工, 2. 東北大学際研, 3. 東北大通研 1. 関西学院大 院理工
	20a-P03-5	ソーム定量分析 原子間力顕微鏡による尾芽胚細胞の力学測定	○部坂 瞭¹,小谷 崇博¹,宮田 悠生¹,坪山 洋介¹,藤井 裕紀¹,岡嶋 孝治¹	1.北大情報科学
			山心,門吻 子们	

	20a-P03-6	単分子計測を用いた酸性条件下におけるL-ドバ/ドーバ	柳 智浩¹, ○小本 祐貴¹, 大城 敬人¹, 谷口 正輝¹	1. 阪大産研
	20a-P03-7	ミン識別 高時間分解能を有する人工細胞膜イメージング系の構築		1. 東北大院医工, 2. 東北大院工, 3. 東北大通研, 4. 東北大
	20a-P03-8	液中原子間力顕微鏡による金属イオン捕捉機能のサブナ	希 ³ , 平野 愛弓 ^{1,2,3,4} ○谷川 晃大 ¹ , 秋根 茂久 ¹ , 森本 将行 ¹ , 淺川 雅 ¹	AIMR 1.金沢大
	20a-P03-9	ノスケール計測 人工細胞膜を用いた膜張力イメージング系の構築	○辻口 丈 ^{1,2} , 佐藤 まどか ^{1,2} , 陰山 弘典 ^{1,2} , 小宮 麻	1. 東北大院医工, 2. 東北大通研
	20a-P03-10			1. 金沢大
	20a-P03-11	の実空間計測 光散乱特性に基づいた細菌細胞の活性評価	川 雅 1 ○床並 朗 1 ,河中 弥哉 2 ,池田 光 1 ,定永 靖宗 $^{1.2}$,椎木	1.大阪公立大院工, 2.大阪府立大工
	20a-P03-12		弘 $^{1.2}$ \bigcirc 河西 奈保子 2 , Luo Huan 1 , 湊元 幹太 3 , 中嶋 秀 1 , 加	1.都立大院都市環境, 2.都立大大教セ, 3.三重大院工
	20a-P03-13	側方拡散 膜流動性に基づく心筋細胞の時空間計測	藤 俊吾¹, 内山 克美¹, Mao Sifeng¹ ○山田 悠雅¹, 吉川 洋史¹, 氏原 嘉洋², 松崎 賢寿¹	1.大阪大工, 2.名古屋工業大工
	20a-P03-14	原子間力顕微鏡による臓器の力学分布計測	〇堀切 萌々香 1 , 岩森 歌奈子 2 , 吉川 洋史 1 , 深田 宗一 朗 2 , 松崎 賢寿 1	1. 阪大院工, 2. 阪大院薬
		AFM修飾探針用DNAナノ構造体の作製 (2)	○築島 琢磨¹,和田 隆佑¹,小林 圭¹	1.京大院工
	E 20a-P03-16	Developmet of nanopipette-based non-thermal atmospheric pressure plasma for single cell study	(D)Nguyen Gia Han ¹ , Linhao Sun ² , Shinya Kumagai ³ , Shinji Watanabe ²	1.Grad. Sch. Nano Life Sci., Kanazawa Univ., 2. WPI-NanoLSI, Kanazawa Univ., 3.Meijo Univ.
	20a-P03-17	atmospheric pressure plasma for single cell study グラファイト電極表面における自己組織化ペプチドのへ		NPI-NanoLSI, Kanazawa Univ., 3.Meijo Univ. 1.東京工業大学
	20a-1 03-17	シノノノイト電極表面におりる自己組織にペンノトのペーミン固定化能	○杉田 未利松,Wei Luo,平水 怡干	1. 宋尔工未八十
	20a-P03-18	微小体積タンパク質溶液の表面張力測定	〇松野 悠¹, 藤田 裕嗣¹, 佐野 健一¹, 池添 泰弘¹	1. 日本工大院工
	20a-P03-19	準弾性レーザー散乱法を用いた細胞透過性タンバク質と リン脂質単分子膜の相互作用の研究		1.日本工大院工
	20a-P03-20	グラファイト表面でのテトラペプチド HGHG の自己組織 化	○(B)喩 旦陽¹, 早水 裕平¹	1.東工大物質
	20a-P03-21	表面自己組織化ペプチドへ吸着する Thioflavin-T の分子 動力学計算	○(M2)前田 宙希¹, 山本 詠士², 早水 裕平¹	1.東工大, 2.慶應大
	20a-P03-22	多価不飽和脂質を含む脂質二重膜の膜融合	○後藤 あい¹, 広瀬 侑¹, 手老 龍吾¹	1. 豊橋技科大
	20a-P03-23	電気化学電位下におけるグラファイト表面ペプチド自己	○(M1)上ノ段 新菜 ^{1.2} , 早水 裕平 ²	1. 筑波大, 2. 東工大
	00 755 51	組織化膜の安定性評価		A NUMBER OF STREET
		イオン液体希薄水溶液中におけるチャネルタンパク質の 機能評価		1.NTT物性基礎研, 2.NTT BMC, 3.明星大
		多点光濃縮で集積した光合成微生物の光応答電流への熱 損傷影響評価	守 ^{2,4} , 飯田 琢也 ^{1,2} , 床波 志保 ^{2,3}	1.大阪公立大院理,2.大阪公立大LAC-SYS研(RILACS), 3.大阪公立大院工,4.阪大院基礎工
	20a-P03-26	固体ナノポアの構造によるイオン輸送の制御	○梁 逸偉¹, 筒井 真楠², 加地 範匡¹, 谷口 正輝²	1.九大院工,2.阪大産研
		AlphaFold2によるタンパク質の予測構造の検証#1	○(B) 奥谷 星太郎 ¹ , 新井 大貴 ¹ , 芳根 僚平 ¹ , 土居 英男 ¹ , 望月 祐志 ^{1,2}	
	20a-P03-28	低コストのFMO計算からの定量的相互作用エネルギー 算定の試み・#1	○芳根 僚平 ¹ , 土居 英男 ¹ , 松岡 壮太 ¹ , 奥脇 弘次 ^{1,2} , 望月 祐志 ^{1,3}	·
	20a-P03-29	モノアミン酸化酵素 (MAO)BとリガンドのFMO相互作用解析	○(M1)新井大貴¹,土居英男¹,奧脇弘次¹²,平野秀典³,山本詠士³,泰岡顕治³,海東和麻⁴,山西芳裕⁴,望月祐志¹.5	The state of the s
(CS.12)	12.6 ナノバイオテ	クノロジー、12.7 医用工学・バイオチップのコードシェア		
0/10/				
		口頭講演 (Oral Presentation) C32会場 (Room C32)		
		口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」		1.NTT 物性研, 2.NTT BMC, 3.NTT リサーチ
9:00		口頭講演 (Oral Presentation) C32 会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたバイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイ	○酒井 洸児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2}	1.NTT 物性研, 2.NTT BMC, 3.NTT リサーチ 1.産総研
9:00 9:30	招 19a-C32-1	口頭講演 (Oral Presentation) C32 会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたバイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度 Si ナノワイヤ	○酒井 洸児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寬 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人 ¹ , 芦葉 裕樹 ¹ , 堀口 諭吉 ¹ , 福田 隆史 ¹ ○張 慧 ¹ , 阿部 真優菜 ¹ , 大澤 郁弥 ¹ , 邱 亜威 ¹ , 大嶋 紀	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit,
9:00 9:30 9:45	招 19a-C32-1 19a-C32-2	口頭講演 (Oral Presentation) C32 会場(Room C32) 「第22 回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立でを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL 有限要素解析法を用いた高感度 Si ナノワイヤバイオセンサの最適な構造の予測 パンコマイシンの高感度なリアルタイム計測のための表	○酒井 洸児¹², 手島 哲彦³, 後藤 東一郎¹², 中島 寬¹², 山口 真澄¹² ○安浦 雅人¹, 芦葉 裕樹¹, 堀口 諭吉¹, 福田 隆史¹ ○張 慧¹, 阿邵 真優菜¹, 大澤 郁弥¹, 邱 亜咸¹, 大嶋 紀 安², 加治佐 平³, 坂田 利弥⁴, 和泉 孝志⁵, 曾根 逸人¹ ○當麻 浩司¹, 田口 結彩², 飯谷 健太², 荒川 貴博³, 三	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大
9:00 9:30 9:45	招 19a-C32-1 19a-C32-2 19a-C32-3	口頭講演 (Oral Presentation) C32 会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL 有限要素解析法を用いた高感度 Si ナノワイヤバイオセンサの最適な構造の予測 パンコマイシンの高感度なリアルタイム計測のための表面プラズモンハイドロジェルアプタセンサ	○酒井 洸児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寬 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人 ¹ , 芦葉 裕樹 ¹ , 堀口 諭吉 ¹ , 福田 隆史 ¹ ○張 慧 ¹ , 阿部 真優菜 ¹ , 大澤 郁弥 ¹ , 邱 亜成 ¹ , 大嶋 紀 安 ² , 加治佐 平 ³ , 坂田 利弥 ⁴ , 和泉 孝志 ⁵ , 曾根 逸人 ¹	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大
9:00 9:30 9:45 0:00	招 19a-C32-1 19a-C32-2 19a-C32-3	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL 有限要素解析法を用いた高感度 Si ナノワイヤバイオセンサの高速を構造の予測 バンコマイシンの高速度なリアルタイム計測のための表面プラズモンハイドロジェルアプタセンサ 休憩/Break 非レクチンのタンバク質検出に向けた糖鎖高分子バイオ	〇酒井 洸児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寬 ^{1,2} , 山口 真澄 ^{1,2} 〇安浦 雅人 ¹ , 芦葉 裕樹 ¹ , 堀口 諭吉 ¹ , 福田 隆史 ¹ ○張 慧 ¹ , 阿部 真優菜 ¹ , 大澤 郁弥 ¹ , 邱 亜威 ¹ , 大嶋 紀 安 ² , 加治佐 平 ³ , 坂田 利弥 ⁴ , 和泉 孝志 ⁵ , 曾根 逸人 ¹ 〇當麻 浩司 ¹ , 田口 結彩 ² , 飯谷 健太 ² , 荒川 賞博 ³ , 三 林 浩二 ²	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大
9:00 9:30 9:45 10:00 10:15 10:30	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL 有限要素解析法を用いた高感度 Siナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面プラズモンハイドロジェルアプタセンサ 休憩/Break 非レクチンのタンパク質検出に向けた糖鎖高分子バイオセンシング ペプチド修飾した半導体カーボンナノチューブ薄膜バイ	○酒井 洸児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人 ¹ , 芦葉 裕樹 ¹ , 堀口 諭吉 ¹ , 福田 隆史 ¹ ○張 慧 ¹ , 阿部 真優菜 ¹ , 大澤 郁弥 ¹ , 邱 亜威 ¹ , 大嶋 紀安 ² , 加治佐 平 ³ , 坂田 利弥 ⁴ , 和泉 孝志 ⁵ , 曾根 逸人 ¹ ○當麻 浩司 ¹ , 田口 結彩 ² , 飯谷 健太 ² , 荒川 貴博 ³ , 三林 浩二 ² ○寺田 侑平 ¹ , 青木 寛 ¹ ○(M1) 永峯 旭 ¹ , 内山 晴貴 ¹ , 片浦 弘道 ² , 本間 千柊 ³ ,	1.産総研 1.群馬大院理工, 2.群馬大院医, 3.株式会社 SympaFit, 4.東京大院工, 5.帝京平成大 1.芝浦エ大工, 2.東京医科歯科大, 3.東京工科大 1.産総研・環境創生
9:00 9:30 9:45 10:00 10:15 10:30	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度 Si ナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面ブラズモンハイドロジェルアブタセンサ休憩/Break 非レクチンのタンバク質検出に向けた糖鎖高分子バイオセンサング ペブチド修飾した半導体カーボンナノチューブ薄膜バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ	○酒井 洗児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寬 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人 ¹ , 芦葉 裕樹 ¹ , 堀口 諭吉 ¹ , 福田 隆史 ¹ ○張 慧 ¹ , 阿邵 真優菜 ¹ , 大澤 郁弥 ¹ , 邱 亜威 ¹ , 大嶋 紀 安 ² , 加治佐 平 ³ , 坂田 利弥 ⁴ , 和泉 孝志 ⁵ , 曾根 逸人 ¹ ○當麻 浩司 ¹ , 田口 結彩 ² , 飯谷 健太 ² , 荒川 貴博 ³ , 三 林 浩二 ² ○寺田 侑平 ¹ , 青木 寛 ¹ ○(M1) 永峯 旭 ¹ , 内山 晴貴 ¹ , 片浦 弘道 ² , 本間 千柊 ³ , 早水 裕平 ³ , 大野 雄高 ^{1,4}	1.産総研 1.群馬大院理工, 2.群馬大院医, 3.株式会社 SympaFit, 4.東京大院工, 5.帝京平成大 1.芝浦エ大工, 2.東京医科歯科大, 3.東京工科大 1.産総研・環境創生
9:00 9:30 9:45 10:00 10:15 10:30 10:45	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 奨 19a-C32-7	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立でを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度 Si ナノワイヤバイオセンサの最適な構造の予測 パンコマイシンの高感度なリアルタイム計測のための表面プラズモンハイドロジェルアプタセンサ体態/Break 非レクチンのタンパク質検出に向けた糖鎖高分子バイオセンシング ベブチド修飾した半導体カーボンナノチューブ薄膜バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ 用電力伝送システム	○酒井 洸児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人 ¹ , 芦葉 裕樹 ¹ , 堀口 諭吉 ¹ , 福田 隆史 ¹ ○張 慧 ¹ , 阿邵 真優菜 ¹ , 大澤 郁弥 ¹ , 邱 亜威 ¹ , 大嶋 紀 安 ² , 加治佐 平 ³ , 坂田 利弥 ⁴ , 和泉 孝志 ⁵ , 曾根 逸人 ¹ ○當麻 浩司 ¹ , 田口 結彩 ² , 飯谷 健太 ² , 荒川 貴博 ³ , 三 林 浩二 ² ○寺田 侑平 ¹ , 青木 寛 ¹ ○(M1) 永峯 旭 ¹ , 内山 晴貴 ¹ , 片浦 弘道 ² , 本間 千柊 ³ , 早水 裕平 ³ , 大野 雄高 ^{1,4} ○(M2) 林 立喜 ¹ , アズハリ サマン ¹ , 三宅 丈雄 ¹	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS
9:00 9:30 9:45 10:00 10:15 10:30 10:45	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度 Si ナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面ブラズモンハイドロジェルアブタセンサ休憩/Break 非レクチンのタンバク質検出に向けた糖鎖高分子バイオセンサング ペブチド修飾した半導体カーボンナノチューブ薄膜バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ	○酒井 洸児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人 ¹ , 芦葉 裕樹 ¹ , 堀口 諭吉 ¹ , 福田 隆史 ¹ ○張 慧 ¹ , 阿部 真優菜 ¹ , 大澤 郁弥 ¹ , 邱 亜威 ¹ , 大嶋 紀 安 ² , 加泊佐 平 ³ , 坂田 利弥 ⁴ , 和泉 孝志 ⁵ , 曾根 逸人 ¹ ○當麻 浩司 ¹ , 田口 結彩 ² , 飯谷 健太 ² , 荒川 貴博 ³ , 三 林 浩二 ² ○寺田 侑平 ¹ , 青木 寛 ¹ ○(M1) 永峯 旭 ¹ , 内山 晴貴 ¹ , 片浦 弘道 ² , 本間 千柊 ³ , 早水 裕平 ³ , 大野 雄高 ^{1,4} ○(M2) 林 立喜 ¹ , アズハリ サマン ¹ , 三宅 丈雄 ¹ ○(M2) 水口 侑衣子 ¹ , チョウ ボーウェン ¹ , 小山 和 洋 ¹ , リュウ ビンフー ¹ , チョウ ロンタウ ¹ , ウー ジョ	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS
9:00 9:30 9:45 0:00 0:15 0:30 0:45 1:00 1:15	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 獎 19a-C32-7 獎 19a-C32-8	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度 Si ナノワイヤバイオセンサの最適な構造の予測 パンコマイシンの高感度なリアルタイム計測のための表面ブラズモンハイドロジェルアブタセンサ 休憩/Break 非レクチンのタンバク質検出に向けた糖鎖高分子バイオセンシング ペブチド修飾した半導体カーボンナノチューブ薄膜バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ用電力伝送システム 両面ナノチューブ膜を介した細胞間物質輸送システムの開発	○酒井 洸児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人 ¹ , 芦葉 裕樹 ¹ , 堀口 諭吉 ¹ , 福田 隆史 ¹ ○張 慧 ¹ , 阿部 真優菜 ¹ , 大澤 郁弥 ¹ , 邱 亜威 ¹ , 大嶋 紀 安 ³ , 加油佐 平 ³ , 坂田 利弥 ⁴ , 和泉 孝志 ⁵ , 曾根 逸人 ¹ ○當麻 浩司 ¹ , 田口 結彩 ² , 飯谷 健太 ² , 荒川 貴博 ³ , 三 林 浩二 ² ○寺田 侑平 ¹ , 青木 寛 ¹ ○(M1) 永峯 旭 ¹ , 内山 晴貴 ¹ , 片浦 弘道 ² , 本間 千柊 ³ , 早水 裕平 ³ , 大野 雄高 ^{1,4} ○(M2) 林 立 喜 ¹ , アズハリ サマン ¹ , 三宅 丈雄 ¹ ○(M2) 水口 侑衣子 ¹ , チョウ ボーウェン ¹ , 小山 和	 1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS
9:30 9:45 0:00 0:015 0:30 0:45 11:00	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 奨 19a-C32-7 奨 19a-C32-8 用工学・バイオチッ	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度 Si ナノワイヤバイオセンサの最適な構造の予測 パンコマイシンの高感度なリアルタイム計測のための表面プラズモンハイドロジェルアプタセンサ体想/Break 非レクチンのタンパク質検出に向けた糖鎖高分子バイオセンシング ベブチド修飾した半導体カーボンナノチューブ薄膜バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ用電力伝送システム 両面ナノチューブ膜を介した細胞間物質輸送システムの	○酒井 洸児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人 ¹ , 芦葉 裕樹 ¹ , 堀口 諭吉 ¹ , 福田 隆史 ¹ ○張 慧 ¹ , 阿部 真優菜 ¹ , 大澤 郁弥 ¹ , 邱 亜威 ¹ , 大嶋 紀 安 ² , 加泊佐 平 ³ , 坂田 利弥 ⁴ , 和泉 孝志 ⁵ , 曾根 逸人 ¹ ○當麻 浩司 ¹ , 田口 結彩 ² , 飯谷 健太 ² , 荒川 貴博 ³ , 三 林 浩二 ² ○寺田 侑平 ¹ , 青木 寛 ¹ ○(M1) 永峯 旭 ¹ , 内山 晴貴 ¹ , 片浦 弘道 ² , 本間 千柊 ³ , 早水 裕平 ³ , 大野 雄高 ^{1,4} ○(M2) 林 立喜 ¹ , アズハリ サマン ¹ , 三宅 丈雄 ¹ ○(M2) 水口 侑衣子 ¹ , チョウ ボーウェン ¹ , 小山 和 洋 ¹ , リュウ ビンフー ¹ , チョウ ロンタウ ¹ , ウー ジョ	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS
9:30 9:30 0:00 0:15 0:30 0:45 11:10 11:15	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 奨 19a-C32-7 奨 19a-C32-8 用工学・バイオチッ	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度Siナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面ブラズモンハイドロジェルアブタセンサ 休憩/Break 非レクチンのタンバク質検出に向けた糖鎖高分子バイオセンシング ペブチド修飾した半導体カーボンナノチューブ薄膜バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ 用電力伝送システム 両面ナノチューブ膜を介した細胞間物質輸送システムの開発 ブ/Biomedical Engineering and Biochips 口頭講演 (Oral Presentation) C31会場 (Room C31) 光導波路を有する脳内埋植用 UCNPメッシュシートの作	○酒井 洗児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人 ¹ , 芦葉 裕樹 ¹ , 堀口 諭吉 ¹ , 福田 隆史 ¹ ○張 慧 ¹ , 阿邵 真優菜 ¹ , 大澤 郁弥 ¹ , 邱 亜威 ¹ , 大嶋 紀安 ² , 加治佐 平 ³ , 坂田 利弥 ⁴ , 和泉 孝志 ⁵ , 曾根 逸人 ¹ ○當麻 浩司 ¹ , 田口 結彩 ² , 飯谷 健太 ² , 荒川 貴博 ³ , 三林 浩二 ² ○寺田 侑平 ¹ , 青木 寛 ¹ ○(M1) 永峯 旭 ¹ , 内山 晴貴 ¹ , 片浦 弘道 ² , 本間 千柊 ³ , 早水 裕平 ³ , 大野 雄高 ^{1,4} ○(M2) 林 立喜 ¹ , アズハリ サマン ¹ , 三宅 丈雄 ¹ ○(M2) 水口 侑衣子 ¹ , チョウ ボーウェン ¹ , 小山 和 洋 ¹ , リュウ ビンフー ¹ , チョウ ロンタウ ¹ , ウー ジョウジー ¹ , リン シュウシン ¹ , 三宅 丈雄 ¹ ○大庭 脩太郎 ¹ , 岩沼 尚樹 ¹ , 邱 晨曦 ¹ , 辻 一志 ² , 木野	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦エ大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS 1. 早大IPS
9:30 9:45 0:00 0:15 0:30 0:45 1:00 1:15 2.7 \$\sum_{17}\$	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 奨 19a-C32-7 奨 19a-C32-8 用工学・バイオチッ Tue.) 13:00 - 18:45	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL 有限要素解析法を用いた高感度Siナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面ブラズモンハイドロジェルアプタセンサ 休憩/Break 非レクチンのタンバク質検出に向けた糖鎖高分子バイオセンサング ペプチド修飾した半導体カーボンナノチューブ薄膜バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ 用電力伝送システム 両面ナノチューブ膜を介した細胞間物質輸送システムの開発 ブ/Biomedical Engineering and Biochips 口頭講演 (Oral Presentation) C31会場 (Room C31)	○酒井 洸児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人 ¹ , 芦葉 裕樹 ¹ , 堀口 諭吉 ¹ , 福田 隆史 ¹ ○張 慧 ¹ , 阿邵 真優菜 ¹ , 大澤 郁弥 ¹ , 邱 亜威 ¹ , 大嶋 紀安 ² , 加治佐 平 ³ , 坂田 利弥 ⁴ , 和泉 孝志 ⁵ , 曾根 逸人 ¹ ○當麻 浩司 ¹ , 田口 結彩 ² , 飯谷 健太 ² , 荒川 貴博 ³ , 三林 浩二 ² ○寺田 侑平 ¹ , 青木 寛 ¹ ○(M1) 永峯 旭 ¹ , 内山 晴貴 ¹ , 片浦 弘道 ² , 本間 千柊 ³ , 早水 裕平 ³ , 大野 雄高 ^{1,4} ○(M2) 林 立喜 ¹ , アズハリ サマン ¹ , 三宅 丈雄 ¹ ○(M2) 水口 侑衣子 ¹ , チョウ ボーウェン ¹ , 小山 和 洋 ¹ , リュウ ビンフー ¹ , チョウ ボーウェン ¹ , 小山 和 洋 ¹ , リュウ ビンフー ¹ , チョウ ボーウェン ¹ , 小山 和 洋 ¹ , リュウ ビンフー ¹ , チョウ ボーウェン ¹ , 小山 和 洋 ¹ , リュウ ビンフー ¹ , チョウ ボーウェン ¹ , ホー ジョウジー ¹ , リン シュウシン ¹ , 三宅 丈雄 ¹ ○大庭 脩太郎 ¹ , 岩沼 尚樹 ¹ , 邱 晨曦 ¹ , 辻 一志 ² , 木野 久志 ³ , 福島 誉史 ^{1,2} , 田中 徹 ^{1,2} ○辻 一志 ¹ , 岩沼 尚樹 ² , 邱 晨曦 ² , 大庭 脩太郎 ² , 木野	 1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS 1. 早大IPS 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情
99:30 99:45 00:00 00:15 00:30 00:45 11:00 11:15 2.7 医/ 9/17(T 3:30)	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 奨 19a-C32-7 奨 19a-C32-8 用工学・バイオチッ (ue.) 13:00・18:45 奨 17p-C31-1	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度 Si ナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面ブラズモンハイドロジェルアブタセンサ休憩/Break 非レクチンのタンパク質検出に向けた糖鎖高分子バイオセンシング ベブチド修飾した半導体カーボンナノチューブ薄膜バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ用電力伝送システム 両面ナノチューブ膜を介した細胞間物質輸送システムの開発 ブ/Biomedical Engineering and Biochips 口頭講演 (Oral Presentation) C31会場(Room C31) 光導波路を有する脳内埋植用 UCNPメッシュシートの作製と評価	○酒井 洸児 ^{1,2} , 手島 哲彦³, 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人¹, 芦葉 裕樹¹, 堀口 諭吉¹, 福田 隆史¹ ○張 慧¹, 阿部 真優菜¹, 大澤 郁弥¹, 邱 亜威¹, 大嶋紀安³, 加油佐 平³, 坂田 利弥⁴, 和泉 孝志⁵, 曾根 逸人¹ ○當麻浩司¹, 田口 結彩², 飯谷 健太², 荒川 貴博³, 三林浩二² ○寺田 侑平¹, 青木 寛¹ ○(M1) 永峯 旭¹, 内山 晴貴¹, 片浦 弘道², 本間 千柊³, 早水 裕平³, 大野 雄高¹⁴ ○(M2) 林 立喜¹, アズハリ サマン¹, 三宅 丈雄¹ ○(M2) 林 立喜¹, アズハリ サマン¹, 小山 和洋¹, リュウ ビンフー¹, チョウ ボーウェン¹, 小山 和洋¹, リュウ ビンフー¹, チョウ ボーウェン¹, 小山 和洋¹, リュウ ビンフー¹, チョウ ボーウェン¹, 小山 和ブ・リュウ ビンフー¹, チョウ ボーウェン², 木野 ウジー¹, リン シュウシン¹, 三宅 丈雄¹ ○大庭 脩太郎¹, 岩沼 尚樹¹, 邱 晨曦¹, 辻 一志², 木野 久志³, 福島 誉史¹², 田中 徹¹² ○ 九 志¹, 岩沼 尚樹², 邱 晨曦², 大庭 脩太郎², 木野 久志³, 福島 誉史¹², 田中 微¹²	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS 1. 早大IPS 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院医工, 2. 東北大院区工, 3. 九州大院シス情
99:00 99:30 99:45 10:00 10:15 10:30 10:45 11:00 11:15 12.7 9/17(T	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 奨 19a-C32-7 奨 19a-C32-8 用工学・バイオチッ Tue.) 13:00 - 18:45 奨 17p-C31-1 奨 17p-C31-2	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度Siナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面プラズモンハイドロジェルアプタセンサ 休憩/Break 非レクチンのタンバク質検出に向けた糖鎖高分子バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ用電力伝送システム 両面ナノチューブ膜を介した細胞間物質輸送システムの開発 ブ/Biomedical Engineering and Biochips 口頭講演 (Oral Presentation) C31会場(Room C31) 光導波路を有する脳内埋植用 UCNPメッシュシートの作 製と評価 類髄バイバスカフ刺激電極の作製と評価 櫛型電極を用いた広帯域湿度センサの作製と評価	○酒井 洗児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人 ¹ , 芦葉 裕樹 ¹ , 堀口 諭吉 ¹ , 福田 隆史 ¹ ○張 慧 ¹ , 阿邵 真優菜 ¹ , 大澤 郁弥 ¹ , 邱 亜威 ¹ , 大嶋 紀安 ² , 加治佐 平 ³ , 坂田 利弥 ⁴ , 和泉 孝志 ⁵ , 曾根 逸人 ¹ ○當麻 浩司 ¹ , 田口 結彩 ² , 飯谷 健太 ² , 荒川 貴博 ³ , 三林 浩二 ² ○寺田 侑平 ¹ , 青木 寛 ¹ ○(M1) 永峯 旭 ¹ , 内山 晴貴 ¹ , 片浦 弘道 ² , 本間 千柊 ³ , 早水 裕平 ³ , 大野 雄高 ^{1,4} ○(M2) 林 立喜 ¹ , アズハリ サマン ¹ , 三宅 丈雄 ¹ ○(M2) 水口 侑衣子 ¹ , チョウ ボーウェン ¹ , 小山 和洋 ¹ , リュウ ビンフー ¹ , チョウ ロンタウ ¹ , ウー ジョウジー ¹ , リン シュウシン ¹ , 三宅 丈雄 ¹ ○大庭 脩太郎 ¹ , 岩沼 尚樹 ¹ , 邱 晨曦 ¹ , 辻 一志 ² , 木野 久志 ³ , 福島 誉史 ^{1,2} , 田中 徹 ^{1,2} ○(M2)Shinki Kyuu ¹ , Naoki Iwanuma ¹ , Shutaro	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS 1. 早大IPS 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院医工, 2. 東北大院区工, 3. 九州大院シス情
9:00 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 9/17(T 13:30 13:45	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 奨 19a-C32-7 奨 19a-C32-8 用工学・バイオチッ (ue.) 13:00・18:45 奨 17p-C31-1 奨 17p-C31-2 奨 17p-C31-3 奨E 17p-C31-4	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度 Si ナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面ブラズモンハイドロジェルアブタセンサ 休憩/Break 非レクチンのタンパク質検出に向けた糖鎖高分子バイオセンサング ペブチド修飾した半導体カーボンナノチューブ薄膜バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ 用電力伝送システム 両面ナノチューブ膜を介した細胞間物質輸送システムの開発 ブ/Biomedical Engineering and Biochips 口頭講演 (Oral Presentation) C31会場(Room C31) 光導波路を有する脳内埋植用 UCNP メッシュシートの作製と評価 類髄バイバスカフ刺激電極の作製と評価 種型電極を用いた広帯域湿度センサの作製と評価 Design and Fabrication of Deep Trench Probe for Lactate Sensing to Analyze Cancer Cells in Brain Tissue	○酒井 洗児 ^{1,2} , 手島 哲彦³, 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人¹, 芦葉 裕樹¹, 堀口 諭吉¹, 福田 隆史¹ ○張 慧¹, 阿邵 真優菜¹, 大澤 郁弥¹, 邱 亜成¹, 大嶋 紀安², 加治佐 平³, 坂田 利弥⁴, 和泉 孝志⁵, 曾根 逸人¹ ○當麻 浩司¹, 田口 結彩², 飯谷 健太², 荒川 貴博³, 三林浩二² ○寺田 侑平¹, 青木 寛¹ ○(M1) 永峯 旭¹, 内山 晴貴¹, 片浦 弘道², 本間 千柊³, 早水 裕平³, 大野 雄高¹.⁴ ○(M2) 林 立喜¹, アズハリ サマン¹, 三宅 丈雄¹ ○(M2) 水口 侑衣子¹, チョウ ボーウェン¹, 小山 和洋¹, リュウ ビンフー¹, チョウ ロンタウ¹, ウー ジョウジー¹, リン シュウシン¹, 三宅 丈雄¹ ○大庭 脩太郎¹, 岩沼 尚樹¹, 邱 晨曦², 大庭 脩太郎², 木野 久志³, 福島 誉史¹², 田中 徽¹² ○(社2) Shinki Kyuu¹, Naoki Iwanuma¹, Shutaro Oba¹, Kazushi Tsuji², Takafumi Fukushima¹¹², Tetsu Tanaka¹²²	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS 1. 早大IPS 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院区工, 2. 東北大院区工, 3. 九州大院シス情 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. TOHOKU Univ., 2. Tohoku Univ.
9:00 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 9/17(T 13:30 13:45	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 奨 19a-C32-7 奨 19a-C32-8 用工学・バイオチッ Tue.) 13:00 - 18:45 奨 17p-C31-1 奨 17p-C31-2 奨 17p-C31-3	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度Siナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面プラズモンハイドロジェルアプタセンサ 休憩/Break 非レクチンのタンバク質検出に向けた糖鎖高分子バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ用電力伝送システム 両面ナノチューブ膜を介した細胞間物質輸送システムの開発 ブ/Biomedical Engineering and Biochips 口頭講演 (Oral Presentation) C31会場(Room C31) 光導波路を有する脳内埋植用 UCNPメッシュシートの作 製と評価 類髄バイバスカフ刺激電極の作製と評価 櫛型電極を用いた広帯域湿度センサの作製と評価	○酒井 洸児¹², 手島 哲彦³, 後藤 東一郎¹², 中島 寛¹², 山口 真澄¹² ○安浦 雅人¹, 芦葉 裕樹¹, 堀口 諭吉¹, 福田 隆史¹ ○張 慧¹, 阿邵 真優菜¹, 大澤 郁弥¹, 邱 亜威¹, 大嶋 紀安², 加治佐 平³, 坂田 利弥⁴, 和泉 孝志⁵, 曾根 逸人¹ ○當麻 浩司¹, 田口 結彩², 飯谷 健太², 荒川 貴博³, 三林 浩二² ○寺田 侑平¹, 青木 寛¹ ○(M1) 永峯 旭¹, 内山 晴貴¹, 片浦 弘道², 本間 千柊³, 早水 裕平³, 大野 雄高¹⁴ ○(M2) 林 立喜¹, アズハリ サマン¹, 三宅 丈雄¹ ○(M2) 水口 侑衣子¹, チョウ ボーウェン¹, 小山 和洋', リュウ ビンフー¹, チョウ ロンタウ¹, ウー ジョウジー¹, リンシュウシン¹, 三宅 丈雄¹ ○大庭 脩太郎¹, 岩沼 尚樹¹, 邱 晨曦², 大庭 脩太郎², 木野 久志³, 福島 誉史¹², 田中 徹¹² ○辻 一志¹, 岩沼 尚樹², 邱 晨曦², 大庭 脩太郎², 木野 久志³, 福島 誉史¹², 田中 徹¹² ○(M2) Shinki Kyuu¹, Naoki Iwanuma¹, Shutaro Oba¹, Kazushi Tsuji², Takafumi Fukushima¹², Tetsu Tanaka¹² ○須永 圭紀¹, Tso Kuang Chih¹, 中西 優輝¹, 春田 牧 人²², 高野 拓郎¹³, 寺澤 靖雄¹³, 田代 洋行¹⁴, 笹川	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS 1. 早大IPS 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院区工, 2. 東北大院区工, 3. 九州大院シス情 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. TOHOKU Univ., 2. Tohoku Univ.
99:00 99:30 99:45 10:00 10:15 10:30 10:45 11:00 11:15 11:00 11:15 13:30 13:15 14:00 14:15	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 獎 19a-C32-7 獎 19a-C32-8 用工学・バイオチッ fue.) 13:00 - 18:45 獎 17p-C31-1 獎 17p-C31-1 獎 17p-C31-2	口頭講演 (Oral Presentation) C32会場(Room C32)「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度Siナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面プラズモンハイドロジェルアプタセンサ 休憩/Break 非レクチンのタンパク質検出に向けた糖鎖高分子バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ 用電力伝送システム 両面ナノチューブ膜を介した細胞間物質輸送システムの開発 アノBiomedical Engineering and Biochips 口頭講演 (Oral Presentation) C31会場 (Room C31) 光導波路を有する脳内埋植用 UCNPメッシュシートの作製と評価 類髄バイバスカフ刺激電極の作製と評価 種型電極を用いた広帯域湿度センサの作製と評価 櫛型電極を用いた広帯域湿度センサの作製と評価	○酒井 洗児¹², 手島 哲彦³, 後藤 東一郎¹², 中島 寛¹², 山口 真澄¹² ○安浦 雅人¹, 芦葉 裕樹¹, 堀口 論吉¹, 福田 隆史¹ ○張 慧¹, 阿部 真優菜¹, 大澤 郁弥¹, 邱 亜成¹, 大嶋 紀安², 加治佐 平³, 坂田 利弥⁴, 和泉 孝志⁵, 曾根 逸人¹ ○當麻 浩司¹, 田口 結彩², 飯谷 健太², 荒川 貴博³, 三林 浩二² ○寺田 侑平¹, 青木 寛¹ ○(M1) 永峯 旭¹, 内山 晴貴¹, 片浦 弘道², 本間 千柊³, 早水 裕平³, 大野 雄高¹⁴ ○(M2) 林 立喜¹, アズハリ サマン¹, 三宅 丈雄¹ ○(M2) 水口 侑衣子¹, チョウ ボーウェン¹, 小山 和洋¹, リュウ ビンフー¹, チョウ ロンタウ¹, ウー ジョウジー¹, リンシュウシン¹, 三宅 丈雄¹ ○大庭 脩太郎¹, 岩沼 尚樹¹, 邱 晨曦¹, 辻 一志², 木野 久志³, 福島 誉史¹², 田中 徹¹² ○辻 一志¹, 岩沼 尚樹², 邱 晨曦², 大庭 脩太郎², 木野 久志³, 福島 普史¹², 田中 徹¹² ○(M2)Shinki Kyuu¹, Naoki Iwanuma¹, Shutaro Oba¹, Kazushi Tsuji², Takafumi Fukushima¹², Tetsu Tanaka¹² ○須永 圭紀¹, Tso Kuang Chih¹, 中西 優輝¹, 春田 牧 人¹², 髙野 拓郎³³, 寺澤 靖雄¹³, 田代 洋行¹⁴, 笹川 清隆¹, 太田 淳¹	1.産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS 1. 早大IPS 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院医工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 下のHOKU Univ., 2. Tohoku Univ. 1. 奈良先端大, 2. 千歳科学技術大, 3. 株式会社ニデック, 4. 九州大
9:00 9:30 9:45 10:00 9:45 10:30 10:45 11:00 11:15 12.7 \(\)	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 奨 19a-C32-7 奨 19a-C32-8 用工学・バイオチッ ue.) 13:00 - 18:45 奨 17p-C31-1 奨 17p-C31-2 奨 17p-C31-3 奨 17p-C31-5 奨 17p-C31-5	口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度Siナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面プラズモンハイドロジェルアプタセンサ 休憩/Break 非レクチンのタンバク質検出に向けた糖鎖高分子バイオセンシング ペプチド修飾した半導体カーボンナノチューブ薄膜バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ 用電力伝送システム 両面ナノチューブ膜を介した細胞間物質輸送システムの開発 ブ/Biomedical Engineering and Biochips 口頭講演 (Oral Presentation) C31会場(Room C31) 光導波路を有する脳内埋植用 UCNPメッシュシートの作製と評価 類髄バイバスカフ刺激電極の作製と評価 櫛型電極を用いた広帯域湿度センサの作製と評価 Design and Fabrication of Deep Trench Probe for Lactate Sensing to Analyze Cancer Cells in Brain Tissue In vivo 環境下におけるフレキシブル人工視覚デバイスの刺激能力評価 休憩/Break 超小型エッジデバイス向け間欠駆動マルチチャネルLDOの検討	○酒井 洗児¹², 手島 哲彦³, 後藤 東一郎¹², 中島 寛¹², 山口 真澄¹² ○安浦 雅人¹, 芦葉 裕樹¹, 堀口 諭吉¹, 福田 隆史¹ ○張 慧¹, 阿部 真優菜¹, 大澤 郁弥¹, 邱 亜成¹, 大嶋 紀安², 加治佐 平³, 坂田 利弥⁴, 和泉 孝志⁵, 曾根 逸人¹ ○當麻 浩司¹, 田口 結彩², 飯谷 健太², 荒川 貴博³, 三林浩二² ○寺田 侑平¹, 青木 寛¹ ○(M1) 永峯 旭¹, 内山 晴貴¹, 片浦 弘道², 本間 千柊³, 早水 裕平³, 大野 雄高¹⁴ ○(M2) 林 立喜¹, アズハリ サマン¹, 三宅 丈雄¹ ○(M2) 水口 侑衣子¹, チョウ ボーウェン¹, 小山 和洋¹, リュウ ビンフー¹, チョウ ロンタウ¹, ウー ジョウジー¹, リン シュウシン¹, 三宅 丈雄¹ ○大庭 脩太郎¹, 岩沼 尚樹¹, 邱 晨曦², 大庭 脩太郎², 木野 久志³, 福島 誉史¹², 田中 徹¹² ○辻 一志¹, 岩沼 尚樹², 邱 晨曦², 大庭 脩太郎², 木野 久志³, 福島 誉史¹², 田中 徹¹² ○(M2) Shinki Kyuu¹, Naoki Iwanuma¹, Shutaro Oba¹, Kazushi Tsuji², Takafumi Fukushima¹², Tetsu Tanaka¹² ○須永 圭紀¹, Tso Kuang Chih¹, 中西 優輝¹, 春田 牧人¹², 高野 拓郎¹³, 寺澤 靖雄¹³, 田代 洋行¹⁴, 笹川 清隆¹, 太田 淳¹ ○吉本 海生¹, 伊藤 淳太郎¹, 横式 康史², 德田 崇¹	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS 1. 早大IPS 1. 早大IPS 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 下のHOKU Univ., 2. Tohoku Univ. 1. 奈良先端大, 2. 千歳科学技術大, 3. 株式会社ニデック, 4. 九州大
99:30 99:45 10:00 99:45 10:00 10:15 10:30 10:45 11:00 11:15 2.7 9/17(T 33:00 13:45 14:00 14:15	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 獎 19a-C32-7 獎 19a-C32-8 用工学・バイオチッ fue.) 13:00 - 18:45 獎 17p-C31-1 獎 17p-C31-1 獎 17p-C31-2	口頭講演 (Oral Presentation) C32会場(Room C32)「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度Siナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面プラズモンハイドロジェルアプタセンサ 休憩/Break 非レクチンのタンパク質検出に向けた糖鎖高分子バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ 用電力伝送システム 両面ナノチューブ膜を介した細胞間物質輸送システムの開発 ブ/Biomedical Engineering and Biochips 口頭講演 (Oral Presentation) C31会場 (Room C31) 光導波路を有する脳内埋植用 UCNPメッシュシートの作製と評価 類髄バイバスカフ刺激電極の作製と評価 櫛型電極を用いた広帯域湿度センサの作製と評価 櫛型電極を用いた広帯域湿度センサの作製と評価	○酒井 洗児 ^{1,2} , 手島 哲彦³, 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人¹, 芦葉 裕樹¹, 堀口 諭古¹, 福田 隆史¹ ○張 慧¹, 阿部 真優菜¹, 大澤 郁弥¹, 邱 亜威¹, 大嶋 紀安², 加治佐 平³, 坂田 利弥⁴, 和泉 孝志⁵, 曾根 逸人¹ ○當麻 浩司¹, 田口 結彩², 飯谷 健太², 荒川 貴博³, 三林浩二² ○寺田 侑平¹, 青木 寛¹ ○(M1) 永峯 旭¹, 内山 晴貴¹, 片浦 弘道², 本間 千柊³, 早水 裕平³, 大野 雄高¹.⁴ ○(M2) 林 立喜¹, アズハリ サマン¹, 三宅 丈雄¹ ○(M2) 水口 侑衣子¹, チョウ ボーウェン¹, 小山 和洋¹, リュウ ビンフー¹, チョウ ロンタウ¹, ウー ジョウジー¹, リン シュウシン¹, 三宅 丈雄¹ ○大庭 脩太郎¹, 岩沼 尚樹¹, 邱 晨曦², 大庭 脩太郎², 木野 久志³, 福島 誉史¹², 田中 徹¹² ○辻 一志¹, 岩沼 尚樹², 邱 晨曦², 大庭 脩太郎², 木野 久志³, 福島 誉史¹², 田中 徹¹² ○(M2)Shinki Kyuu¹, Naoki Iwanuma¹, Shutaro Oba¹, Kazushi Tsuji², Takafumi Fukushima¹², Tetsu Tanaka¹² ○須永 圭紀¹, Tso Kuang Chih¹, 中西 優輝¹, 春田 牧人¹², 高野 拓郎¹³, 寺澤 靖雄¹³, 田代 洋行¹⁴, 笹川清隆¹, 太田 淳¹ ○吉本 海生¹, 伊藤 淳太郎¹, 横式 康史², 德田 崇¹ ○古本 海生¹, 伊藤 淳太郎¹, 横式 康史², 德田 崇¹	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS 1. 早大IPS 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 下のHOKU Univ., 2. Tohoku Univ. 1. 奈良先端大, 2. 千歳科学技術大, 3. 株式会社ニデック, 4. 九州大
0:00 0:30 0:45 0:00 0:45 0:45 0:45 0:45 1:00 0:45 1:00 0:45 1:00 3:00 3:15 4:00 4:15 4:30	招 19a-C32-1 19a-C32-2 19a-C32-3 19a-C32-4 19a-C32-5 19a-C32-6 奨 19a-C32-7 奨 19a-C32-8 用工学・バイオチッ ue.) 13:00 - 18:45 奨 17p-C31-1 奨 17p-C31-2 奨 17p-C31-3 奨 17p-C31-5 奨 17p-C31-5	口頭講演 (Oral Presentation) C32会場(Room C32)「第22回有機分子・バイオエレクトロニクス分科会 奨励賞受賞記念講演」 薄膜自己組立てを用いたパイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイルス検出系開発 COMSOL有限要素解析法を用いた高感度 Siナノワイヤバイオセンサの最適な構造の予測 バンコマイシンの高感度なリアルタイム計測のための表面ブラズモンハイドロジェルアブタセンサ 休憩/Break 非レクチンのタンパク質検出に向けた糖鎖高分子バイオセンシング ペプチド修飾した半導体カーボンナノチューブ薄膜バイオセンサの作製と評価 パリティ時間対称性を用いたスマートコンタクトレンズ 用電力伝送システム 両面ナノチューブ膜を介した細胞間物質輸送システムの開発 フ/Biomedical Engineering and Biochips 口頭講演 (Oral Presentation) C31会場 (Room C31) 光導波路を有する脳内埋植用 UCNPメッシュシートの作製と評価 類髄バイバスカフ刺激電極の作製と評価 種型電極を用いた広帯域湿度センサの作製と評価 Design and Fabrication of Deep Trench Probe for Lactate Sensing to Analyze Cancer Cells in Brain Tissue In vivo 環境下におけるフレキシブル人工視覚デバイスの刺激能力評価 体態/Break 超小型エッジデバイス向け間欠駆動マルチチャネルLDOの検討 Methods to Generate Multiphase Non-overlapping Clock Signal for Switching Circuits in Integrated Microelectronic	○酒井 洗児 ^{1,2} , 手島 哲彦³, 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2} ○安浦 雅人¹, 芦葉 裕樹¹, 堀口 諭吉¹, 福田 隆史¹ ○張 慧¹, 阿邵 真優菜¹, 大澤 郁弥¹, 邱 亜威¹, 大嶋 紀安², 加治佐 平³, 坂田 利弥⁴, 和泉 孝志⁵, 曾根 逸人¹ ○當麻 浩司¹, 田口 結彩², 飯谷 健太², 荒川 貴博³, 三林浩二² ○寺田 侑平¹, 青木 寛¹ ○(M1) 永峯 旭¹, 内山 晴貴¹, 片浦 弘道², 本間 千柊³, 早水 裕平³, 大野 雄高¹⁴ ○(M2) 林 立喜¹, アズハリ サマン¹, 三宅 丈雄¹ ○(M2) 林 立喜¹, アズハリ サマン¹, 小山 和洋', リュウ ビンフー¹, チョウ ボーウェン¹, 小山 和洋', リュウ ビンフー¹, チョウ ボーウェン¹, 小山 和洋', リュウ ビンフー¹, チョウ ボーウェン², 木野 久志³, 福島 誉史¹², 田中 徹¹² ○辻 一志¹, 岩沼 尚樹², 邱 晨曦², 大庭 脩太郎², 木野 久志³, 福島 誉史¹², 田中 徹¹² ○(M2) Shinki Kyuu¹, Naoki Iwanuma¹, Shutaro Oba¹, Kazushi Tsuji², Takafumi Fukushima¹², Tetsu Tanaka¹² ○須永 圭紀¹, Tso Kuang Chih¹, 中酉 優輝¹, 春田 牧 人¹², 高野 拓郎¹³, 寺澤 靖雄¹³, 田代 洋行¹⁴, 笹川清隆¹, 太田 淳¹ ○吉本 海生¹, 伊藤 淳太郎¹, 横式 康史², 德田 崇¹ ○(DC) Reyhan Ramadhan¹, Yasufumi Yokoshiki², Takashi Tokuda¹	1. 産総研 1. 群馬大院理工, 2. 群馬大院医, 3. 株式会社 SympaFit, 4. 東京大院工, 5. 帝京平成大 1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大 1. 産総研・環境創生 1. 名大工, 2. 産総研, 3. 東工大, 4. 名大未来研 1. 早大IPS 1. 早大IPS 1. 早大IPS 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 東北大院工, 2. 東北大院医工, 3. 九州大院シス情 1. 下のHOKU Univ., 2. Tohoku Univ. 1. 奈良先端大, 2. 千歳科学技術大, 3. 株式会社ニデック, 4. 九州大

15:15	奨 E 17p-C31-9	Modeling and Evaluation of a Power Management System for RISC-V-Based Digital Platforms	○ (D)Panithan Srisinsuphya¹, Yasufumi Yokoshiki², Takashi Tokuda¹	1.Tokyo Inst. of Tech., 2.Aoyama Gakuin Univ.
15:30	奨 17p-C31-10	分散型光電気BMIデバイス向けCMOS統合回路設計	○坂田 篤典¹, 横式 康史², 德田 崇¹	1.東工大, 2.青学大
15:45 16:00	E 17p-C31-11	休憩/Break Circuit for Master-Slave communication in flexible-	○ SHANG DONG¹, Atsunori Sakata¹, Yasufumi	1.Tokyo Tech, 2.Aoyama Gakuin Univ.
16:15	奨 17p-C31-12	arrange distributed BMI device 人工視覚用CMOSチップを用いた並列刺激システムの特性評価	Yokoshiki², Takashi Tokuda¹ ○ (DC) 中西 優輝¹, Wisaroot Sriitsaranusorn¹, 服部 天哉¹, Kuang-Chih Tso¹, 鐘堂 健三¹², 竹原 浩成¹, 須 永 圭紀¹, 春田 牧人¹³, 田代 洋行¹⁴, 寺澤 靖雄¹², 太 田 淳¹, 笹川 清隆¹	
16:30	奨 17p-C31-13	CMOS- グラフェン集積による高機能分子センサの検討	○岩崎 秀栄¹, 横式 康史², 渡辺 剛志², 黄 晋二², 德田 崇¹	1.東工大, 2.青山学院大
16:45	奨 17p-C31-14	光信号除去可能なイオンイメージセンサの動作電圧条件 の改善	〇佐藤 諒芽¹, 本庄 瑠奈¹, 野田 佳子¹, 赤井 大輔¹, 飛 沢 健¹, 木村 安行¹, 崔 容俊¹, 高橋 一浩¹, 澤田 和明¹, 野田 俊彦¹	1. 豊橋技科大
17:00	奨 17p-C31-15	の設計	\bigcirc (M2) 服部 天裁 1 , Wisaroot Sriitsaranusorn 1 , 中西 優輝 1 , Kuang-Chih Tso 1 , 鐘堂 健三 2 , 寺澤 靖雄 1,2 , 須永 圭紀 1 , 春田 牧人 1,3 , 竹原 涪成 1 , 田代 洋行 1,4 , 太田 2 , 德川 清隆 1	州大
17:15 17:30	17p-C31-16	休憩/Break CMOSマルチケミカルイメージセンサの空間分解能向上		1. 豊橋技科大
17:45	17p-C31-17	のための感応膜形成プロセスの検討 3次元応力イメージセンサの感度向上に向けた構造体形 状の検討	一浩¹,野田俊彦¹,澤田和明¹ ○伊藤大真¹,大平瑞季¹,土井英生¹,村上健介¹,小笠原健²,清水聡²,堀尾智子¹,赤井大輔¹,飛沢健¹,崔容俊¹,高橋一浩¹,野田俊彦¹,澤田和明¹	1. 豊橋技科大, 2. ダイキンファインテック株式会社
18:00	奨 17p-C31-18	低侵襲マイクロニードル電極による長期ニューロン計測	〇佐々木 陽向 1 , 山下 幸司 1 , 清水 快季 1 , 坂本 兼盛 1 ,	1. 豊橋技科大
18:15	奨 17p-C31-19	と損傷評価 脳内埋め込みにおいて低侵襲なナノニードル電極アレイ の設計・製作	沼野利佳¹,鯉田考和¹,河野剛士¹ ○高橋尚大¹,清水快季¹,山下幸司¹,沼野利佳¹,鯉 田孝和¹,河野剛士¹	1. 豊橋技科大
18:30	奨 17p-C31-20	電気・薬理・光学的ニューロン計測に向けた 400 µm 長 Pt/Parylene マイクロチューブの製作		1. 豊橋技科大
9/18(V 9:00	Ved.) 9:00 - 11:30 18a-C31-1	口頭講演 (Oral Presentation) C31 会場(Room C31) マイクロニードルセンサへの応用に向けたボロン酸蛍光	○福原 真拓¹, 神田 循大¹.², 竹原 宏明¹.², Kevin	1. 東大院工, 2.iCONM, 3. 医科歯科大
9:15	18a-C31-2	ハイドロゲルの機能評価 自己組立薄膜の機能化に向けたナノマテリアル分散体の		1.NTT 物性基礎研, 2.NTT BMC
9:30	18a-C31-3	導入 多感覚応答の同時記録を可能にする多点皮質脳波電極		1. 豊橋技大, 2. 獨協医大
9:45	18a-C31-4	シートの開発 細胞外小胞自動分離のためのマイクロ流体デバイスの開	口 寛人¹ ○樋田 健斗¹, 溝井 千春¹, 瀬尾 尚弘¹, 一木 隆範¹.²	1.東大院工, 2.iCONM
10:00	18a-C31-5	発 電気化学インビーダンス法による単一細胞モニタリング のための微小電極構造に関する検討	○松林 悠斗¹, 坂本 憲児², 柳瀬 雄輝³, 宇野 重康¹	1.立命大, 2.九工大, 3.広島大
10:15 10:30	18a-C31-6	休憩/Break 自己接着性と伸縮性を有する皮膚貼り付けナノシート電 極の開発	夫1,横田知之1	
10:45	奨 18a-C31-7	有限要素解析法による体外受精卵評価用リング型マルチ バイオセンサの変位量解析	子 2 , 張 慧 1 , 坂田 利弥 2 , 曾根 逸人 1	
11:00	18a-C31-8	毛羽立ち構造による皮膚への追従性を持つ心電図計測向 け布型電極の作製	隆夫1	
11:15	E 18a-C31-9	Quantum Stochastic Resonance-Based Reservoir Computing System for Hypertensive and Diabetic MCG Diagnosis	○ Xiaoyu Shi ¹ , Zhiqiang Liao ¹ , Hitoshi Tabata ¹	1.Tokyo Univ.
9/18(W 13:00	/ed.) 13:00 - 18:30 18p-C31-1	口頭講演 (Oral Presentation) C31会場 (Room C31)トリメリト酸を受容部に用いた甘味センサの膜電位と応	○渡辺 竜吉¹, 久村 壮次郎¹, 木村 俊輔², 都甲 潔²	1. 九大シス情, 2. 中村学園大
13:15	奨 18p-C31-2	答の相関解明による感度向上 分子鋳型ダブルネットワークハイドロゲルチャネルを有	○河村 優希 ¹, Alex C. Tseng ¹, 坂田 利弥 ¹	1.東大院工
13:30	奨 18p-C31-3	する有機電気化学トランジスタの創製 チャネル内部の機能化を可能にするゾル-ゲル法を用い	○(D)片山 律¹, 坂田 利弥¹	1.東大院工
13:45	奨 18p-C31-4	た One-piece ITO-TFT の作製 集積化 FET バイオセンサによる多検体同時検出の検証	○ (M1) 赤尾 アメル¹, 坂田 利弥¹	1.東大院工
14:00 14:15	奨 18p-C31-5	導電性ポリアニリン電極の分子インブリンティングに向けた膜厚制御 休憩/Break	○井上 恵¹, 坂田 利弥¹	1. 東大院工
14:30	18p-C31-6	アミロイドタンパク質αシヌクレイン検出用 LSPR センサの周期構造の微細化、形状による検出感度の改善	○木村 悠人¹, Werner Carl Frederik¹, 蓮池 紀幸¹, 福 澤 理行², 野田 実³	1. 京工繊大電子, 2. 京工繊大情報, 3. 関西大 化学生命工学部
14:45	18p-C31-7	絶縁コートによる集積化G-FETのドリフト安定化		1. 阪大産研, 2. 村田製作所, 3. 京都府立医
15:00	奨 18p-C31-8	多孔質チャネルを有する有機電気化学トランジスタの過 酸化水素応答性		1.東大院工
15:15	18p-C31-9	比色型プラズモニックバイオセンサによる炎症マーカー CRPの検出	○三木 啓夢¹	1.東工大工
15:30	奨 18p-C31-10	バイボーラ現象に基づく非ファラディック型インピーダ ンス免疫センサの開発	\bigcirc (DC) 栩木 有理沙 1 , 高橋 青 1 , 近藤 みずき 1 , 桑原 敬司 1	1.長岡技科大
15:45 16:00		休憩/Break イオンイメージセンサによる植物体内イオン長期モニタ リングの検証	崔 容俊1, 高橋 一浩1, 澤田 和明1, 野田 俊彦1	
16:15 16:30		血流感染症向け迅速遺伝子検出技術の開発 CIGS太陽電池による多点マイクロ LED プローブの駆動	 ○清水 沙彩¹, 柳川 善光¹, 坂井 友幸¹ ○(DC) 大屋 翔¹, 西永 慈郎², 西川 敦³, Loesing 	1. 目立製作所 1. 豊技大, 2. 産総研, 3.ALLOS
16:45	奨 18p-C31-14	CMOSにおいセンサの計測対象拡大を目指した容量検出		1. 豊橋技術科学大学
17:00	18p-C31-15	画素の設計と作製 IoT 端末上のイオンゲルセンサによるアセトン・アンモニアセンシング	沢健¹,崔容俊¹,高橋一浩¹,澤田和明¹,野田俊彦¹ ○(B)秦佳浩¹,馬島翔¹,椎木陽介¹,石黒仁揮¹,田 中貴久¹	1.慶大理工
		休憩/Break	工具八	

17:30	18p-C31-16	イオン液体のインピーダンスを用いた高選択的ガスセン シング	○鐘 柯¹, 田中 貴久¹	1. 慶大理工
17:45	E 18p-C31-17	Hydrophobic Filters Based on PDMS and Zeolite Hybrid Membrane for Pre-separation of Gas Detection	○ Chuanlai Zang¹, Hiroyasu Yamahara¹, Hitoshi Tabata¹	1.Tokyo Univ.
8:00	18p-C31-18	高感度ガスセンサに向けた ZnO/ZIF-8 ハイブリッド構造		1. 東大院工
8:15	18p-C31-19	マグノニックガスセンサに向けたスピネルフェライトに おけるガス吸着と電子スピン共鳴相関に関する研究		1.東大院工
9/20(F	Fri.) 9:30 - 11:30 20a-P04-1	ポスター講演 (Poster Presentation) P会場(Room P) レーザーマイクロダイセクションによるマイクロパター		1. 東北大通研, 2. 東北大院工, 3. 東北大 AIMR
	20a-P04-2	ン培養神経回路への局所損傷 3 D構造のサブストレイト上における心筋繊維芽細胞ダ		1.青学大理工, 2.JST さきがけ
	20a-P04-3	イナミクス Real-Time Feedback 機構を用いた機械刺激による心筋細 胞集合体のペースメーカーの生成	三井 敏之 ¹ ○水谷 ありさ ¹ , 金指 響太郎 ¹ , 佐々木 亜優 ¹ , 守山 裕大 ^{1,2} , 三井 敏之 ¹	1.青学大理工, 2.JST さきがけ
	20a-P04-4	高分子超薄膜と金属電極間の強靭なインターフェイスの ための電極形状の検討		1. 産総研 SSRC, 2. 東工大生命理工, 3. 早大理工
	20a-P04-5	微小電極を用いたEISによる細胞スフェロイドの電気特性評価に関する研究		1. 成蹊大院理工, 2. 呉高専
	20a-P04-6	インフルエンザバイオセンサー開発のための糖鎖分子の 各種ウイルスに対する反応性		1.中部大, 2.香川大, 3.京都府医大, 4.大阪大, 5.東北大
	20a-P04-7	広い測定濃度領域を有するメラトニンバイオセンサの開 発	○大屋 雛子¹, 柴田 恭幸¹, 呉 海云¹, 遠藤 英明¹, 大貫等¹	1. 東京海洋大
	20a-P04-8	ナノボウル光濃縮基板と分子修飾マイクロ粒子を用いた DNA選択検出	〇長谷川 龍馬 1,2,3 , 豊内 秀一 1,2 , 叶田 雅俊 1,2,3 , 林 康太 1,2,3 , 田村 守 2,4 , 床波 志保 2,3 , 飯田 琢也 1,2	1.大阪公立大院理, 2.大阪公立大LAC-SYS研, 3.大阪公立大院工, 4.大阪大院基礎工
	20a-P04-9	マイクロLEDプローブを用いた光薬理学操作の検証	○守屋 和輝 ¹ , 大川 宜昭 ² , 岡田 章吾 ¹ , 斎藤 喜人 ² , 大 屋 翔 ¹ , 西川 敦 ³ , Loesing Alexander ³ , 関口 寛人 ¹	1. 豊技大, 2. 獨協医大, 3.ALLOS
CS.12]	20a-P04-10 12.6 ナノバイオテ	血流感染症検査向け迅速サーマルサイクル技術の開発 - クノロジー、12.7 医用工学・バイオチップのコードシェラ	○柳川 善光¹, 清水 沙彩¹, 坂井 友幸¹	1.日立製作所
9/19(T	hu.) 9:00 - 11:30	口頭講演 (Oral Presentation) C32会場 (Room C32)		
0:00	招 19a-C32-1	「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」	○酒井 洸児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2}	1.NTT 物性研, 2.NTT BMC, 3.NTT リサーチ
9:30	19a-C32-2	薄膜自己組立てを用いたバイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイ ルス検出系開発	○安浦 雅人¹, 芦葉 裕樹¹, 堀口 諭吉¹, 福田 隆史¹	1.産総研
:45	19a-C32-3	COMSOL有限要素解析法を用いた高感度 Siナノワイヤ バイオセンサの最適な構造の予測	○張 慧¹, 阿部 真優菜¹, 大澤 郁弥¹, 邱 亜威¹, 大嶋 紀 安², 加治佐 平³, 坂田 利弥⁴, 和泉 孝志⁵, 曾根 逸人¹	
0:00	19a-C32-4	バンコマイシンの高感度なリアルタイム計測のための表面プラズモンハイドロジェルアプタセンサ		
10:15 10:30	19a-C32-5	休憩/Break 非レクチンのタンパク質検出に向けた糖鎖高分子バイオ	○寺田 侑平¹, 青木 寛¹	1. 産総研・環境創生
0:45	19a-C32-6	センシング ペプチド修飾した半導体カーボンナノチューブ薄膜バイ		
		オセンサの作製と評価	早水 裕平 ³ , 大野 雄高 ^{1,4}	
1:00	奨 19a-C32-7	バリティ時間対称性を用いたスマートコンタクトレンズ 用電力伝送システム		1.早大IPS
11:15	奨 19a-C32-8	両面ナノチューブ膜を介した細胞間物質輸送システムの 開発	() (M2) 水口 侑衣子', チョウ ボーウェン', 小山 和 洋¹, リュウ ビンフー¹, チョウ ロンタウ¹, ウー ジョ ウジー¹, リン シュウシン¹, 三宅 丈雄¹	1.早大IPS
	算体 / Semico	nductors はプログラム冒頭にございます。		
		はプログラム自頭にこさいます。 『面・シミュレーション / Fundamental properties, surface	e and interface, and simulations of Si related materia	als
9/20(F	Fri.) 9:30 - 11:30 20a-P05-1	ポスター講演 (Poster Presentation) P会場(Room P) 貴金属触媒を用いた湿式 Si エッチングにおける電気化学	○吉平 蒼太 ¹	1.関西大シス理
	20a-P05-2	的評価 Si トレンチ構造底部からの光電子の検出とその特性	○(M1) 村瀬 詩花¹, 東 知樹¹, 稲垣 耕司¹, 有馬 健太¹	1 阪大陸工
	20a-P05-3	TMDC及びblack phosphorus における光誘起電気伝導の 理論解析		1.神戸大院工
		口頭講演 (Oral Presentation) C43会場 (Room C43)		
13:00	奨 20p-C43-1	酸化グラフェンアシスト Si 気相エッチングにおけるシート面内構造依存性	○後藤 雄太¹, 宇都宮 徹¹, 一井 崇¹	1. 京大院
13:15	20p-C43-2	ナノカーボンの触媒作用を援用した半導体表面の選択 エッチング	○山本聖也¹,李君寰¹,稲垣耕司¹,有馬健太¹	1. 阪大院工
		- エッチング液と接触する触媒/半導体界面での正孔注 入と拡散制御の試み-		
13:30	E 20p-C43-3	The influence of ${\rm Ar/N_2}$ gas flow ratio on the electrical characteristics of ferroelectric hafnium nitride formed by	○KANGBAI LI¹, Shun-ichiro Ohmi¹	1. Tokyo Tech.
13:45	20p-C43-4	ECR-plasma sputtering 電子線照射により生成した SiO ₂ /Si 界面欠陥分布の評価	○清水 崚央¹,早田 康成¹,蓮沼 隆¹	1.筑波大数理
4:00	奨 20p-C43-4 奨 20p-C43-5	電丁線照射により生成したSIO ₂ /SIが間欠間が中の評価 機械学習ポテンシャルMDを用いたa-Al ₂ O ₃ /GaN界面の 欠陥状態解析		1.名大工, 2.産総研
14:15	20p-C43-6	シリコン量子ドットを充填したイオン結晶粉末の作製	○大島 遼裕¹	1.法政大院理工
14:30 14:45	20p-C43-7	休憩/Break バターニングした Si(111) 基板上に成長した Pドーブ歪み		1. 東京都市大学, 2. 阪大基礎工 CSRN, 3. 阪大 OTRI
15:00	E 20p-C43-8	SiGe/Ge の電気伝導特性 Synthetic Image Generation of Microstructure Surfaces	道洋¹, 浜屋 宏平².³, 澤野 憲太郎¹ Zhen-Wei Tsai¹, ○ (M1) Chao-Ching Ho¹	1.Nat'l Taipei Uni. of Tech.
15:15	20p-C43-9	Using Physically Based Rendering Techniques 機械学習を用いた離散不純物によるMOSFET閾値電圧	○関 翔太 ^{1,2} , 長田 圭一 ¹ , 髙石 将輝 ¹ , 笠原 亮太郎 ^{1,2} ,	1.アイクリスタル, 2.名大院工, 3.名大未来研
15:30	20p-C43-10	ばらつきの統計的な解析 不規則な櫛歯型構造を設けたナノリボンにおける電界印	沓掛 健太朗 ^{2,3} , 宇治原 徹 ^{1,2,3} ○田中 一¹, 森 伸也¹	1. 阪大院工
15.45	掇 20n-C42-11	加による電流スイッチング 半導体ナノシートにおける電子移動度の結晶方位依存性	○岡田 大1 田中 一1 枩 伸巾1	1.大阪大学
15:45	奨 20p-C43-11	半導体ナノシートにおける電子移動度の結晶方位依存性 のモンテカルロシミュレーション	○両由 乂,田中一,森 伸也。	1. 八敗人子

9/16(N		物性 / Exploratory Materials, Physical Properties, Device ポスター講演 (Poster Presentation) P会場(Room P)		
/ 10(10	16p-P06-1	φ 50mm サイズ Mg ₂ Si 結晶の単結晶化機構の調査	○藤久 善司¹, 木村 侑生¹, 島野 航輔¹, 坂根 駿也¹, 劉 鑫², 宇佐美 徳隆², 鵜殿 治彦¹	1. 茨城大工, 2. 名古屋大工
	16p-P06-2	Mg ₂ Si薄膜の膜中酸素量に及ぼすスパッタリングおよび		1.明大理工
	16p-P06-3	アニール条件の影響 n型基板上に熱拡散で作製したMg ₂ Si-TPVセルの出力特	○清水匠¹,島野 航輔¹,坂根 駿也¹,鵜殿 治彦¹	1. 茨城大工
	16 DOC 4	性への基板キャリア濃度の影響	○ 乙川 打字 』 巫殿 書十 』	1 佐白上兴上兴吃
	16p-P06-4	p型Si(100) 基板上BaSi ₂ 膜のクラックの低減	〇石川 拓実 1, 西野 克志 1	1. 德島大学大学院
	16p-P06-5	真空蒸着法によるn型Si基板上BaSi2膜の厚膜化	○筒井 敬子¹, 西野 克志¹	1.徳島大学大学院
	16p-P06-6	日本産およびスペイン産FeS₂天然結晶を用いた低しきい 値SBDのI-V特性の比較	○安滕 陸', 伊尾 岳', 森田 廉', 滕尚 沣", 則田 就彦'	1. 果京上科大工, 2. 果大生研
/17/T	F \ 13.00 16.00	旧SBDのI-V 特性の比較 口頭講演 (Oral Presentation) B1会場(Room B1)		
:00	17p-B1-1	アルカリ土類金属ダイシリサイドの電子状態	○今井 基晴¹	1.NIMS
:15	E 17p-B1-1	Improvement of Carrier Concentration of As-doped BaSi ₂		1.Univ. of Tsukuba
.13	E 17p-D1-2	Grown by Molecular Beam Epitaxy	Toko ¹ , Takashi Suemasu ¹	1. Citiv. Of Tsukuba
:30	奨 17p-B1-3	スパッタ法によるBaSi ₂ /n ⁺ -Si~テロ接合型太陽電池の作		1. 筑波大学, 2. 東ソー株式会社
:45	17p-B1-4	BaSi ₂ 太陽電池への応用に向けたスパッタ法によるHTL の導入		1. 筑波大, 2. 東ソー
1:00	17p-B1-5	BaSi ₂ 太陽電池への応用に向けたHTL/BaSi ₂ 構造の作製		1. 筑波大学
.15		と評価		
4:15 4:30	17p-B1-6	休憩/Break 【注目講演】短波赤外イメージセンサに向けたMg ₂ Si-PD	소효 쓰근 1 문順 海 1 1 카프 디미 1 1 분위 黔ഥ 1 ○	1 茶城士陰
	·	リニアアレイの試作	鵜殿 治彦 ¹	
1:45	17p-B1-7	Mg _s Si-PDアレイの窒化シリコン絶縁膜の暗電流への影響		
5:00	17p-B1-8	メサ型 $β$ -FeSi ₂ pn ホモ接合素子の作製と電気特性評価		1.九工大情報工
5:15	17p-B1-9	Ge/ β -FeSi2 薄膜における PL, PR スペクトルの Ge 面内ひずみ量依存性	○長友 颯一朗¹, 石飛 新太郎¹, 寺井 慶和¹	1.九工大情報工
5:30	17p-B1-10	鉄シリサイドの狭帯域フィルターを用いた波長選択乾燥 に関する研究	○チョウ ケンイ¹, 名村 今日子¹, 鈴木 基史¹	1. 京大院工
5:45	奨 17p-B1-11	酸窒化物蛍光体の構造生成AIとナローバンド蛍光体への 応用	○阿部仁哉¹,高羽洋充²,宮川雅矢²	1. 工学院大院工, 2. 工学院大先進工
)/18(V	Wed.) 9:00 - 11:30	口頭講演 (Oral Presentation) A24会場 (Room A24)		
:00	18a-A24-1	$c-Al_2O_3$ 基板上エピタキシャル Mg_3Bi_2 薄膜の成長条件の探索	○(D)鮎川 瞭仁¹, 栗山 武流¹, 鵜殿 治彦¹, 坂根 駿 也¹	1. 茨城大工
15	奨 18a-A24-2	同時蒸着による Si(001) 基板上エピタキシャル Mg_3Sb_2 薄 膜の作製	○切通	1. 茨城大, 2. 日本電子
:30	奨 18a-A24-3	熱電応用に向けた $AgBa_2Si_3$ の成膜と第一原理計算によるドーパントの探索		1. 筑波大院, 2. 東ソー株式会社, 3. 関西大学
:45	E 18a-A24-4	Synthesis of Na-Cu-Ge ternary clathrates in film form	○ (D) Tun Naing Aye ¹ , Koji Yasuoka ¹ , Kumar Rahul ² , S. Himanshu Jha ¹ , Fumitaka Ohashi ¹ , Tetsuji Kume ¹	The state of the s
0:00	18a-A24-5	メカノケミカル効果を活用した近接蒸着法による $CaSi_2$ 薄膜の作製		1.山梨大クリスタル研
0:15		休憩/Break		
):30	18a-A24-6	InGaO3(ZnO)n 大型単結晶のアニール処理による電気伝		1. 東理大先進工
		導度の変化	村優介1,宮川宣明1	a started to the last of
):45	18a-A24-7	(InGaO ₃) _m (ZnO) _n 単結晶への Sn 置換効果	○小海 稜太郎¹, 井上 禎人¹, 漆間 由都¹, 加瀬 直樹¹,	1. 東理大先進工
			宮川宣明1	
1:00	奨 18a-A24-8	Mg ₂ Si単結晶成長に及ぼす坩堝形状の影響	○朝倉 康太¹,劉 鑫¹,鵜殿 治彦²,宇佐美 徳隆¹	1.名大院工, 2. 茨大院理工
:15	奨 18a-A24-9	不純物ドープした Mg ₂ Si 単結晶のラマン分光測定	○島野 航輔¹, 鵜殿 治彦¹, 坂根 駿也¹	1. 茨大院
	縁膜技術 / Insulato			
	招 19p-B1-1	口頭講演 (Oral Presentation) B1会場 (Room B1) 「第56回講演奨励賞受賞記念講演」	○榊間 大輝¹, 小川 京悟¹, 宮崎 桜子¹, 泉 聡志¹	1.東大工
3:00	10 13h-D1-1	深層学習型汎用原子間ポテンシャルによる炭素,窒素含 有シリコン酸化膜の弾性特性と原子ネットワーク構造の	○ 押目 八岸,小川 水石,杏祠 仅 」,水 验心	1.*/_
		探索		
	19p-B1-2 19p-B1-3	Si酸化における界面から酸化膜へのSi放出と欠陥準位 Si ウェーハ表面酸化モデル (i) α - Quartz - β	○影島 博之 ¹ , 秋山 亨 ² , 白石 賢二 ³ ○神山 栄治 ^{1,2} , 末岡 浩治 ²	1. 島根大, 2. 三重大, 3. 名古屋大 1. グローバルウェーハズ・ジャパン(株, 2. 岡山県立ス
:30		Si酸化における界面から酸化膜への Si 放出と欠陥準位 Si ウェーハ表面酸化モデル (i) α -Quartz - β -Cristobalite「混晶」モデル Si ウェーハ表面酸化モデル (ii) 格子間 Si 原子の 放出につ	○神山 栄治 ^{1.2} , 末岡 浩治 ²	
:30	19p-B1-3	Si酸化における界面から酸化膜への Si 放出と欠陥準位 Si ウェーハ表面酸化モデル (i) α -Quartz - β -Cristobalite「混晶」モデル Si ウェーハ表面酸化モデル (ii) 格子間 Si 原子の 放出について 電気容量解析を用いた SiO ₂ /Si 構造に対する電磁波照射	 ○神山 栄治 ^{1,2}, 末岡 浩治 ² ○神山 栄治 ^{1,2}, 末岡 浩治 ² ○加藤 寛大 ¹, 郷矢 崇浩 ¹, 涌羅 奨平 ¹, 占部 継一郎 ¹, 	 グローバルウェーハズ・ジャパン(株), 2. 岡山県立 グローバルウェーハズ・ジャバン(株), 2. 岡山県立
::30	19p-B1-3 19p-B1-4	Si酸化における界面から酸化膜への Si 放出と欠陥準位 Si ウェーハ表面酸化モデル (i) α -Quartz - β -Cristobalite「混晶」モデル Si ウェーハ表面酸化モデル (ii) 格子間 Si 原子の 放出について 電気容量解析を用いた SiO ₂ /Si 構造に対する電磁波照射 効果の検討 Higher-kに向けた HfO ₂ /ZrO ₂ /HfO ₂ 超格子 MOS 構造の	 ○神山 栄治 ^{1,2}, 末岡 浩治 ² ○神山 栄治 ^{1,2}, 末岡 浩治 ² ○加藤 寛大 ¹, 郷矢 崇浩 ¹, 涌羅 奨平 ¹, 占部 継一郎 ¹, 江利口 浩二 ¹ ○神岡 武文 ¹, 右田 真司 ¹, 松川 貴 ¹, 岡田 直也 ¹, 太田 	 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 1. 京大院工
:30 :45 :00 :15	19p-B1-3 19p-B1-4 奨 19p-B1-5	Si酸化における界面から酸化膜への Si 放出と欠陥準位 Si ウェーハ表面酸化モデル (i) α -Quartz - β -Cristobalite 「混晶」モデル Si ウェーハ表面酸化モデル (ii) 格子間 Si 原子の 放出について 電気容量解析を用いた SiO $_2$ /Si 構造に対する電磁波照射 効果の検討 Higher-kに向けた HfO $_2$ /ZrO $_2$ /HfO $_2$ 超格子 MOS 構造のアニール指針 分子動力学計算による HfO $_2$ /SiO $_2$ 界面ダイボール層の再	○神山 柴治 ^{1,2} , 末岡 浩治 ² ○神山 柴治 ^{1,2} , 末岡 浩治 ² ○加藤 寛大 ¹ , 郷矢 崇浩 ¹ , 涌羅 奨平 ¹ , 占部 継一郎 ¹ , 江利口 浩二 ¹ ○神岡 武文 ¹ , 右田 真司 ¹ , 松川 貴 ¹ , 岡田 直也 ¹ , 太田 裕之 ¹	 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 1. 京大院工
:30 :45 :00 :15 :30 :45	19p-B1-3 19p-B1-4 奨 19p-B1-5 19p-B1-6	Si酸化における界面から酸化膜への Si 放出と欠陥準位 Si ウェーハ表面酸化モデル (i) α -Quartz - β -Cristobalite 「混晶」モデル Si ウェーハ表面酸化モデル (ii) 格子間 Si 原子の 放出について 電気容量解析を用いた SiO $_2$ /Si 構造に対する電磁波照射 効果の検討 Higher-kに向けた HfO $_2$ /ZrO $_2$ /HfO $_2$ 超格子 MOS 構造のアニール指針 分子動力学計算による HfO $_2$ /SiO $_2$ 界面ダイボール層の再現 高誘電率材料 TiO2 を用いた MOS 構造に関する研究	○神山 柴治 ^{1,2} , 末岡 浩治 ² ○神山 柴治 ^{1,2} , 末岡 浩治 ² ○加藤 寛大 ¹ , 郷矢 崇浩 ¹ , 涌羅 奨平 ¹ , 占部 継一郎 ¹ , 江利口 浩二 ¹ ○神岡 武文 ¹ , 右田 真司 ¹ , 松川 貴 ¹ , 岡田 直也 ¹ , 太田 裕之 ¹	 グローバルウェーハズ・ジャパン(株), 2. 岡山県立 グローバルウェーハズ・ジャパン(株), 2. 岡山県立 京大院工 企総研
:30 :45 :00 :15 :30 :45 :00	19p-B1-3 19p-B1-4 獎 19p-B1-5 19p-B1-6 19p-B1-7 19p-B1-8	Si酸化における界面から酸化膜への Si 放出と欠陥準位 Si ウェーハ表面酸化モデル (i) α -Quartz - β -Cristobalite「混晶」モデル Si ウェーハ表面酸化モデル (ii) 格子間 Si 原子の 放出について 電気容量解析を用いた SiO₂/Si 構造に対する電磁波照射 効果の検討 Higher-kに向けた HfO₂/ZrO₂/HfO₂ 超格子 MOS 構造のアニール指針 分子動力学計算による HfO₂/SiO₂ 界面ダイボール層の再現 高誘電率材料 TiO2 を用いた MOS 構造に関する研究 休憩/Break	 ○神山 栄治 ^{1,2}, 末岡 浩治 ² ○神山 栄治 ^{1,2}, 末岡 浩治 ² ○加藤 寛大 ¹, 郷矢 崇浩 ¹, 涌羅 奨平 ¹, 占部 継一郎 ¹, 江利口 浩二 ¹ ○神岡 武文 ¹, 右田 真司 ¹, 松川 貴 ¹, 岡田 直也 ¹, 太田 裕之 ¹ ○(M2) 平井 健太郎 ¹, 内藤 真慈 ¹, 渡邉 孝信 ¹ ○内田 遥太 ¹, 岩崎 好孝 ¹, 上野 智雄 ¹ 	 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 京大院工 産総研 早大理工 農工大院工
:30 :45 :00 :15 :30 :45 :00 :15	19p-B1-3 19p-B1-4 獎 19p-B1-5 19p-B1-6 19p-B1-7	Si酸化における界面から酸化膜への Si 放出と欠陥準位 Si ウェーハ表面酸化モデル (i) α -Quartz - β -Cristobalite 「混晶」モデル Si ウェーハ表面酸化モデル (ii) 格子間 Si 原子の 放出について 電気容量解析を用いた SiO $_2$ /Si 構造に対する電磁波照射 効果の検討 Higher-kに向けた HfO $_2$ /ZrO $_2$ /HfO $_2$ 超格子 MOS 構造のアニール指針 分子動力学計算による HfO $_2$ /SiO $_2$ 界面ダイボール層の再現 高誘電率材料 TiO2 を用いた MOS 構造に関する研究	○神山 栄治 ^{1,2} , 末岡 浩治 ² ○神山 栄治 ^{1,2} , 末岡 浩治 ² ○加藤 寛大 ¹ , 郷矢 崇浩 ¹ , 涌羅 奨平 ¹ , 占部 維一郎 ¹ , 江利口 浩二 ¹ ○神岡 武文 ¹ , 右田 真司 ¹ , 松川 貴 ¹ , 岡田 直也 ¹ , 太田 裕之 ¹ ○(M2) 平井 健太郎 ¹ , 内藤 真慈 ¹ , 渡邉 孝信 ¹ ○内田 遥太 ¹ , 岩崎 好孝 ¹ , 上野 智雄 ¹ ○麻生 大聖 ¹ , 鍬釣 一 ¹ , 王 冬 ² , 山本 圭介 ²	 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 京大院工 産総研 早大理工
:30 :45 :00 :15 :30 :45 :00 :15	19p-B1-3 19p-B1-4 奨 19p-B1-5 19p-B1-6 19p-B1-7 19p-B1-8 奨 19p-B1-9	Si酸化における界面から酸化膜へのSi放出と欠陥準位Siウェーハ表面酸化モデル(i) α-Quartz-β-Cristobalite「混晶」モデルSiウェーハ表面酸化モデル(ii) 格子間 Si原子の放出について電気容量解析を用いた SiO₂/Si 構造に対する電磁波照射効果の検討Higher-kに向けた HfO₂/ZrO₂/HfO₂超格子 MOS 構造のアニール指針分子動力学計算による HfO₂/SiO₂界面ダイボール層の再現高誘電率材料 TiO2を用いた MOS 構造に関する研究体態/Break非加熱ALD 法を用いた Ge 上へのゲートスタック低温形成	○神山 栄治 ^{1,2} , 末岡 浩治 ² ○神山 栄治 ^{1,2} , 末岡 浩治 ² ○加藤 寛大 ¹ , 郷矢 崇浩 ¹ , 涌羅 奨平 ¹ , 占部 維一郎 ¹ , 江利口 浩二 ¹ ○神岡 武文 ¹ , 右田 真司 ¹ , 松川 貴 ¹ , 岡田 直也 ¹ , 太田 裕之 ¹ ○(M2) 平井 健太郎 ¹ , 内藤 真慈 ¹ , 渡邉 孝信 ¹ ○内田 遥太 ¹ , 岩崎 好孝 ¹ , 上野 智雄 ¹ ○麻生 大聖 ¹ , 鍬釣 一 ¹ , 王 冬 ² , 山本 圭介 ²	 グローバルウェーハズ・ジャパン(株), 2. 岡山県立 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 京大院工 産総研 早大理工 農工大院工 九大総理工学府, 2. 九大総理工研究院
1:15 1:30 1:45 1:00 1:15 1:30 1:45 1:45 1:45	19p-B1-3 19p-B1-4 奨 19p-B1-5 19p-B1-6 19p-B1-7 19p-B1-8 奨 19p-B1-9	Si酸化における界面から酸化膜への Si 放出と欠陥準位 Si ウェーハ表面酸化モデル (i) α - Quartz - β - Cristobalite「混晶」モデル Si ウェーハ表面酸化モデル (ii) 格子間 Si 原子の 放出について 電気容量解析を用いた SiO₂/Si 構造に対する電磁波照射 効果の検討 Higher-kに向けた HfO₂/ZrO₂/HfO₂超格子 MOS 構造のアニール指針 分子動力学計算による HfO₂/SiO₂ 界面ダイボール層の再 現 高誘電率材料TiO2を用いた MOS 構造に関する研究 休憩/Break 非加熱 ALD 法を用いた Ge 上へのゲートスタック低温形成 Ge 上ゲートスタックの低温(210°C)形成と界面ダイ	○神山 栄治 ^{1,2} , 末岡 浩治 ² ○神山 栄治 ^{1,2} , 末岡 浩治 ² ○加藤 寛大 ¹ , 郷矢 崇浩 ¹ , 涌羅 奨平 ¹ , 占部 維一郎 ¹ , 江利口 浩二 ¹ ○神岡 武文 ¹ , 右田 真司 ¹ , 松川 貴 ¹ , 岡田 直也 ¹ , 太田 裕之 ¹ ○(M2) 平井 健太郎 ¹ , 内藤 真慈 ¹ , 渡邉 孝信 ¹ ○内田 遥太 ¹ , 岩崎 好孝 ¹ , 上野 智雄 ¹ ○麻生 大聖 ¹ , 鍬釣 一 ¹ , 王 冬 ² , 山本 圭介 ²	 グローバルウェーハズ・ジャパン(株), 2. 岡山県立 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 京大院工 産総研 早大理工 農工大院工 九大総理工学府, 2. 九大総理工研究院
:30	19p-B1-3 19p-B1-4 獎 19p-B1-5 19p-B1-6 19p-B1-7 19p-B1-8 獎 19p-B1-9 奨 19p-B1-10	Si酸化における界面から酸化膜への Si 放出と欠陥準位 Si ウェーハ表面酸化モデル (i) α -Quartz - β -Cristobalite「混晶」モデル Si ウェーハ表面酸化モデル (ii) 格子間 Si 原子の 放出について 電気容量解析を用いた SiO₂/Si 構造に対する電磁波照射 効果の検討 Higher-kに向けた HfO₂/ZrO₂/HfO₂ 超格子 MOS 構造のアニール指針 分子動力学計算による HfO₂/SiO₂ 界面ダイボール層の再現 高誘電率材料 TiO2 を用いた MOS 構造に関する研究 休憩/Break Pran ALD 法を用いた Ge 上へのゲートスタック低温形成 Ge 上ゲートスタックの低温(210°C)形成と界面ダイボール解析	 ○神山 柴治¹²,末岡 浩治² ○神山 柴治¹²,末岡 浩治² ○加藤 寛大¹,郷矢 崇浩¹,涌羅 奨平¹,占部 継一郎¹,江利口 浩二¹ ○神岡 武文¹,右田 真司¹,松川 貴¹,岡田 直也¹,太田 裕之¹ ○(M2)平井 健太郎¹,内藤 真慈¹,渡邉 孝信¹ ○内田 遥太¹,岩崎 好孝¹,上野 智雄¹ ○麻生 大聖¹,鍬釣 一¹,王 冬²,山本 圭介² ○鍬釣 一¹,麻生 大聖¹,王 冬²,山本 圭介² ○原田 星輝¹,清水 玄¹,岩崎 好孝¹,上野 智雄¹ ○鈴木 拓光¹,石塚 啓太¹,岩崎 好孝¹,上野 智雄¹ ○鈴木 拓光¹,石塚 啓太¹,岩崎 好孝¹,上野 智雄¹ 	 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 京大院工 産総研 早大理工 農工大院工 九大総理工学府, 2. 九大総理工研究院 九大総理工学府, 2. 九大総理工研究院 農工大院工 農工大院工 農工大院工 農工大院工 農工大院工 農工大院工
:30 :45 :00 :15 :30 :45 :00 :45 :30	型 19p-B1-3 19p-B1-4 獎 19p-B1-5 19p-B1-6 19p-B1-7 19p-B1-8 獎 19p-B1-9 獎 19p-B1-10	Si酸化における界面から酸化膜への Si 放出と欠陥準位 Si ウェーハ表面酸化モデル (i) α -Quartz - β -Cristobalite「混晶」モデル Si ウェーハ表面酸化モデル (ii) 格子間 Si 原子の 放出について 電気容量解析を用いた SiO₂/Si 構造に対する電磁波照射 効果の検討 Higher-kに向けた HfO₂/ZrO₂/HfO₂ 超格子 MOS 構造のアニール指針 分子動力学計算による HfO₂/SiO₂ 界面ダイボール層の再現 高誘電率材料 TiO2 を用いた MOS 構造に関する研究 休憩/Break 非加熱 ALD 法を用いた Ge 上へのゲートスタック低温形成 Ge 上ゲートスタックの低温(210°C)形成と界面ダイボール解析 硫酸加水を用いた Ge 基板の低温酸化の検討	 ○神山 柴治 ^{1,2}, 末岡 浩治 ² ○神山 柴治 ^{1,2}, 末岡 浩治 ² ○加藤 寬大 ¹, 郷矢 崇浩 ¹, 涌羅 奨平 ¹, 占部 継一郎 ¹, 江利口 浩二 ¹ ○神岡 武文 ¹, 右田 真司 ¹, 松川 貴 ¹, 岡田 直也 ¹, 太田 裕之 ¹ ○(M2) 平井 健太郎 ¹, 内藤 真慈 ¹, 渡邉 孝信 ¹ ○内田 遥太 ¹, 岩崎 好孝 ¹, 上野 智雄 ¹ ○麻生 大聖 ¹, 鍬釣 一 ¹, 王 冬 ², 山本 圭介 ² ○鍬釣 一 ¹, 麻生 大聖 ¹, 王 冬 ², 山本 圭介 ² ○原田 星輝 ¹, 清水 玄 ¹, 岩崎 好孝 ¹, 上野 智雄 ¹ 	 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 京大院工 産総研 早大理工 農工大院工 九大総理工学府, 2. 九大総理工研究院 九大総理工学府, 2. 九大総理工研究院 農工大院工 農工大院工 農工大院工 農工大院工 農工大院工 農工大院工
:30 :45 :00 :15 :30 :45 :00 :15 :30 :45 :00 :15	型 19p-B1-3 19p-B1-4 獎 19p-B1-5 19p-B1-6 19p-B1-7 19p-B1-8 獎 19p-B1-9 獎 19p-B1-10 19p-B1-11 19p-B1-12	Si酸化における界面から酸化膜へのSi放出と欠陥準位Siウェーハ表面酸化モデル(i) α -Quartz - β -Cristobalite「混晶」モデルSiウェーハ表面酸化モデル(ii) 格子間 Si原子の 放出について電気容量解析を用いた SiO₂/Si構造に対する電磁波照射効果の検討Higher-kに向けた HfO₂/ZrO₂/HfO₂ 超格子 MOS 構造のアニール指針分子動力学計算による HfO₂/SiO₂ 界面ダイボール層の再現高誘電率材料 TiO2を用いた MOS 構造に関する研究休憩/Break非加熱 ALD 法を用いた Ge 上へのゲートスタック低温形成 Ge 上ゲートスタックの低温(210°C)形成と界面ダイボール解析 硫酸加水を用いた Ge 基板の低温酸化の検討 CVD 法を用いた GeO₂/Ge 構造の作製及び及び評価	○神山 柴治¹²,末岡 浩治² ○神山 柴治¹²,末岡 浩治² ○加藤 寛大¹,郷矢 崇浩¹,涌羅 奨平¹,占部 継一郎¹,江利口浩二¹ ○神岡武文¹,右田 真司¹,松川 貴¹,岡田 直也¹,太田 裕之¹ ○(M2)平井 健太郎¹,内藤 真慈¹,渡邉 孝信¹ ○内田 遥太¹,岩崎 好孝¹,上野 智雄¹ ○麻生 大聖¹,鍬釣 一¹,王 冬²,山本 圭介² ○鍬釣 一¹,麻生 大聖¹,王冬²,山本 圭介² ○原田 星輝¹,清水 玄¹,岩崎 好孝¹,上野 智雄¹ ○鈴木 拓光¹,石塚 啓太¹,岩崎 好孝¹,上野 智雄¹ ○清水 玄¹,土屋 雄太¹,原田 星輝¹,並木 美太郎¹,岩	 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 グローバルウェーハズ・ジャバン(株), 2. 岡山県立 京大院工 産総研 早大理工 農工大院工 九大総理工学府, 2. 九大総理工研究院 九大総理工学府, 2. 九大総理工研究院 農工大院工 農工大院工 農工大院工 農工大院工 農工大院工 農工大院工
6:30 6:45 6:00 6:15 6:30 6:45 6:00 6:15	19p-B1-3 19p-B1-4 奨 19p-B1-5 19p-B1-6 19p-B1-7 19p-B1-8 奨 19p-B1-9 奨 19p-B1-10 19p-B1-11 19p-B1-12 19p-B1-13	Si酸化における界面から酸化膜へのSi放出と欠陥準位Siウェーハ表面酸化モデル(i) α -Quartz - β -Cristobalite「混晶」モデルSiウェーハ表面酸化モデル(ii) 格子間 Si原子の 放出について電気容量解析を用いた SiO₂/Si構造に対する電磁波照射効果の検討Higher-kに向けた HfO₂/ZrO₂/HfO₂ 超格子 MOS 構造のアニール指針分子動力学計算による HfO₂/SiO₂ 界面ダイボール層の再現高誘電率材料TiO2を用いた MOS 構造に関する研究体憩/Break非加熱 ALD 法を用いた Ge 上へのゲートスタック低温形成Ge 上ゲートスタックの低温(210°C)形成と界面ダイボール解析硫酸加水を用いた Ge 基板の低温酸化の検討CVD 法を用いた GeO₂/Ge 構造の作製及び及び評価Ge 基盤の溶液酸化についての検証	○神山 柴治 ¹², 末岡 浩治² ○神山 柴治 ¹², 末岡 浩治² ○加藤 寛大¹, 郷矢 崇浩¹, 涌羅 奨平¹, 占部 継一郎¹, 江利口 浩二¹ ○神岡 武文¹, 右田 真司¹, 松川 貴¹, 岡田 直也¹, 太田 裕之¹ ○(M2) 平井 健太郎¹, 内藤 真慈¹, 渡邉 孝信¹ ○内田 遥太¹, 岩崎 好孝¹, 上野 智雄¹ ○麻生 大聖¹, 鍬釣 一¹, 王 冬², 山本 圭介² ○鍬釣 一¹, 麻生 大聖¹, 王 冬², 山本 圭介² ○原田 星輝¹, 清水 玄¹, 岩崎 好孝¹, 上野 智雄¹ ○清水 玄¹, 土屋 雄太¹, 房田 星輝¹, 並木 美太郎¹, 岩崎 好孝¹, 上野 智雄¹ ○活水 玄¹, 土屋 雄太¹, 房田 星輝¹, 並木 美太郎¹, 岩崎 好孝¹, 上野 智雄¹	 グローバルウェーハズ・ジャバン㈱, 2. 岡山県立 グローバルウェーハズ・ジャバン㈱, 2. 岡山県立 京大院工 産総研 早大理工 農工大院工 九大総理工学府, 2. 九大総理工研究院 九大総理工学府, 2. 九大総理工研究院 農工大院工

	(Fri.) 9:30 - 11:30 20a-P06-1	ポスター講演 (Poster Presentation) P会場(Room P) Al ₂ O ₃ /SnO _x /SiO ₂ 構造における界面ダイボール変調機構	○桐原 芳治¹, 三河 空斗¹, 三浦 宏太¹, 吉田 智貴¹, 伊	1.都市大, 2.高輝度光科学研究センター
	20a-P06-2	の解明 UV-Ozone 処理した SiO。上に ALD 法で作製した界面ダ	藤 俊一 1 ,保井 晃 2 ,石川 亮佑 1 ,野平 博司 1 〇三河 空斗 1 ,桐原 芳治 1 ,三浦 宏太 1 ,吉田 智貴 1 ,保	1.東京都市大学、2.高輝度光科学研究センター
	20a-P06-3	イポール変調構造の動作実証 ALD法を用いた Al ₂ O ₃ /GeO ₂ 膜に UV-Ozone 処理が与え	井 晃 2 , 石川 亮佑 1 , 野平 博司 1	
		る影響	平博司1	
	20a-P06-4 20a-P06-5	オゾン酸化による Al ₂ O ₃ /Ge MOS 界面についての研究 SiN _x 膜と SiO _x 膜中のイオン・分子の移動の障壁	○高橋 大輝¹, 青木 伸之¹, 柯 梦南¹ ○奥 友希¹, 戸塚 正裕¹, 佐々木 肇¹	1. 千葉大工 1. 三菱電機
	20a-P06-6	水分(H ₂ O)蒸気を添加したNH ₃ ガスによる低温酸化Si膜の構造と残留OH基量変化		1.北陸先端大
		13.3 絶縁膜技術、13.5 デバイス/配線/集積化技術のコー 口頭講演 (Oral Presentation) B3 会場 (Room B3)	- ドシェア / Code-sharing Session of 6.1 $\&$ 13.3 $\&$ 1	3.5
3:00	18p-B3-1	強誘電体ゲート FET を用いた物理リザバー計算における 分極状態と学習性能の関係	○請関優 ¹ , 山田 洋人 ¹ , 藤村 紀文 ¹ , 横松 得滋 ² , 前中一介 ² , Kasidit Toprasertpong ³ , 高木 信一 ³ , 吉村 武 ¹	1. 阪公大工, 2. 兵庫県大工, 3. 東大工
3:15	E 18p-B3-2	Imprint Behavior of Ferroelectric $Hf_{0.5}Zr_{0.5}O_2$ Thin Film: Impact of Wake-up	○ (D)Zhenhong Liu¹, Zuocheng Cai¹, Mitsuru Takenaka¹, Shinichi Takagi¹, Kasidit Toprasertpong¹	1.Univ. Tokyo
3:30	18p-B3-3		○伊藤 広恭 ¹ , 田原 建人 ¹ , 川野 真琴 ¹ , 竹中 充 ¹ , 高木 信一 ¹ , トープラサートポン カシディット ¹	1. 東大院工
3:45	18p-B3-4	$\mathrm{Hf_{05}Zr_{05}O_{2}MFM}$ キャパシタに対する最初の電界印加時における欠陥生成と強誘電性の相関	○森田 行則¹, 浅沼 周太郎¹, 太田 裕之¹, 右田 真司¹	1.産総研
4:00	18p-B3-5	強誘電性HfO₂キャパシタにおける極薄膜下での強誘電 性の消失	○鳥海 明¹, 右田 真司²	1. 自由業, 2. 産総研
4:15	18p-B3-6	強誘電性 HfO_2 の分極反転時間からみた分極反転機構の 考察	○鳥海 明¹, 右田 真司²	1. 自由業, 2. 産総研
4:30 4:45	奨 18p-B3-7	体憩/Break AIN 微粒子を均一に添加した多層 Hf ₀₅ Zr ₀₅ O,薄膜の強誘	○高野 貴裕¹, 山口 直¹, 大森 和幸¹, 村中 誠志¹	1.ルネサスエレクトロニクス株式会社
5:00	奨 E 18p-B3-8	電体特性の評価		1.Nagoya Univ., 2.Kyoto Univ., 3.Tokyo Tech, MDX
,,,,,,	∑⊓ roh-no₌o	Sr)MnO ₃ /SrTiO ₃ (100)	Daisuke Kan ² , Yuichi Shimakawa ² , Tomoaki Yamada ^{1,3}	AA Magoya Omir., 2-Ayoto Omir., 3. 10kyo 1ecii, MDA
5:15	奨 18p-B3-9	${ m CeO_2 ext{-}HfO_2 ext{-}ZrO_2}$ 薄膜の格子間隔と強誘電性の評価	 ○下野園 航平¹,前川 芳輝¹,茶谷 那知¹,岡本 一輝¹, 山岡 和希子²,川島 康²,井上 ゆか梨²,舟窪 浩¹ 	1. 東工大, 2.TDK株式会社
5:30	奨 18p-B3-10	フラッシュランプアニールによる Al:HfO₂薄膜の結晶化	〇三船 智哉 1 , 谷村 英昭 $^{1.2}$, 植野 雄守 2 , 藤沢 浩訓 1 , 中嶋 誠二 1 , 大坂 藍 1 , 加藤 慎一 2 , 三河 巧 2	1. 兵庫県大工, 2.SCREEN セミコンダクターソリューションズ
5:45	18p-B3-11	機械学習ポテンシャルを用いたHfO2結晶のモデリング の検討	○(D) 糸矢 祐喜 ¹ , 小林 正治 ^{1,2}	1. 東大生研, 2. 東大 d.lab
		アモルファスHfO₂における酸素の拡散 f膜・MEMS・装置技術 / Si processing /Si based thin film	○(M2)本図 優奈¹,仲村 龍介¹,鈴木 健之² n/MEMS/Equipment technology	1. 滋賀県大工, 2. 阪大産研
9/16(I :00	Mon.) 9:00 - 12:00 16a-B1-1	口頭講演 (Oral Presentation) B1 会場(Room B1) ミニマルファブの真空ローディング、真空搬送システム	○原 史朗 ^{1,2,3} 野田 周一 ¹ 前川 仁 ¹	1.産総研, 2. ミニマルファブ, 3.ハンドレッド
:15	16a-B1-2	ミニマルファブにおける連続作製デバイスのウェハ間ばらつきの解析		1. ミニマルファブ, 2. 産総研, 3. Hundred Semiconductors
:30	16a-B1-3	ミニマルファブ SOI-CMOS における NMOS 特性の制御		1. ミニマルファブ推進機構, 2. 産総研, 3.(株)Hundr Semiconductors
:45	16a-B1-4	ミニマル反応性スパッタ装置によるHfN _x 膜の形成	原 史朗 1.2.4	1.産総研, 2.ミニマルファブ, 3.誠南工業, 4.Hundre Semiconductors
0:00	16a-B1-5	ミニマルイオン注入装置のデバイスプロセスへの適用検討(II)	村 是尊³, 原 史朗 1.2.4	$\mathcal I$, 4.Hundred Semiconductors
0:15	16a-B1-6	ミニマル装置を用いた水素アニールによる柱状構造の表 面処理		1.坂口電熱株式会社, 2. ミニマルファブ推進機構, 3. 総研, 4. 東北大学
0:30 0:45	16a-B1-7	休憩/Break テーパー形状のTSVホールにおける水素アニール効果の	○田中 宏幸 ¹ 徳永 博司 ² 野沢 釜幸 ³ 連水 利素 ³ 佐	1 産絵研 2 MTC 3 SPP テクノロジーズ 4 版口雷動
1:00	16a-B1-8	研究 II ミニマルレーザ加熱装置よる水素雰囲気表面処理の半導	藤 和重 4.6, 田上 佳代 5, 原 史朗 1.6	5.熊本防錆, 6.ミニマルファブ
		体 CMOS デバイスへの応用検討	吾1.2,原 史朗1.3	
1:15	16a-B1-9	ミニマル液体ドーパント・プロセスに用いた攪拌装置の 効果	史朗 1.2.3	Semiconductors
1:30	16a-B1-10	スピンドロップレット洗浄における乾燥プロセス	〇根本 一正 1 , 谷島 孝 2 , 佐藤 和重 2 , 三浦 典子 1 , 原 史 朗 $^{1.2.3}$	1.産総研, 2. ミニマルファブ, 3.(株)Hundred Semiconductors
1:45	16a-B1-11	ミニマルウェハ製造におけるウェハ洗浄後の乾燥装置Ⅲ	〇谷島 $孝^1$, 藤田 龍哉 3 , 根本 一正 2 , 居村 史人 3 , 原 史 朗 1,2,3	1. ミニマルファブ, 2. 産総研, 3. ハンドレッドセミコ
/16(N 3:00	Mon.) 13:00 - 17:00 16p-B1-1	口頭講演 (Oral Presentation) B1会場 (Room B1) CWレーザー結晶化 (CLC) による (100) Grain-	○佐々木伸夫 ^{1,2} ,高山智之 ² ,浦岡行治 ²	1.Sasaki Consulting, 2.奈良先端大
3:15	16p-B1-2	Boundary Free Si 薄膜内の周期的な線状 Dimple 構造 ゲートラストプロセスによるガラス基板上のダブルゲート poly-Ge TFT の開発	\bigcirc (M2) 五嶋 大喜 1 , 栗原 義人 1 , 鈴木 翔 1 , 原 明人 1	1. 東北学院大院
3:30	16p-B1-3	ド poly-tue IFT の開発 ガラス基板上の4端子縦型 poly-Si 薄膜トランジスタの pH センサ応用	○鈴木 康聖¹, 田部井 哲夫², 原 明人¹	1. 東北学院大院, 2. 広島大 RISE
3:45	16p-B1-4	青色ダイレクトダイオードレーザを用いたCVD製膜a-Si 膜の結晶化	〇岡田 竜弥 1 , 野口 隆 1 , 菱田 光起 2 , 宮野 謙太郎 2 , 小畑 直彦 2 , 信岡 政樹 2	1. 琉大工, 2. パナソニックコネクト
	奨 E 16p-B1-5	Performance Improvement of n-channel TFT on Solid-Phase Crystallized poly-Ge by Channel Width Shrinking	Olinyu huang¹, atsuki morimoto¹, kota igura², takamitsu ishiyama², kaoru toko², dong wang¹, keisuke yamamoto¹	1.Kyushu Univ., 2.Univ. of Tsukuba
4:15	奨 16p-B1-6	_	〇森本 敦己¹, 黄 林昱¹, 居倉 功汰², 石山 隆光², 都甲	1. 九大院 総理工, 2. 筑波大院 数理物質
4:15 4:30	奨 16p-B1-6 奨 16p-B1-7	ガラス基板上多結晶 Ge 薄膜への CMOS インバータの形成 全スパッタ成膜により作製した μ CLS (001) Si 単結晶	○森本 敦己¹, 黄 林昱¹, 居倉 功汰², 石山 隆光², 都甲 薫², 王 冬¹, 山本 圭介¹ ○(M1) 野須 涼太¹, 葉 文昌¹	1. 九大院 総理工, 2. 筑波大院 数理物質 1. 島根大
4:15 4:30 4:45	<u> </u>	ガラス基板上多結晶 Ge 薄膜への CMOS インバータの形成 全スパッタ成膜により作製した μ CLS (001) Si 単結晶 MOSFET 300 mm GAAFET バイロットライン構築に向けた SiGe/	薫 ² , 王 冬 ¹ , 山本 圭介 ¹ ○(M1) 野須 涼太 ¹ , 葉 文昌 ¹ ○熊谷 直人 ¹ , 福島 章雄 ¹ , 陳 家聰 ¹ , 上嶋 和也 ¹ , 入沢	1. 島根大
4:00 4:15 4:30 4:45 5:00 5:15	奨 16p-B1-7	ガラス基板上多結晶 Ge 薄膜への CMOS インバータの形成 全スパッタ成膜により作製した μ CLS (001) Si 単結晶 MOSFET	薫 ² , 王 冬 ¹ , 山本 圭介 ¹ ○(M1) 野須 涼太 ¹ , 葉 文昌 ¹ ○熊谷 直人 ¹ , 福島 章雄 ¹ , 陳 家聰 ¹ , 上嶋 和也 ¹ , 入沢 寿史 ¹ , 林 善宏 ¹	1. 島根大 1. 産総研

特別						
150 15	16:00		16p-B1-11		○谷田 駿¹, 田岡 紀之², 牧原 克典¹	1.名大院工, 2.愛知工大
	6:15	奨	16p-B1-12			
1979 1979				凍結洗浄における基板面内温度均一化の効果	○中村 聡¹, 出村 健介¹, 山華 雅司¹, 服部 圭²	
19	0:40		10р-Б1-14		○心員 陵观,十开 郁心也 ,加附 子	1.ROKUSAI ELECTRIC, 2. 京郁人子
15 15 15 15 15 15 15 15	9/17(Tue.)	9:00 - 11:00	口頭講演 (Oral Presentation) B1会場 (Room B1)		
### 15-10-10 表現でApp1 #AMTMSTHART #*	:00		17a-B1-1	カンチレバー構造 a-InGaZnO TFT の応力依存性評価	○岩松 新之輔 ^{1,2} , 峯田 貴 ²	1.山形県工技セ,2.山形大学工学部
*** ***	:15		17a-B1-2	圧電薄膜共振子の開発		1.ローム(株)
19	:30	奨	17a-B1-3		山田 虎人¹, 町田 克之¹, 栗岡 智行¹, Tso-Fu Mark	1.東工大
17-8-15 17-8-15 17-8-15 17-8-15 17-8-16 17		奨	17a-B1-4	センサにおける錘の穴サイズがブラウニアンノイズ B_N に及ぼす影響	向出 千隼¹, 町田 克之¹, Chang Tso-Fu Mark¹, 栗岡	1.東工大
17			17a-B1-5	ミニマルファブを用いた3軸ピエゾ抵抗型加速度センサ		1. ミニマルファブ, 2. 産総研, 3. Hundred
17-81-7 公林県庁 テンジメ 製造されたしたCMP アキッス 「公教 製売 1、 長期 中の 1、 日本	0:30	Е	17a-B1-6	Visualization of strain distribution in MEMS resonators using stroboscopic differential interference contrast		1.Inst. of Eng., Tokyo Univ. of Agri. &Techno.
Pipe	0:45		17a-B1-7	立体構造トランジスタ製造に対応したCMPプロセス制		1. 産総研先端半導体 RC
Part	3/17(Tue.) 1	16:00 - 18:00	ポスター講演 (Poster Presentation) P会場(Room P)		
13-00-18-15 日東京			17p-P05-1	基板位置合わせのための簡易治具の開発および治具の位 置合わせ精度の評価	宏哉1	1. 豊田中研
1					ion technologies	
19-C3026 19-C302				[Fellow International 2024 Special Lecture]	○ Kaustav Banerjee¹	1.University of California
18p	3:45		16p-C302-2			1. 産総研, 2. 東北大
5.15	4:00		16p-C302-3		○加藤 芳規¹, 坂下 満男¹, 黒澤 昌志¹, 中塚 理¹.², 柴	1.名大院工, 2.名大未来研
5.15	4:15	招	16p-C302-4			1.奈良先端大, 2.産総研, 3.東大生研, 4.東大 d.lab
1845				トランジスタにおける信頼性劣化起源に関する考察		
# 場体トランジスタ 1.	4:30	奨 E	16p-C302-5	-	Takuya Saraya ¹ , Toshiro Hiramoto ¹ , Masaharu	1.IIS, The Univ. of Tokyo, 2.d.lab, The Univ. of Tokyo
Sola Sakai, Zhuo Li, Tumoko Mazuani, Takuya Sarnya, Toshino Himmoto, Takanabir, Musunori Uenuma, Yukiharu Uraoka, Masaharu Kobayashi	4:45	奨	16p-C302-6			1. 東大生産研, 2. 東大 d.lab
5-30 模 16p-C302-8 DFT計算による電子輸送物件データペースを用いた配線	5:00	Е	16p-C302-7	of Nanosheet Oxide Semiconductor FETs for Device Scaling in Monolithic 3D Integration	Kota Sakai ¹ , Zhuo Li ¹ , Tomoko Mizutani ¹ , Takuya Saraya ¹ , Toshiro Hiramoto ¹ , Takanori Takahashi ² , Mutsunori Uenuma ² , Yukiharu Uraoka ² , Masaharu	1.IIS, Univ. of Tokyo, 2.NAIST, 3.d.lab, Univ. of Toky
		挼	16n-C302-8		○岩渕 将巾¹ 小油 淳一¹	1 車业大
接籍			*	材料としての新たな金属間化合物の探索		
性 接				堆積		
早期非破壊検出 次	5:00		16p-C302-10			1.大阪公大工, 2.大阪市大工
16p-C302-13 不解発性:SRAM のパワーゲーティング・アーキテクチャ 加藤 豪人 「、○大木 治弥 「塩津 勇作 」 1.東工大・未来研 音原 聡	5:15		16p-C302-11			1. 阪大工, 2. スカイワークスフィルターソリューショズ
大学	5:30	奨	16p-C302-12			1.キオクシア 先端研
1. 東	5:45		16p-C302-13			1. 東工大・未来研
16p-C302-16 エネルギー最小点で動作するINT4推論NNアクセラレー ○塩津勇作¹,菅原 聡¹ 1.東工大・未来研 タ・マクロの設計 1.東工大・未来研 1.東京・日本・大・東海 1.東京・日本・大・東部 1.東京・日本・大・東部 1.東京・日本・大・東部 1.東京・日本・大・大・東部 1.東京・日本・大・大・大・東部 1.東京・日本・大・大・東京農工大・大・東部・「大・大・大・大・大・大・大・大・大・大・大・大・大・大・大・大・大・大・大				XNOR演算を有するエネルギー最小点動作・PIM型		
16p-C302-17 低電圧動作・リードボート付き10T-SRAMセルの設計と ○矢口 忠勝¹,塩津 勇作¹,菅原 聡¹ 1.東工大・未来研 性能 16p-C302-18 高安定エネルギー最小点動作が可能なULVR-SRAMセル ○伊藤 克俊¹,塩津 勇作¹,菅原 聡¹ 1.東工大・未来研 の設計 パスター講演 (Poster Presentation) P会場 (Room P) パスター講演 (Poster Presentation) P会場 (Room P) 17p-P06-1 GeSiSn/GeSnヘテロ構造を用いた p型HEMTの構造設計 ○(M1)鳥本 昇汰¹,坂下 満男¹,黒澤 昌志¹,中塚 理¹²,柴山 茂久¹ (中村 紀章¹,牧田 勇一¹,藤野 晶仁¹,小川 晃平¹,小 1.田中貴金属工業,2.東京農工大 身 輝明¹,村井 博¹,井上 謙一¹,同田 洋平²,白鳥 陽 紀²,神谷 秀博² (文藤 陸²,須田 順子²,前田 就彦¹ 1.東京工科大工 の室温以上における I-V 特性の温度依存性 ②ケ素 養臣²,竹中 充¹、○安藤 陸¹,須田 順子²,前田 就彦¹ 1.東京工科大工 2.産総研 史²。森貴洋²,竹中 充¹、○高木 信一¹ (医温下おける 200 nm SOI MOSFET の負基板バイアス依 李龍聖¹、森貴之¹,八田 浩輔¹,小林 亮介¹,岡 申 1.東大院・工,2.産総研 存性 東²、森貴注²,竹中 充¹、○高木 信一¹ (金温下 おける 200 nm SOI MOSFET の負基板バイアス依 李龍聖¹、森貴之¹、八田 浩輔¹,小林 亮介¹,岡 申 1.金工大、2.産総研 存性 東²、森貴注², 井田 次郎¹ 1.産北大、2.産総研 大き、森貴洋², 井田 次郎¹ 1.産北大、2.産総研 大き、森貴洋², 井田 次郎² 1.産総研,2.慶大物情	7:30		16p-C302-16	エネルギー最小点で動作する INT4 推論 NN アクセラレー	○塩津 勇作¹, 菅原 聡¹	1. 東工大・未来研
8:00 16p-C302-18 高安定エネルギー最小点動作が可能な ULVR-SRAM セル ○伊藤 克俊¹, 塩津 勇作¹, 菅原 聡¹ 1.東工大・未来研 の設計 3/17(Tue.) 16:00 - 18:00 ボスター講演 (Poster Presentation) P会場(Room P) 17p-P06-1 GeSiSn/GeSn ヘテロ構造を用いた p型HEMT の構造設計 ○(M1) 鳥本 昇汰¹, 坂下 満男¹, 黒澤 昌志¹, 中塚 理¹², 柴山 茂久¹ □中村 紀章¹, 牧田 勇一¹, 藤野 晶仁¹, 小川 晃平¹, 小 1.田中貴金属工業, 2.東京農工大 実 御明 !, 村井 博¹, 井上 謙一¹, 岡田 洋平², 白鳥 陽 紀², 神谷 秀博² ○安藤 陸¹, 須田 順子¹, 前田 就彦¹ 1.東京工科大工 ○室温以上における I-V 特性の温度依存性 9:00 - 12:30 □頭講演(Oral Presentation) A23 会場(Room A23) Si MOSFET の SS 値の極低温領域における温度依存性の定量的理解 定², 森貴洋², 竹中 充¹, ○高木 信一¹ セ², 森貴洋², 竹中 充¹, ○高木 信一¹ セ², 森貴洋², 八田 浩輔¹, 小林 亮介¹, 岡博 存性 佐温下おける 200 nm SOI MOSFET の負基板バイアス依 ○李龍聖¹, 森貴之¹, 八田 浩輔¹, 小林 亮介¹, 岡博 1.金工大, 2.産総研 左², 森貴洋², 井田 次郎¹ 1.金工大, 2.産総研 左², 森貴洋², 井田 次郎¹ 1.金工大, 2.産総研 左², 森貴洋², 井田 次郎¹ 1.金工大, 2.産総研 左², 森貴芦², 井田 次郎¹ 1.金工大, 2.産総研 左², 森貴芹², 井田 次郎¹ 1.金工大, 2.産総研 左², 森貴芹², 井田 次郎² 1.金工大, 2.産総研 左², 2.東芹², 井田 次郎² 1.金工大, 2.産総研 左², 2.東芹², 2	7:45		16p-C302-17	低電圧動作・リードポート付き 10T-SRAM セルの設計と	○矢口 忠勝¹,塩津 勇作¹,菅原 聡¹	1. 東工大・未来研
17p-P06-1 GeSiSn/GeSn ヘテロ構造を用いた p型 HEMT の構造設計 (M1) 鳥本 昇状 ', 坂下 満男 ', 黒澤 昌志', 中塚 理 ''2, 柴山 茂久 ' 17p-P06-2	8:00		16p-C302-18	高安定エネルギー最小点動作が可能なULVR-SRAMセル	○伊藤 克俊¹,塩津 勇作¹,菅原 聡¹	1.東工大・未来研
17p-P06-2 半導体高密度実装向けAu粒子焼結バンブの特性にAu粒	9/17(7					1.名大院工, 2.名大未来研
17p-P06-3 針接触および接合型Ge ショットキーバリアダイオード ○安藤 陸¹, 須田 順子¹, 前田 就彦¹ 1.東京工科大工 の室温以上におけるI-V特性の温度依存性 9/18(Wed.) 9:00 - 12:30 口頭講演 (Oral Presentation) A23会場(Room A23) 1.東京工科大工			17p-P06-2		〇中村 紀章¹, 牧田 勇一¹, 藤野 晶仁¹, 小川 晃平¹, 小 泉 輝明¹, 村井 博¹, 井上 謙一¹, 岡田 洋平², 白鳥 陽	1.田中貴金属工業, 2.東京農工大
18a-A23-1 Si MOSFET の SS 値の極低温領域における温度依存性の 変 敗秀¹, トープラサートボン カシディット¹, 岡博 1. 東大院・工, 2. 産総研 史², 森 貴洋², 竹中 充¹, ○高木 信一¹ (担当 下まける 200 nm SOI MOSFET の 真基板バイアス依 ○李 龍聖¹, 森 貴之¹, 八田 浩輔¹, 小林 亮介¹, 岡博 1. 金工大, 2. 産総研 存性 史², 森 貴洋², 井田 次郎¹ (20) 下方 駿佑¹², 岡博史¹, 加藤 公彦¹, 稲葉 エ¹, 1. 産総研, 2. 慶大物情			17p-P06-3			1. 東京工科大工
:15 18a-A23-2 低温下おける 200 nm SOI MOSFET の負基板バイアス依 〇李 龍聖¹, 森 貴之¹, 八田 浩輔¹, 小林 亮介¹, 岡 博 1. 金工大, 2. 産総研存性 史², 森 貴洋², 井田 次郎¹ :30 奨 18a-A23-3 極低温下でのホットキャリア注入に起因した巨大なしき ○(D)下方 駿佑¹², 岡 博史¹, 加藤 公彦¹, 稲葉 エ¹, 1. 産総研, 2. 慶大物情				口頭講演 (Oral Presentation) A23会場 (Room A23)		1.東大院・工, 2.産総研
存性 史², 森 貴洋², 井田 次郎¹):30 奨 18a-A23-3 極低温下でのホットキャリア注入に起因した巨大なしき ○(D)下方 駿佑¹², 岡 博史¹, 加藤 公彦¹, 稲葉 エ¹, 1.産総研, 2.慶大物情	9:15		18a-A23-2			1. 金工大. 2. 産総研
				存性	史², 森 貴洋², 井田 次郎¹	
	,	~				

9:45	18a-A23-4	トランジスタマトリックスアレイを用いた極低温における性性ばなっきトランダルテレグラフノイブの測定		1. 東大生研, 2. 産総研, 3. 東大 d.lab
10:00	E 18a-A23-5	る特性ばらつきとランダムテレグラフノイズの測定 Precise Extraction of Effective Mobility in Si nMOSFETs		1.The Univ. of Tokyo, 2.AIST
		at Cryogenic Temperatures Using Quasi-Static C-V Technique	Hiroshi Oka ² , Takahiro Mori ² , Kasidit Toprasertpong ¹ , Mitsuru Takenaka ¹ , Shinichi Takagi ¹	
10:15	E 18a-A23-6	Influence of Channel Resistance on Split C-V	○ (M2)Zhao Jin¹, Yutong Chen¹, Xueyang Han¹,	1.U. Tokyo, Eng., 2.AIST
		Characteristics in MOSFETs and the Correction Based on a Transmission Model for Accurate Evaluation of Effective		
		Mobility	Top. assispong , filteral a ranonam , omitten ranagi	
10:30 10:45	奨 18a-A23-7	休憩/Break シリコン 2 次元超格子 MOSトランジスタの提案と有効	○(M2) 杉本 裕人¹, 赤堀 海洋¹, 竹内 滉太¹, 戸澤 佑	1.静大院工, 2.静大電研
11:00	18a-A23-8	質量増大の観測 [110] 方向に応力がかかった Si 量子井戸における谷分離	亮 ¹ , 佐藤 弘明 ^{1,2} , 堀 匡寛 ^{1,2} , 小野 行徳 ^{1,2}	1.NTT物性研, 2. 島根大学
11.00	10a-A23-0	の第一原理計算		I.NI I 构任则, 4. 局似八寸
11:15	18a-A23-9	MOS界面の単一欠陥チャージボンビングによって可能となった両性準位における電子捕獲素過程の直接観測 (12)	○土屋 敏章¹, 堀 匡寛¹, 小野 行徳¹	1. 静大電研
44.00	40, 400, 40	- 欠陥構造緩和 (Ⅲ)-		a th I story
11:30	18a-A23-10	MOS界面の単一欠陥チャージポンピングによって可能となった両性準位における電子捕獲素過程の直接観測 (13)	〇土屋 敏章,堀 匡竟,小野 行德。	1. 静大電研
11:45	18a-A23-11	- 準位深さの影響 - 等電子トラップ TFET に内在する二重量子ドットの大規	○千見 甬介 ¹ 紙葉 T ¹ 八太下 淳中 ¹ 加藤 直 ¹ 石川	1 産終研
11.45	104-1125-11	模特性評価	智弘1, 岡博史1, 加藤公彦1, 浅井栄大1, 小倉実1, 中	1. 经净证明
12:00	奨 18a-A23-12	P型Si二重量子ドットにおける磁場に依存した量子キャ	山 隆史¹, 飯塚 将太¹, 森 貴洋¹ ○(M1)和田 陸久¹, 溝口 来成¹, 近藤 知宏¹, 土屋 龍	1. 東工大 . 2. 日立研開
12.00	X 100 1120 12	パシタンスの評価	太², 峰 利之², 久本 大², 水野 弘之², 米田 淳¹, 小寺 哲	
12:15	18a-A23-13	シリコンPN 単電荷ポンプによる電子正孔比較	夫¹ ○山端 元音¹, 藤原 聡¹	1.NTT物性研
		13.3 絶縁膜技術、13.5 デバイス/配線/集積化技術のコーロ頭講演 (Oral Presentation) B3会場 (Room B3)		3.5
13:00	18p-B3-1	強誘電体ゲートFETを用いた物理リザバー計算における		1. 阪公大工, 2. 兵庫県大工, 3. 東大工
13:15	E 18p-B3-2	分極状態と学習性能の関係 Imprint Behavior of Ferroelectric Hf _{0.5} Zr _{0.5} O ₂ Thin Film:	一介², Kasidit Toprasertpong³, 高木 信一³, 吉村 武¹ ○ (D)Zhenhong Liu¹, Zuocheng Cai¹, Mitsuru	1.Univ. Tokyo
		Impact of Wake-up	Takenaka ¹ , Shinichi Takagi ¹ , Kasidit Toprasertpong ¹	•
13:30	18p-B3-3	HZO強誘電体キャバシタにおける wake-up 特性の周波 数・温度依存性と物理機構の考察	○伊藤 広恭 1 , 田原 建人 1 , 川野 真琴 1 , 竹中 充 1 , 高木 信一 1 , トープラサートポン カシディット 1	1. 果天阮丄
13:45	18p-B3-4	$Hf_{0.5}Zr_{0.5}O_2MFM$ キャパシタに対する最初の電界印加時における欠陥生成と強誘電性の相関	〇森田 行則¹, 浅沼 周太郎¹, 太田 裕之¹, 右田 真司¹	1. 産総研
14:00	18p-B3-5	強誘電性 HfO_2 キャパシタにおける極薄膜下での強誘電	○鳥海 明¹, 右田 真司²	1.自由業, 2.産総研
14:15	18p-B3-6	性の消失 強誘電性HfO2の分極反転時間からみた分極反転機構の	○鳥海 明 ¹ , 右田 真司 ²	1. 自由業, 2. 産総研
	r	考察		
14:30 14:45	奨 18p-B3-7	休憩/Break AlN微粒子を均一に添加した多層 $Hf_{0.5}Zr_{0.5}O_2$ 薄膜の強誘	○高野 貴裕¹, 山口 直¹, 大森 和幸¹, 村中 誠志¹	1.ルネサスエレクトロニクス株式会社
15:00	奨 E 18p-B3-8	電体特性の評価 Electro-optic properties of Hf _{0.5} Zr _{0.5} O ₂ thin films on (La,	○ (D)Afeefa Dastgir¹, Yuan Xueyou¹, Yufan Shen²,	1.Nagoya Univ., 2.Kyoto Univ., 3.Tokyo Tech, MDX
10.00	X L Top Do o	Sr)MnO ₃ /SrTiO ₃ (100)	Daisuke Kan², Yuichi Shimakawa², Tomoaki	inagoja omv., zikyoto omv., o. tokyo recii, nizir
15:15	奨 18p-B3-9	CeO₂-HfO₂-ZrO₂薄膜の格子間隔と強誘電性の評価	Yamada ^{1,3} ○下野園 航平 ¹ , 前川 芳輝 ¹ , 茶谷 那知 ¹ , 岡本 一輝 ¹ ,	1.東工大, 2.TDK株式会社
15:30	短 18n-B3-10	フラッシュランプアニールによるAl:HfO₂薄膜の結晶化	山岡和希子 ² ,川島康 ² ,井上ゆか梨 ² ,舟窪浩 ¹ ○三船智哉 ¹ 公村 革昭 ^{1,2} 植野 雄守 ² 藤沢 浩訓 ¹	1 丘庫県大丁 2 SCRFFN セミコンダクターソリュー
			中嶋 誠二¹, 大坂 藍¹, 加藤 慎一², 三河 巧²	ションズ
15:45	18p-B3-11	機械学習ポテンシャルを用いた HfO2 結晶のモデリング の検討	○(D) 糸矢 祐喜', 小林 正治'-'	1. 東大生研, 2. 東大 d.lab
16:00	18p-B3-12	アモルファスHfO₂における酸素の拡散 ナノ量子デバイス / Nanostructures, quantum phenomer	○(M2)本図優奈¹,仲村龍介¹,鈴木健之²	1.滋賀県大工, 2.阪大産研
		口頭講演 (Oral Presentation) B2会場 (Room B2)		
13:00	16p-B2-1	超短光パルスペア励起下におけるプラズモンからのテラ ヘルツ波放射	○長谷川 尊之¹, 小島 磨²	1.大阪工大工, 2.千葉工大工
13:15	16p-B2-2	多重積層 InAs/GaAs 量子ドットを用いた光伝導アンテナ		
13:30	16p-B2-3	の様々な励起光波長における光電流の励起光強度依存性 GaAs/AlAs多重量子井戸におけるポンプ - プローブ信号		専,5.神戸大院工,6.神戸大 1.千葉工大工
13:45	奨 16p-B2-4	に対するレーザースペクトルフィルタリングの効果 AlAs/GaAs超格子中の電流-電圧特性と散乱時間の温度	○前田 凪¹ 朱 翔字¹ ベスコン マーカ² 長土 斉綾	1. 東大生研・ナノ量子機構, 2. マルセイユ大 IN2MP
		依存特性	美1, 黒山 和幸1, 平川 一彦1	
14:00	E 16p-B2-5	Lattice temperature dependence of electron cooling in semiconductor double barrier heterostructures	OXiangyu Zhu ¹ , Alec Cochard ^{1, 4} , Gueric Etesse ² , Marc Bescond ^{1, 2} , Gerald Bescond ³ , Naomi Nagai ¹ ,	1.IIS/LIMMS, UTokyo, 2.IM2NP-CNRS, AMU, 3.Ecole Normale Superieure, 4.ESPCI Paris
14.15			Kazuhiko Hirakawa ¹	•
14:15 14:30	16p-B2-6	休憩/Break 【注目講演】GaNAs量子井戸とトンネル結合したInAs量	○坂野 駿介¹, 樋浦 諭志¹, 高山 純一¹, 村山 明宏¹	1.北大院情報科学
14:45	16p-B2-7	子ドットにおける発光円偏光度の磁場による振動特性 InP/InAs 単一ナノワイヤ発光の光励起条件と熱影響	○田原 光¹, 松本 拓海¹, 章 国強², 俵 毅彦¹	1. 日本大学, 2.NTT 物性研
15:00	奨 16p-B2-8	歪印加デバイスを用いたQD発光エネルギー制御	○田端 孝成¹, 鍜治 怜奈¹, 小田島 聡¹, 足立 智¹	1.北大院工
15:15	奨 16p-B2-9	ホットN ⁺ イオン注入法による Si 量子ドットの発光強度 向上効果	○米津 和正¹, 水野 智久¹	1.神奈川大学理
15:30	奨 16p-B2-10	熱酸化膜中への Ge ホットイオン注入による GeO $_2$ 量子	○(M2)坂 颯人¹, 水野 智久¹	1. 神奈川大学理
15:45	16p-B2-11	ドットの形成 反応促進溶媒を添加した有機溶媒中での多孔質 Si の低温	○ (M2) 小西 智貴¹, 中村 俊博¹, 越田 信義²	1.法政大院理工, 2.農工大院共生
	·	加熱破砕による無極性溶媒分散性マルチカラーSi量子		
16:00		ドットコロイドの作製 休憩/Break		
16:15	16p-B2-12	単一ペロブスカイト量子ドットに対する電気伝導特性評 価	○高橋 央輔¹, 大塚 朋廣 ^{2,3} , 柴田 憲治¹	1. 東北工大, 2. 東北大通研, 3. 理研 CEMS
16:30	16p-B2-13	単一PbS量子ドットトランジスタへの電気二重層ゲート	○滝口智稀¹,高橋央輔¹,大塚朋廣².³,柴田憲治¹	1. 東北工大, 2. 東大通研, 3. 理研 CEMS
	₩ 16 DO 14	の適用 SOL FinCoAc ナノワイヤ総刑ゲートオールアラウンドト	○谷山 慶太¹,竹田 有輝¹,東 佑樹¹,鄭 子ヨウ¹,本久	1 北海道士
16:45	奨 16p-B2-14	SOI工 III dans / / / / / NN主/ 「 / / / / / / / / 「 I		1.10时起入

17:00		16p-B2-15	単電子回路によるプリム法表現のための信号伝搬速度制 御を用いた重み表現回路	○石井 峻平¹, 大矢 剛嗣¹.²	1. 横国大院理工, 2. 横国大 IMS
			イス・プロセス技術・評価 / Compound and power devic	es, process technology and characterization	
9/16(N 9:15		9:15 - 11:30 16a-A22-1	口頭講演 (Oral Presentation) A22 会場(Room A22) 集積化に向けた GaN on-diamond HEMT チャネル周辺の 表面温度評価	〇富山 葉月 1 ,浦谷 泰基 2 ,坂井田 佳紀 2 ,西林 良樹 3 ,竹内 茉莉花 3 , 重川 直輝 1 ,梁 剣波 1	1.大阪公大工, 2.エア・ウォーター, 3.住友電工
9:30	奨	16a-A22-2	ダイヤモンド上 GaN HEMT の作製と特性の評価	○ (M1)砂本 陽成 1 , 大野 裕 2 , 井上 耕治 2 , 永井 康介 2 , 重川 直輝 1 , 梁 剣波 1	1.大阪公大工, 2.東北大金研
9:45	奨	16a-A22-3	マルチフィンガー構造を有するダイヤモンド増幅器	$□$ (D)久樂 顕 1,2 ,小松崎 優治 1 ,山口 裕太郎 1 ,新庄 真太郎 1 ,荒井 雅 $^{-2}$,川原田 洋 2	1. 三菱電機, 2. 早稲田大学
10:00	Е	16a-A22-4	Fabrication of High Off-State Voltage (4266 V) Diamond MOSFETs		1.Saga Univ.
10:15	奨	16a-A22-5		○白土 智基¹, サハニロイチャンドラ¹, 大石 敏之¹, 嘉数 誠¹	1. 佐賀大院理工
10:30	奨 E	16a-A22-6	Deep-level transient spectroscopy analysis of trap states in β -(Al _x Ga1-x) ₂ O ₃ /Ga ₂ O ₃ modulation-doped field-effect transistors	○ Yun Jia¹, Fenfen Fenda Florena¹, Ryo Morita¹, Aboulaye Traore¹, Hironori Okumura¹, Takeaki Sakurai¹	1.Univ. of Tsukuba
10:45		16a-A22-7		〇佐々木 太郎 1 , 堤 卓也 2 , 杉山 弘樹 1 , 吉屋 佑樹 1 , 星 拓也 1 , 中島 史人 1	1.NTT 先デ研, 2.大阪公立大
11:00 11:15		16a-A22-8 16a-A22-9	半導体レーザのしきい値電流変動のメカニズム InP/InAlAs 複合コレクタを適用した高耐圧InP系DHBT のエビタキシャル成長	○上辻 哲也¹, 奥 友希¹, 丹羽 顕嗣¹, 中村 直幹¹	1.三菱電機株式会社 1.NTT 先端集積デバイス研
9/18(W	/ed.)	9:30 - 11:30	ポスター講演 (Poster Presentation) P会場(Room P)		
		18a-P06-1	量子補正モンテカルロシミュレーションによるダブル ドープ構造 GaInSb HEMT 特性解析	○上田 晟生¹, 戸邉 康太¹, 児玉 直也¹, 塩澤 祐介¹, 遠藤 聡¹, 藤代 博記¹	1. 東理大先進工
		18a-P06-2	電流狭窄層およびδドープ導電性緩衝層に歪超格子層を 用いた Si 基板上 AlGaN/GaN CAVET のデバイス特性		1. 名工大
		18a-P06-3	GaN系npn型HBTのベース層適用に向けたp型MQW構造の検討	〇井上 諒星 1 , 小嶋 智輝 1 , 間瀬 晃 1 , 江川 孝志 1 , 三好 実人 1	1.名工大
		18a-P06-4	Face-to-Face 高温高圧アニールによる均一性の向上 ~Au/Ni/n-GaNショットキー接触を用いた界面顕微光応 答法による二次元評価~	○今林 弘毅¹, 松本 泰步¹, 塩島 謙次¹, 加地 徹²	1. 福井大院工, 2. 名大未来研
		18a-P06-5	単結晶窒化ガリウム中のシリコンの拡散	\bigcirc (M1) 三村 啓人 1 , 仲村 龍介 1 , 鈴木 健之 2 , 上岡 義 弘 3 , 召田 雅実 3	1. 滋賀県大工, 2. 阪大産研, 3. 東ソー (株)
		18a-P06-6	Mg添加AIN層上のNi電極の高温熱処理による接触抵抗 低減		1. 筑波大数理, 2. 物材研
		18a-P06-7	Mg イオン注入後 2 段階アニールを行った GaN 中の伝導帯付近禁制帯内準位の MOS 構造を用いた評価 (2)	○羅 宇瀏¹, 畠山 優希¹, 赤澤 正道¹	1.北大量集センター
		18a-P06-8	Mgイオン打ち込みした GaN に対する850℃アニールの表面およびバルク欠陥への影響についての MOS 構造を用いた評価(3)	○新藤 源大¹, 畠山 優希¹, 赤澤 正道¹	1.北大量集センター
		18a-P06-9	XPS評価	○高橋 尚伸¹, 焦 一寧¹, 赤澤 正道¹	1.北大量集センター
		18a-P06-10	SiO ₂ /GaN 界面酸化ガリウム層の熱処理による構造変化	○厚見 遼也¹, 上沼 睦典², 富田 広人¹, 山田 翔梧¹, 山田 侑矢¹, 吉田 桃子¹, 孫 澤旭¹, 橋本 由介¹, 松下 智 裕¹, 藤井 茉美³, 浦岡 行治¹	1. 奈良先端大, 2. 産総研, 3. 近畿大
		18a-P06-11	基底状態原子支援化学気相堆積法によるシリコン系絶縁 膜を用いた AlGaN/GaN MOS構造の検討	〇赤松 龍弥¹, 鹿田 颯吾¹, 古川 雅一², 若原 昭浩¹, 岡 田浩¹	1.豊橋技科大, 2.アリエースリサーチ有限会社
		18a-P06-12	N極性面 GaN のウェットエッチングに対する希釈溶媒の 影響	○樋口 裕之介¹, 小野 諒子¹, 新海 聡子¹	1.九工大大学院情工
			ミスト CVD 法による GaN MIS デバイス向け混晶ゲート 絶縁膜の作製		1.熊本大
			ウェットエッチングによる酸化ガリウムのステップ形成 β -Ga ₂ O ₃ 単結晶基板に存在する欠陥準位の高温度アニー		1. 九工大 1. 中部大工, 2. ノベルクリスタルテクノロジー
		18a-P06-16	ル挙動の評価 n型SiCエピタキシャル層上へイオン注入で作製した	○金子 光顕¹, 柴田 峻弥¹, 松岡 大雅¹, 木本 恒暢¹	1. 京大院工
	Е	18a-P06-17	JFET の 600°C動作 High-Temperature Reliability of Ni/Ti/Nb Ohmic Contact	○ (D)Ha Thi Vu¹, Vuong Van Cuong¹, Shin-Ichiro Kuroki¹	1.RISE,Hiroshima Univ.
		18a-P06-18	on p-type 4H-SiC p チャネル 4H-SiC MOSFET の界面欠陥の電流検出 ESR 分光	〇島袋 聞多 ¹, 堀内 颯介 ¹, 曽 弘字 ¹, 染谷 満 ², 平井 悠 久 ², 渡部 平司 ³, 西谷 侑捋 ⁴, 松下 雄一郎 ⁴, 梅田 享	1. 筑波大, 2. 産総研, 3. 阪大, 4.Quemix (株)
- //-			Pチャネル4H-SiC MOSFETs でのスピン依存チャージポンピング分光	英¹ ○ (M2) 堀内 颯介¹, 福永 博生¹, 島袋 聞多¹, 矢野 裕司¹, 染谷 満², 平井 悠久², 渡部 平司³, 梅田 享英¹	1. 筑波大, 2. 産総研, 3. 阪大
9/19(T 9:00			口頭講演 (Oral Presentation) C41 会場 (Room C41) Si基板上炭素ドープ GaN ショットキーバリアダイオード		1.名大院工, 2.名大未来研, 3.東芝
9:15		19a-C41-2	の電流輸送機構の検討 界面顕微光応答法による JSB 構造の二次元評価	原 瑛祐³, 布上 真也³, 堀田 昌宏¹², 須田 淳¹² 〇今林 弘毅¹, 吉村 遥翔¹, 太田 博², 三島 友義², 塩島 謙次¹	1.福井大院工, 2.法政大
9:30 9:45		19a-C41-3 19a-C41-4	極性c面及び非極性m面GaN上MIS界面特性における	佐野 春樹¹, 伊東 幸風¹, 吉田 樹¹, \bigcirc 宮本 恭幸¹ \bigcirc 吉嗣 晃治¹, 山田 高寬¹, 滝口 雄貴¹, 友久 伸吾¹, 長	1.東工大 1.三菱電機(株)先端総研,2.東工大
0:00		19a-C41-5	GaNドライエッチング加工の影響 イオン注入により形成されるドナー型欠陥の起源解明に 向けた低ドーズ Alイオン注入 GaN の実効ドナー密度の パストの影響		1. 豊田中央研究所, 2. 名古屋大学
0:15	奨	19a-C41-6	深さ方向分布の評価 正孔捕獲を抑制した高Mg濃度p型GaN MOS構造の熱安 安性	○阪上優一¹,小林拓真¹,富ケ原一樹¹,野崎幹人¹,渡部平司¹	1.阪大院工
0:30		19a-C41-7	定性 SiO ₂ 堆積後熱処理によるp型GaN MOS界面正孔トラップ生成		1. 阪大院工
0:45		19a-C41-8	PECVD-SiO₂の成膜温度がp型GaN MOS界面正孔ト	部 平司' ○原 征大¹, 小林 拓真¹, 溝端 秀聡¹, 野崎 幹人¹, 渡部 平司¹	1.阪大院工
11:00		19a-C41-9	ラップに与える影響 30 W/mm超 X帯 InAlGaN-HEMT		1.富士通
		19a-C41-10	EID AlGaN/GaN MOS-HEMT における電極形成後ア	一', 多不 俊俗', 佐滕 慢', 中村 哲一' ○南條 拓真¹, 古橋 壮之¹, 綿引 達郎¹, 大石 敏之², 江	1. 三菱電機株式会社, 2. 佐賀大, 3. 名工大
11:15			ニールの影響	川 孝志3	

9/19(T	hu) 13:00 - 19:30	口頭講演 (Oral Presentation) C41会場 (Room C41)		
13:00	19p-C41-1	SiおよびWにおける低速イオンに対する電子阻止断面積 の乙,振動を再現する El-Hoshy – Gibbons モデルの改良 と 4H-SiC への適用	○望月 和浩¹, 西村 智朗¹, 三島 友義¹	1.法政大
13:15 13:30	19p-C41-2 19p-C41-3	ヘリウムイオン注入によるSiC 積層欠陥拡張抑制 水素・ヘリウムイオン注入SiC ダイオードにおける点欠 陥深さ方向分布	 ○加藤 正史¹, Li Tong¹, 原田 俊太², 坂根 仁³ ○加藤 正史¹, Li Tong¹, 原田 俊太², 坂根 仁³ 	1.名工大, 2.名大, 3.住重アテックス 1.名工大, 2.名大, 3.住重アテックス
13:45	19p-C41-4	Observation of Baking Temperature Influence on Interfacial Thermal Resistance at Polymer/SiC Interface Using Optical-Interference Contactless Thermometry (OICT)	○Yu Jiawen¹, 花房 宏明¹, 東 清一郎¹	1.広島大学
14:00	19p-C41-5	高温下におけるシリコンキャップアニールコンタクトの 長期安定性評価	○福澤 尊仁¹, 花房 宏明¹, 東 清一郎¹	1. 広大先進理工
14:15 14:30	19p-C41-6 奨 19p-C41-7	金属/SiCコンタクトの加熱その場TEM観察 600°C熱処理によるp型SiC上の低抵抗Ptオーム性電極	 ○林 将平¹, 先崎 純寿² ○桑原 功太朗¹, 金子 光顕¹, 木本 恒暢¹ 	1.東レリサーチセンター, 2.産総研 1.京大院工
14:45	奨 19p-C41-8	の形成 SiC(0001)表面モフォロジーに対する酸化及び水素エッ	○神畠 真治¹, 小林 拓真¹, 渡部 平司¹	1. 阪大院工
15:00 15:15	奨 19p-C41-9	チングの影響 休憩/Break 広温度範囲に亘る SiO ₂ /SiC 界面発光中心の形成過程の調	○(B)兼子 悠 ¹ , 中沼 貴澄 ¹ , 遠山 晴子 ² , 田原 康佐 ² ,	1. 阪大工・院工, 2. 豊田中研
15:30	奨 19p-C41-10	査 SiO ₂ /SiC界面発光中心の発光強度の酸化温度・酸素分圧		1. 阪大院工, 2. 豊田中研
5:45	奨 19p-C41-11	依存性 SiO ₂ /SiC界面発光中心の密度に対する熱処理雰囲気及び 時間の影響	朽木 克博², 渡部 平司¹, 小林 拓真¹ ○中沼 貴澄¹, 田原 康佐², 遠山 晴子², 朽木 克博², 渡 部 平司¹, 小林 拓真¹	1. 阪大院工, 2. 豊田中研
6:00	奨 19p-C41-12	第一原理計算を用いた4H-SiC中不純物 - 空孔ペアに関する包括的調査		1. 阪大院工
16:15	奨 19p-C41-13	電子線照射がSiCおよびSi MOSFETのチャネル特性に及ぼす影響	\bigcirc (M2) 松木 康太郎 ¹ , 市川 義人 ² , 小野澤 勇一 ² , 岩 室 憲幸 ¹ , 矢野 裕司 ¹	1. 筑波大, 2. 富士電機
16:30 16:45		4H-SiC MOS 反転層における電子状態の界面構造依存性 SiC MOSFET における量子閉じ込め効果と界面準位のエ		1. 阪大院工 1. 京大院工
17:00	奨 19p-C41-16	ネルギー分布に関する考察 SiC p チャネル MOSFET のしきい値電圧と移動度に与え るカウンタードープの効果	〇伊東 遼馬 1 ,井上 瑛 1 ,三上 杏太 1 ,金子 光顕 1 ,木本 恒暢 1	1. 京大院工
17:15 17:30	19p-C41-17	休憩/Break SiC MOS 構造中に生成されるボディ層濃度に依存した固	○三上 杏太¹, 金子 光顕¹, 木本 恒暢¹	1.京大院工
7:45	19p-C41-18	定電荷 第一原理計算によるNOアニール後のSiC/SiO₂界面の電 子状態解析	○(M1)杉山 耕生¹, 舩木 七星斗¹, 植本 光治¹, 小野 倫也¹	1.神戸大工
8:00	奨 19p-C41-19	NO窒化SiC(0-33-8) MOS構造の界面特性及び信頼性評価		1. 阪大院工, 2. 産総研
8:15	•	SiC表面のプラズマ窒化と絶縁膜堆積により形成した SiO ₂ /SiC 構造に対する後熱処理の効果	○藤本 博貴¹, 小林 拓真¹, 渡部 平司¹	1. 阪大院工
8:30	-	Al ₂ O ₃ キャップ層による4H-SiC/SiO ₂ 界面への窒素導入 過程の変化		1.東大院新領域
9:00	•	SiC MOSFET へのゲート AC ストレス印加による発光と しきい値電圧変動 負電圧ゲートストレス印加による SiC MOSFET のチャネ	裕司¹	
9:15		ル移動度劣化 高温酸化プロセスによる SiC MOSFET のゲートストレス	本 光央², 渡部 平司¹	
CS 13)	・ 13 7 化合物及び/	耐性向上 パワーデバイス・プロセス技術・評価、15.4 III-V 族窒化物約	本 光央², 渡部 平司¹ 吉品のコードシェア / Code-sharing Session of 13.7.8	. 15 4
	lon.) 13:00 - 19:00	口頭講演 (Oral Presentation) A22会場 (Room A22)		
3:00	16p-A22-1	コンタクトレスPECエッチングを用いたGaNナノワイ ヤ作製におけるUVA光の効果	○古内 久大 ^{1.2} , 本久 順一 ^{1.2} , 佐藤 威友 ²	1.北大院情, 2.北大量集セ
3:15 3:30	16p-A22-2 16p-A22-3	N極性GaNに及ぼすドライエッチングの台座の影響 N極性AIN上のGaNのコヒーレント成長に向けた MOVPE成長の条件改善	○三島 秀治郎¹, 中村 大輝¹, 新海 聡子¹ ○(M2) 古橋 樹¹, ブリストフセク マーコス², 楊 旭²	1. 九工大院 1. 名大院工, 2. 名大未来研
3:45	奨 16p-A22-4	MOVFE成長の宋日以曾 N極性GaN/AlGaN/AlN高電子移動度トランジスタの リーク電流が絶縁破壊電圧に及ぼす影響	○ (M2)Zazuli Hiyama Aina ¹ , 藤井 開 ¹ , 仁ノ木 亮 祐 ¹ , 平田 靖晃 ¹ , 木本 大星 ¹ , 倉井 聡 ¹ , 岡田 成仁 ¹ , 田 中 敦之 ² , 新田 州吾 ² , 本田 善央 ² , 天野 浩 ² , 山田 陽 — ¹	1. 山口大創成科学, 2. 名古屋大未来研
4:00	奨 16p-A22-5	ウェハ接合と裏面プロセスを用いたn-GaN N極性面上 オーミック電極形成		1.大阪公大工, 2.東北大
4:15	奨 16p-A22-6	高出力密度を有するN極性GaN/InAIN HEMTの開発	〇早坂 明泰 1 , 吉田 成輝 1 , 向井 章 1 , 眞壁 勇夫 1 , 辻 幸 洋 1 , 牧山 剛三 1 , 中田 健 1	1.住友電工
4:30	奨 16p-A22-7	N/Mg イオン注入法を用いた縦型 GaN ジャンクションバリアショットキーダイオードの作製及び電気特性評価	央 ^{2,3,4} , 天野 浩 ^{2,3,4}	IAR
.4:45	招 16p-A22-8	「第56回講演奨励賞受賞記念講演」 Mgイオン注入p-GaNにおける注入領域および拡散領域 のNイオン連続注入による補償ドナー濃度低減効果	〇角田 健輔 1 ,片岡 恵太 2 ,成田 哲生 2 ,堀田 昌宏 $^{1.3}$,加地 徽 $^{1.3}$,須田 淳 $^{1.3}$	1.名大院工, 2. 豊田中研, 3.名大未来研
5:00	IT 10 1-1-1	休憩/Break	O Hall rosel as	1 6 1 100 7 0 6 1 5 5 77
5:15	招 16p-A22-9	「第56回講演奨励賞受賞記念講演」 Mgチャネリングイオン注入および超高圧アニールを用いて作製した縦型GaN JBSダイオードにおける電流・電圧特性の注入量依存性	〇北川 和輝 1 , Maciej Matys 2 , 上杉	1.名大院工, 2.名大未来研
15:30	16p-A22-10	OVPE法を用いたMgイオン注入GaNの大気圧活性化手 法の提案		ホールディングス(株), 5.住友化学(株), 6.伊藤忠
15:45	奨 16p-A22-11	p型GaN表面に発生する電荷についての検討	○焦一寧¹,高橋尚伸¹,島崎喬大¹,佐藤威友¹,赤澤 正道¹	1.北大量集センター
L6:00	招 16p-A22-12	「第56回講演奨励賞受賞記念講演」 分布型分極ドーピングによる AIN 系縦型 p-n ダイオード の作製	〇隈部 岳瑠 ¹ , 吉川 陽 ^{2,3} , 川崎 晟也 ¹ , 久志本 真希 ¹ , 本田 善央 ^{3,4,5} , 新井 学 ³ , 須田 淳 ^{1,3} , 天野 浩 ^{3,4,5}	1.名大院工, 2.旭化成, 3.名大IMaSS, 4.名大Dセンター, 5.名大IAR
6:15	奨 16p-A22-13	Si ドープAINショットキーバリアダイオードにおける順 方向リーク電流の解析	〇佐々木一睛 1 ,廣木 正伸 2 ,熊倉 一英 2 ,平間 一行 2 ,谷保 芳孝 2 ,中野 義昭 1 ,前田 拓也 1	1. 東大工, 2.NTT 物性研

16:30 16:45		AlN MESFET の高温特性評価 Al-rich AlGaN マルチチャネル Fin 構造の作製と評価	○廣木 正伸¹, 平間 一行¹, 熊倉 一英¹, 谷保 芳孝¹ ○小坂 鷹生¹, 上野 耕平¹, 藤岡 洋¹	1.NTT 物性研 1.東大生研
17:00		MOVPE 法で成膜した AIN 基板上の格子整合 AIN/GaN HEMT の動作実証		1. 規入主研 1. 旭化成, 2. 名大院工, 3. 名大IMaSS
17:15 17:30	16p-A22-17	休憩/Break 高AINモル分率AIGaN/GaNデュアルゲートHEMTの電		1. 名大院工, 2. 名大未来研, 3. 熊本大
17:45	奨 16p-A22-18	気的特性 GaN/AlGaN/GaN ダブルヘテロ構造の縦型 PND 構造に おけるアバランシェ降伏の確認	男 ³ , 須田 淳 ^{1,2} 〇小久保 瑛斗 ¹ , 渡邉 浩崇 ² , 出来 真斗 ³ , 田中 敦之 ² , 新田 州吾 ² , 本田 善央 ^{2,3,4} , 天野 浩 ^{2,3,4}	1.名大院工, 2.名大 IMaSS, 3.名大 Dセンター, 4.名大高 等研究院
18:00	16p-A22-19	AlGaN/GaN~テロ界面でのキャリア輸送特性と欠陥分布		1.物材機構, 2.中部大
18:15	奨 16p-A22-20	AlGaN/GaN二次元電子ガスにおけるドリフト速度 - 電界 特性の温度依存性	〇若本 裕介¹, 河原 孝彦², 吉田 成輝², 牧山 剛三², 中田 健², 前田 拓也¹	1. 東大工, 2. 住友電気工業株式会社
18:30		ScAIN混晶の分極反転における Sc組成および格子拘束の 影響に関する理論検討		1.三重大院工
18:45	•	エピタキシャル ScAIN/AlGaN/GaN ヘテロ構造の作製	○奥田 朋也¹,太田 隼輔²,河原 孝彦³,牧山 剛三³,中田 健³,前田 拓也⁴,小林 篤¹²	1.理科大院先進工, 2.理科大先進工, 3.住友電工, 4.東大院工
		/ Optical properties and light-emitting devices 口頭講演 (Oral Presentation) C302会場 (Room C302)		
9:00		温度可変カソードルミネセンスによる Cs_4PbBr_6 の研究	〇久保田 哲矢 1 , 柳本 宗達 1 , 斉藤 光 1,2 , 秋葉 圭一郎 1,3 , 石井 あゆみ 4 , 三宮 エ 1	1. 東工大, 2. 九大, 3. 量研, 4. 早大
9:15	奨 17a-C302-2	ハロゲン化鉛ペロブスカイト CsPbBr3/Cs4PbBr6の試料サイズと外部量子効率の関係	〇福田 光希 1 ,市川 修平 $^{1.2}$,大木 武 3 ,山田 泰裕 3 ,小 島 一信 1	1. 阪大院工, 2. 阪大電顕センター, 3. 千葉大理
9:30	奨 17a-C302-3	$CsPbBr_3/Cs_4PbBr_6$ におけるバンド端以下のエネルギーでの光吸収率の向上	○登尾 尚紀¹, 福田 光希¹, 市川 修平¹.², 小島 一信¹	1. 阪大院工, 2. 阪大電顕センター
9:45		ペロブスカイト量子ドットを用いた固体光学冷却	〇山田 泰裕 1 ,大木 武 1 ,森田 剛 1 ,福田 光希 2 ,市川 修 平 2 ,小島 一信 2 ,山田 琢允 3 ,金光 義彦 3	
10:00		多重共鳴熱活性化蛍光材料を用いた青色発光電気化学セルのESR研究	華 ¹ , 下位 幸弘 ¹ , 畠山 琢次 ³ , 丸本 一弘 ^{1,2,4}	4. 筑波大エネ物質科学セ
10:15	奨 17a-C302-6	異方的構造の導入による Eu 添加 GaN の発光中心の励起 効率変化	○久保 穂高¹, 市川 修平¹.², 藤原 康文³.4.⁵, 小島 一信¹	1. 阪大院工, 2. 阪大電顕センター, 3. 立命館大総研, 4. 阪 大産研, 5. 阪大エマージングサイエンスデザインR3セ ンター
10:30	奨 17a-C302-7	AINを電子ブロック層に用いた Eu 添加 ZnO 赤色発光ダイオード構造の提案	〇増田 莉子 1 , 舘林 潤 1 , 市川 修平 $^{1.2}$, 多根 正和 1 , 藤 原 康文 1	1.阪大院工, 2.阪大電顕センター
10:45	奨 17a-C302-8	Tm,Yb共添加ZnOナノワイヤにおけるエネルギー輸送プロセス評価	○ (M2C) 井田 聖人¹, 舘林 潤¹, 市川 修平¹, 多根 正和¹, 藤原 康文¹	1. 阪大院工
11:00	17a-C302-9	時系列機械学習手法を融合した非断熱分子動力学計算に よる Er ドープした GaAs の中間準位キャリアダイナミッ クス解析	○牧野 侑矢¹, 樗木 悠亮², 岡田 至崇², 曽我部 東馬¹	1. 電通大 i-PERC&基盤理工, 2. 東大先端研
11:15	17a-C302-10	GaO _x トンネルバリアを持つ量子ドットスピン偏極発光ダイオードの作製	○(M2)沈 承赫¹, 江藤 亘平¹, 樋浦 諭志¹, 高山 純一¹, スバギヨ アグス¹, 末岡 和久¹, 村山 明宏¹	1.北大院情報科学
11:30	奨 17a-C302-11	希薄窒化GaNAsを用いた近赤外フォトダイオードにおける室温での光電流の偏光依存性	○ 峯山 大輝 1 、矢野 龍弥 1 、江藤 亘平 1 、樋浦 諭志 1 、中間 海音 2 、橋本 英季 3 、峰久 恵輔 2 、高山 純一 1 、スバ ギョ アグス 1 、末岡 和久 1 、石川 史太郎 2 、村山 明宏 1	1.北大院情報科学, 2.北大量子集積
11:45	17a-C302-12	希薄窒化 GaNAs を用いた近赤外スピン受光ダイオードの 磁場特性	〇矢野 龍弥 1 , 峯山 大輝 1 , 江藤 亘平 1 , 中間 海音 2 , 橋 本 英考 2 , 峰久 恵輔 2 , 小川 峰登 1 , 高山 純一 1 , 石川 史 太郎 2 , 植村 哲也 1 , 樋浦 諭志 1 , 村山 明宏 1	
9/17(Tu	ue.) 16:00 - 18:00	ポスター講演 (Poster Presentation) P会場(Room P)		
	17p-P07-1 17p-P07-2	画像解析による無機ELデバイスの発光特性の評価 中周波バルススパッタリングで作製したZnO薄膜の超高 速UV発光		1.東京電機大 1.名工大, 2.阪大レーザー研, 3.Czech Academy of Sciences, 4.Massey Univ.
	17p-P07-3	深紫外発光 ZnAl ₂ O ₄ 薄膜の成長相および膜質の評価	This piper Name 1 , $\frac{1}{2}$, $\frac{1}{$	1. 静岡大工, 2. 東北大
	17p-P07-4	アニール雰囲気による Eu 添加 AlN 薄膜中の Eu イオンの	雄二², 山路 晃広², 黒澤 俊介²	
	17p-P07-5	局所構造変化と発光への影響 H ₂ 及びO ₂ 雰囲気で作成した TiO ₂ :Sm 薄膜の発光と電気	一郎1,趙新為1	
	17p-P07-6	的特性の評価 $Sr_{1.6}Ca_{0.4}Zn_2Ga_2O_7:Bi^{3+}の残光特性に対するイオンの添加 \\$		1. 神戸大海事
	17p-P07-7	効果 第一原理計算を用いた $Sr_2MgSi_2O_7$:Eu, Dy 長残光蛍光体に	○上川 純平¹, 藤間 信久¹, 小南 裕子¹, 原 和彦¹	1. 静岡大工
	17p-P07-8	おける酸素欠陥準位の考察 Eu ²⁺ 蛍光体における光励起キャリア経路の検討	○中西 貴之¹, 髙橋 向星¹, 武田 隆史¹	1.物材機構
	17p-P07-9	Cr ⁴⁺ 蛍光体におけるホスト結晶が及ぼす発光機能への影響		1.物材機構
	17p-P07-10	近赤外蛍光体スクリーニング手法の確立 -2-	○大澤 祥宏¹, 中西 貴之¹, 小山 幸典¹, 鈴木 達¹, 森田 孝治¹, 武田 隆史¹, 広崎 尚登¹	1.物材機構
		近赤外蛍光結晶化ガラス Cr_2O_3 -CaO-Ge O_2 に対する Ta_2O_5 添加の影響	○七井 靖¹, 小久保 太陽¹, 佐竹 優太郎¹, 北沢 信章¹	1.防衛大
	17p-P07-12	電荷移動状態を青色光で励起可能な Eu^{3+} 付活酸窒化物蛍 光体	○國本 崇¹, 篠田 裕喜², 林 純平², 大観 光徳²	1. 徳島文理大, 2. 鳥取大
	17p-P07-13	固相反応法で合成された ${\rm LaF_3\text{-}LaOF:Yb^{3+}/Tm^{3+}}$ 		
		$Na_5Y_{4x}Gd_x(SiO_4)_4F$: Yb^{3+} , $Re~(Re=Er^{3+},Ho^{3+},Tm^{3+})$ の 蛍光特性		1. 神戸大海事
	•	$Y_2(SiO_4)O$: Yb^{3+} , Er^{3+} のアップコンバージョン特性に対する構造相転移の影響	○田中 義久¹, 佐俣 博章¹	1. 神戸大海事
		$Dy^{3+}/Er^{3+}\ co\ doped\ SrMoO_4\ phosphors\ for\ wLED$ application	○ (D)Satyam Chaturvedi¹, Praveen Chandra Pandey¹	1.IIT (BHU), Varanasi
	17p-P07-17	ダイヤモンドアンビルセルを使った無機蛍光体の高圧そ	○石垣雅¹,渡邉美寿貴²,浜根大輔³,後藤弘匡³,戸	1. 東京大工, 2. 新潟大工, 3. 東京大物性研, 4. 明治大理
		の場観察 リンゴ酸由来カーボン・ナノコンポジット蛍光体へのジ	田 健司 ² , 三浦 登 ⁴ , 大観 光徳 ⁵	工,5.鳥取大工 1.長岡技科大工

	17p-P07-19	ハロゲン置換による Cs ₂ ZrCl ₆ 蛍光体の発光特性制御	○藤原 千隼¹, 並木 宏允¹, 黒澤 俊介².3.4	1. (地独) 都産技研, 2. 東北大 NICHe, 3. 東北大 金研 4. 阪大レーザー研
	17p-P07-20	遊星ボールミルを用いたCu ₂ ZnSnSe ₄ 結晶の作製	○佐藤 亜季子¹, 尾崎 俊二¹	1.群馬大理工
	17p-P07-21	Cu _x Ag _{1-x} InTe ₂ 半導体結晶の育成と光学特性	○(M2)中川 皓晴¹, 尾崎 俊二¹	1.群馬大学
	17p-P07-22	CsPbBr ₃ /Cs ₄ PbBr ₆ における光学冷却の励起光強度依存性	〇大木 武 1 , 森田 剛 1 , 福田 光希 2 , 市川 修平 2 , 小島 一 信 2 , 山田 琢允 3 , 金光 義彦 3 , 山田 泰裕 1	1.千葉大院理, 2. 阪大院工, 3. 京大化研
	E 17p-P07-23	Research on optical measurement aided by deep learning-based classification and recognition of	○Yicheng Zhao¹, Satoshi Hiura¹, Junichi Takayama¹, Akihiro Murayama¹	1.IST, Hokkaido Univ.
		nanomaterial images		
00 00	(Wed.) 9:00 - 11:30 E 18a-B1-1	口頭講演 (Oral Presentation) B1会場 (Room B1) Application of Green-Emitting Carbon Dot-Based Films	(D) Vunviona Liu ¹ Vashiki Isa ¹ Tatauhika Isaha ¹	1.Keio Univ.
		to Luminescent Solar Concentrator	○矢野 祥太郎¹、磯 由樹¹、磯部 徹彦¹	1.废大理工
:15	奨 18a-B1-2	発光型太陽集光器用CuInS ₂ /ZnS量子ドット分散シリカナノコンボジットの作製		
:30	奨 18a-B1-3	TI ⁺ およびSr ²⁺ 共添加Cs ₃ Cu ₂ I ₅ の結晶育成と発光特性評価	彰 3.5	レーザー研, 5.(株) C&A
:45	奨 18a-B1-4	【注目講演】ミストデポジションによる有機無機ハイブリッド $(TMS)_3Cu_2I_5$ の薄膜形成と光学特性評価	○ (D) 渡邉 啓佑¹, 西中 浩之¹	1.京工繊大
0:00 0:15	18a-B1-5 18a-B1-6	青色励起可能な近赤外蛍光体 α -YFS:Yb $^{3+}$ の光物性評価 分光学的手法を用いた $Sr_3Ca_2(PO_4)_3F$ における Eu^{3+} のサイト占有率評価	○北川 裕貴¹, 上田 純平² ○阿曽 悟郎¹², 山嵜 正明², 上田 純平¹	1. 産総研, 2. 北陸先端大 1. 北陸先端大, 2.(株) 住田光学ガラス
0:30	奨 18a-B1-7	LSS法を用いて探索されたフッ化物狭帯域蛍光体の粉末 合成	〇中西 昭博 1 , 小山 幸典 1 , 中西 貴之 1 , 高橋 向星 1 , 広 崎 尚登 1 , 池野 豪 $-^2$, 武田 隆史 1	1. 物材機構, 2. 大阪公立大
0:45	18a-B1-8	密度汎関数法による Eu ²⁺ 賦活蛍光体ストークスシフトの 系統的計算	\bigcirc (M2) 山田 太陽 1 , 武田 隆史 2 , 小山 幸典 2 , 池野 豪 $-^1$	1. 阪公大工, 2. 物材機構
1:00	18a-B1-9	無機バイオマテリアル $Ca_3(PO_4)_2$ の Eu^{2+} 及び Dy^{3+} 共添加:蛍光及び残光制御に向けて	○(M2)早川 洸海¹, 松井 裕章¹	1.東京大工
1:15	18a-B1-10	新しい深赤色蛍光体の合成と構造解析	○戸田 健司¹, 疋田 渉¹	1.新潟大院
	合物太陽電池 / Con			
/18(' 3:00	Wed.) 13:00 - 18:45 18p-B1-1	口頭講演 (Oral Presentation) B1 会場(Room B1) "光イオントロニクス"観点から見た CIGS 光電極の水分	○植田 かな ¹, 杉山 睦 ^{1, 2}	1. 東理大 創域理工, 2. 東理大 総研
1.5	10 D1 0	解キャリアダイナミクスの検討	○本十個五] (() 十四年] 五十日 () 1 日 ()	1 カアムア
3:15 3:30	18p-B1-2 18p-B1-3	ミスト CVD 法を用いた (In,Ga) ₂ S ₃ 薄膜の作製 Cu(In,Ga)Se ₂ 太陽電池における n層一体型 Zn-Ge-O の開	○荒木 耀平¹,船木 顕広¹,西村 昂人¹,山田 明¹ ○山田 裕太朗¹,鈴木 陽太¹,西村 昂人¹,山田 明¹	1.東工大工 1.東京工業大学
3:45	18p-B1-4	発 ベイズ最適化を用いた Cu(In,Ga)Se ₂ 光吸収層の構造設計	○河西 竜輝 1 船木 顕広 1 西村 昂人 1 山田 明 1	1.東工大工
4:00	18p-B1-5	CIS系太陽電池における Mo 裏面電極の表面電子構造	〇大場 幹也',上川 由紀子²,永井 武彦²,石塚 尚吾²,西永 慈郎²,反保 衆志²,青野 祐美¹,奥田 哲治¹,寺田 教男¹²²	
4:15 4:30	18p-B1-6	休憩/Break MAPbI ₃ /Siヘテロ構造を利用した二段階フォトンアップ	○(M2)徳永 隼也¹,鬼塚 遼平¹,朝日 重雄¹,喜多 隆¹	1.神戸大院工
4:45	奨 E 18p-B1-7	コンバージョン太陽電池 Intraband Transitions Induced by Below-Bandgap	○ (DC)Hambalee Mahamu¹, Shigeo Asahi¹, Takashi Kita¹	1.Kobe Univ.
5:00	18p-B1-8	Photoexcitation at CsPbBr ₃ /GaAs Heterointerface 2段階フォトンアップコンバージョン太陽電池における バンド内赤外光学遷移の量子ドットによる増強特性	○(M2)山本祥¹,永井大地¹,朝日重雄¹,喜多隆¹	1.神戸大院工
5:15	18p-B1-9	中間バンドを有する熱放射ダイオードの理論発電密度(II)	○原田 幸弘¹, 喜多 隆¹	1.神戸大院工
5:30	18p-B1-10	分子材料の三重項消滅、一重項分裂を利用した太陽電池 互換2波長レーザー対応光電変換素子	○竹田 康彦1	1. 豊田中研
5:45 6:00	18p-B1-11	体想/Break 光無線給電用InGaN太陽電池の光学損失の検討	○鈴木 淳一¹, 高橋 龍成¹, 金子 優翔¹, 青山 怜央¹, 古賀 誠啓¹, 渋井 駿昌¹, 野口 尊央¹, 林 駿希¹, 藤澤 孝博², 伊井 詩織³, 波邊 琉加³, 深町 俊彦⁴, 難波江 宏一⁴, 三好 実人², 竹內 哲也³, 上山 智³, 內田 史朗¹	1. 千葉工業大学, 2. 名古屋工業大学, 3. 名城大学, 4. ウオ電機
6:15	18p-B1-12	DBR構造を持つ光無線給電用InGaP太陽電池の温度特性		1.千葉工大, 2.情報通信研究機構
6:30	18p-B1-13	光ファイバー給電用3接合型InGaAs 太陽電池の温度依存性		1.千葉工業大学, 2.情報通信研究機構
6:45	18p-B1-14	InGaAs熱光起電力発電セルへ向けたパターン化誘電体裏 面電極の作製		1. 埼玉大院理工, 2. 産総研, 3. 東北大院工
7:00	18p-B1-15	ガンマ線検出器応用InGaP太陽電池における電子線誘起		1. 三条市大, 2. 宇宙機構, 3. 理研
7:15	*	電流劣化の評価 休憩/Break		
7:30	18p-B1-16	常温接合による異種半導体基板接合の低抵抗化	○藤井 駿太朗¹,青山 怜央¹,西舘 優太¹,千葉 萌翔¹,藤原 柊人¹,斎藤 圭胡¹,菊地 隆雅¹,渡邉 康祐¹,赤羽浩一²,内田 史朗¹	1. 千葉工大, 2. 情報通信研究機構
7:45	E 18p-B1-17	Electrical properties of wafer-bonded interfaces applicable for multijunction p-on-n solar cells		1.RCAST, UTokyo, 2.School of Eng., UTokyo
3:00	奨 18p-B1-18	電流不整合の改善による InGaP/GaAs/In _x Ga _{1-x} As// In _x Ga _{1-x} As 4接合太陽電池の高効率化	○ (M2) 島崎 嵩士¹, 渡辺 健太郎², ソダーバンル ハッサネット², 中野 義昭¹, 杉山 正和¹.²	1. 東大工, 2. 東大先端研
3:15	奨 18p-B1-19	太陽電池における理想係数の集光度依存性の解明	○浅見 明太¹, 渡辺 健太郎¹, 中野 義昭², 杉山 正和¹.²	1. 東大先端研, 2. 東大工
3:30	18p-B1-20	GON構造形成に向けたGeの異方性エッチングとアニール処理の検討	\bigcirc (M2) 范 文博 1 , 大島 隆治 2 , 庄司 靖 2 , 菅谷 武芳 2 , 八木 修平 1 , 矢口 裕之 1	1. 埼玉大院理工, 2. 産総研
/19(Thu.) 16:00 - 18:00 19p-P07-1	ポスター講演 (Poster Presentation) P会場(Room P) オンシリコン III-V 族太陽電池に向けた (111) 基板上の	庄司 靖 1 , 大島 隆治 1 , 生方 映徳 2 , 〇菅谷 武芳 1	1.産総研, 2.大陽日酸
	19p-P07-2	GaInP 成長 100 μ m/h を超える GaInP 太陽電池の超高速 HVPE 成長	○(M1)近藤 圭悟 ^{1,2} , 大島 隆治 ² , 庄司 靖 ² , 牧田 紀 久夫 ² , 清水 裕大 ³ , 生方 映徳 ³ , 德永 裕樹 ³ , 菅谷 武 芳 ² , 岡野 好伸 ¹	1. 東京都市大, 2. 産総研, 3. 大陽日酸
				1 東大失端研 2 東大工
	19p-P07-3	超薄層化した吸収層による透過型GaAs太陽電池の開発	○渡辺 健太郎¹, Sodabanlu Hassanet¹, 浅見 明太¹, 中野 義昭¹.², 杉山 正和¹.²	1. 未八九細明, 2. 未八工
	19p-P07-3 19p-P07-4 19p-P07-5	超薄層化した吸収層による透過型 GaAs 太陽電池の開発 ELO 薄膜タンデム太陽電池の発光結合特性評価 過渡吸収測定における GaSb/GaAs 量子リングのキャリア	野 義昭 1,2 ,杉山 正和 1,2 〇伊坪 壮太 1 ,稲葉 大陸 1 ,宮下 直也 1 ,山口 浩 $^{-1}$	1. 電通大 1. 東大先端研
	19p-P07-4	ELO薄膜タンデム太陽電池の発光結合特性評価	野 義昭 1,2 ,杉山 正和 1,2 〇伊坪 壮太 1 ,稲葉 大陸 1 ,宮下 直也 1 ,山口 浩 $^{-1}$	1. 電通大

	19p-P07-7 19p-P07-8	p-Cu-Fe-O / ${ m Mg(OH)_2}$ / n-Fe-O 構造の作製と評価溶液浸漬による透明太陽電池光吸収層 ${ m CuBr_{1:x}I_x}$ の膜質改善	○ (M2) 江坂 拓巳¹, 市村 正也¹ ○玉井 大吉¹, 行長 虎太郎¹, 落合 航也¹, 金井 綾香¹, 田中 久仁彦¹	1.名工大1.長岡技科大
	19p-P07-9	Ge _x Sn _{1.x} S薄膜太陽電池における電気測定を用いた欠陥準 位の調査	〇金井 綾香 1 ,茂田井 大輝 2 ,荒木 秀明 2 ,田中 久仁 \mathcal{E}^1	1. 長岡技科大, 2. 長岡高専
	19p-P07-10	金属ターゲットと硫黄プラズマを用いた反応性スパッタ による Cu、S・ZnS・SnS・WS。薄膜の作製	○(M2) 茂田井 大輝 ¹ , 野上 大一 ¹ , 鈴木 一誓 ¹ , 小俣 孝久 ¹	1.東北大
	19p-P07-11		○矢澤 兒海¹, Shahiduzzaman Md¹.², 中野 正浩¹, 辛 川 誠¹.², Nunzi Jean Michel², 當摩 哲也¹.²	1. 金沢大院自, 2. 金沢大 NanoMaRi
	19p-P07-12	CZTS太陽電池における ZnO バッファの気相硫化温度依存性		1.長岡工業高等専門学校
15 / 10		長時間の水素生成がCIGS光電極に与える影響	\bigcirc 奥山 信太郎 1 ,岡田 一真 1 ,植田 かな 1 ,杉山 睦 1,2	1. 東理大 創域理工, 2. 東理大 総研
		al Engineering はプログラム冒頭にございます。		
		k crystal growth ポスター講演 (Poster Presentation) P会場(Room P)		
	20a-P07-1	混晶バルクSiGe 結晶の機械的特性 III	○荒井康智¹,內田茂樹²,神田剛²,草間正寬²,椿浩二²,片野佳文²,片岡正巳³,佐々木新悟³,佐藤靖則³,松村億久³,小八重竹夫³,川崎拓也³	1. 宇宙機構, 2. トプコン, 3. ティーディーワイ
9/20(Fri. 13:00) 13:00 - 16:45 20p-D62-1	口頭講演 (Oral Presentation) D62会場(Room D62) Ru-Mo-W 単結晶線材の Dewetting マイクロ引き下げ法 における偏析挙動および電気抵抗率の組成依存性	〇米村 虎太朗 $^{1.2}$,村上 力輝 2 , 糸井 椎香 3 ,鎌田 \pm $^{3.4}$, 堀合 毅彦 $^{2.4}$,花田 \pm 3 , 山路 晃広 $^{2.4}$, 吉野 将 \pm $^{2.4}$, 佐藤 浩樹 $^{2.4}$, 大橋 雄二 $^{2.4}$, 黒澤 俊介 $^{2.4}$, 横田 有為 $^{2.4}$, 吉川 彰 $^{2.4}$	1. 東北大工, 2. 東北大金研, 3.C&A, 4. 東北大NICHe
13:15	20p-D62-2	Mg過剰組成における共晶体構造Mg ₂ Si/Si熱電結晶の作製と評価	○横田 有為 ^{1,2} , 荻野 拓 ³ , 佐藤 浩樹 ^{2,3} , 奥野 敦 ⁴ , 堀合 毅彦 ² . 吉川 彰 ^{1,2}	1. 東北大金研, 2. 東北大 NICHe, 3. 産総研, 4. 三幸
13:30	20p-D62-3	VB法によるFe-Ga単結晶育成条件の改善	○泉 聖志¹, 辰宮 一樹¹, 佐藤 昌明¹, 藤井 源¹, 神野 宏 太¹, 大久保 和彦¹	1.住友金属鉱山
13:45	20p-D62-4	TLZ法により育成したSiGe結晶におけるB濃度とホール 移動度の検討		1.信州大, 2.JAXA, 3.明治大
14:00	20p-D62-5	FZ法による Zn 添加 β - Ga ₂ O ₃ 単結晶の育成	○(M1)漆畑 大地¹, 長尾 雅則¹, 丸山 祐樹¹, 綿打 敏ョ¹	1.山梨大工
14:15	20p-D62-6	FZ 法による [001] に制御した GaFeO ₃ 単結晶の育成	- 4	1.山梨大学
14:30	20p-D62-7	粒界ネットワーク解析を用いた Al_2O_3 微小結晶球製造における凝固開始時のメカニズム解明	2.7	1. 名大院工, 2. 名大未来研, 3. 理研 AIP, 4. 名大院情報, 5. 名大未来機構
14:45 15:00	20p-D62-8	休憩/Break 溶融凝固法による層状オキシカルコゲナイドの単結晶育 成と物性評価	○加藤 隆寬 1,2 ,岩佐 祐希 1 ,横田 有為 3 ,石田 茂之 1 , 堀合 毅彦 3 ,吉川 彰 3 ,西尾 太一郎 2 ,永崎 洋 1 ,荻野 柘 1	1. 産総研, 2. 東理大, 3. 東北大
15:15 15:30	20p-D62-9 20p-D62-10	Fe 添加 $Lu_2Si_2O_7$ 結晶の育成およびその光学特性 Ce^{3+}, Pr^{3+} 共添加 $Lu_2Si_2O_7$ の単結晶成長および Ce^{3+}/Pr^{3+} 比の最適化	$ \bigcirc $ 堀合 毅彦 ¹ , 横田 有為 ² , 吉野 将生 ¹ , 吉川 彰 ^{1,2} $ \bigcirc $ 阿部 柚佳 ^{1,2} , 堀合 毅彦 ^{2,3} , 横田 有為 ^{2,3} , 吉野 将 生 ^{2,3} , 村上 力輝斗 ² , 花田 貴 ² , 山路 晃広 ^{2,3} , 佐藤 浩 樹 ^{2,3} , 大橋 雄二 ^{2,3} , 黒澤 俊介 ^{2,3} , 鎌田 圭 ^{2,3} , 吉川 彰 ^{2,3}	1. 東北大NICHe, 2. 東北大金研 1. 東北大工, 2. 東北大金研, 3. 東北大NICHe
15:45 16:00 奨		$AlTaO_4$ 結晶の育成と発光特性評価 $Y(Ta_{1:x}Nb_x)O_4$ single-crystal scintillators	○山路 晃広 ^{1,2} , 黒澤 俊介 ^{1,2} , 吉川 彰 ^{1,2} ○ (D)YUESHEN ZHOU ^{1,2} , Dongsheng Yuan ¹ , Garica Villora ¹ , Kiyoshi Shimamura ^{1,2}	1. 東北大NICHe, 2. 東北大金研 1.NIMS, 2.Waseda Univ.
16:15	20p-D62-13	熱処理を通した $CsLiB_6O_{10}$ 結晶中における光散乱欠陥形成機構の調査	公司// (公司 (本) (公司 (本)	1. 阪大院工, 2. 阪大レーザー研, 3. 創晶超光
16:30	20p-D62-14	内部欠陥低減に向けた $\operatorname{SrB_4O_7}$ の種結晶の極性検討		1. 阪大院工, 2. 創晶超光, 3. ギガフォトン, 4. 阪大レーザー研
		S系結晶 / II-VI and related compounds ポスター講演 (Poster Presentation) P会場(Room P)		
	19p-P08-1	加圧式Optical Floating Zone 法を用いた高品質 InGaO₃(ZnO)₄大型単結晶の育成条件と電気輸送特性	〇平井 萌々香 1 , 小海 稜太郎 1 , 山崎 優樹 1 , 高橋 拓海 1 , 井上 禎人 1 , 進藤 勇 2 , 木村 伸二 2 , 渡辺 崇司 2 , 加瀬 直樹 1 , 宮川 宣明 1	1. 東理大先進工, 2.(株) クリスタルシステム
		A A B A B A B A B A B A B A B A B A B A		
9:15 9:30 9:45	爰 18a-B2-1 18a-B2-2 18a-B2-3	MBE法によるInAsナノワイヤの異方的成長 熱輻射発電デバイス応用に向けたInAsSbの結晶成長 SiO ₂ 空洞内でのInP/InGaAsラテラルHBT作製に向けた	○(D) 小松 颯¹, 赤堀 誠志¹ ○(M1) 大田 遵平¹, 久野 倭¹, 中村 徹哉², 山根 啓輔¹ ○小林 真憩¹ 遊汀 舞大¹ 宮木 共幸¹	1.北陸先端大ナノセ 1.豊橋技科大, 2.宇宙航空研究開発機構 1.東工大工
10:00	18a-B2-4	おいっと おいっと おいっと おいっと おいっと おいっと おいっと おいっと		1. 豊田工大
10:00	104-114-4	サブモノレイヤー恒暦伝におりる、下地暦変調による軍子ディスクの作製 休憩/Break	○ ベル 1997 リーイル ・ 1世代 代	ы <u>ж</u> µ-/\
10:15	18a-B2-5	MIC法を用いた多層InAs/GaAs量子ドットにおける歪み のその場観察	○角田 雅弘¹,權 晋寛¹,荒川 泰彦¹	1.東大ナノ量子
10:45	18a-B2-6	InP 基板上低インジウム InAlGaAs キャップを有する	○權 晋寬¹,角田 雅弘¹,荒川 泰彦¹	1.東大ナノ量子
11:00	18a-B2-7	InAs 量子ドットの発光波長調整 InAs 量子ドット成長に起因する格子不整合歪みを利用した差周波混合によるテラヘルツ電磁波発生	○鈴木 崇斗¹, 小島 磨¹, 海津 利行²³, 和田 修³, 喜多 隆³	1.千葉工大工, 2.京大ナノハブ, 3.神戸大
11:15	18a-B2-8	た差周波混合によるアフヘルツ電磁波発生 AlGaAs バリアに挟まれた InGaAs 量子ドット - 希薄窒化 GaNAs トンネル結合構造の円偏光発光特性	125	1.北大院情報科学
	ı.) 9:15 - 11:30 廷 19a-B2-1	口頭講演 (Oral Presentation) B2 会場(Room B2) 高い光吸収/発光/熱特性を示す 2 インチ Si 基板上 GaAs/	/ ○條久 東輔 ^{1,2} 橋木 蓝汞 ^{1,2} 山朋 海辛 ^{1,2} ★夢 實	1.北大院情報科学, 2.北大量集セ
2.1U 3	~ 1/α-DΔ-1	同い元吸収/光元/熱付任を小り2インテSI 宏仮上 GaAs/ AlGaAs コアーシェルナノワイヤ	一時八忠輔 ,倘平安学 ,中间 <i>诗</i> , 不照 見 都¹, 佐藤 紫乃¹, 高山 純一¹, 樋浦 諭志¹, 村山 明宏¹, 石川 史太郎¹.2	MAGANDUINTKIT J , MAUALA E
9:30	19a-B2-2	MBE法によるパターン Si 基板上 GaAs ナノワイヤ核生成 に及ぼすマスクパターンの影響		1.北大情科院, 2.北大量集セ, 3.東大d.lab
9:45	19a-B2-3	分子線エピタキシャル成長したGaAs/GaNAsコア-マルチシェル多重量子井戸構造ナノワイヤの特性	〇飯田 竜雅 $^{1.2}$, 中間 海音 $^{1.2}$, 橋本 英季 $^{1.2}$, 峰久 恵 輔 $^{1.2}$, 石川 史太郎 2	1.北大情報科学院, 2.北大量集セ

11:00 11:15	19a-B2-5 E 19a-B2-6 19a-B2-7 19a-B2-8	希釈室化物半導体ナノワイヤにおけるアニール処理条件が光学特性へ与える影響 体憩/Break Exceptional large lattice deformation in highly strained InP/InAs nanowire heterostructures with 3.2% lattice mismatch Selective-area growth of Wurtzite InP/AlInP core-shell nanowires	○橋本英季 ^{1,2} ,飯田竜雅 ^{1,2} ,後藤拓翔 ^{1,2} ,峰久恵輔 ^{1,2} ,中間海音 ^{1,2} ,石川史太郎 ² ○章国強 ¹ ,田中祐輔 ¹ ,日比野浩樹 ² ,後藤秀樹 ³ ,真田治樹 ¹	
10:30 10:45 獎 11:00 11:15	19a-B2-5 E E 19a-B2-6 19a-B2-7 19a-B2-8	Exceptional large lattice deformation in highly strained InP/InAs nanowire heterostructures with 3.2% lattice mismatch Selective-area growth of Wurtzite InP/AlInP core-shell	○章 国強¹,田中 祐輔¹,日比野 浩樹²,後藤 秀樹³,眞	1.NTT物性基礎研, 2. 関西学院大, 3. 広島大
10:30 10:45 獎 11:00 11:15	E 19a-B2-6 19a-B2-7 19a-B2-8	InP/InAs nanowire heterostructures with 3.2% lattice mismatch Selective-area growth of Wurtzite InP/AlInP core-shell		1.NTT 物性基礎研, 2. 関西学院大, 3. 広島大
11:00 11:15	E E 19a-B2-6 19a-B2-7 19a-B2-8	Selective-area growth of Wurtzite InP/AlInP core-shell		
11:15	19a-B2-7 19a-B2-8		○ (D)ZIYE ZHENG ^{1,2} , Yuki Azuma ^{1,2} , Junichi Motohisa ^{1,2} , Katsuhiro Tomioka ^{1,2}	1.Hokkaido Univ, 2.RCIQE
		ウルツ鉱InPナノワイヤ構造相転移へテロ接合縦型トラ	\bigcirc 内田 凌聖 1 ,東 佑樹 1 ,竹田 有輝 1 ,鄭 子ヨウ 1 ,本久	1.北海道大
9/19(Thu) 16.00 19.00	ンジスタの評価 高融点金属マスク上InAs ナノ構造選択成長の評価	順一 ¹ , 富岡 克広 ¹ ○竹田 有輝 ¹ , 東 佑樹 ¹ , 鄭 子燁 ¹ , 本久 順一 ¹ , 冨岡 克	1.北海道大
9/19(Inu		# 2 2 ○ # 次 (D+ D	広1	
		ポスター講演 (Poster Presentation) P会場(Room P) 光伝導度測定によるアンドープ GaAs/GaAsN 超格子の評	○若杉 遼太¹, 梅木 蒼生¹, 守田 璃子¹, 塚崎 貴司¹, 藤 田 実樹², 牧本 俊樹¹	1.早大理工, 2.一関高専
	19p-P09-2	アニールした Si ドープ GaAsN の電気的特性	○吉田 知生¹, 佐々木 大航¹, 塚崎 貴司¹, 藤田 実樹², 牧本 俊樹¹	1.早大理工, 2.一関高専
	19p-P09-3	PL法を用いたBeドープ GaAsN の成長温度依存性の評価		1 早大理丁 2 一関喜恵
		BeドープAlGaAsNにおける電気伝導機構	○小野 芳樹¹, 井上 洸¹, 南 奈津¹, 塚崎 貴司¹, 藤田 実樹², 牧本 俊樹¹	
		アンチモンサーファクタントを利用して成長した GaPN 混晶のフォトルミネッセンスによる評価		1. 埼玉大院理工, 2. 豊橋技科大
	19p-P09-6	MBE法を用いたBeドープInSb薄膜の成長と電気的特性 評価		1. 埼玉大院理工
		Sb照射により GaSb を形成した GaAs 基板上への InSbの		1. 埼玉大院理工
		Asフリー成長 スパッタ法によるSnドープ及びZn変調ドープInSb _{1.x} N _x	○藤川 紗千恵¹, 有路 結斗¹, 矢口 裕之¹	1. 埼玉大学院理工
	·	薄膜成長 マグネトロンスパッタ法による InSb1-xNx 薄膜を用いた		1. 埼玉大院理工
	•	PIN 構造の作製		
		${\rm InSb/Ga_{0.22}In_{0.78}Sb}$ 複合チャネル HEMT 構造における電子移動度の向上	邊 一世 2 , 山下 良美 2 , 町田 龍人 2 , 原 紳介 2 , 笠松 章 史 2 , 遠藤 聡 1 , 藤代 博記 1	
		ダブルドープInSb/Ga $_{0.22} In_{0.78}$ Sb 複合チャネルHEMT構造の電気的特性	○(M1C)中島 涉¹,神內智輝¹,海老原怜央¹,大場達久¹,渡邉 一世²,町田龍人²,山下良美²,原紳介², 笠松章史²,遠藤聡¹,藤代博記¹	1. 東理大先進工, 2. 情報通信研究機構
		GaSb 上 InSb 量子ドットからの発光波長の積層による長波長化		1. 東理大先進工, 2. 産総研
	19p-P09-13	InGaAs量子ドットの積層数を変えたスピン偏極発光ダイオードの研究		1.北大院情報科学
	E 19p-P09-14	Carrier dynamics in 2D and 3D SML nanostructures by		1.Toyota Tech. Inst.
	19p-P09-15	power-dependent PL CVD ダイヤモンド基板上への GaAs MBE成長(3)	○木内 翔也¹, 大島 龍司¹, 飯塚 完司¹	1.日工大
5.4 III-V方	族窒化物結晶 / III	-V-group nitride crystals		
		口頭講演 (Oral Presentation) A21会場 (Room A21)		
9:00		劈開 ScAlMgO ₄ 基板上 GaNの RF-MBE 成長における初期 過程解析	井 高志¹, 荒木 努¹	
9:15		ScAlMgO ₄ 基板上InGaNのRF-MBE成長における初期過程解析	努1	
		PEDOT/PSSを正孔輸送層に用いた $ScAlMgO_4$ 基板上赤色 LED	松山 絵美², 鈴木 敦志², 坂本 龍星¹, 伊藤 涼太郎¹	
9:45		第一原理計算による GaN の極性反転界面構造の解析	〇河村 貴宏 1 , 秋山 亨 1 , 三宅 秀人 1 , 寒川 義裕 2 , 池田 和久 3 , 谷川 智之 3	1.三重大院工, 2. 九大応力研, 3. 阪大院工
0:00 0:15		休憩/Break 「分科内招待講演」	○眞壁 勇夫 ¹	1.住友電工
0:45		N極性 GaN 結晶を用いた高周波トランジスタの開発 汎用機械学習ポテンシャルを用いた $+c$, $-c$ 面 GaN への不		1.住友電工
1:00		純物の取込みの解析 多層極性反転積層構造の作製に向けた N 極性 GaN/Ga 極	田 健 1 ○池田 和久 1 , 上田 佳奈子 1 , 上向井 正裕 1 , 谷川 智	1. 阪大院工
1:15		性 GaN エピタキシャル極性反転プロセス 極性反転積層構造における AlN 表面酸化プロセスの研究	之 1 , 片山 竜二 1 〇玉野 智大 1 . 正直 花奈子 1,2 . 赤池 良太 1,3 . 安永 弘	1.三重大院工、2.京大院工、3.半導体・デジタル未来
			樹 $^{1.3}$,中村孝夫 $^{1.3}$,上向井正裕 4 ,谷川智之 4 ,片山竜 4 ,三宅秀人 $^{1.3}$	
9/16(Mor 3:00		口頭講演 (Oral Presentation) A21 会場(Room A21) 凹面鏡を有する GaN 系面発光レーザーの光ファイバー近	○大西 一生 ¹ , 樋口 直輝 ^{1,2} , 張 正義 ^{1,2} , 田丸 真稔 ^{1,2} , 濵口達史 ^{1,3}	1. 三重大iCSDF, 2. 三重大工, 3. 三重大院工
3:15		似 GaN 面発光レーザの共振波長および発光ピーク波長の面 内分布		1.名城大 理工
3:30	奨 16p-A21-3	GaInN量子井戸活性層を有する面発光レーザーの閾値電流密度低減と高精度発光波長制御に向けた検討		
3:45		高反射DBR装荷メンプレン型InGaN系レーザ構造の提	孝², 吉野 隆史² ○佐藤 秀哉¹, 髙橋 勇貴¹, 菊池 昭彦¹.²	1.上智大理工, 2.上智大半導体研
4:00		案と試作 休憩/Break		
4:15		a面AINテンプレート上へのHVPE法によるホモエピタ キシャル成長	〇伊藤 駿希 1 , 赤池 良太 1,2 , 安永 弘樹 2,3 , 中村 孝 夫 1,2,3 , 三宅 秀人 1,2	1.三重大院工, 2.半導体・デジタル未来創造センター 3.研究基盤推進機構
4:30	奨 16p-A21-6		〇三宅倫太郎', 井本 圭紀', 山田 凌矢', 齋藤 巧夢', 丸山 竣大', 狩野 祥吾', 佐々木 祐輔', 岩山 章', 岩山 素顕', 竹内 哲也', 上山 智', 三宅 秀人 ²	
4:45		n型AIN/AIGaN超格子クラッド層を用いたUVレーザダイオード構造		1.NTT物性研
15:00	奨 16p-A21-8	イオート構造 加圧・加熱水による基板剥離技術を用いた縦型UV-Bレー ザーダイオードの作製		1.名城大理工, 2.三重大院工
5:15	奨 16p-A21-9	加圧加熱水によるサファイア基板の剥離技術を用いた Thin Film LED の作製	素類', 竹内 哲也', 上山智', 三宅 秀人 ² ○狩野 祥吾', 井本 圭紀', 山田 凌矢', 齋藤 巧夢', 三 宅 倫太郎', 佐々木 祐輔', 丸山 竣大', 岩山 章', 三宅	1. 名城大・理工, 2. 三重大・院工

5:30				
	16p-A21-10	AlGaN系UV-B LD における急峻なヘテロ接合界面を適用したデバイス性能	○齋藤 巧夢¹, 三宅 倫太郎¹, 山田 凌矢¹, 井本 圭紀¹, 丸山 竣大¹, 佐々木 祐輔¹, 狩野 祥吾¹, 岩山 章¹, 三宅 秀人², 上山 智¹, 竹内 哲也¹, 岩谷 素顕¹	1.名城大理工, 2.三重大院工
6:00	奨 16p-A21-11	休憩/Break AIN障壁多重量子井戸からの電子線励起による230 nm帯 発光		1.三重大院工, 2. 半導体・デジタル未来創造センター, 3. 研究基盤推進機構, 4. 産総研デバイス技術研究部門
6:15	16p-A21-12	エミッション顕微鏡を用いたUV-C LEDにおける中長期 劣化の観察	〇本田 善央 1 ,古澤 優太 1 ,田中 敦之 1 ,塚本 涼子 1 ,宮	
6:30	奨 16p-A21-13	分極ドープ層導入による 230nm 帯 AlGaN far-UVC LED の特性改善		1. 理研, 2. 埼玉大院理工, 3. 日本タングステン
6:45	E 16p-A21-14	Revisiting the Growth Temperature Dependence of n-AlGaN Buffer Layer and Quantum-Well in (228-230 nm)-Band far-UVC LEDs		1.RIKEN, 2.Nippon Tungsten Co., Ltd. Japan, 3.Saitan University
9/17(Tue 9:00	e.) 9:00 - 11:30 17a-C42-1	口頭講演 (Oral Presentation) C42会場(Room C42) ナノテンプレート選択成長法により作製した Si(111) 基	○星野 航太 ¹, 富樫 理恵 ¹.², 岸野 克巳 ¹.²	1.上智大理工, 2.上智大ナノテク
9:15	17a-C42-2	板上InGaN/GaNナノコラム結晶 n-GaNナノワイヤのMOVPE成長時の異常単結晶および	○深水 直斗¹, 中川 碧¹, 久保田 光星¹, 服部 祐汰¹, 上	1. 名城大理工
9:30	17a-C42-3	異常多結晶の低減 (10-11)ファセットを有するGaInN系ナノコラム上	山智¹,竹内哲也¹,岩谷素顕¹ ○進藤隆太¹,赤川広海¹,山口智広¹,尾沼猛儀¹,本	1 丁学院大 2 上智大ナノテク 3 上智大理丁
		MQWの検討 赤色 GaInN 系量子殻の光学特性向上のためのn-GaInNナ	田 徹 ¹ , 富樫 理恵 ^{2,3} , 岸野 克己 ^{2,3}	
9:45	17a-C42-4	ノピラミッドのIn組成均一化に関する検討	保田 光星1, 上山 智1, 竹内 哲也1, 岩谷 素顕1	
0:00	17a-C42-5	異なるナノコラムサイズをもつ InGaN/GaN ナノコラム の微細集積化 休憩/Break	○片桐 颯斗¹, 星野 航太², 進藤 隆太³, 山口 智広³, 関口 寬人¹, 富樫 理惠²⁴, 岸野 克己².⁴	1. 豊橋技大, 2. 上智大理工, 3. 工学院大, 4. 上智大ナノク
0:30	17a-C42-6	AIGaNナノワイヤアレイ型フォトニック結晶における高 Q値化の検討	○舘野 功太 1,2 , 滝口 雅人 1,2 , 佐々木 智 1 , 江端 1 , 元端 1 , 七晃 1 , 若林 勇希 1 , 大塚 琢馬 3 , 平間 1 , 計倉 1 , 社倉 1 , 社倉 1 , 社倉 1	1.NTT 物性研, 2.NTT NPC, 3.NTT CS研
0:45	奨 17a-C42-7	高アスペクト比Eu添加GaNコアシェルナノワイヤの選択OMVPE成長と発光特性評価		1. 阪大院工, 2. 阪大 QIQB, 3. 阪大超高圧電顕センター 4. 阪大 INSD, 5. 阪大院基礎工
1:00	17a-C42-8	プラズモニック結晶デバイス応用を目指したナノコラム 選択成長法によるハニカム格子InGaN/GaNナノコラム		1.上智大理工,2.上智大ナノテク
1:15	奨 17a-C42-9	の成長 GaN系可視域トポロジカルフォトニック結晶共振器の共 振特性解析	○本多 卓人 ¹, 菊池 昭彦 ¹. ²	1. 上智大理工, 2. 上智大学半導体研究所
	ed.) 9:00 - 12:30 奨 18a-C42-1	口頭講演 (Oral Presentation) C42 会場(Room C42) 全組成域InGaNのRF-MBE成長と熱電特性評価	○服部 翔太¹, 荒木 努¹, 出浦 桃子²	1. 立命館大理工, 2.R-GIRO
9:15	18a-C42-2	王組成域 ingan の M ⁻ -MBE成長 と 無電行圧計画 In _x Ga _{1-x} N 混晶組成の制御性向上のための単純な MOVPE 成長モデルの構築		
9:30	奨 18a-C42-3		○ (M1) 新井 雄稀 ^{1,2} , 齋藤 太助 ^{1,2} , 尾沼 猛儀 ² , 山口 智広 ² , 本田 徹 ² , 角谷 正友 ¹	1. 物材機構, 2. 工学院大
9:45	奨 18a-C42-4		○(M2) 齋藤 太助 ^{1,2} , 新井 雄稀 ^{1,2} , 尾沼 猛儀 ² , 山口 智広 ² , 本田 徹 ² , 角谷 正友 ¹	1.物材機構, 2.工学院大
0:00	奨 18a-C42-5	窒化物四元混晶 AlGaInNの MOVPE 成長における InN モル分率の制御		1.名大院工, 2.名大 IMaSS, 3.名大 D センター, 4.名大 IAR
0:15	奨 18a-C42-6	GaN基板上高InNモル分率GaInN量子井戸の成長圧力	○ (M2) 野津 浩太朗¹, 柴原 直暉¹, 竹內 哲也¹, 岩谷 素顕¹, 上山 智¹, 野中 健太朗², 倉岡 義孝², 吉野 隆 中²	1.名城大理工, 2.日本ガイシ
0:30	奨 18a-C42-7	GaInN量子井戸のPL強度におけるAlInN下地層と GaInN量子井戸との距離依存性	○西川 大智¹, 荒川 将輝¹, 柳川 光樹¹, 柴原 直暉¹, 竹 内 哲也¹, 岩谷 素顕¹, 上山 智¹, 野中 健太朗², 倉岡 義 孝², 吉野 隆史²	1. 名城大理工, 2. 日本ガイシ(株)
0:45 1:00	奨 18a-C42-8	休憩/Break Ga _{0.87} In _{0.13} Nトンネル接合を有する紫色 LED の電気的特	○宇田陽¹,長田和樹¹,竹内哲也¹,上山智¹,岩谷素	1.名城大理工
	奨 18a-C42-9	性	類¹,田中崇之¹ ○長田和樹¹,宇田陽¹,小林憲汰¹,竹內哲也¹,上山	
		* ***	智¹, 岩谷素顕¹	
1:30 1:45		InGaN系赤色LEDの特性における下地超格子層の効果 PSD法を用いて赤色LED構造をGB-LED下地層上に成長したGalnN系RGBモノリシック μ LEDアレイの作製	〇清水 優輝 1 , 長谷川 直希 1 , 井村 慧悟 1 , 末広 好伸 1 , 岩谷 素顕 1 , 竹内 哲也 1 , 上山 智 1 , 上野 耕平 2 , 藤岡	1.豊田合成㈱ 1.名城大学・理工, 2.東京大学生産技術研究所
2:00	奨 18a-C42-12	実装化に向けたステップレス構造 GaInN 系モノリシック μ LEDアレイの作製	洋 ² ○長谷川 直希 ¹ ,清水 優輝 ¹ ,末広 好伸 ¹ ,岩谷 素顕 ¹ ,竹内 哲也 ¹	1. 名城大理工
			〇長谷川 直希 1 ,清水 優輝 1 ,末広 好伸 1 ,岩谷 素顕 1 ,竹内 哲也 1	1. 名城大理工 1. 豊技大, 2.ALLOS, 3. 東北大
2:15	奨 18a-C42-13 ed.) 9:30 - 11:30	μ LED アレイの作製 マイクロ LED と神経電極のハイブリッド集積デバイスの 開発 ポスター講演 (Poster Presentation) P会場(Room P)	○長谷川 直希¹, 清水 優輝¹, 末広 好伸¹, 岩谷 素顕 ', 竹内 哲也¹ ○篠原 豪太¹, 奥井 歩夢¹, 西川 敦², Loesing Alexander², 鹿山 捋³, 久我 奈穂子³, 佐々木 拓哉³, 関口 寛人¹	1. 豊技大, 2.ALLOS, 3. 東北大
2:15	奨 18a-C42-13	μ LEDアレイの作製 マイクロ LED と神経電極のハイブリッド集積デバイスの 開発 ポスター講演 (Poster Presentation) P会場 (Room P) QF-HVPEによる4インチ GaN on GaN エビウェハ 減圧 CVD 成長六方晶窒化ホウ素薄膜に対するアニール効	○長谷川 直希¹,清水 優輝¹,末広 好伸¹,岩谷 素顕¹,竹内 哲也¹ ○篠原 豪太¹,與井 歩夢¹,西川 敦², Loesing Alexander²,鹿山 捋³,久我 奈穂子³,佐々木 拓哉³,関口 寛人¹ ○金木 奨太¹,今野 泰一郎¹,森 久¹,藤倉 序章¹ ○竹村 晃¹,大石 泰己¹,青池 琉希¹,太田 颯真¹,高橋	1. 豊技大, 2.ALLOS, 3. 東北大 1. 住友化学
2:15	獎 18a-C42-13 ed.) 9:30 - 11:30 18a-P07-1	μ LEDアレイの作製 マイクロ LED と神経電極のハイブリッド集積デバイスの 開発 ポスター講演 (Poster Presentation) P会場(Room P) QF-HVPEによる4インチ GaN on GaN エビウェハ	○長谷川 直希¹,清水 優輝¹,末広 好伸¹,岩谷 素顕¹,竹内 哲也¹ ○篠原 豪太¹,奥井 歩夢¹,西川 敦², Loesing Alexander²,鹿山 捋³,久我 奈穂子³,佐々木 拓哉³,関口 寛人¹ ○金木 奨太¹,今野 秦一郎¹,森久¹,藤倉 序章¹ ○竹村 晃¹,大石 秦己¹,青池 琉希¹,太田 颯真¹,高橋 悠真¹,小南 裕子¹,原 和彦¹-2.3	1. 豊技大, 2.ALLOS, 3. 東北大 1. 住友化学
2:15	獎 18a-C42-13 ed.) 9:30 - 11:30 18a-P07-1 18a-P07-2	μ LEDアレイの作製 マイクロ LED と神経電極のハイブリッド集積デバイスの開発 ボスター講演 (Poster Presentation) P会場 (Room P) QF-HVPEによる4インチ GaN on GaN エビウェハ 減圧 CVD成長六方晶窒化ホウ素薄膜に対するアニール効果の雰囲気依存性 減圧 CVD成長 BN薄膜の多形評価 BCl ₃ を原料に用いる減圧 CVDにより成長した六方晶窒	○長谷川 直希¹,清水 優輝¹,末広 好伸¹,岩谷 素顕',竹内 哲也¹ ○篠原 豪太¹, 奥井 歩夢¹, 西川 敦², Loesing Alexander², 鹿山 捋³, 久我 奈穂子³, 佐々木 拓哉³, 関口 寛人¹ ○金木 奨太¹, 今野 泰一郎¹, 森 久¹, 藤倉 序章¹ ○竹村 晃¹, 大石 泰己¹, 青池 琉希¹, 太田 颯真¹, 高橋 悠真¹, 小南 裕子¹, 原 和彦¹²³。 ○太田 颯真¹, 青池 琉希¹, 高橋 悠真¹, 竹村 晃¹, 小南 裕子¹, 原 和彦²³。 ○青池 琉希¹, 大石 泰己¹, 太田 颯真¹, 竹村 晃¹, 小南	1. 豊技大, 2.ALLOS, 3. 東北大 1. 住友化学 1. 静岡大院, 2. 大学院光医工学研, 3. 静岡大電研 1. 静岡大総合研, 2. 静岡大光医工研, 3. 静岡大電子研
2:15	奨 18a-C42-13 ed.) 9:30 - 11:30 18a-P07-1 18a-P07-2	μ LEDアレイの作製 マイクロ LED と神経電極のハイブリッド集積デバイスの開発 ポスター講演 (Poster Presentation) P会場(Room P) QF-HVPEによる4インチ GaN on GaN エビウェハ 減圧 CVD成長六方晶窒化ホウ素薄膜に対するアニール効果の雰囲気依存性 減圧 CVD成長 BN薄膜の多形評価 BCl ₃ を原料に用いる減圧 CVDにより成長した六方晶窒化ホウ素薄膜への炭素混入と膜特性への影響ナノコラム結晶成長における GaInN/GaInN MQWへの	○長谷川 直希¹,清水 優輝¹,末広 好伸¹,岩谷 素顕¹,竹内 哲也¹ ○篠原 豪太¹,奥井 歩夢¹,西川 敦², Loesing Alexander²,鹿山 捋³,久我 奈穂子³,佐々木 拓哉³,関口 寬人¹ ○金木 奨太¹,今野 泰一郎¹,森 久¹,藤倉 序章¹ ○竹村 晃¹,大石 泰己¹,青池 琉希¹,太田 颯真¹,高橋 悠真¹,小南 裕子¹,原 和彦¹.²³ ○太田 颯真¹,青池 琉希¹,高橋 悠真¹,竹村 晃¹,小南 裕子¹,原和彦².² ○青池 琉希¹,大石 泰己¹,太田 颯真¹,竹村 晃¹,小南 裕子¹,原和彦².³	1. 豊技大, 2.ALLOS, 3. 東北大 1. 住友化学 1. 静岡大院, 2. 大学院光医工学研, 3. 静岡大電研 1. 静岡大総合研, 2. 静岡大光医工研, 3. 静岡大電子研 1. 静岡大総合研, 2. 静岡大光医工研, 3. 静岡大電子研
2:15	獎 18a-C42-13 ed.) 9:30 - 11:30 18a-P07-1 18a-P07-2 18a-P07-3	μ LEDアレイの作製 マイクロ LED と神経電極のハイブリッド集積デバイスの開発 ボスター講演 (Poster Presentation) P会場(Room P) QF-HVPEによる4インチ GaN on GaN エピウェハ 減圧 CVD 成長六方晶窒化ホウ素薄膜に対するアニール効果の雰囲気依存性 減圧 CVD 成長 BN 薄膜の多形評価 BCl ₃ を原料に用いる減圧 CVDにより成長した六方晶窒 化ホウ素薄膜への炭素混入と膜特性への影響ナノコラム結晶成長における GaInN/GaInN MQWへのAIN 中間層の挿入効果 半極性 GaInN 活性層を有するナノコラムの発光バラつき	○長谷川 直希¹,清水 優輝¹,末広 好伸¹,岩谷 素顕¹,竹内 哲也¹ ○篠原 豪太¹,與井 歩夢¹,西川 敦², Loesing Alexander², 鹿山 捋³, 久我 奈穂子³, 佐々木 拓哉³,関口 寬人¹ ○金木 奨太¹,今野 泰一郎¹,森 久¹,藤倉 序章¹ ○竹村 晃¹,大石 泰己¹,青池 琉希¹,太田 颯真¹,高橋悠真¹,小南 裕子¹,原 和彦²³ ○太田 颯真¹,青池 琉希¹,高橋 悠真¹,竹村 晃¹,小南 裕子¹,原 和彦²³ ○青池 琉希¹,大石 泰己¹,太田 颯真¹,竹村 晃¹,小南 裕子¹,原和彦¹²³ ○梅本 匠¹,進藤隆太¹,赤川 広海¹,山口 智広¹,尾沼猛儀¹,本田 微¹,富樫 理恵²³,岸野 克巳²³ ○赤塚 泰斗¹,石沢 峻介¹,掛村 康人¹,両角 浩一¹,宮	1. 豊技大, 2.ALLOS, 3. 東北大 1. 佳友化学 1. 静岡大院, 2. 大学院光医工学研, 3. 静岡大電研 1. 静岡大総合研, 2. 静岡大光医工研, 3. 静岡大電子研 1. 静岡大総合研, 2. 静岡大光医工研, 3. 静岡大電子研 1. 工学院大, 2. 上智大, 3. 上智大ナノテク
2:15	獎 18a-C42-13 ed.) 9:30 - 11:30 18a-P07-1 18a-P07-2 18a-P07-3 18a-P07-4	μ LEDアレイの作製 マイクロ LED と神経電極のハイブリッド集積デバイスの開発 ボスター講演 (Poster Presentation) P会場(Room P) QF-HVPEによる4インチ GaN on GaN エピウェハ 減圧 CVD 成長六方晶窒化ホウ素薄膜に対するアニール効果の雰囲気依存性 減圧 CVD 成長 BN 薄膜の多形評価 BCl ₃ を原料に用いる減圧 CVD により成長した六方晶窒化ホウ素薄膜への炭素混入と膜特性への影響ナノコラム結晶成長における GaInN/GaInN MQWへの AIN 中間層の挿入効果 半極性 GaInN 活性層を有するナノコラムの発光バラつき改善 THz 波を用いた ScAlMgO4 基板上 GaN 薄膜の屈折率異方	○長谷川 直希¹,清水 優輝¹,末広 好伸¹,岩谷 素顕¹,竹内 哲也¹ ○篠原 豪太¹,奥井 歩夢¹,西川 敦², Loesing Alexander²,鹿山 捋³,久我 奈穂子³,佐々木 拓哉³,関口 寬人¹ ○金木 奨太¹,今野 泰一郎¹,森久¹,藤倉 序章¹ ○竹村 晃¹,大石 泰己¹,青池 琉希¹,太田 颯真¹,高橋悠真¹,小南 裕子¹,原 和彦¹²³ ○太田 颯真¹,青池 琉希¹,高橋 悠真¹,竹村 晃¹,小南 裕子¹,原 和彦²² ○青池 琉希¹,大石 泰己¹,太田 颯真¹,竹村 晃¹,小南 裕子¹,原和彦¹²³ ○梅本 匠¹,進藤 隆太¹,赤川 広海¹,山口 智広¹,尾沼猛俵¹,本田 徹¹,富樫 理恵²³,岸野 克巳²³ ②赤塚 秦斗¹,石沢 峻介¹,掛村 康人¹,両角 浩一¹,宫澤 弘¹,赤坂 康一郎¹,富樫 理恵²,岸野 克巳²	1. 豊技大, 2.ALLOS, 3. 東北大 1. 佳友化学 1. 静岡大院, 2. 大学院光医工学研, 3. 静岡大電研 1. 静岡大総合研, 2. 静岡大光医工研, 3. 静岡大電子研 1. 静岡大総合研, 2. 静岡大光医工研, 3. 静岡大電子研 1. 工学院大, 2. 上智大, 3. 上智大ナノテク 1. セイコーエプソン(株), 2. 上智大ナノテク
2:15	獎 18a-C42-13 sd.) 9:30 - 11:30 18a-P07-1 18a-P07-2 18a-P07-3 18a-P07-4 18a-P07-5	μ LEDアレイの作製 マイクロ LED と神経電極のハイブリッド集積デバイスの開発 ボスター講演 (Poster Presentation) P会場(Room P) QF-HVPEによる4インチ GaN on GaN エピウェハ 減圧 CVD 成長六方晶窒化ホウ素薄膜に対するアニール効果の雰囲気依存性 減圧 CVD 成長 BN 薄膜の多形評価 BCl ₃ を原料に用いる減圧 CVD により成長した六方晶窒化ホウ素薄膜への炭素混入と膜特性への影響ナノコラム結晶成長における GaInN/GaInN MQWへのAIN 中間層の挿入効果 半極性 GaInN 活性層を有するナノコラムの発光バラつき改善 改善	○長谷川 直希¹,清水 優輝¹,末広 好伸¹,岩谷 素顕¹,竹内 哲也¹ ○篠原 豪太¹,與井 歩夢¹,西川 敦², Loesing Alexander², 鹿山 将³, 久我 奈穂子³, 佐々木 拓哉³, 関口 寬人¹ ○金木 奨太¹,今野 泰一郎¹,森 久¹,藤倉 序章¹ ○竹村 晃¹,大石 泰己¹,青池 琉希¹,太田 颯真¹,高僑悠真¹,小南 裕子¹,原 和彦¹-2。 ○太田 颯真¹,青池 琉希¹,高橋悠真¹,竹村 晃¹,小南 裕子¹,原 和彦²-3 ○青池 琉希¹,大石 泰己¹,太田 颯真¹,竹村 晃¹,小南 裕子¹,原 和彦²-3 ○梅本 匠¹,進藤 隆太¹,赤川 広海¹,山口 智広¹,尾沼猛餦²,本田 徹¹,富隆 埋恵²-3,岸野 克巳²-3 ○赤塚 泰斗¹,石沢 岐分¹,掛村 康人¹,両角 浩一¹,宮澤 弘¹,赤坂 康一郎¹,富樫 理恵²,岸野 克巳² ○土田 海渡¹,藤井 高志¹²,岩本 敏志²,出浦 桃子¹,荒木 努¹	1. 豊枝大, 2.ALLOS, 3. 東北大 1. 住友化学 1. 静岡大院, 2. 大学院光医工学研, 3. 静岡大電研 1. 静岡大総合研, 2. 静岡大光医工研, 3. 静岡大電子研 1. 静岡大総合研, 2. 静岡大光医工研, 3. 静岡大電子研 1. 工学院大, 2. 上智大, 3. 上智大ナノテク 1. セイコーエプソン(株), 2. 上智大ナノテク 1. 立命館大, 2. 日邦プレシジョン

	18a-P07-10	電子空乏に近い AlGaN/GaN ヘテロ構造へのオーミック 電極形成	○白須 翔¹, 森田 廉¹, 藤岡 洋², 前田 就彦¹	1. 東京工科大工, 2. 東大生研
	18a-P07-11	プラズマLPE法によるGaN層の成長(I)	○三根 秀斗¹, 中川 治紀¹, 吉田 圭佑¹, 篠田 宏之¹, 六 倉 信喜¹	1. 東京電機大工
	18a-P07-12	プラズマLPE法による GaN層の成長(II)	○中川 治紀¹, 三根 秀斗¹, 吉田 圭佑¹, 篠田 宏之¹, 六 倉 信喜¹	1. 東京電機大工
		口頭講演 (Oral Presentation) C42会場 (Room C42)		1 FEL-RET 2 FEL 1 17 TF
9:00	奨 19a-C42-1	Na フラックス法におけるメルトバックを利用した低転位 GaN 結晶成長における多結晶の低減	丸山 美帆子 ¹ , 吉村 政志 ^{1,2} , 森 勇介 ¹	
9:15	19a-C42-2	反射 X線トポグラフ像の転位スポットサイズによる GaN 基板中の貫通転位種の同定	○兼近 将一¹, 山口 聡², 岸田 佳大², 伊勢川 和久², 北 住 幸介², 木本 康司²	1.名古屋大学, 2.豊田中研
9:30	19a-C42-3	高酸素濃度を有する OVPE-GaN 基板の CMP 特性	〇中瀬 仁太 1 , 高見 文宣 1 , 滝野 淳 $-^{1}$, 隅 智亮 1 , 岡山 芳央 1	1.パナHD
9:45	奨 19a-C42-4	高キャリア濃度 OVPE-GaN の電気化学エッチングに関する特性	○(B) 横井 創吾¹,字佐美 茂佳¹,今西 正幸¹,隅智 亮²,滝野 淳一²,岡山 芳央²,伊藤 瞭太³,秦雅彦⁴,田 中 敦之⁵,本田善央⁵,天野 浩⁵,丸山美帆子¹,吉村 政 志⁵,森勇介¹	3.住友化学(株), 4.伊藤忠プラスチックス(株), 5.名大
0:00	19a-C42-5	4H-SiC(000-1)上HVPE-AIN成長における成長前水素アニールがピット形成に与える影響	○佐藤 嵐士¹, 村上 尚¹	1. 東京農工大院 BASE
0:15 0:30	19a-C42-6	休憩/Break THVPE法による歪緩和InGaN 中間層上InGaN 多重量子 井戸成長	○山田 千帆¹, 中井 慧¹, 村上 尚¹	1.東京農工大院BASE
10:45	奨 19a-C42-7	ベイズ最適化を活用したGaN薄膜のスパッタ成長	○齋藤 明紀¹, 金武 凜樹¹, 山田 直臣¹	1.中部大学
1:00	19a-C42-8	焼結体ターゲットを用いた GaN 薄膜のバルススパッタ 成長	○(M1)野村 航平¹, 板東 廣朗², 上岡 義弘², 楠瀬 好郎², 召田 雅実², 上向井 正裕¹, 谷川 智之¹, 片山 竜二¹	1. 阪大院工, 2. 東ソー株式会社
1:15	19a-C42-9	Mg含有GaN スパッタリングターゲットの作製と評価	〇加納 絵梨沙¹, 板東 廣朗¹, 三崎 日出彦¹, 上岡 義 弘¹, 召田 雅実¹	1.東ソー株式会社
9/19(⁻ 3:00	Thu.) 13:00 - 17:15 19p-C42-1	口頭講演 (Oral Presentation) C42 会場 (Room C42) III 族窒化物半導体ヘテロ構造中の縦光学フォノンエネル ギーの輸送過程	○石谷 善博 1	1.千葉大工
3:15	E 19p-C42-2	Condition of phonon transport augmentation at GaInN/ GaN heterointerface	○ (DC)KhaingShwe TheeEi¹, Tatsuya Asaji¹, Bei Ma¹, Daisuke Iida², Mohammed A. Najmi², Kazuhiro Ohkawa², Yoshihiro Ishitani¹	1.Chiba Univ., 2.KAUST
3:30	19p-C42-3	フォノン・励起子・輻射モデルにより解析した超薄膜 AIN/GaN/AIN量子井戸中の2次元励起子の運動エネル ギー輸送過程	○(D) 地崎 匡哉 ¹ , 石谷 善博 ¹	1. 千葉大院工
3:45	19p-C42-4	n ⁺⁺ -GaN—uid-GaNマイクロストライプ構造からのLO 様フォノン共鳴放射における光反射層導入効果	○吉川 大樹¹, 林 伯金¹, Hnin Lai Lai Aye¹, 上野 耕 平², 藤岡 洋², 石谷 善博¹	1. 千葉大院工, 2. 東京大院
4:00	19p-C42-5	THz-TDSEによるMgイオン注入したGaN単結晶の電気 特性評価(IV)		1. 立命館大学, 2. 日邦プレシジョン, 3. イオンテクノセ ンター
4:15 4:30	19p-C42-6	休憩/Break 光熱偏向分光法による欠陥密度定量化に向けたGaNバル ク評価	○角谷 正友¹,藤倉 序章²,中野 由崇³,小出 康夫¹,本 田 微⁴	1. 物材機構, 2. 住友化学㈱, 3. 中部大, 4. 工学院大
4:45	19p-C42-7	GaNトンネル接合中に形成されたバンドギャップ内準位 の解析	○(M1)近藤 泉樹¹, 市川 颯人¹, 宇田 陽¹, 今井 大地¹, 竹内 哲也¹, 宮嶋 孝夫¹	1. 名城大院理工
5:00	19p-C42-8	GaNの光熱偏向分光スペクトルと吸収係数の関係に関する考察		1. 名城大院理工, 2. 名工大
5:15	19p-C42-9	光熱偏向分光法による GaN の熱物性解析に対する液体 媒質の影響		1. 名城大院理工
5:30 5:45	19p-C42-10	$\operatorname{GaN/Al_{1x}In_xN}$ 多重積層構造におけるバンドギャップ内準位の解析		1. 名城大院理工
6:00	奨 19p-C42-11	休憩/Break 高純度GaN結晶の内部量子効率マッピング測定	〇佐野 昂志 1 , 藤倉 序章 2 , 今野 泰一郎 2 , 金木 奨太 2 , 市川 修平 1 , 小島 一信 1	1. 阪大院工, 2. 住友化学株式会社
6:15	奨 19p-C42-12	k・p 摂動法による低 In 組成領域における In GaN の変形ポテンシャルの決定	○森 恵人¹, 山口 敦史², 市川 修平¹, 小島 一信¹	1. 阪大院工, 2. 金沢工大院工
6:30	奨 19p-C42-13	InGaN単一量子井戸におけるフォトルミネセンス寿命の 波長依存性	〇新保 樹 1 , 土佐 宏樹 1 , 山口 敦史 1 , 岩満 一功 2 , 冨谷 茂隆 2	1. 金沢工大, 2. 奈良先端大
16:45	奨 19p-C42-14	ストライプコア GaN 基板上 InGaN 量子井戸における光音響・発光同時計測および時間分解 PL 測定の顕微ラインスキャン		1. 金沢工大, 2. ソニーセミコンダクタソリューションズ
7:00	奨 E 19p-C42-15	Time-resolved photoluminescence study on red InGaN hybrid single-quantum-wells under selective excitation conditions	○ (D)Zhaozong Zhang¹, Ryota Ishii¹, Kanako Shojiki¹, Mitsuru Funato¹, Daisuke Iida², Kazuhiro Ohkawa², Yoichi Kawakami¹	1.Kyoto Univ., 2.KAUST
9/20 9:00	(Fri.) 9:00 - 11:30 20a-A24-1	口頭講演 (Oral Presentation) A24会場 (Room A24) 格子整合 AlInN上 GaN の逆テーパー型メサ形成の検討	○大島 孝仁¹, 井村 将隆¹, 大島 祐一¹	1.NIMS
9:00	型 20a-A24-1 奨 20a-A24-2	格子整合 AlinN 上 GaN の逆アーバー型メサ形成の検討 GaN/AlN 共鳴トンネルダイオードのヘテロ界面急峻性 の改善		1.NIMS 1.名大院工, 2.名大IMASS, 3.名大Dセンター, 4.名大 IAR
9:30	20a-A24-3	縦型 GaN pn ダイオードの逆バイアス下でのリークメカニズムの検討	〇隅 智亮 1 ,半田 浩之 1 ,小川 雅弘 1 ,鶴見 直大 1 ,滝野 淳一 1 ,田村 聡之 1 ,岡山 芳央 1	1.パナソニックホールディングス株式会社
9:45	20a-A24-4	QST基板上へのBGaN成長におけるバッファ層の影響評価	〇林 敦景 1 , 西川 瞬 1 , 松本 倖汰 2 , 伊藤 範和 2 , 田中 岳 利 2 , 中原 健 2 , 井上 翼 1 , 青木 徹 3 , 中野 貴之 $^{1.3}$	1. 静大院工, 2. ローム株式会社, 3. 静大電研
0:00	20a-A24-5	長波長中性子照射によるSi基板及びQST基板上に作製したBGaN検出器の中性子検出特性評価	○安藤光佑¹,西川瞬¹,櫻井辰大¹,川崎晟也²,日野正裕⁴,本田善央⁵,天野浩⁵,松本 倖汰⁴,伊藤 範和⁴,田中 岳利⁴,中原 健⁴,井上 翼¹,青木 徹³,中野 貴之¹.3	
0:15 0:30	奨 20a-A24-6	休憩/Break PEDOT:PSSを正孔輸送層に用いたGaInN系緑色LEDの		1.名城大学, 2.E & Eエボリューション(株)
0:45	奨 20a-A24-7	作製 下部トンネル接合を有する 500 nm GaInN端面発光レー ザーダイオード	智¹,岩谷素顕¹,竹内哲也¹,松山絵美²,鈴木敦志² ○東莉大¹,竹内哲也¹,岩谷素顕¹,上山智¹	1.名城大 理工
11:00	奨 20a-A24-8	リーティュート 円偏光 InGaN LED 構造の作製と特性評価	〇村田 雄生 1 ,市川 修平 2 1 ,戸田 晋太郎 3 ,藤原 康 文 4 5 6 , 小島 $ 6$ 1	1. 阪大院工, 2. 阪大電顕センター, 3. アルバック協働研, 4. 立命館大学総合科学技術研究機構, 5. 阪大産研, 6. 阪 大エマージングサイエンスデザインR3 センター
1:15	奨 20a-A24-9	発光・受光兼用ダイオードの提案と作製指針	○安藤 勇歩¹, 市川 修平¹.², 小島 一信¹	1. 阪大院工, 2. 阪大電顕センター

0/20(T=: \ 12.20 15.00	口頭講演 (Oral Presentation) C42 会場 (Room C42)		
13:30	20p-C42-1	サファイア基板上AINテンプレートの検討(1) - 成長モー	○奥野浩司 ^{1.2} , 武藤 響己 ² , 三浦 聖央 ² , 大矢 昌輝 ¹ ,	1. 豊田合成㈱, 2. 名城大・理工
	•	ド依存性-	齋藤 義樹 1,2 , 石黒 永孝 2 , 上山 智 2 , 岩谷 素顕 2 , 竹内 哲也 2	
13:45	20p-C42-2	サファイア基板上AINテンプレートの検討 (2) -AIGaN 核 形成層の効果 -	〇奥野 浩司 1,2 ,武藤 響己 2 ,三浦 聖央 2 ,大矢 昌輝 1 , 齋藤 義樹 1,2 ,石黒 永孝 2 ,上山 智 2 ,岩谷 素顕 2 ,竹内哲也 2	1. 豊田合成㈱, 2. 名城大・理工
14:00	奨 20p-C42-3	サファイア基板上AINテンプレートの検討(3) - 基板剥離-	○(M1)三浦聖央¹,藤田真帆¹,浜島直紀¹,岡龍乃介¹,竹久哲平¹,武藤響己¹,竹内哲也¹,上山智¹,岩谷素顕¹,石黒永孝¹,奧野浩司¹²,齋藤義樹¹²	1. 名城大理工, 2. 豊田合成㈱
14:15	奨 20p-C42-4	固相成長により作製された AIN バルク基板上の AIGaN 系量子井戸構造の作製	〇井本 圭紀¹,三宅 倫太郎¹,山田 凌矢¹,齋藤 巧夢¹, 丸山 竣大¹,佐々木 祐輔¹,狩野 祥吾¹,岩山 章¹,上山 智¹,竹内 哲也¹,岩谷 素顕¹,佐藤 洋介²,阿閉 恭平², 野中 健太朗²	1.名城大・理工, 2.日本ガイシ(株)
14:30	奨 20p-C42-5	AIN上分極ドーブ組成傾斜AIGaN層の正孔濃度における Mg添加の影響		1.名城大理工, 2.豊田合成
14:45	20p-C42-6	半極性 AIN(10-13) 成長における m面サファイア基板の傾斜効果	○沈 旭強¹, 児島 一聡¹	1. 産総研
		ペワーデバイス・プロセス技術・評価、15.4 III-V 族窒化物系	吉晶のコードシェア / Code-sharing Session of 13.7 &	₿ 15.4
9/16(N 13:00		口頭講演 (Oral Presentation) A22 会場 (Room A22) コンタクトレス P E C エッチングを用いた GaN ナノワイ ヤ作製における UVA 光の効果	○古内 久大 ^{1,2} , 本久 順一 ^{1,2} , 佐藤 威友 ²	1.北大院情, 2.北大量集セ
13:15	16p-A22-2	N 極性 GaN に及ぼすドライエッチングの台座の影響	○三島 秀治郎¹, 中村 大輝¹, 新海 聡子¹	1.九工大院
13:30	16p-A22-3	N極性AlN上のGaNのコヒーレント成長に向けた MOVPE成長の条件改善	○(M2) 古橋 樹¹, プリストフセク マーコス², 楊 旭²	
13:45	奨 16p-A22-4	N極性GaN/AlGaN/AlN高電子移動度トランジスタの リーク電流が絶縁破壊電圧に及ぼす影響	 ○ (M2)Zazuli Hiyama Aina¹,藤井 開¹,仁ノ木 亮 祐¹,平田 靖晃¹,木本 大星¹,倉井 聡¹,岡田 成仁¹,田 中 敦之²,新田 州吾²,本田 善央²,天野 浩²,山田 陽 一¹ 	1.山口大創成科学, 2.名古屋大未来研
14:00	奨 16p-A22-5	ウェハ接合と裏面プロセスを用いたn-GaN N極性面上 オーミック電極形成	\bigcirc (M1) 藤家 智希 1 , 梁 剣波 1 , 末光 哲也 2 , 重川 直輝 1	1.大阪公大工, 2.東北大
14:15	奨 16p-A22-6	高出力密度を有する N 極性 GaN/InAIN HEMT の開発	○早坂 明泰 1 , 吉田 成輝 1 , 向井 章 1 , 眞壁 勇夫 1 , 辻 幸 详 1 , 牧山 剛三 1 , 中田 健 1	
14:30	奨 16p-A22-7	N/Mg イオン注入法を用いた縦型 GaN ジャンクションバ リアショットキーダイオードの作製及び電気特性評価	央 ^{2,3,4} , 天野 浩 ^{2,3,4}	IAR
14:45	招 16p-A22-8	「第56回講演奨励賞受賞記念講演」 Mgイオン注入p-GaNにおける注入領域および拡散領域のNイオン連続注入による補償ドナー濃度低減効果	〇角田 健輔 1 ,片岡 恵太 2 ,成田 哲生 2 ,堀田 昌宏 $^{1.3}$,加地 徽 $^{1.3}$,須田 淳 $^{1.3}$	1.名大院工, 2.豊田中研, 3.名大未来研
15:00 15:15	招 16p-A22-9	休憩/Break 「第56回講演奨励賞受賞記念講演」	〇北川 和輝 ¹ , Maciej Matys ² , 上杉 勉 ² , 堀田 昌	1.名大院工, 2.名大未来研
15:15		Mgチャネリングイオン注入および超高圧アニールを用いて作製した縦型 GaN JBS ダイオードにおける電流 - 電圧特性の注入量依存性	宏 ^{1,2} , 加地 徽 ² , 須田 淳 ^{1,2}	
15:30	16p-A22-10	OVPE法を用いたMgイオン注入GaNの大気圧活性化手 法の提案		ホールディングス(株), 5.住友化学(株), 6.伊藤忠
15:45	奨 16p-A22-11	p型GaN表面に発生する電荷についての検討	〇焦 一寧 1 , 高橋 尚伸 1 , 島崎 喬大 1 , 佐藤 威友 1 , 赤澤 正道 1	1.北大量集センター
16:00	招 16p-A22-12	「第56回請演奨励賞受賞記念請演」 分布型分極ドーピングによる AIN 系縦型 p-n ダイオード の作製	〇隈部 岳 1 , 吉川 陽 2,3 , 川崎 晟 1 , 久志本 真希 1 , 本田 善央 3,4,5 , 新井 学 3 , 須田 淳 1,3 , 天野 浩 3,4,5	1.名大院工, 2.旭化成, 3.名大 IMaSS, 4.名大 Dセンター, 5.名大 IAR
16:15		Si ドープAIN ショットキーバリアダイオードにおける順 方向リーク電流の解析	谷保 芳孝², 中野 義昭¹, 前田 拓也¹	
16:30		AlN MESFET の高温特性評価 Al-rich AlGaN マルチチャネル Fin 構造の作製と評価	○廣木 正伸¹, 平間 一行¹, 熊倉 一英¹, 谷保 芳孝¹ ○小坂 鷹生¹, 上野 耕平¹, 藤岡 洋¹	1.NTT 物性研 1.東大生研
16:45 17:00			○ 小 坂 鷹 生 , 上 町 树 十 , 膝 両 存 ○ 李 太起 ¹ , 吉川 陽 ^{1.3} , 隈部 岳 瑠 ² , 杉山 聖 ¹ , 新井 学 ³ , 須田 淳 ^{2.3} , 天野 浩 ^{2.3}	1. 旭化成, 2. 名大院工, 3. 名大 IMaSS
17:15 17:30	16p-A22-17	休憩/Break 高AIN モル分率 AlGaN/GaN デュアルゲート HEMT の電		1.名大院工, 2.名大未来研, 3.熊本大
17:45	奨 16p-A22-18			1. 名大院工, 2. 名大 IMaSS, 3. 名大 Dセンター, 4. 名大高
18:00	16p-A22-19	おけるアバランシェ降伏の確認 AlGaN/GaN~テロ界面でのキャリア輸送特性と欠陥分 た	新田 州吾 ² , 本田 善央 ^{2,3,4} , 天野 浩 ^{2,3,4} ○角谷 正友 ¹ , 今中 康貴 ¹ , 中野 由崇 ² , 竹端 寛治 ¹	等研究院 1. 物材機構, 2. 中部大
18:15	奨 16p-A22-20	布 AlGaN/GaN二次元電子ガスにおけるドリフト速度 - 電界 特性の温度依存性	○若本 裕介¹,河原 孝彦²,吉田 成輝²,牧山 剛三²,中田 健²,前田 拓也¹	1.東大工, 2.住友電気工業株式会社
18:30	16p-A22-21	行任の血反似行任 ScAIN混晶の分極反転におけるSc組成および格子拘束の 影響に関する理論検討		1.三重大院工
18:45	16p-A22-22	エピタキシャル ScAIN/AlGaN/GaNへテロ構造の作製	〇奥田 朋也 1 ,太田 隼輔 2 ,河原 孝彦 3 ,牧山 剛三 3 ,中田 健 3 ,前田 拓也 4 ,小林 篤 1,2	1.理科大院先進工, 2.理科大先進工, 3.住友電工, 4.東大院工
		品 / Group IV crystals and alloys		1. 東京工芸大工
	E 18p-P10-2	Molecular Beam Deposition for the Synthesis of Germanium Sulfide Crystals: Exploring Optimal Growth Conditions	○ (M1)Bowen MA ^{1, 2} , Qinqiang ZHANG ¹ , Ryo MATSUMURA ¹ , Naoki FUKATA ^{1, 2}	1.NIMS, 2.Univ. of Tsukuba
9/19(9:30	Thu.) 9:30 - 11:45 招 19a-B5-1	口頭講演 (Oral Presentation) B5会場 (Room B5) 「第56回講演奨励賞受賞記念講演」	○横川 凌 ^{1,2} , 伊藤 佑太 ¹ , 前田 唯葉 ¹ , 荒井 康智 ³ , 米	1.明治大理工, 2.明治大MREL, 3.JAXA, 4.東北大
9:45	奨 19a-B5-2	空間相関モデルを用いたSiGe内の原子配列に関する考察 PL分光法による無ひずみ単結晶バルクSi ₁ 。Ge _x のバンド	○伊藤 佑太 1 , 横川 凌 1,2 , 箕輪 卓哉 1 , 荒井 康智 3 , 米	1. 明治大理工, 2. 明大 MREL, 3. JAXA, 4. 東北大
10:00	奨 19a-B5-3	ギャップエネルギー評価 単結晶歪 Si _{1-x} Sn _x のバンド構造評価(Ⅱ)	永一郎 ⁴ , 小椋 厚志 ^{1,2} ○石崎 寬規 ¹ , 横川 凌 ^{1,2} , 箕輪 卓哉 ¹ , 黒澤 昌志 ³ , 小椋 厚志 ^{1,2}	1.明治大理工, 2.明大 MREL, 3.名大院工
10:15	19a-B5-4	Si上Ge埋め込み成長におけるトレンチ側壁の傾斜効果		1. 豊橋技科大, 2.SUMCO

10:30				
_ 5.00	奨 19a-B5-5	ナノチャネルスパッタエビタキシーによる歪み緩和 GeSn薄膜成長	〇石丸 賢昇 1 , 田中 信敬 1 , 國吉 望月 2 , 小林 拓真 1 , 志村 考功 1,3 , 渡部 平司 1	1. 阪大院工, 2. アルバック協働研, 3. 早大 IPS
10:45	19a-B5-6	高Sn組成Ge _{1-x} Sn _x エピタキシャル層の結晶性に堆積速度が及ぼす影響	○中塚 理 ^{1,2} , 壁谷 汰知 ¹ , 柴山 茂久 ¹ , 坂下 満男 ¹ , 黒 澤 昌志 ¹	1. 名大院工, 2. 名大未来研
11:00	19a-B5-7	転写を用いた InP 格子整合系 GeSnOI MSM フォトディテクターの試作		1. 産総研, 2. 名大院工
11:15	19a-B5-8	GeSiSn/GeSn二重障壁構造のエピタキシャル成長におけるH。導入効果		1. 名大院工, 2. 名大未来研
11:30	奨 19a-B5-9	高濃度 n型ドーピングに向けた P/Ga共添加 Ge結晶の成長		1. 豊橋技科大
9/19(Th	nu.) 13:00 - 17:1 19p-B5-1	5 口頭講演 (Oral Presentation) B5 会場 (Room B5) Ge-on-Si(111) へのクラック発生の観測とその抑制	○芝原 夕夏¹, 菊岡 柊也¹, 長尾 優希¹, 溝口 稜太¹, 山	1. 都市大 . 2. 阪大基礎工 CSRN. 3. 阪大 OTRI
13:15	19p-B5-2	選択的イオン注入による Si(111) 上の歪み SiGe/Ge への	田道洋¹,浜屋 宏平²³,澤野 憲太郎¹ ○溝口 稜太¹,長尾 優希¹,芝原 夕夏¹,相川 茉由¹,山	
13:30	19p-B5-3	クラック伝搬抑制 Ge-on-Insulator上マイクロブリッジの作製と共振発光の	田 道洋1, 浜屋 宏平2.3, 澤野 憲太郎1	
		観測	亮河¹,澤野 憲太郎¹	
13:45 14:00	19p-B5-4 19p-B5-5	Si上Ge p-i-n LED の作製と室温EL 発光特性 Ge on insulator 構造を用いた横型 SiGe スピン伝導素子 の作製		1.都市大 1. 阪大基礎工 CSRN, 2.都市大理工, 3.九大総理工, 4.阪 大産研, 5.阪大 OTRI スピン
14:15	19p-B5-6	$\mathrm{Co_2FeAl_{0.5}Si_{0.5}/Ge-}pn$ 接合を介した室温スピン信号の観測		1. 阪大基礎工 CSRN, 2. 都市大理工, 3. 阪大 OTRI スピン
14:30	19p-B5-7	分子線エピタキシー法を用いたメチル化ゲルマナン薄膜 の形成	○中山 敦稀¹, 松本 一歩¹, 柴山 茂久¹, 坂下 満男¹, 中塚 理¹.², 黒澤 昌志¹	1. 名大院工, 2. 名大未来研
14:45	19p-B5-8	偏析 GeSn 極薄結晶の形成に向けた Ge _{1-x} Sn _x エピタキ シャル膜の表面処理		1. 名大院工, 2. 福岡大理, 3. 明治大理工, 4. 明治大MREI
15:00 15:15	19p-B5-9	休憩/Break ポストアニールによるSn添加多結晶Ge薄膜(≤50nm)の	○橋本 隆¹, 古賀 泰志郎¹. 梶原 隆司¹ 佐道 泰浩¹	1. 九大システム情報
15:30	19p-B5-10	粒径欠陥の不動態化 分子線堆積法によるIV族カルコゲナイド薄膜の絶縁膜上		1.物質・材料研究機構, 2.筑波大
		成長	Ahmed ^{1,2} , 深田 直樹 ^{1,2}	
15:45	E 19p-B5-11	High Pressure Annealing Towards the Solid-Phase Crystallization of Thin-Film Germanium Sulfide	Matsumura ¹ , Naoki Fukata ^{1, 2}	1.NIMS, 2.Univ. of Tsukuba
16:00	E 19p-B5-12	Growth of Uniform GeS Thin Films by Aluminum Catalyst	○ Qinqiang Zhang ¹ , Ryo Matsumura ¹ , Naoki Fukata ¹	1.MANA-NIMS
16:15	19p-B5-13	フレキシブル熱電変換素子応用に向けた多結晶 Ge薄膜の 低温合成と高出力因子の実現		1. 筑波大学院
16:30 16:45	奨 19p-B5-14 19p-B5-15	多結晶 Ge層の厚膜合成とガラス上分光感度の初実証 Si薄膜の二次電池負極応用 - 界面層挿入による特性向上 -		1. 筑波大院, 2. 学振特別研究員 1. 筑波大
I	40 DE 46		薫1	
17:00	19p-B5-16	スクリーン印刷と焼成による厚い Ge-rich 領域を伴う SiGe 薄膜の Si 基板上のエピタキシャル成長	木 紹太 ³ , 南山 偉明 ³ , ダムリン マルワン ^{3,4} , 宇佐美	1.名大院工, 2.名大未来機構, 3.東洋アルミ, 4.阪大院 工, 5.名大未材研
15.6 IV邡	· _{医系化合物(SiC}	SiGe 薄膜の Si 基板上のエピタキシャル成長 / Group IV Compound Semiconductors (SiC)		
15.6 IV旅 9/18(W	· _{医系化合物(SiC}	SiGe薄膜のSi基板上のエピタキシャル成長	木 紹太 ³ , 南山 偉明 ³ , ダムリン マルワン ^{3,4} , 宇佐美 徳隆 ^{1,2,5}	
15.6 IV旅 9/18(W 9:00	集系化合物(SiC /ed.)9:00 - 10:4	SiGe 薄膜の Si 基板上のエピタキシャル成長 / Group IV Compound Semiconductors (SiC) 「四頭講演 (Oral Presentation) C41会場(Room C41)	木 紹太 ³ , 南山 偉明 ³ , ダムリン マルワン ^{3,4} , 宇佐美 徳隆 ^{1,2,5} ○西尾 譲司 ¹ , 太田 千春 ¹ , 飯島 良介 ¹	工,5.名大未材研
15.6 IV 放	矢系化合物(SiC /ed.)9:00 - 10:4 18a-C41-1	SiGe 薄膜の Si 基板上のエピタキシャル成長 / Group IV Compound Semiconductors (SiC) 「回頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底 面転位の UV 照射による積層欠陥拡張比較 高エネルギーイオン注入による積層欠陥拡張抑制のメカ ニズム解析 単一ドメインエピタキシャル成長による 3C-SiC 光陰極性	木 絽太³, 南山 偉明³, ダムリンマルワン³.⁴, 宇佐美徳隆¹.².5 ○西尾譲司¹, 太田 千春¹, 飯島 良介¹ ○原田 俊太¹, 坂根 仁², 加藤 正史³	工,5.名大未材研 1.東芝研開センター
15.6 IV £ 9/18(W 9:00 9:15 9:30 9:45	族系化合物 (SiC led.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4	SiGe 薄膜の Si 基板上のエピタキシャル成長 / Group IV Compound Semiconductors (SiC) 回頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底 面転位の UV 照射による積層欠陥拡張比較 高エネルギーイオン注入による積層欠陥拡張抑制のメカ 二ズム解析 単一ドメインエピタキシャル成長による 3C-SiC 光陰極性 能向上 SiC 昇華法における成長速度と原料内温度分布の関係	 木 紹太³, 南山 偉明³, ダムリンマルワン^{3,4}, 宇佐美徳隆^{1,2,5} ○西尾 譲司¹, 太田 千春¹, 飯鳥 良介¹ ○原田 俊太¹, 坂根 仁², 加藤 正史³ ○加藤 正史¹, Rho Kongshik¹, 藤田 隼¹ ○西澤 伸一¹, 齋藤 渉¹ 	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1.九大応力研
9/18(W 9/18(W 9:00 9:15 9:30	た系化合物 (SiC fed.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3	SiGe 薄膜の Si 基板上のエピタキシャル成長 / Group IV Compound Semiconductors (SiC) 口頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底 面転位の UV 照射による積層欠陥拡張比較 高エネルギーイオン注入による積層欠陥拡張抑制のメカ ニズム解析 単一ドメインエピタキシャル成長による 3C-SiC 光陰極性 能向上	本 紹太 ³ , 南山 偉明 ³ , ダムリンマルワン ^{3,4} , 宇佐美徳隆 ^{1,2,5} ○西尾 譲司 ¹ , 太田 千春 ¹ , 飯鳥 良介 ¹ ○原田 俊太 ¹ , 坂根 仁 ² , 加藤 正史 ³ ○加藤 正史 ¹ , Rho Kongshik ¹ , 藤田 隼 ¹ ○西澤 伸一 ¹ , 齋藤 渉 ¹ ○坂 卓磨 ¹ , 秋吉 翔太 ¹ , 水野 大誠 ¹ , 高橋 直暉 ¹ , 赤澤 絵里 ² , 鈴木 敦志 ² , Lu Weifang ³ , 上山 智 ¹ , 竹内 哲	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1.九大応力研
9/18(W 9/18(W 99:00 9:15 9:30 9:45 10:00	族系化合物 (SiC led.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4	SiGe薄膜のSi基板上のエピタキシャル成長 / Group IV Compound Semiconductors (SiC) 「回頭講演 (Oral Presentation) C41会場(Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底 面転位のUV 照射による積層欠陥拡張比較 高エネルギーイオン注人による積層欠陥拡張抑制のメカニズム解析 単一ドメインエピタキシャル成長による3C-SiC光陰極性能向上 SiC 昇華法における成長速度と原料内温度分布の関係 蛍光4H-SiCの成長レートと不純物濃度に関する検討 シングルイベント効果の理解を目指した窓形成SiC ダイ	木 紹太 ³ , 南山 偉明 ³ , ダムリンマルワン ^{3,4} , 宇佐美徳隆 ^{1,2,5} ○西尾 譲司 ¹ , 太田 千春 ¹ , 飯鳥 良介 ¹ ○原田 俊太 ¹ , 坂根 仁 ² , 加藤 正史 ³ ○加藤 正史 ¹ , Rho Kongshik ¹ , 藤田 隼 ¹ ○西澤 伸一 ¹ , 齋藤 渉 ¹ ○坂 卓磨 ¹ , 秋吉 翔太 ¹ , 水野 大誠 ¹ , 高橋 直暉 ¹ , 赤澤	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1.九大応力研
9:15 9/18(W 9:00 9:15 9:30 9:45 10:00	族系化合物 (SiC /ed.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4 奨 18a-C41-5	SiGe 薄膜の Si 基板上のエピタキシャル成長 / Group IV Compound Semiconductors (SiC) 「頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底 面転位の UV 照射による積層欠陥拡張比較 高エネルギーイオン注入による積層欠陥拡張抑制のメカ ニズム解析 単一ドメインエピタキシャル成長による 3C-SiC 光陰極性 能向上 SiC 昇華法における成長速度と原料内温度分布の関係 蛍光 4H-SiC の成長レートと不純物濃度に関する検討 シングルイベント効果の理解を目指した窓形成 SiC ダイ オードへのフェムト秒レーザー照射 高酸素圧熱酸化による SiO₂/SiC 界面単一光子源の偏光制	木 紹太³, 南山 偉明³, ダムリンマルワン³,⁴, 宇佐美徳隆¹,²,⁵ ○西尾譲司¹, 太田 千春¹, 飯島良介¹ ○原田 俊太¹, 坂根 仁², 加藤 正史³ ○加藤 正史¹, Rho Kongshik¹, 藤田 隼¹ ○西澤 伸一¹, 齋藤 渉¹ ○坂 卓磨², 秋吉 翔太¹, 水野 大誠¹, 高橋 直暉¹, 赤澤絵里², 鈴木 敦志², Lu Weifang³, 上山 智¹, 竹内 哲也¹, 岩谷 素顕¹ ○田岡 知樹¹, 牧野 高紘², 富田 卓朗¹	エ,5.名大未材研 1. 東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1. 九大応力研 1. 名城大理工,2.E&E エポ株,3. 厦門大
9:15.6 IV	接系化合物 (SiC (ed.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4 奨 18a-C41-5 奨 18a-C41-6	SiGe薄膜のSi基板上のエピタキシャル成長 / Group IV Compound Semiconductors (SiC) 口頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底 面転位のUV 照射による積層欠陥拡張比較 高エネルギーイオン注入による積層欠陥拡張抑制のメカニズム解析 単一ドメインエピタキシャル成長による3C-SiC 光陰極性能向上 SiC 昇華法における成長速度と原料内温度分布の関係 蛍光4H-SiC の成長レートと不純物濃度に関する検討 シングルイベント効果の理解を目指した窓形成SiC ダイオードへのフェムト秒レーザー照射	木 紹太³, 南山 偉明³, ダムリンマルワン³,⁴, 宇佐美徳隆¹,²,⁵ ○西尾譲司¹, 太田 千春¹, 飯島良介¹ ○原田 俊太¹, 坂根 仁², 加藤 正史³ ○加藤 正史¹, Rho Kongshik¹, 藤田 隼¹ ○西澤 伸一¹, 齋藤 渉¹ ○坂 卓磨², 秋吉 翔太¹, 水野 大誠¹, 高橋 直暉¹, 赤澤絵里², 鈴木 敦志², Lu Weifang³, 上山 智¹, 竹内 哲也¹, 岩谷 素顕¹ ○田岡 知樹¹, 牧野 高紘², 富田 卓朗¹	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1.九大応力研 1.名城大理工,2.E&Eエポ株,3.厦門大 1.徳島大院創成,2.量研機構
9:15.6 IV	接系化合物 (SiC (ed.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4 奨 18a-C41-5 奨 18a-C41-6	SiGe 薄膜の Si 基板上のエピタキシャル成長 O / Group IV Compound Semiconductors (SiC) T頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底面転位の UV 照射による積層欠陥拡張比較高エネルギーイオン注入による積層欠陥拡張抑制のメカニズム解析単一ドメインエピタキシャル成長による 3C-SiC 光陰極性能向上SiC 昇華法における成長速度と原料内温度分布の関係蛍光 4H-SiC の成長レートと不純物濃度に関する検討 シングルイベント効果の理解を目指した窓形成 SiC ダイオードへのフェムト秒レーザー照射高酸素圧熱酸化による SiO ₂ /SiC 界面単一光子源の偏光制御	木 紹太 ³ , 南山 偉明 ³ , ダムリンマルワン ^{3,4} , 宇佐美徳隆 ^{1,2,5} ○西尾 譲司 ¹ , 太田 千春 ¹ , 飯島 良介 ¹ ○原田 俊太 ¹ , 坂根 仁 ² , 加藤 正史 ³ ○加藤 正史 ¹ , Rho Kongshik ¹ , 藤田 隼 ¹ ○西澤 伸一 ¹ , 齋藤 渉 ¹ ○坂 卓磨 ¹ , 秋吉 翔太 ¹ , 水野 大誠 ¹ , 高橋 直暉 ¹ , 赤澤 絵里 ² , 鈴木 敦志 ² , Lu Weifang ³ , 上山 智 ¹ , 竹内 哲也 ¹ , 岩谷 素顕 ¹ ○田岡 知樹 ¹ , 牧野 高紘 ² , 富田 卓朗 ¹ ○(M2) 大山 倫句 ¹ , 土方 泰斗 ¹	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1.九大応力研 1.名城大理工,2.E&Eエボ株,3.厦門大 1.徳島大院創成,2.量研機構 1.埼玉大理工研
9:15.6 IV	接系化合物 (SiC (ed.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4 奨 18a-C41-5 奨 18a-C41-6 奨 18a-C41-7 ed.) 16:00 - 18:1	SiGe 薄膜の Si 基板上のエピタキシャル成長 / Group IV Compound Semiconductors (SiC) 「回頭講演 (Oral Presentation) C41 会場(Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底面転位の UV 照射による積層欠陥拡張比較高エネルギーイオン注入による積層欠陥拡張抑制のメカニズム解析 単一ドメインエピタキシャル成長による 3C-SiC 光陰極性能向上 SiC 昇華法における成長速度と原料内温度分布の関係蛍光 4H-SiCの成長レートと不純物濃度に関する検討 シングルイベント効果の理解を目指した窓形成 SiC ダイオードへのフェムト秒レーザー照射高酸素圧熱酸化による SiO₂/SiC 界面単一光子源の偏光制御 がスター講演 (Poster Presentation) P 会場(Room P)多枚数近接昇華(MCSS)法による 4H-SiC 成長速度の温	木 紹太 ³ , 南山 偉明 ³ , ダムリンマルワン ^{3,4} , 宇佐美徳隆 ^{1,2,5} ○西尾 譲司 ¹ , 太田 千春 ¹ , 飯島 良介 ¹ ○原田 俊太 ¹ , 坂根 仁 ² , 加藤 正史 ³ ○加藤 正史 ¹ , Rho Kongshik ¹ , 藤田 隼 ¹ ○西澤 伸一 ¹ , 齋藤 渉 ¹ ○坂 卓磨 ¹ , 秋吉 翔太 ¹ , 水野 大誠 ¹ , 高橋 直暉 ¹ , 赤澤 絵里 ² , 鈴木 敦志 ² , Lu Weifang ³ , 上山 智 ¹ , 竹内 哲也 ¹ , 岩谷 素顕 ¹ ○田岡 知樹 ¹ , 牧野 高紘 ² , 富田 卓朗 ¹ ○(M2) 大山 倫句 ¹ , 土方 泰斗 ¹	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1. 九大応力研 1.名城大理工,2.E&Eエポ株,3.厦門大 1.徳島大院創成,2.量研機構 1.埼玉大理工研 1.山形大工,2.CUSIC,3.ドライケミカルズ
9:15 9:15 9:30 9:45 10:00 10:15 10:30 9/18(W	接系化合物 (SiC fed.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4 奨 18a-C41-6 奨 18a-C41-6 受 18a-C41-7 18p-P11-1 18p-P11-2	SiGe 薄膜のSi 基板上のエピタキシャル成長 O / Group IV Compound Semiconductors (SiC) 「回頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底面転位の UV 照射による積層欠陥拡張比較高エネルギーイオン注入による積層欠陥拡張抑制のメカニズム解析単一ドメインエピタキシャル成長による 3C-SiC 光陰極性能向上SiC 昇華法における成長速度と原料内温度分布の関係蛍光 4H-SiC の成長レートと不純物濃度に関する検討シグルイベント効果の理解を目指した窓形成 SiC ダイオードへのフェムト秒レーザー照射高酸素圧熱酸化による SiO₂/SiC 界面単一光子源の偏光制御のボスター講演 (Poster Presentation) P会場 (Room P)多枚数近接昇華 (MCSS) 法による 4H-SiC 成長速度の温度依存多枚数近接昇華 (MCSS) 法での SiC 原料の昇華特性4H SiC MOSFET の単一光子源に対する光検出磁気共鳴(ODMR)の試み	木 紹太 ³ 、南山 偉明 ³ 、ダムリンマルワン ^{3,4} 、字佐美徳隆 ^{1,2,5} ○西尾 譲司 ¹ 、太田 千春 ¹ 、飯島 良介 ¹ ○原田 俊太 ¹ 、坂根 仁 ² 、加藤 正史 ³ ○加藤 正史 ¹ 、Rho Kongshik ¹ 、藤田 隼 ¹ ○西澤 伸一 ¹ 、齋藤 渉 ¹ ○坂 卓磨 ¹ 、秋古 翔太 ¹ 、水野 大誠 ¹ 、高橋 直暉 ¹ 、赤澤絵里 ² 、鈴木 敦志 ² 、Lu Weifang ³ 、上山 智 ¹ 、竹内 哲也 ¹ 、岩谷 素顕 ¹ ○田岡 知樹 ¹ 、牧野 高紘 ² 、富田 卓朗 ¹ ○(M2) 大山 倫句 ¹ 、土方 泰斗 ¹ ○佐藤 瑞樹 ¹ 、菊地 潤 ¹ 、成田 克 ¹ 、長澤 弘幸 ² 、千葉 哲也 ³ ○菊地 潤 ¹ 、佐藤 瑞樹 ¹ 、成田 克 ¹ 、長澤 弘幸 ² 、千葉 哲也 ³ ○(M2) 堀内 颯介 ¹ 、烏袋 聞多 ¹ 、春山 盛善 ² 、牧野 俊晴 ² 、加藤 宙光 ² 、岡本 光央 ² 、原田 信介 ² 、梅田 享英 ¹	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1.九大応力研 1.名城大理工,2.E&Eエボ株,3.厦門大 1.徳島大院創成,2.量研機構 1.埼玉大理工研 1.山形大工,2.CUSIC,3.ドライケミカルズ 1.山形大工,2.CUSIC,3.ドライケミカルズ
9/18(W 9/18(W 9:15 9:15 9:15 9:45 10:00 10:15 10:30 9/18(W	接系化合物 (SiC (ed.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4 奨 18a-C41-5 奨 18a-C41-6 奨 18a-C41-7 ed.) 16:00 - 18:1 18p-P11-1 18p-P11-2	SiGe 薄膜の Si 基板上のエピタキシャル成長 「Group IV Compound Semiconductors (SiC) 「頭講演 (Oral Presentation) C41 会場(Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底面転位の UV 照射による積層欠陥拡張比較高エネルギーイオン注入による積層欠陥拡張抑制のメカニズム解析単一ドメインエピタキシャル成長による 3C-SiC 光陰極性能向上SiC 昇華法における成長速度と原料内温度分布の関係蛍光 4H-SiC の成長レートと不純物濃度に関する検討 シングルイベント効果の理解を目指した窓形成 SiC ダイオードへのフェムト秒レーザー照射高酸素圧熱酸化による SiO₂/SiC 界面単一光子源の偏光制御のボスター講演 (Poster Presentation) P会場(Room P)多枚数近接昇華(MCSS)法による 4H-SiC 成長速度の温度依存多枚数近接昇華(MCSS)法での SiC 原料の昇華特性4H SiC MOSFET の単一光子源に対する光検出磁気共鳴(ODMR)の試み結晶欠陥/Crystal characterization, impurities and crystal	木 紹太 ³ 、南山 偉明 ³ 、ダムリンマルワン ^{3,4} 、字佐美徳隆 ^{1,2,5} ○西尾 譲司 ¹ 、太田 千春 ¹ 、飯島 良介 ¹ ○原田 俊太 ¹ 、坂根 仁 ² 、加藤 正史 ³ ○加藤 正史 ¹ 、Rho Kongshik ¹ 、藤田 隼 ¹ ○西澤 伸一 ¹ 、齋藤 渉 ¹ ○坂 卓磨 ¹ 、秋古 翔太 ¹ 、水野 大誠 ¹ 、高橋 直暉 ¹ 、赤澤絵里 ² 、鈴木 敦志 ² 、Lu Weifang ³ 、上山 智 ¹ 、竹内 哲也 ¹ 、岩谷 素顕 ¹ ○田岡 知樹 ¹ 、牧野 高紘 ² 、富田 卓朗 ¹ ○(M2) 大山 倫句 ¹ 、土方 泰斗 ¹ ○佐藤 瑞樹 ¹ 、菊地 潤 ¹ 、成田 克 ¹ 、長澤 弘幸 ² 、千葉 哲也 ³ ○菊地 潤 ¹ 、佐藤 瑞樹 ¹ 、成田 克 ¹ 、長澤 弘幸 ² 、千葉 哲也 ³ ○(M2) 堀内 颯介 ¹ 、烏袋 聞多 ¹ 、春山 盛善 ² 、牧野 俊晴 ² 、加藤 宙光 ² 、岡本 光央 ² 、原田 信介 ² 、梅田 享英 ¹	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1.九大応力研 1.名城大理工,2.E&Eエボ株,3.厦門大 1.徳島大院創成,2.量研機構 1.埼玉大理工研 1.山形大工,2.CUSIC,3.ドライケミカルズ 1.山形大工,2.CUSIC,3.ドライケミカルズ
15.6 IV が 9/18(W 9:00 9:15 9:30 9:45 10:00 10:15 10:30 9/18(W 15.7 結晶 9/17(T	接系化合物 (SiC (ed.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4 奨 18a-C41-5 奨 18a-C41-6 奨 18a-C41-7 ed.) 16:00 - 18:1 18p-P11-1 18p-P11-2	SiGe 薄膜のSi 基板上のエピタキシャル成長 O / Group IV Compound Semiconductors (SiC) 「回頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底面転位の UV 照射による積層欠陥拡張比較高エネルギーイオン注入による積層欠陥拡張抑制のメカニズム解析単一ドメインエピタキシャル成長による 3C-SiC 光陰極性能向上SiC 昇華法における成長速度と原料内温度分布の関係蛍光 4H-SiC の成長レートと不純物濃度に関する検討シグルイベント効果の理解を目指した窓形成 SiC ダイオードへのフェムト秒レーザー照射高酸素圧熱酸化による SiO₂/SiC 界面単一光子源の偏光制御のボスター講演 (Poster Presentation) P会場 (Room P)多枚数近接昇華 (MCSS) 法による 4H-SiC 成長速度の温度依存多枚数近接昇華 (MCSS) 法での SiC 原料の昇華特性4H SiC MOSFET の単一光子源に対する光検出磁気共鳴(ODMR)の試み	木 紹太 ³ 、南山 偉明 ³ 、ダムリンマルワン ^{3,4} 、字佐美徳隆 ^{1,2,5} ○西尾 譲司 ¹ 、太田 千春 ¹ 、飯島 良介 ¹ ○原田 俊太 ¹ 、坂根 仁 ² 、加藤 正史 ³ ○加藤 正史 ¹ 、Rho Kongshik ¹ 、藤田 隼 ¹ ○西澤 伸一 ¹ 、齋藤 渉 ¹ ○坂 専暦 ¹ 、秋吉 翔太 ¹ 、水野 大誠 ¹ 、高橋 直暉 ¹ 、赤澤 絵里 ² 、鈴木 敦志 ² 、Lu Weifang ³ 、上山 智 ¹ 、竹内 哲也 ¹ 、岩谷 素顕 ¹ ○田岡 知樹 ¹ 、牧野 高紘 ² 、富田 卓朗 ¹ ○(M2) 大山 倫句 ¹ 、土方 泰斗 ¹ ○佐藤 瑞樹 ¹ 、菊地 潤 ¹ 、成田 克 ¹ 、長澤 弘幸 ² 、千葉 哲也 ³ ○ 菊地 潤 ¹ 、佐藤 瑞樹 ¹ 、成田 克 ¹ 、長澤 弘幸 ² 、千葉 哲也 ³ ○(M2) 堀内 颯介 ¹ 、島袋 聞多 ¹ 、春山 盛善 ² 、牧野 俊 睛 ² 、加藤 宙光 ² 、岡本 光央 ² 、原田 信介 ² 、梅田 享英 ¹ defects	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1.九大応力研 1.名城大理工,2.E&Eエボ株,3.厦門大 1.徳島大院創成,2.量研機構 1.埼玉大理工研 1.山形大工,2.CUSIC,3.ドライケミカルズ 1.山形大工,2.CUSIC,3.ドライケミカルズ
9:15.6 IV	接系化合物 (SiC (ed.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4 奨 18a-C41-6 奨 18a-C41-6 奨 18a-C41-7 ed.) 16:00 - 18:1 18p-P11-1 18p-P11-2 18p-P11-3	SiGe 薄膜の Si 基板上のエピタキシャル成長 「Group IV Compound Semiconductors (SiC) 「回頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底面転位の UV 照射による積層欠陥拡張比較高エネルギーイオン注入による積層欠陥拡張抑制のメカニズム解析 単一ドメインエピタキシャル成長による 3C-SiC 光陰極性能向上 SiC 昇華法における成長速度と原料内温度分布の関係蛍光 4H-SiCの成長レートと不純物濃度に関する検討 シングルイベント効果の理解を目指した窓形成 SiC ダイオードへのフェムト秒レーザー照射高酸素圧熱酸化による SiO₂/SiC 界面単一光子源の偏光制御ポター表別で表別である。法による 4H-SiC 成長速度の温度依存多枚数近接昇華 (MCSS)法による 4H-SiC 成長速度の温度依存多枚数近接昇華 (MCSS)法での SiC 原料の昇華特性 4H SiC MOSFET の単一光子源に対する光検出磁気共鳴(ODMR)の試み 結晶欠陥/Crystal characterization, impurities and crystal 口頭講演 (Oral Presentation) B2 会場 (Room B2) 4H-SiC エピタキシャル成長層に存在する傾斜TED の解	木 紹太 ³ 、南山 偉明 ³ 、ダムリンマルワン ^{3,4} 、字佐美徳隆 ^{1,2,5} ○西尾 譲司 ¹ 、太田 千春 ¹ 、飯島 良介 ¹ ○原田 俊太 ¹ 、坂根 仁 ² 、加藤 正史 ³ ○加藤 正史 ¹ 、Rho Kongshik ¹ 、藤田 隼 ¹ ○西澤 伸一 ¹ 、齋藤 渉 ¹ ○坂 専暦 ¹ 、秋吉 翔太 ¹ 、水野 大誠 ¹ 、高橋 直暉 ¹ 、赤澤 絵里 ² 、鈴木 敦志 ² 、Lu Weifang ³ 、上山 智 ¹ 、竹内 哲也 ¹ 、岩谷 素顕 ¹ ○田岡 知樹 ¹ 、牧野 高紘 ² 、富田 卓朗 ¹ ○(M2) 大山 倫句 ¹ 、土方 泰斗 ¹ ○佐藤 瑞樹 ¹ 、菊地 潤 ¹ 、成田 克 ¹ 、長澤 弘幸 ² 、千葉 哲也 ³ ○ 菊地 潤 ¹ 、佐藤 瑞樹 ¹ 、成田 克 ¹ 、長澤 弘幸 ² 、千葉 哲也 ³ ○(M2) 堀内 颯介 ¹ 、島袋 聞多 ¹ 、春山 盛善 ² 、牧野 俊 睛 ² 、加藤 宙光 ² 、岡本 光央 ² 、原田 信介 ² 、梅田 享英 ¹ defects	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1.九大応力研 1.名城大理工,2.E&Eエボ株,3.厦門大 1.徳島大院創成,2.量研機構 1.埼玉大理工研 1.山形大工,2.CUSIC,3.ドライケミカルズ 1.山形大工,2.CUSIC,3.ドライケミカルズ 1.筑波大,2.産総研
9/18(W 9/18(W 9:15 9:15 9:30 9:45 10:00 10:15 10:30 9/18(W 15.7 結晶 9/17(T 9:00	接系化合物(SiC fed.)9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4 奨 18a-C41-5 奨 18a-C41-6 奨 18a-C41-7 ed.)16:00 - 18:1 18p-P11-1 18p-P11-2 18p-P11-3 計評価、不純物・ ue.)9:00 - 11:3 17a-B2-1	SiGe 薄膜の Si 基板上のエピタキシャル成長 (Group IV Compound Semiconductors (SiC) 口頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底面転位の UV 照射による積層欠陥拡張比較高エネルギーイオン注入による積層欠陥拡張抑制のメカニズム解析 単一ドメインエピタキシャル成長による 3C-SiC 光陰極性能向上 SiC 昇華法における成長速度と原料内温度分布の関係 蛍光 4H-SiC の成長レートと不純物濃度に関する検討 シングルイベント効果の理解を目指した窓形成 SiC ダイオードへのフェムト秒レーザー照射高酸素圧熱酸化による SiO₂/SiC 界面単一光子源の偏光制御 ボスター講演 (Poster Presentation) P会場 (Room P) 多枚数近接昇華 (MCSS) 法による 4H-SiC 成長速度の温度依存多枚数近接昇華 (MCSS) 法での SiC 原料の昇華特性 4H SiC MOSFET の単一光子源に対する光検出磁気共鳴 (ODMR) の試み 結晶欠陥 / Crystal characterization, impurities and crystal 1 口頭講演 (Oral Presentation) B2 会場 (Room B2) 4H-SiC エピタキシャル成長層に存在する傾斜 TED の解析 Enhanced Hole Conductivity in Magnesium-Intercalated GaN Superlattice Probed by Terahertz Time-Domain Ellipsometry CZ-Ga₂O₃単結晶成長時における結晶と融液の透明度と	 木紹太³, 南山 偉明³, ダムリンマルワン³⁴, 字佐美徳隆¹.²⁵ ○西尾譲司¹, 太田 千春¹, 飯島 良介¹ ○原田 俊太¹, 坂根 仁², 加藤 正史³ ○加藤 正史¹, Rho Kongshik¹, 藤田 隼¹ ○西澤 伸一¹, 齋藤 渉¹ ○坂 卓磨¹, 秋吉 翔太¹, 水野 大誠¹, 高橋 直暉¹, 赤澤絵里², 鈴木 敦志², Lu Weifang³, 上山 智¹, 竹内 哲也¹, 岩谷 素顕¹ ○田岡 知樹¹, 牧野 高紘², 富田 卓朗¹ ○(M2) 大山 倫句¹, 土方 泰斗¹ ○佐藤 瑞樹¹, 菊地 潤¹, 成田 克¹, 長澤 弘幸², 千葉 哲也³ ○菊地 潤¹, 佐藤 瑞樹¹, 成田 克¹, 長澤 弘幸², 千葉 哲也³ ○(M2) 堀内 颯介¹, 島袋 間多¹, 春山 盛善², 牧野 俊晴², 加藤 宙光², 岡本 光央², 原田 信介², 梅田 享英¹ defects ○太田 千春¹, 西尾 譲司¹, 櫛部 光弘¹, 飯島 良介¹ ○Verdad Agulto¹, Toshiyuki Iwamoto¹.², Kosaku Kato¹, Jia Wang³, Hiroshi Amano³, Makoto Nakajima¹ ○柿本 浩一¹, 富田 健稔², Vladimir Kochurikhin², 鎌 	 エ、5.名大未材研 1.東芝研開センター 1.名古屋大、2.住重アテックス、3.名工大 1.名工大 1.九大応力研 1.名城大理工、2.E&Eエボ株、3.厦門大 1.徳島大院創成、2.量研機構 1.埼玉大理工研 1.山形大工、2.CUSIC、3.ドライケミカルズ 1.山形大工、2.CUSIC、3.ドライケミカルズ 1.筑波大、2.産総研 1.東芝研開センター 1.Osaka Univ、2.Nippo Precision Co., Ltd., 3.Nagoya Univ. 1.東北大 NICHe、2. 像C & A、3. 九大 応力研、4.東北
9:15.6 IV	接系化合物 (SiC fed.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4 獎 18a-C41-6 獎 18a-C41-6 獎 18a-C41-7 ed.) 16:00 - 18:1 18p-P11-1 18p-P11-2 18p-P11-3 17a-B2-1 E 17a-B2-2	SiGe 薄膜の Si 基板上のエピタキシャル成長 / Group IV Compound Semiconductors (SiC) 口頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底面転位の UV 照射による積層欠陥拡張比較高エネルギーイオン注入による積層欠陥拡張抑制のメカニズム解析単一ドメインエピタキシャル成長による 3C-SiC 光陰極性能向上SiC 昇華法における成長速度と原料内温度分布の関係蛍光 4H-SiC の成長レートと不純物濃度に関する検討 ジングルイベント効果の理解を目指した窓形成 SiC ダイオードへのフェムト秒レーザー照射高酸素圧熱酸化による SiO2/SiC 界面単一光子源の偏光制御 ボスター講演 (Poster Presentation) P会場 (Room P)多枚数近接昇華 (MCSS) 法による 4H-SiC 成長速度の温度依存多枚数近接昇華 (MCSS) 法での SiC 原料の昇華特性 4H SiC MOSFET の単一光子源に対する光検出磁気共鳴(ODMR)の試み 結晶欠陥 / Crystal characterization, impurities and crystal 口頭講演 (Oral Presentation) B2 会場 (Room B2) 4H-SiC エピタキシャル成長層に存在する傾斜TED の解析 Enhanced Hole Conductivity in Magnesium-Intercalated GaN Superlattice Probed by Terahertz Time-Domain Ellipsometry	木 紹太³, 南山 偉明³, ダムリンマルワン³,⁴, 宇佐美徳隆¹,²,² 5 ○西尾譲司¹, 太田 千春¹, 飯島良介¹ ○原田 俊太¹, 坂根 仁², 加藤 正史³ ○加藤 正史¹, Rho Kongshik¹, 藤田 隼¹ ○西澤 伸一¹, 齋藤 渉¹ ○坂 卓磨¹, 秋吉 翔太¹, 水野 大誠¹, 高橋 直暉¹, 赤澤絵里², 鈴木 敦志², Lu Weifang³, 上山 智¹, 竹内 哲也¹, 岩谷 素顕¹ ○田岡 知樹¹, 牧野 高紘², 富田 卓朗¹ ○(M2) 太山 倫句¹, 土方 泰斗¹ ○佐藤 瑞樹¹, 菊地 潤¹, 成田 克¹, 長澤 弘幸², 千葉 哲也³ ○菊地 潤¹, 佐藤 瑞樹¹, 成田 克¹, 長澤 弘幸², 千葉 哲也³ ○(M2) 堀内 颯介¹, 島袋 聞多¹, 春山 盛善², 牧野 俊晴², 加藤 宙光², 岡本 光央², 原田 信介², 梅田 享英¹ defects ○太田 千春¹, 西尾 譲司¹, 櫛部 光弘¹, 飯島 良介¹ ○Verdad Agulto¹, Toshiyuki Iwamoto¹,², Kosaku Kato¹, Jia Wang³, Hiroshi Amano³, Makoto Nakajima¹ ○林本 浩一¹, 富田 健稔², Vladimir Kochurikhin², 鎌田圭¹, 中野智³, 吉川 彰⁴ ○(M2) 別宮 響¹, 野田 祐輔³, 末岡 浩治²	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1.九大応力研 1.名城大理工,2.E&Eエポ株,3.厦門大 1.徳島大院創成,2.量研機構 1.埼玉大理工研 1.山形大工,2.CUSIC,3.ドライケミカルズ 1.山形大工,2.CUSIC,3.ドライケミカルズ 1.筑波大,2.産総研 1.東芝研開センター 1.Osaka Univ,2.Nippo Precision Co., Ltd.,3.Nagoya Univ. 1.東北大 NICHe,2.㈱C&A,3.九大 応力研,4.東北大 金研 1.岡山県大院情報系工,2.岡山県大情報工,3.九工大院情報工
15.6 IV	接系化合物 (SiC (ed.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4 奨 18a-C41-6 奨 18a-C41-6 奨 18a-C41-7 ed.) 16:00 - 18:0 18p-P11-1 18p-P11-2 18p-P11-3 17a-B2-1 E 17a-B2-2	SiGe 薄膜の Si 基板上のエピタキシャル成長 (Group IV Compound Semiconductors (SiC) 口頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底面転位の UV 照射による積層欠陥拡張比較高エネルギーイオン注入による積層欠陥拡張抑制のメカニズム解析単一ドメインエピタキシャル成長による 3C-SiC 光陰極性能向上SiC 昇華法における成長速度と原料内温度分布の関係蛍光 4H-SiC の成長レートと不純物濃度に関する検討 シングルイベント効果の理解を目指した窓形成 SiC ダイオードへのフェムト秒レーザー照射高酸素圧熱酸化による SiO₂/SiC 界面単一光子源の偏光制御のボスター講演 (Poster Presentation) P会場 (Room P)多枚数近接昇華 (MCSS)法による 4H-SiC 成長速度の温度依存多枚数近接昇華 (MCSS)法での SiC 原料の昇華特性4H SiC MOSFET の単一光子源に対する光検出磁気共鳴(ODMR)の試み結晶欠陥/Crystal characterization, impurities and crystal 口頭講演 (Oral Presentation) B2 会場 (Room B2)4H-SiC エピタキシャル成長層に存在する傾斜 TED の解析Enhanced Hole Conductivity in Magnesium-Intercalated GaN Superlattice Probed by Terahertz Time-Domain Ellipsometry CZ-Ga₂O₃単結晶成長時における結晶と融液の透明度と結晶ね じれの関係	木紹太³, 南山 偉明³, ダムリンマルワン³,⁴, 字佐美徳隆¹,²,² 5 ○西尾譲司¹, 太田 千春¹, 飯鳥良介¹ ○原田 俊太¹, 坂根 仁², 加藤 正史³ ○加藤 正史¹, Rho Kongshik¹, 藤田 隼¹ ○西澤 伸一¹, 齋藤 渉¹ ○坂 卓磨¹, 秋吉 翔太¹, 水野 大誠¹, 高橋 直暉¹, 赤澤絵里², 鈴木 敦志², Lu Weifang³, 上山 智¹, 竹内 哲也¹, 岩谷 素顕¹ ○田岡 知樹¹, 牧野 高紘², 富田 卓朗¹ ○(M2) 大山 倫句¹, 土方 泰斗¹ ○佐藤 瑞樹¹, 菊地 潤¹, 成田 克¹, 長澤 弘幸², 千葉 哲也³ ○菊地 潤¹, 佐藤 瑞樹¹, 成田 克¹, 長澤 弘幸², 千葉 哲也³ ○(M2) 堀内 飆介¹, 島袋 聞多¹, 春山 盛善², 牧野 俊晴², 加藤 宙光², 岡本 光央², 原田 信介², 梅田 享英¹defects ○太田 千春¹, 西尾 譲司¹, 櫛部 光弘¹, 飯鳥 良介¹ ○Verdad Agulto¹, Toshiyuki Iwamoto¹,², Kosaku Kato¹, Jia Wang³, Hiroshi Amano³, Makoto Nakajima¹ ○林本 浩一¹, 富田 健稔², Vladimir Kochurikhin², 鎌田圭¹, 中野 智³, 吉川 彰⁴ ○(M2) 別宮 響¹, 野田 祐輔³, 末岡 浩治²	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1.九大応力研 1.名城大理工,2.E&Eエポ株,3.厦門大 1.徳島大院創成,2.量研機構 1.埼玉大理工研 1.山形大工,2.CUSIC,3.ドライケミカルズ 1.山形大工,2.CUSIC,3.ドライケミカルズ 1.筑波大,2.産総研 1.東芝研開センター 1.のsaka Univ.,2.Nippo Precision Co., Ltd.,3.Nagoya Univ. 1.東北大 NICHe,2.㈱C&A,3.九大 応力研,4.東北大 全研 1.岡山県大院情報系工,2.岡山県大情報工,3.九工大院情報工
15.6 IV 版 9/18(W 9:00 9:15 9:30 9:45 10:00 9:15 9:30 9/18(W 9:15 9:30 9:45 10:00 9:15 9:30 9:45 10:00	接系化合物 (SiC led.) 9:00 - 10:4 18a-C41-1 18a-C41-2 18a-C41-3 18a-C41-4 獎 18a-C41-6 獎 18a-C41-6 獎 18a-C41-7 ed.) 16:00 - 18:1 18p-P11-2 18p-P11-2 18p-P11-3 17a-B2-1 E 17a-B2-2 17a-B2-3 17a-B2-4 17a-B2-5	SiGe 薄膜のSi 基板上のエピタキシャル成長 / Group IV Compound Semiconductors (SiC) 口頭講演 (Oral Presentation) C41 会場 (Room C41) 水素またはフッ素イオン注入を行った 4H-SiC 中の基底面転位のUV 照射による積層欠陥拡張抑制のメカニズム解析 単一ドメインエピタキシャル成長による3G-SiC光陰極性能向上 SiC 昇華法における成長速度と原料内温度分布の関係 蛍光4H-SiC の成長レートと不純物濃度に関する検討 シングルイベント効果の理解を目指した窓形成SiC ダイオードへのフェムト秒レーザー照射 高酸素圧熱酸化によるSiO₂/SiC 界面単一光子源の偏光制御 バスター講演 (Poster Presentation) P会場 (Room P) 多枚数近接昇華 (MCSS) 法による4H-SiC 成長速度の温度依存 多枚数近接昇華 (MCSS) 法でのSiC 原料の昇華特性 4H SiC MOSFET の単一光子源に対する光検出磁気共鳴 (ODMR) の試み 結晶欠陥 / Crystal characterization, impurities and crystal 口頭講演 (Oral Presentation) B2 会場 (Room B2) 4H-SiC エピタキシャル成長層に存在する傾斜TED の解析 Enhanced Hole Conductivity in Magnesium-Intercalated GaN Superlattice Probed by Terahertz Time-Domain Ellipsometry CZ-Ga₂O₃単結晶成長時における結晶と融液の透明度と結晶ねじれの関係 理論計算によるSiGe混晶の安定原子配置の特徴分析 遷移選択フォトルミネッセンス測定の実証 全無機ベロブスカイト型半導体混晶 CsSn₂Pb₁₂Br₃の格子	木紹太³, 南山 偉明³, ダムリンマルワン³,⁴, 字佐美徳隆¹,²,² 5 ○西尾譲司¹, 太田 千春¹, 飯島良介¹ ○原田 俊太¹, 坂根 仁², 加藤 正史³ ○加藤 正史¹, Rho Kongshik¹, 藤田 隼¹ ○西澤 伸一¹, 齋藤 渉¹ ○坂 卓磨¹, 秋吉 翔太¹, 水野 大誠¹, 高橋 直暉¹, 赤澤絵里², 鈴木 敦志², Lu Weifang³, 上山 智¹, 竹内 哲也¹, 岩谷 素顕¹ ○田岡 知樹¹, 牧野 高紘², 富田 卓朗¹ ○(M2) 大山 倫句¹, 土方 泰斗¹ ○佐藤 瑞樹¹, 菊地 潤¹, 成田 克¹, 長澤 弘幸², 千葉 哲也³ ○(M2) 堀内 颯介¹, 鳥袋 聞多¹, 春山 盛善², 秋野 俊晴², 加藤 宙光², 岡本 光央², 原田 信介², 梅田 享英¹ defects ○太田 千春¹, 西尾 譲司¹, 櫛部 光弘¹, 飯島良介¹ ○Verdad Agulto¹, Toshiyuki Iwamoto¹,², Kosaku Kato¹, Jia Wang³, Hiroshi Amano³, Makoto Nakajima¹ ○柿本 浩一¹, 富田 健稔², Vladimir Kochurikhin², 鎌田圭¹, 中野 智³, 吉川 彰⁴ ○(M2) 別宮 響¹, 野田 祐輔³, 末岡 浩治² ○牛頭 信一郎¹ ○浅原 礼旺¹, 阿部 将大², 堀 頸子², 五月女 真人³, 近藤 高志¹,³	エ,5.名大未材研 1.東芝研開センター 1.名古屋大,2.住重アテックス,3.名工大 1.名工大 1.九大応力研 1.名城大理工,2.E&Eエボ株,3.厦門大 1.徳島大院創成,2.量研機構 1.埼玉大理工研 1.山形大工,2.CUSIC,3.ドライケミカルズ 1.山形大工,2.CUSIC,3.ドライケミカルズ 1.山形大工,2.CUSIC,3.ドライケミカルズ 1. 東芝研開センター 1. 京波大,2.産総研 1.東芝研開センター 1. 京波大,2.産総研 1.東港大 NICHe,2.㈱C&A,3.九大 応力研,4.東北大 金研 1.岡山県大院情報系工,2.岡山県大情報工,3.九工大院情報工 1.産総研 1.東大工,2.芝浦工大,3.東大先端研

11:15	17a-B2-9	結晶方位分布を考慮した機械学習による結晶欠陥発生予測	\bigcirc (M2) 鳥居 和馬 1 , 原 京花 1 , 沓掛 健太朗 1,2,3 , 工藤 博章 4 , 勝部 涼司 1 , 宇佐美 徳隆 1,2,5	1.4 名大院工 , 2.4 名大未来研 , 3.4 理研 AIP, 4.4 名大院情 , 5.4 大未来機構
9/17(Tu .3:00	e.) 13:00 - 15:30 17p-B2-1	口頭講演 (Oral Presentation) B2 会場(Room B2) 高濃度 B添加 <110> 方位 CZ-Si 単結晶の転位挙動の観察	○松村 尚 ^{1,2} , 成松 真吾 ¹ , 斉藤 広幸 ¹ , 福井 勇希 ² , 太 子 敏則 ²	1. グローバルウェーハズ・ジャパン , 2. 信大工
3:15	17p-B2-2	[110] 方位での CZ-Si 単結晶育成における種子づけ時の熱ショック転位挙動の検討		1.信大工, 2.グローバルウェーハズ・ジャパン株式会
3:30	17p-B2-3	CZ-Si単結晶育成における種子づけ界面直下の形状と応力分布解析		1.信大工, 2.グローバルウェーハズ・ジャパン
3:45	17p-B2-4	RTPウェーハにおける残留空孔の形態に関する研究	○須藤 治生¹, 岩城 浩也¹², 早川 兼¹	1. グローバルウェーハズジャパン, 2. 岡山県大院情報 工
4:00		RTP ウェーハの BMD 析出核 (VO_x) 構造に関する理論的研究	岡 浩治 ³	系工, 3. 岡山県大情報工
4:15 4:30		Si ウェーハの表面熱酸化膜中の Cristobalite 相 休憩/Break	○神山 栄治 1.2, 末岡 浩治 2	1. グローバルウェーハズ・ジャパン(株), 2. 岡山県立大
4:45	17p-B2-7	シリコン結晶基板の品質と点欠陥第二世代(12)同位体と真正点欠陥の不均一	○井上直久¹,川又修一¹,奥田修一¹	1.大阪公大 放射線研究センター
5:00	17p-B2-8 17p-B2-9	シリコン結晶の高感度赤外吸収と赤外欠陥動力学/第二世代 (25) 格子間窒素単量体, Ni シリコン結晶中の低濃度炭素の測定/第二世代 (28) 赤外	○井上 直久¹, 川又 修一¹, 奥田 修一¹	1.大阪公大 放射線研究センター 1.大阪公大 放射線研究センター
		吸収の middle, inner phonon band 対策 (1) ポスター講演 (Poster Presentation) P 会場 (Room P)	○ 元工 巨八,癸田 移 ,川又 移	1.人飲ム人 成別稼削元センター
7/ 10(***	18p-P12-1	クロマト結晶化の発見	○ (M1C) 剱持 由宇¹, 秋葉 菜々子¹, 桐生 みか¹, 堀内 宏明², 奥津 哲夫¹	1. 群大院理工, 2. 京都府立大
	18p-P12-2	水/オイル界面から溶出する溶質分子の空間濃度分布シミュレーション	○ (M2) 松井 暖奈¹, 堀内 宏明², 奧津 哲夫¹	1.群馬大院理工, 2.京都府立大
	Î	GEO-X衛星に向けた MEMS 技術を用いた超軽量X線望 遠鏡の開発	樹¹, 伊師 大貴², 山田 裕大¹, 石川 怜¹, 森本 大輝¹, 石 牟礼 碧衣¹, 小笠原 勇翔¹, 宮内 俊英¹, 世良 直也¹, 中 川 悠¹, 福島 優¹, 満田 和久³, 森下 浩平⁴, 中嶋 一雄⁵	
		Amorphous and Microcrystalline Material。 はプログラム冒頭にございます。	S	
	u.) 16:00 - 18:00	ポスター講演 (Poster Presentation) P会場 (Room P) 数値計算による建材一体型太陽電池用光学薄膜の設計	○(M2) 久保田 聡 ^{1,2} , 渡邉 誠也 ¹ , 足立 零生 ^{1,2} , 徐 志	1.東工大物質理工. 2. 産総研. 3. 早大
	<u> </u>	ECR スパッタ法により作製した MoO_x 薄膜の N_2 アニール	豪 2 , 齋均 2 , 近藤 道雄 $^{1.3}$, 和田 裕之 1	
	19p-P10-3	効果 ECRスパッタ MoOx-Si ヘテロ接合太陽電池の界面パッシ		1.弘前大院理工, 2.成蹊大院理工
	19p-P10-4	ベーション評価 スピンコート法によるテクスチャ化Si太陽電池上酸化チ	邊 良祐¹ 佐古 知美¹,○齋藤 洋司¹	1. 成蹊大院理工
	19p-P10-5	タン・酸化ジルコニウム反射防止膜に関する研究 酸化モリブデンを用いたヘテロ接合シリコン太陽電池の 硝酸酸化法によるバッシベーション膜の影響	三橋 瑛¹, 鈴木 智也¹, ○渡邊 良祐², 齋藤 洋司¹	1.成蹊大院理工, 2.弘前大理工
	19p-P10-6	シリカガラスの失透に及ぼすSi-Clおよび水蒸気の影響	〇堀井 直宏 1 , 稲葉 椋子 1 , 橋本 侑樹 1 , 葛生 伸 2 , 堀越 秀春 3	1. 福井高専, 2. 福井大院工, 3. 東ソー エスジーエム
		セス・デバイス / Fundamental properties, evaluation, pr 口頭講演 (Oral Presentation) C32会場(Room C32)	ocess and devices in disordered materials	
9:00		ポリ(メチルシルセスキオキサン・co・ジメチルシロキサン)液体および深紫外透明弾性熱硬化性樹脂の水過剰無	〇梶原 浩一 1 , 吉田 琢真 1 , 石島 政直 1 , 吉田 智 2 , 小池 章夫 2	1. 都立大, 2.AGC
:15	奨 16a-C32-2	共溶媒合成 スルホン化ポリシルセスキオキサンのAl-O-P架橋によ	○(D) 板倉 広昂¹, 石島 政直¹, 梶原 浩一¹	1.都立大
9:30	奨 16a-C32-3	る高温・低湿度用高速プロトン伝導体の開発 パルスレーザー堆積法 (PLD) による アモルファスアルミ ナ薄膜の作製と評価	○ (M2) 小笠原 颯平¹, Melbert Jeem², 木崎 和郎¹, 片 山 司³, 松尾 保孝³, 小野 円佳¹	1. 東北大工, 2. 北大工, 3. 北大電子研
:45	招 16a-C32-4	「第56回講演奨励賞受賞記念講演」 変形距離平面による局所構造分類に基づく非晶質アルミ	○湯澤 佑介¹, 浅野 孝典¹, 河合 宏樹¹, 中村 健二¹, 饗	1.キオクシア株式会社
0:00	E 16a-C32-5	ナ間のELNES スペクトル差異の解釈 Structural Insights into Thermal Conductivity of Amorphous Germanium Using Topological Data Analysis	- , , , , , , , , , , , , , , , , , , ,	1.NIMS, 2.Tohoku Univ.
0:15		休憩/Break		
0:30	16a-C32-6	分子動力学シミュレーションによる酸フッ化物ガラス構	○篠崎 健二 ' ', 清水 雅弘 '	1. 産総研, 2. 阪大, 3. 京大
0.45		造の冷却速度依存性と核形成の検討	○(M2)+浬 為亚1 岜 拆井1 壹四 百大1 左畈 七コ1	1 市工十分料
0:45	奨 16a-C32-7	ハイスループットマイクロ溶融システムによるガラス化 範囲の調査: Na_2O -RO-Si O_2 系への ZrO_2 および第 5 成分	\bigcirc (M2) 大澤 徹平 1 ,岸 哲生 1 ,富田 夏奈 1 ,矢野 哲司 1	1.東工大材料
		ハイスループットマイクロ溶融システムによるガラス化		1. 東工大材料 1. 長岡技大, 2. 産総研, 3. 阪大院工
1:00	奨 16a-C32-7 16a-C32-8 16a-C32-9	ハイスループットマイクロ溶融システムによるガラス化範囲の調査: Na_2O -RO- SiO_2 系への ZrO_2 および第 5 成分共添加の影響レーザー照射による銅ビスマスケイ酸塩ガラスの構造変化 スズ鉄ケイ酸負極をレーザー造形した全固体ナトリウムイオン電池の電気化学的特性評価	○黒岩 愛帆¹,本間 剛¹, 篠崎 健二².3○佐藤 史隆¹,本間 剛¹	
1:00 1:15 1:30	奨 16a-C32-7 16a-C32-8 16a-C32-9 16a-C32-10	ハイスループットマイクロ溶融システムによるガラス化範囲の調査: Na_2O -RO- SiO_2 系への ZrO_2 および第 5 成分共添加の影響レーザー照射による銅ビスマスケイ酸塩ガラスの構造変化 スズ鉄ケイ酸負極をレーザー造形した全固体ナトリウムイオン電池の電気化学的特性評価 バリウムランタンケイ酸塩ガラスの光弾性定数と弾性定数の相関	○黒岩 愛帆¹,本間 剛¹, 篠崎 健二².3○佐藤 史隆¹,本間 剛¹	1. 長岡技大, 2. 産総研, 3. 阪大院工
1:00 1:15 1:30 0/16(Md	獎 16a-C32-7 16a-C32-8 16a-C32-9 16a-C32-10 on.) 13:15 - 16:45	ハイスループットマイクロ溶融システムによるガラス化範囲の調査: Na_2O -RO- SiO_2 系への ZrO_2 および第 5 成分共添加の影響レーザー照射による銅ビスマスケイ酸塩ガラスの構造変化スズ鉄ケイ酸負極をレーザー造形した全固体ナトリウムイオン電池の電気化学的特性評価バリウムランタンケイ酸塩ガラスの光弾性定数と弾性定数の相関口頭講演 (Oral Presentation) C32 会場(Room C32)	 ○黒岩 愛帆¹,本間 剛¹, 篠崎 健二².3 ○佐藤 史隆¹,本間 剛¹ ○三好 隆太¹, 斎藤 全¹ 	 1.長岡技大, 2.産総研, 3.阪大院工 1.長岡技大 1.愛媛大院理工
1:00 1:15 1:30 0/16(Md	獎 16a-C32-7 16a-C32-8 16a-C32-9 16a-C32-10 on.) 13:15 - 16:45 獎 16p-C32-1	ハイスループットマイクロ溶融システムによるガラス化範囲の調査: Na_2O -RO- SiO_2 系への ZrO_2 および第 5 成分共添加の影響レーザー照射による銅ビスマスケイ酸塩ガラスの構造変化 スズ鉄ケイ酸負極をレーザー造形した全固体ナトリウムイオン電池の電気化学的特性評価 バリウムランタンケイ酸塩ガラスの光弾性定数と弾性定数の相関	 ○黒岩 愛帆¹,本間 剛¹, 篠崎 健二².3 ○佐藤 史隆¹,本間 剛¹ ○三好 隆太¹, 斎藤 全¹ ○(M1) 平井 太偲¹, 鶯 拓未¹, 遠田 義晴¹, 富樫 望² 	1. 長岡技大, 2. 産総研, 3. 阪大院工 1. 長岡技大
1:00 1:15 1:30 0/16(Md 3:15 3:30	挺 16a-C32-7 16a-C32-8 16a-C32-9 16a-C32-10 on.) 13:15 - 16:45 挺 16p-C32-1 挺 16p-C32-2	ハイスループットマイクロ溶融システムによるガラス化範囲の調査: Na_2O -RO- SiO_2 系への ZrO_2 および第 5 成分共添加の影響レーザー照射による銅ビスマスケイ酸塩ガラスの構造変化スズ鉄ケイ酸負極をレーザー造形した全固体ナトリウムイオン電池の電気化学的特性評価バリウムランタンケイ酸塩ガラスの光弾性定数と弾性定数の相関口頭講演 (Oral Presentation) C32 会場(Room C32) Zr 基金属ガラスの低圧酸化による表面色制御 Fe-Si-B 系アモルファス合金における 局所構造及びネットワータ接続の理論研究 AIC で形成した多結晶 poly-Si 膜層上でのアモルファスシリコン膜のフラッシュランプアニールによる結晶化	 ○黒岩愛帆¹,本間剛¹,篠崎健二²³ ○佐藤史隆¹,本間剛¹ ○三好隆太¹,斎藤全¹ ○(M1)平井太偲¹,鶩拓未¹,遠田義晴¹,富樫望² ○池淵遼平¹,平山尚美¹,下野昌人² ○(M2)李柏同¹, Huynh Thi Cam Tu¹,大平圭介¹ 	1. 長岡技大, 2. 産総研, 3. 阪大院工 1. 長岡技大 1. 愛媛大院理工 1. 弘前大院理工, 2. Orbray
1:00 1:15 1:30 9/16(Md 3:15 3:30 3:45 4:00	挺 16a-C32-7 16a-C32-8 16a-C32-9 16a-C32-10 on.) 13:15 - 16:45 挺 16p-C32-1 挺 16p-C32-2	ハイスループットマイクロ溶融システムによるガラス化 範囲の調査:Na ₂ O-RO-SiO ₂ 系へのZrO ₂ および第5成分 共添加の影響 レーザー照射による銅ビスマスケイ酸塩ガラスの構造変 化 スズ鉄ケイ酸負極をレーザー造形した全固体ナトリウム イオン電池の電気化学的特性評価 バリウムランタンケイ酸塩ガラスの光弾性定数と弾性定 数の相関 口頭講演 (Oral Presentation) C32 会場(Room C32) Zr基金属ガラスの低圧酸化による表面色制御 Fe-Si-B 系アモルファス合金における 局所構造及びネットワーク接続の理論研究 AICで形成した多結晶 poly-Si 膜層上でのアモルファスシリコン膜のフラッシュランブアニールによる結晶化 バルスプラズマ法による微細ナノ粒子の生成について	 ○黒岩 愛帆¹,本間 剛¹, 篠崎 健二².3 ○佐藤 史隆¹,本間 剛¹ ○三好 隆太¹, 斎藤 全¹ ○(M1) 平井 太偲¹, 鷺 拓未¹, 遠田 義晴¹, 富樫 望² ○池淵 遼平¹, 平山 尚美¹, 下野 昌人² 	1. 長岡技大, 2. 産総研, 3. 阪大院工 1. 長岡技大 1. 愛媛大院理工 1. 弘前大院理工, 2. Orbray 1. 島根大 NEXTA, 2. 物材機構
1:00 1:15 1:30 9/16(Md 3:15 3:30 3:45 4:00 4:15	挺 16a-C32-7 16a-C32-8 16a-C32-9 16a-C32-10 on.) 13:15 - 16:45 挺 16p-C32-1 挺 16p-C32-2	ハイスループットマイクロ溶融システムによるガラス化範囲の調査: Na_2O -RO- SiO_2 系への ZrO_2 および第 5 成分共添加の影響レーザー照射による銅ビスマスケイ酸塩ガラスの構造変化スズ鉄ケイ酸負極をレーザー造形した全固体ナトリウムイオン電池の電気化学的特性評価バリウムランタンケイ酸塩ガラスの光弾性定数と弾性定数の相関口頭講演 (Oral Presentation) C32 会場(Room C32) Zr 基金属ガラスの低圧酸化による表面色制御 Fe-Si-B 系アモルファス合金における 局所構造及びネットワータ接続の理論研究 AIC で形成した多結晶 poly-Si 膜層上でのアモルファスシリコン膜のフラッシュランプアニールによる結晶化	 ○黒岩 愛帆¹,本間 剛¹, 篠崎 健二².3 ○佐藤 史隆¹,本間 剛¹ ○三好 隆太¹,斎藤 全¹ ○(M1) 平井 太偲¹,鷺 拓未¹,遠田 義晴¹,富樫 望² ○池淵 遼平¹,平山 尚美¹,下野 昌人² ○(M2) 李 柏同¹, Huynh Thi Cam Tu¹,大平 圭介¹ ○森永 智¹,依田 眞一¹,大隅 壮太²,徳田 誠² 	1. 長岡技大, 2. 産総研, 3. 阪大院工 1. 長岡技大 1. 愛媛大院理工 1. 弘前大院理工, 2. Orbray 1. 島根大NEXTA, 2. 物材機構 1. 北陸先端大
1:00 1:15 1:30 9/16(Md 3:15 3:30 3:45 4:00 4:15 4:30 4:45 5:00	挺 16a-C32-7 16a-C32-8 16a-C32-9 16a-C32-10 on.) 13:15 - 16:45 挺 16p-C32-1 挺 16p-C32-2 16p-C32-3 16p-C32-4 16p-C32-5 16p-C32-6	ハイスループットマイクロ溶融システムによるガラス化範囲の調査: Na_2O -RO- SiO_2 系への ZrO_2 および第 5 成分共添加の影響レーザー照射による銅ビスマスケイ酸塩ガラスの構造変化スズ鉄ケイ酸負極をレーザー造形した全固体ナトリウムイオン電池の電気化学的特性評価バリウムランタンケイ酸塩ガラスの光弾性定数と弾性定数の相関口頭講演 (Oral Presentation) C32 会場(Room C32) Zr 基金属ガラスの低圧酸化による表面色制御 Fe-Si-B 系アモルファス合金における 局所構造及びネットワーク接続の理論研究 AIC で形成した多結晶 poly-Si 膜層上でのアモルファスシリコン膜のフラッシュランプアニールによる結晶化パルスプラズマ法による微細ナノ粒子の生成について休憩 /Break	 ○黒岩 愛帆¹,本間 剛¹, 篠崎 健二².3 ○佐藤 史隆¹,本間 剛¹ ○三好 隆太¹, 斎藤 全¹ ○(M1) 平井 太偲¹, 鶯 拓未¹, 遠田 義晴¹, 富樫 望² ○池淵 遼平¹, 平山 尚美¹, 下野 昌人² ○(M2) 李 柏同¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○森永 智¹, 依田 眞一¹, 大隅 壮太², 徳田 誠² ○(B) 土橋 裕太¹, 山澤 隼¹, 塚本 慶人¹, 中岡 俊裕¹ 	1. 長岡技大, 2. 産総研, 3. 阪大院工 1. 長岡技大 1. 愛媛大院理工 1. 弘前大院理工, 2. Orbray 1. 島根大NEXTA, 2. 物材機構 1. 北陸先端大 1. 京石ナノ研, 2. 熊大工

15:30		休憩/Break		
15:45	16p-C32-9	Sb-Se 薄膜の光学的・電気的性質	○澤田 航¹,後藤 民浩¹	1.群馬大理工
16:00		顕微干渉計による相変化パターンの段差測定	○菅原 健太郎¹,後藤 民浩² ○鳩岡 裕介¹,双 逸²,安藤 大輔¹,須藤 祐司¹.²	1. 産総研, 2. 群馬大理工
16:15 16:30		Mo-N半導体薄膜の相変化挙動 セレクタ向けTM-Ge-Te 系アモルファスカルコゲナイド		1. 東北大工, 2. 東北大工 (AIMR) 1. 慶應大理工, 2. 産総研, 3. 東北大工
100		の耐熱性	フォンス ポール 1	
		ング / Energy Harvesting 口頭講演 (Oral Presentation) A37会場(Room A37)		
15:30	17p-A37-7	ゴム材料の積層によるPZTの圧電性能向上	○太田 達哉¹, 間々田 祥吾¹	1. 鉄道総研
15:45	奨 E 17p-A37-8	High Efficient Piezoelectric Nanogenerators with	(D) TzuChuan Yang ¹ , TzuWei Hsu ¹ , TingHan	1. Chang Gung Univ., 2. Chang Gung Memorial Hospital
		TiO ₂ -NFs-Doped P(VDF-TrFE) Copolymers via Ultrviolet Thermal Annealing	Lin ¹ , MingChung Wu ^{1, 2} , JerChyi Wang ^{1, 2, 3}	at Linkou, 3.Ming Chi Univ. of Tech.
16:00	奨 17p-A37-9	PDMSへのイオン液体添加によるトライボ発電の出力向	○(D)周 青陽¹,鄭 雨萌¹,木下 健太郎¹,生野 孝¹	1.東京理科大
16:15	奨 17p-A37-10	上 3層構造テキスタイル摩擦発電を用いた衣服型エネル	○梅村 侑史¹, 大野 雄高¹.², 松永 正広²	1. 名大工, 2. 名大未来研
10.15	关 17p-1137-10	ギーハーベスタ	(中的 旧文 , 八到 麻间 , 伍水 止/云	1. 石八上,4. 石八小木明
16:30	17p-A37-11	SOI-MEMS環境振動発電素子に向けた自己組織化エレクトレットの電気的特性に関する検討	○砂川 優一朗 ¹ , 角野 響一 ¹ , 細井 覚 ¹ , 李 睿宸 ¹ , 田中 有弥 ² , 山根 大輔 ¹	1.立命館大, 2.群馬大
16.3 シ	リコン系太陽電池 /	Bulk, thin-film and other silicon-based solar cells	13.7. ALIK 70.111	
		口頭講演 (Oral Presentation) C32 会場 (Room C32)		1 Start o twent o well-r
9:00	20a-C32-1	5種類の太陽電池の12.5年間の発電性能の経時変化	〇石井 徹之 ¹ , 千葉 恭男 ² , 秋冨 稔 ² , 佐藤 梨都子 ² , 崔 誠佑 ² , 增田 淳 ³	1. 電中研, 2. 産総研, 3. 新潟大工
9:15	20a-C32-2	セル/封止材界面にAgナノワイヤをスピンコートした結		1. 新潟大自然研, 2. 大阪大, 3. 北陸先端大, 4. 筑波大数
		晶Si太陽電池モジュールの電圧誘起劣化耐性の検討	大平 圭介³, 山口 世力 ^{4.5} , 後藤 和泰 ^{1.6} , 増田 淳 ^{1.6}	物, 5. 筑波大IQSST, 6. 新潟大IRCNT
9:30	20a-C32-3	Li 元素とNa 元素が結晶Si 太陽電池モジュールの電圧誘 起劣化に及ぼす影響	(D) 秦 い明', 米本 旭', Dhamrin Marwan", 大平 圭介 ³ , 後藤 和泰 ^{1,4} , 増田 淳 ^{1,4}	1. 新潟大自然研, 2. 大阪大, 3. 北陸先端大, 4. 新潟大 IRCNT
9:45	奨 20a-C32-4	建材一体型太陽電池 (BIPV) の加飾のための光散乱体の	〇今井 啓太 1,2 , 徐 志豪 2 , 齋 均 2 , 近藤 道雄 1,3 , 和田	1.東工大, 2.産総研, 3.早大
0.00	20 622 5	作製	裕之 ¹	1 林夏太子 2 北陸火架上 2 乾海上
10:00	20a-C32-5	高熱伝導性材料粒子による結晶シリコン太陽電池モ ジュール動作時の昇温抑止効果	○傍島 靖¹,下方 英弘¹,二宮 佑太¹,岩城 幸志郎¹,大平 圭介²,增田 淳³	1. 岐阜大上, 2. 北陸先端大, 3. 新為大
10:15		休憩/Break		
10:30	20a-C32-6	曲面構造におけるバックコンタクト太陽電池モジュール の性能評価	○後藤 頌¹, 城内 紗千子¹	1.新潟大
10:45	20a-C32-7	曲率方向の異なるバックコンタクトセル太陽電池モ	〇森下 遥斗¹, 城内 紗千子¹	1.新潟大工
1.00	00 000 0	ジュールの耐久性の検討	(((((((((((((((((((4 H. Et M. M. I.
1:00	20a-C32-8	封止材とカバーガラスを使用しない曲面結晶 Si 太陽電池 モジュールの浸水試験	○ (M2) 永原 光倫 ', 新保 俊大朗 ', Huynh Thi Cam Tu ¹ , 大平 圭介 ¹	1.北陸先端大
11:15	20a-C32-9	曲面追従させた封止材を用いない結晶Si太陽電池モ		1.新潟大工, 2.京セラ, 3.オキツモ, 4.北陸先端大, 5.新
		ジュールに対する加速試験の影響(Ⅱ)	陽平², 髙橋 宏明², 木村 直史³, 新保 俊大郎⁴, 永原 光	潟大カーボンセンター
9/20(Fri.) 13:00 - 16:00	口頭講演 (Oral Presentation) C32 会場 (Room C32)	倫 ⁴ , 大平 圭介 ⁴ , 後藤 和泰 ^{1.5} , 増田 淳 ^{1.5}	
13:00	20p-C32-1	高速堆積Cat-CVD窒化Si膜の湿熱環境での屈折率安定	○大平 圭介¹, Huynh Thi Cam Tu¹	1.北陸先端大
10.15	20 622.2	性	○ 京土 子】 英田 如甘2 田田 唐古23 16田 唐14 <i>李</i> 正	1 充冶工户体理 2 万工险工 2 万工土业燃排 4 充冶工
13:15	20p-C32-2	ナノ結晶シリコン/酸化シリコン複合膜の電気的特性の 組成依存性	○尚不督',加田朝奉',黑川康良",增田淳",于佐 美徳隆 ^{2,3,5} ,後藤和泰 ^{1,2,4}	1. 新潟大自然研, 2. 名大院工, 3. 名大未来機構, 4. 新潟大IRCNT, 5. 名大未材研
3:30	20p-C32-3	組成を変化させた極薄窒化Si膜の接触抵抗の調査	○伊藤 雄飛¹, Huynh Thi Cam Tu¹, 大平 圭介¹	1. 北陸先端大
13:45	20p-C32-4	酸化チタンを正孔・電子コンタクトに用いた結晶シリコ	〇松井 卓矢 ^{1.2} , 深谷 昌平 ^{1.2} , McNab Shona ³ , 齋 均 ¹ , 後藤 和泰 ^{2.4} , 宇佐美 徳隆 ² , Bonilla Ruy Sebastian ³	1. 産総研, 2. 名大, 3. Oxford Univ., 4. 新潟大
14:00	20p-C32-5	ン太陽電池 【注目講演】酸化チタン薄膜を介して接合したペロブスカ		1. 産総研
		イト/結晶シリコンタンデム太陽電池		
14:15 14:30	20p-C32-6	理論的エネルギー変換効率70% の結晶シリコン太陽電池 休憩/Break	○城之下 勇¹	1.個人参加
14:45	20p-C32-7	シリコン界面のパッシベーションに及ぼすPEDOT:PSS	○(M1C)山中 健吾¹, 黒川 康良².³, 加藤 正史¹, 曾我	1.名工大院工, 2.名大院工, 3.名大未材研
		の微細構造の影響	哲夫1,加藤 慎也1	
15:00	E 20p-C32-8	Application of a Machine Learning Method, Random Forest, to the Deposition Conditions of Doped	OCHENXI LI ¹ , Huynh Thi Cam Tu ¹ , Keisuke Ohdaira ¹	1.JAIST
		Amorphous Silicon Films	Olivalia	
15:15	20p-C32-9	Performance of a Si solar cell with a SnO_x film as a hole	○ Tu ThiCam Huynh¹, Keisuke Ohdaira¹	1.JAIST
5:30	奨 20p-C32-10	selective layer 低温硬化型電極ペーストと透明導電膜の界面評価	○箕輪 卓哉¹, 西原 達平².³, Lee Hyunju¹.³, 大下 祥	1.明治大理工, 2.高輝度光科学研究センター, 3.明治大
13.30	类 20p-C32-10			MREL, 4. 豊田工大, 5. ナミックス
15:45	奨 20p-C32-11	結晶シリコン太陽電池における電極周辺応力の温度依存		1.明治大理工, 2.豊田工大, 3.長岡技科大, 4.明大MREI
17 🛨	/ h	評価(Ⅱ) - 次元++**! / Nanagarhan and Two Dimonsi	祥雄 ² ,山田 昇 ³ ,小椋 厚志 ^{1,4}	
		ニ次元材料 / Nanocarbon and Two-Dimensi はプログラム冒頭にございます。	onal Materials	
		ポスター講演 (Poster Presentation) P会場(Room P)		
	17a-P01-1	マイクロ波によるカーボンナノウォール合成の鉄系触媒	〇榎本 貴允 1 , 金田 美優 2 , 古林 宏之 $^{1.2}$, 山本 真平 1 ,	1.三惠技研工業株式会社, 2.岡山大学院環境自然
	17a-P01-2	効果 フッ素ドーブ酸化スズ上への水素置換グラフィジインの	池田 直 ² ○山本 輝 ¹ , Chellamuthu Jeganathan ¹ , 原 正則 ¹ , 吉村	1. 豊田工大工
	1141012	合成	雅満 ¹	A Third and the second
	17a-P01-3	無機固体電解質を用いた全固体電池用カーボンナノ	○倉地 雄太¹, 荒川 修一¹, 原 正則¹, 吉村 雅満¹	1.豊田工大工
	17a-P01-4	チューブ負極の開発 フラーレン誘導体添加 C ₆₀ フラーレンナノウィスカーの	○柴田 貴斗¹, 原 正則¹, 吉村 雅満¹	1. 豊田工大工
		作製と評価		
	17a-P01-5	ニッケル触媒薄膜上に成長させた鉄内包カーボンナノチューブの磁気特性におけるプラチナ添加の効果	○矢野 裕己¹,藤原 裕司¹,佐藤 英樹¹	1.三重大院工
	17a-P01-6	チューブの磁気特性におけるプラチナ添加の効果 ホウ素ドープカーボンナノウォールの高速合成と特性	○金田 美優¹, 萱原 空輝², 深田 幸正³, 吉井 賢資³, 福	1. 岡山大院環境自然, 2. 岡山大理, 3. 原子力機構
			田 竜生 3 , 吉越 章隆 3 , 小畠 雅明 3 , 池田 直 1 , 狩野 旬 1 ,	
	17a-D01 7	恋動温度下における半道体刑もトバへ屋刑カーギン上,	藤井 達生¹ ○ (M2) 藤原 隆二¹, 千足 昇平¹, 丸山 茂夫¹, 大塚 慶	1 亩 * 丁
	17a-P01-7	変動温度下における半導体型および金属型カーボンナノ チューブの成長速度追跡	〇(M2) 滕原 隆二,十足 昇平,丸山 戊天,大塚 慶 吾 ¹	1.米八上
	17a-P01-8	その場 XAFS 測定による Al_2O_3 担体上の Fe 触媒からの単	○堀内 順平 ¹ , 水野 慎也 ¹ , 才田 隆広 ^{1,2} , 成塚 重弥 ¹ ,	1.名城大理工, 2.名城大ナノマテ研
	17a-P01-9	層カーボンナノチューブ生成過程の解明 SIB 負極用窒素ドープ膨張化グラファイトの作製	丸山 隆浩 ^{1,2} ○大塚 丞 ¹ , Kumara G.R.A. ² , 原 正則 ¹ , 吉村 雅満 ¹	1. 豊田工大工, 2.NIFS
	174-101-9	の10 只型用主常! ノルが取出ソノノナイトの肝炎	○八本 型,Kumara G.K.A.,/ボ 正則, 言判 雅祹 *	1. 22 1117. 2.11173

E 17a-P01-10	Separation of Catalysts from Carbon Nanotubes Synthesized by Microwave-Assisted Heating	○ IPutu Abdi Karya¹, Masakatsu Fujii¹, Kohei Nakagawa², Yota Kageyama¹, Muhammad Al Jalali¹, Fumihiro Nishimura³, Toyohiko Nishiumi¹, Takayuki	1.Dept. of Appl. Phys., Univ. of Fukui, 2.FIR, Univ. of Fukui, 3.HISAC, Univ. of Fukui
17a-P01-11	カーボンナノチューブ複合紙による蒸気発電紙のための	Asano ¹ , Seitaro Mitsudo ¹ ○三巻 飛由 ¹ , 新井 皓也 ² , 大矢 剛嗣 ^{1,3}	1. 横国大院理工, 2. 三菱マテリアル, 3. 横国大 IMS
17a-P01-12	分散剤の検討 TiO ₂ 導入によるCNT複合紙を用いた色素増感太陽電池	○KOU YI¹, 大矢 剛嗣¹.²	1. 横国大院理工, 2. 横国大IMS
17a-P01-13	紙の発電効率向上検討 新規分散剤によるカーボンナノチューブ複合糸トランジ	○小平 弘樹¹, 大矢 剛嗣 ^{1,2}	1. 横国大院理工, 2. 横国大IMS
17a-P01-14	スタの性能向上検討 CNT切紙熱電デバイスを活用したバッテリーレス温度モ	○本宮 大二朗¹, 西浦 憲³, 内田 秀樹³, 元祐 昌廣², 中	1. 東理大物工, 2. 東理大機械, 3. 日本ゼオン
	ニタリング ギャップ電極を用いたアモルファスカーボン膜への電圧	嶋 宇史 1	1. 芝浦工大院
	印加と抵抗変化		
	切り紙技術を用いたカーボンナノチューブ複合紙アク チュエータ	○豊増 遼大¹,大矢 剛嗣¹.²	1. 横国大院理工, 2. 横国大 IMS
	TiO ₂ 添加によるCNT利用NO ₂ ガスセンサの高感度化 CNT@BNNTへテロナノチューブと金属電極間のコンタ クト形成	○伊東博克¹,村山真理子¹²,趙新為¹ ○清水一理¹,井ノ上泰輝¹,小林慶裕¹	1. 東理大理, 2. 東洋大工技研 1. 阪大院工
17a-P01-19	ボロメータ型CNT赤外線検出器の素子分離プロセス開発	〇福田 紀香 1 , 田中 朋 $^{1.2}$, 殿内 規之 $^{1.2}$, 金折 恵 1 , 弓削 亮太 $^{1.2}$	1. 産総研, 2. 日本電気
17a-P01-20	物理リザバー応用に向けたナノカーボンランダムネット ワークの電気特性制御:絶縁性ナノ材料添加の影響		1. 阪大院工, 2. 岡山大
17a-P01-21	カーボンナノチューブ複合紙を用いたトライボ発電の直	○大河内 一輝 1, 大矢 剛嗣 2.1	1. 横国大院理工, 2. 横国大 IMS
17a-P01-22	列化による出力向上検討 鉄内包カーボンナノチューブ含有ポリマーナノファイ	○恒川 拓光¹,藤原 裕司¹,佐藤 英樹¹	1.三重大院工
17a-P01-23	バーの磁気特性 レジストを固体材料として用いたGe(110)上へのグラ	○(M1) 武田 怜士¹, 前田 文彦¹	1.福工大工
17a-P01-24	フェン成長 ポリマーアシスト SiC 熱分解グラフェン成長におけるス	○(M1)仁科 匠人¹, 乗松 航¹	1.早大理工
	テップのワンダリング過程 六方晶窒化ホウ素フレーク上のグラフェン気相成長機構		1. 東洋大理工, 2. 大阪大学院, 3. 東洋大学院, 4.BN 研究
174-1 01-23	の解析	輔 ³ , 波邊 賢司 ⁵ , 谷口尚 ⁵ , 花尻 達郎 ^{1,3,4} , 根岸 良太 ^{1,3,4}	センター, 5.物質・材料研究機構
17a-P01-26	グラフェン成長応用に向けた Ni(111) の組成分析および 構造評価	 ○八木 遂行¹, スバギョ アグス¹, 佐藤 真¹, 大和田 真¹, 中根 晃紀¹, 八田 英嗣¹, 末岡 和久¹ 	1.北大院情
17a-P01-27	CとNiの二層膜の真空加熱法による基板へのグラフェン 直接成長	○ (M2) 佐藤 真¹, Subagyo Agus¹, 大和田 真¹, 芳野藤也¹, 中根 晃紀¹, 八木 遂行¹, 八田 英嗣¹, 末岡 和 久¹	1. 北大院情
17a-P01-28	K添加多層グラフェンFETにおけるEBAC像のゲート電 圧依存性	○沖川 侑揮¹, 增澤 智昭², 中島 秀朗¹, 岡崎 俊也¹, 山田貴壽¹	1. 産総研, 2. 静大
17a-P01-29	光学顕微鏡によるグラフェン観察の詳細分析	○加藤 幹大¹, 趙 新為¹	1. 東理大理
17a-P01-30	ラマン分光法による臭素及びカリウム添加積層グラフェンの評価	○増澤智昭',沖川 侑揮',山田 貴壽'	1.静岡大, 2.産総研
17a-P01-31	エタノール雰囲気高温還元した酸化グラフェン薄膜の表 面形状と結晶性	○ (M1) 神田 哲志¹, 島崎 直希¹, 山下 朋晃¹, 鵜飼 智 文², 黒須 俊治², 花尻 達郎¹.², 前川 透², 仁科 勇太³, 根岸 良太¹.²	1. 東洋大院理工, 2.BN 研究センター, 3. 岡山大
17a-P01-32	カラムクロマトグラフィーによる高量子収率グラフェン 量子ドットの均一性の向上		1. 東邦大院理, 2. 産総研
17a-P01-33 17a-P01-34	分子修飾を利用した積層グラフェンの電気特性制御 電子線改質によるグラフェンの熱輸送制御の分子動力学 解析	○生駒 璃音¹, 笠谷 彪雅¹, 渡辺 剛志¹, 黄 晋二¹	1. 青学大理工
17a-P01-35	乱層積層した多層グラフェンの合成と電子輸送特性に関する研究	○ (M2) 山下 朋晃 ¹ , 鵜飼 智文 ² , 黒須 俊治 ² , 花尻 達 郎 ¹⁻² , 前川 透 ² , 仁科 勇太 ³ , 山口 智弘 ⁴ , 石橋 幸治 ⁴ , 根岸 良太 ^{1,2}	1. 東洋大院理工, 2.BN 研究センター, 3. 岡山大, 4.理研
17a-P01-36	六方晶窒化ホソ素フレーク上に気相成長させたグラフェンの電子物性解析		1.東洋大理工, 2.東洋大学院, 3.BN研究センター, 4.物質・材料研究機構
17a-P01-37	プラズモニックナノ格子上のグラフェンに対するラマン		1.三菱電機株式会社
17a-P01-38	スペクトル分析 グラフェン/hBN構造における光熱電効果による光通信		1. 東京電機大, 2. 物材機構, 3. 徳島大
	波長光の検出		
17a-P01-39	触媒微細構造を用いた電極間のグラフェン直接成長に関 する研究	○大和田 真¹, Subagyo Agus¹, 佐藤 真¹, 中根 晃紀¹, 八木 遂行¹, 八田 英嗣¹, 末岡 和久¹	1.北大院情
17a-P01-40	グラフェン/Si太陽電池応用に向けたオゾン酸化法によるSiO2パッシベーション膜の形成と評価	○芳野 藤也¹, スバギョ アグス¹, 大和田 真¹, 中根 晃 紀¹, 八木 遂行¹, 八田 英嗣¹, 末岡 和久¹	1.北大院情
17a-P01-41	酸化グラフェン光還元体を利用したシリコンエッチング		1. 京大院工
	熱CVDによる多層グラフェン膜へのドーピング濃度向上		1. 芝浦工大院
	Sr をインターカレートした数層グラフェンの作製	○吉川 英恕¹, 村山 真理子¹.², 趙 新為¹, 西尾 太一郎¹	
	原子層堆積法による厚膜 BN の Si 基板への直接成長	○宇佐美潤¹, 岡本 有貴¹, 藤井 健志¹	1. 産総研
17a-P01-45	MoS_2 層数制御に向けたモリブデンブリカーサの特徴と選択	: ○小野 阳宮,佐八囘 万酉,松平 貝士,田田 治樹。	1.1 1.3, 2.INIIVIS
17a-P01-46	流路分離式化学気相蒸着装置を用いた TaS ₂ 連続膜の合成	○江橋 美羽¹, 柳瀬 隆¹	1.東邦大理
	$MOCVD$ 法で成膜した高配向 MoS_2 単層膜の SHG 観測 断面 TEM 像の高速フーリエ変換による原子層状膜の結 晶性評価		1. 筑波大物理, 2. 物材機構 1. 東工大, 2. 科学技術創成研究院
	圧電応答顕微鏡を用いた短周期モアレ超格子の観察	○田中幸太¹, 欧 昊¹, 竹延 大志¹	1.名大工
	転写プロセス改良を通じたMoS₂の歪制御 化学量論組成からのずれに起因する内因性欠陥がSnS薄	○岡田 光博 1 , 沖川 侑揮 1 , 山田 貴壽 1 ○ (D) 野上 大一 1 , 茂田井 大輝 1 , 鈴木 一誓 1 , 小俣 孝	1. 産総研 1. 東北大
45 204 55	膜の物性に与える影響	A1	1. 块工工吃加了
	層状13族モノカルコゲナイド原子膜のJanus化 ドーバント分子を in situ生成した MoS ₂ の電荷移動ドー ビング	○ (M1)山口 頌平¹, リム ホンエン¹, 上野 啓司¹ ○劉 冠廷¹, 桐谷 乃輔¹	1. 埼玉大院理工 1. 東大院総合
17a-P01-54	MoS ₂ -FET フォトカレントの銅ナフタロシアニン分子吸 着量依存性	○高岡 毅 ¹ , 小菅 楽 ² , Liu Haotian ² , 黒澤 一姫 ² , Chandra Devsharma Sushen ² , 安藤 淳 ³ , 米田 忠弘 ¹	1. 東北大多元研, 2. 東北大院理, 3. 産総研
17a-P01-55	有単版付任 Bi ₂ Te ₃ /CoFeBの逆スピンホール効果における界面層の影響		1. 産総研, 2. 物材機構, 3. 東北大

	E 17a-P01-56	Electronic state modulation of MoS ₂ using monovalent benzyl viologen solution	○ Mao Xu¹, Chen Li¹, Guanting Liu¹, Daisuke Kiriya¹	1.The Univ. of Tokyo
	17a-P01-57	WSe ₂ MOSFET における電極コンタクトへの絶縁性ポリマー層の挿入	○(M1) 直井 涼一郎¹, Durgadevi Elamaran¹, 桐谷 乃 輔¹	1.東大院総合
	17a-P01-58	MoTe ₂ 縦型伝導素子における電極材料の影響	110	1.東京電機大, 2.物材機構, 3.東京工科大, 4.キオクシ
	17a-P01-59	$\mathrm{hBN}/$ 単層 $\mathrm{MoTe_2}$ チャネル FET における電気的特性の環境依存性	○ (M1) 吉村 拓¹, 滋野 博史¹, 渡邊 賢司², 谷口 尚², 星 裕介¹	1. 東京都市大, 2.NIMS
	17a-P01-60	Graphene/MoS2 ヘテロ接合型 FET に向けた MoS2-FET の作製プロセスおよびトランジスタ特性の評価	〇三村 賢斗 1 , 長谷川 尊之 1 , 原田 義之 1 , 小山 正俊 1 , 前元 利彦 1 , 藤元 章 1	1.大阪工大 ナノ材研
	E 17a-P01-61	Enhanced MoS2 Memristor Emulating Synaptic Behavior through Contact Engineering	○ (P)Elamaran Durgadevi¹, Daisuke Kiriya¹	1.The Univ. of Tokyo
	17a-P01-62	TaO _x /TaS ₂ ヘテロ構造を用いたMoS ₂ 浮遊ゲートFETの 作製	\bigcirc (M1) 佐橋 悠太朗 1 ,稲田 貢 1 ,佐藤 伸吾 1 ,上野 啓 司 2 ,山本 真人 1	1. 関西大院理工, 2. 埼玉大院理工
	17a-P01-63 17a-P01-64	${ m VO_x/VSe_2}$ ヘテロ構造における抵抗変化メモリ動作の評価電気二重層ドーピングによる金属/ ${ m MoS_2}$ 接合における接		
	17a-P01-65	触抵抗の低減 遷移金属ダイカルコゲナイドを用いた電気二重層発光素	竹延 大志¹ ○山田 圭佑¹, 宇佐美 怜¹, 大井 浩司¹, 遠藤 尚彦², 宮	1.名大工, 2.都立大理
	17a-P01-66	子 メチル化ゲルマナン薄膜トランジスタの光起電力特性	田 耕 $\hat{\mathbf{n}}^2$, 竹延 大志 1 〇蜂谷 航平 1 , 平岡 佑貴 1 , 田畑 博史 1 , 片山 光浩 1 , 久	1.大阪院工, 2.岐阜大
CS.6] 4	L5 Nanocarbon and	d 2D Materials、17 ナノカーボン・二次元材料のコードシ	保理 ^{1,2} シェア / Code-sharing Session of 4.5 & 17	
		口頭講演 (Oral Presentation) A35会場(Room A35)		
0:00	E 18a-A35-1	Self-assembly of dopant molecules on MoS ₂ monolayer for		1.The Univ. of Tokyo
0:15	E 18a-A35-2	degeneracy/heavily doping Development of a Stacking Method for Janus TMDs	Nagashio ¹ , Daisuke Kiriya ¹ O Tianyishan Sun ^{1, 2} , Weizi Lu ^{1, 2} , Soma Aoki ^{1, 2} ,	1.Grad. Sch. of Eng., Tohoku Univ., 2.AIMR, Tohoku
0120	2 104 1100 2	Toward the Formation of Janus TMD Superlattices	Dingkun Bi ^{1, 2} , Hiroto Ogura ^{1, 2} , Toshiaki Kato ^{1, 2}	Univ.
0:30	E 18a-A35-3	Relationship between the surface roughness of SiO ₂ /Si	O Jaehyo Jang¹, Naoki Matsunaga¹, Soma Ito¹,	1.Tokyo Tech
0:45	E 18a-A35-4	sub. and the PVD-WS ₂ film Fabrication and Characterization of Germanium	Hitoshi Wakabayashi ¹ Qinqiang Zhang ¹ , Ryo Matsumura ¹ , Kazuhito	1.MANA-NIMS
1:00		Monosulfide Field-Effect Transistors 休憩/Break	Tsukagoshi ¹ , Naoki Fukata ¹	
1:15	E 18a-A35-5	Energetics and electronic structures of Nb-doped WSSe layers	○YANLIN GAO¹, SUSUMU OKADA¹	1.University of Tsukuba
1:30	E 18a-A35-6	Engineering MoSe ₂ Defects via SHI Irradiation for Improved NH ₃ Gas Sensing: A DFT Study	○ (DC)Aditya Kushwaha¹, Shalini Vardhan¹, Neeraj Goel¹	Sector - 3, Delhi - 110078, India
1:45	E 18a-A35-7	Pt Nanocluster Decoration on WSe ₂ for Enhanced NO ₂ Sensing: A DFT Investigation	Neetu Raj Bharti¹, ○ (DC)Aditya Kushwaha¹, Neeraj Goel¹	1.Netaji Subhas University of Technology, Dwarka, Sector - 3, Delhi - 110078, India
7.1 カー	-ボンナノチューブ	,他のナノカーボン材料 / Carbon nanotubes & other nai		occor o, bein 110010, maia
		口頭講演 (Oral Presentation) A31会場 (Room A31)		a distribution of the control of the
9:00	16a-A31-1	AI支援によるカーボンナノチューブ・ナノカンチレバー の効率的な作製	〇田所 幸浩',舟山 啓太',河野 圭祐',三浦 篤', 廣谷 潤²,大野 雄高²,田中 宏哉¹	1. 豊田中研, 2. 名大
9:15	16a-A31-2	カーボンナノチューブの負性容量	○平岡圭太¹,谷岡優樹¹,松尾海飛¹,白石真弥¹,孫	1.九工大工
9:30	16a-A31-3	カーボンナノチューブ不揮発性メモリ素子におけるCNT 潰れ構造の諸物性	24	1.産総研
9:45	16a-A31-4	コイルのない2抵抗構造の平面型インダクタの開発		1. 九工大工
0:00	16a-A31-5	デバイス作製プロセスによるカーボンナノチューブへの 影響:ラマンスペクトルにおけるG/D比の変化		1. 名大工, 2. 産総研, 3. 名大未来研
0:15	16a-A31-6	ポリマー配向を利用したカーボンマイクロコイルのらせ ん軸配向	○中島 悠輔',望月 那生',古川 怜'	1. 電気通信大学
0:30		4 £自 /D 1-		
	16- 121 7	休憩/Break	○ A 伊 始十卯1 毎井 姓由2 十左 剛田1.3	1 株団十陸冊エ 9 二茎っこリマッ 9 株団十 IMC
	16a-A31-7	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価	○久保 竣太郎 ¹ , 新井 皓也 ² , 大矢 剛嗣 ^{1,3}	1. 横国大院理工, 2. 三菱マテリアル, 3. 横国大 IMS
0:45	16a-A31-8	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型CNTネットワークを用いたMEMSボロメータ の低周波雑音特性	〇田中 朋 $^{1.2}$, 佐野 雅彦 1 , 野口 将高 $^{1.2}$, 宮崎 孝 $^{1.2}$, 宮 本 俊江 $^{1.2}$, 金折 恵 2 , 弓削 亮太 $^{1.2}$	
0:45 1:00	16a-A31-8	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型 CNT ネットワークを用いた MEMS ボロメータ	〇田中 朋 $^{1.2}$, 佐野 雅彦 1 , 野口 将高 $^{1.2}$, 宮崎 孝 $^{1.2}$, 宮 本 俊江 $^{1.2}$, 金折 恵 2 , 弓削 亮太 $^{1.2}$	
0:45 1:00 1:15	16a-A31-8 16a-A31-9	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型CNTネットワークを用いたMEMSポロメータ の低周波雑音特性 n型化CNT複合紙を用いた色素増感太陽電池紙の性能向	〇田中 朋 $^{1.2}$, 佐野 雅彦 1 , 野口 将高 $^{1.2}$, 宮崎 孝 $^{1.2}$, 宮 本 俊江 $^{1.2}$, 金折 恵 2 , 弓削 亮太 $^{1.2}$	1.日本電気, 2.産総研
10:45 11:00 11:15 11:30	16a-A31-8 16a-A31-9 16a-A31-10	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型CNTネットワークを用いたMEMSポロメータ の低周波雑音特性 n型化CNT複合紙を用いた色素増感太陽電池紙の性能向 上検討 カーボンナノチューブ/グラフェンナノリボンネット	 ○田中 朋^{1,2}, 佐野 雅彦¹, 野口 将高^{1,2}, 宮崎 孝^{1,2}, 宮 本 俊江^{1,2}, 金折 恵², 弓削 亮太^{1,2} ○清水 千寛¹, 大矢 剛嗣^{1,2} ○(M2) 古賀 優人¹, 宇佐美 雄生^{1,2}, 田中 啓文^{1,2} 	1. 日本電気, 2. 産総研 1. 横国大院理工, 2. 横国大 IMS
0:45 1:00 1:15 1:30 1:45	16a-A31-8 16a-A31-9 16a-A31-10 16a-A31-11 on.) 13:30 - 19:15	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型CNTネットワークを用いたMEMSボロメータ の低周波雑音特性 n型化CNT複合紙を用いた色素増感太陽電池紙の性能向 上検討 カーボンナノチューブ/グラフェンナノリボンネット ワークのリザバーコンピューティングへの応用 カーボンナノチューブ複合紙を用いた蒸散型熱電発電紙 の吸水性制御による性能向上検討 口頭講演 (Oral Presentation) A31 会場 (Room A31) 浮遊触媒気相成長法によるCNT合成条件最適化に向けた	○田中 朋 ^{1,2} , 佐野 雅彦 ¹ , 野口 将高 ^{1,2} , 宫崎 孝 ^{1,2} , 宮本 俊江 ^{1,2} , 金折 恵 ² , 弓削 亮太 ^{1,2} ○清水 千寛 ¹ , 大矢 剛嗣 ^{1,2} ○(M2) 古賀 優人 ¹ , 宇佐美 雄生 ^{1,2} , 田中 啓文 ^{1,2} ○舘 和英 ¹ , 新井 皓也 ² , 大矢 剛嗣 ^{1,3}	1. 日本電気, 2. 産総研 1. 横国大院理工, 2. 横国大 IMS 1. 九工大生命体工, 2. 九工大 Neumorph センター 1. 横国大理工, 2. 三菱マテリアル, 3. 横国大 IMS
0:45 1:00 1:15 1:30 1:45 9/16(Mc 3:30	16a-A31-8 16a-A31-9 16a-A31-10 16a-A31-11 on.) 13:30 - 19:15	カーボンナノチューブ複合紙を用いたガスセンサの金属粒子添加による応答性評価半導体型CNTネットワークを用いたMEMSボロメータの低周波雑音特性 n型化CNT複合紙を用いた色素増感太陽電池紙の性能向上検討 カーボンナノチューブ/グラフェンナノリボンネットワークのリザバーコンピューティングへの応用カーボンナノチューブ複合紙を用いた蒸散型熱電発電紙の吸水性制御による性能向上検討口頭講演(Oral Presentation) A31 会場(Room A31)浮遊触媒気相成長法によるCNT合成条件最適化に向けたその場ラマン分光測定技術の開発Random network formation of carbon nanotubes	○田中 朋 ^{1,2} , 佐野 雅彦 ¹ , 野口 将高 ^{1,2} , 宫崎 孝 ^{1,2} , 宮本 俊江 ^{1,2} , 金折 恵 ² , 弓削 亮太 ^{1,2} ○清水 千寛 ¹ , 大矢 剛嗣 ^{1,2} ○(M2) 古賀 優人 ¹ , 宇佐美 雄生 ^{1,2} , 田中 啓文 ^{1,2} ○舘 和英 ¹ , 新井 皓也 ² , 大矢 剛嗣 ^{1,3}	1. 日本電気, 2. 産総研 1. 横国大院理工, 2. 横国大 IMS 1. 九工大生命体工, 2. 九工大 Neumorph センター 1. 横国大理工, 2. 三菱マテリアル, 3. 横国大 IMS
0:45 1:00 1:15 1:30 1:45 9/16(Mc 3:30 3:45	16a-A31-8 16a-A31-9 16a-A31-10 16a-A31-11 on.) 13:30 - 19:15 奨 16p-A31-1 16p-A31-2	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型 CNT ネットワークを用いた MEMS ボロメータ の低周波雑音特性 n型化 CNT 複合紙を用いた色素増感太陽電池紙の性能向 上検討 カーボンナノチューブ/グラフェンナノリボンネット ワークのリザバーコンピューティングへの応用 カーボンナノチューブ複合紙を用いた蒸散型熱電発電紙 の吸水性制御による性能向上検討 口頭講演 (Oral Presentation) A31 会場(Room A31) 浮遊触媒気相成長法による CNT 合成条件最適化に向けた 老の場ラマン分光測定技術の開発 Random network formation of carbon nanotubes suspended between nano-pillars via kite-growth mechanism	 ○田中 朋^{1,2}, 佐野 雅彦¹, 野口 将高^{1,2}, 宮崎 孝^{1,2}, 宮 本 俊江^{1,2} 金折 恵², 弓削 亮太^{1,2} ○清水 千寛¹, 大矢 剛嗣^{1,2} ○(M2) 古賀 優人¹, 字佐美 雄生^{1,2}, 田中 啓文^{1,2} ○舘 和英¹, 新井 皓也², 大矢 剛嗣^{1,3} ○新垣 良秋¹, 藤森 利彦^{1,2}, 鄭 サムエル¹, 藤田 淳一¹ ○劉 元嘉¹, 井ノ上 泰輝¹, 小林 慶裕¹ 	1. 日本電気, 2. 産総研 1. 横国大院理工, 2. 横国大 IMS 1. 九工大生命体工, 2. 九工大 Neumorph センター 1. 横国大理工, 2. 三菱マテリアル, 3. 横国大 IMS 1. 筑波大数理, 2. 住友電工 1. 阪大工
0:45 1:00 1:15 1:30 1:45 9/16(Mc 3:30 3:45	16a-A31-8 16a-A31-9 16a-A31-10 16a-A31-11 on.) 13:30 - 19:15 奨 16p-A31-1 16p-A31-2	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型CNTネットワークを用いたMEMSボロメータ の低周波雑音特性 n型化CNT複合紙を用いた色素増感太陽電池紙の性能向 上検討 カーボンナノチューブ/グラフェンナノリボンネット ワークのリザバーコンピューティングへの応用 カーボンナノチューブ複合紙を用いた蒸散型熱電発電紙 の吸水性制御による性能向上検討 口頭講演 (Oral Presentation) A31会場 (Room A31) 浮遊触媒気相成長法によるCNT合成条件最適化に向けた その場ラマン分光測定技術の開発 Random network formation of carbon nanotubes suspended between nano-pillars via kite-growth mechanism CoとIr触媒を用いた液相合成法による単層カーボンナノ チューブ成長	 ○田中 朋^{1,2}, 佐野 雅彦¹, 野口 将高^{1,2}, 宮崎 孝^{1,2}, 宮 本 俊江^{1,2}, 金折 恵², 弓削 亮太^{1,2} ○清水 千寛¹, 大矢 剛嗣^{1,2} ○(M2) 古賀 優人¹, 宇佐美 雄生^{1,2}, 田中 啓文^{1,2} ○舘 和英¹, 新井 皓也², 大矢 剛嗣^{1,3} ○新垣 良秋¹, 藤森 利彦^{1,2}, 鄭 サムエル¹, 藤田 淳一¹ ○劉 元嘉¹, 井ノ上 泰輝¹, 小林 慶裕¹ 仲見 果倫¹, カマル サラマ², 才田 隆広^{1,2}, ○丸山 隆 浩^{1,2} 	1. 日本電気, 2. 産総研 1. 横国大院理工, 2. 横国大 IMS 1. 九工大生命体工, 2. 九工大 Neumorph センター 1. 横国大理工, 2. 三菱マテリアル, 3. 横国大 IMS 1. 筑波大数理, 2. 住友電工 1. 阪大工 1. 名城大理工, 2. 名城大ナノマテ研
0:45 1:00 1:15 1:30 1:45 9/16(Mc 3:30 3:45 4:00 4:15	16a-A31-8 16a-A31-9 16a-A31-10 16a-A31-11 on.) 13:30 - 19:15 奨 16p-A31-1 16p-A31-2	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型CNTネットワークを用いた MEMS ボロメータ の低周波雑音特性 n型化 CNT 複合紙を用いた色素増感太陽電池紙の性能向 上検討 カーボンナノチューブ/グラフェンナノリボンネット ワークのリザバーコンピューティングへの応用 カーボンナノチューブ複合紙を用いた蒸散型熱電発電紙 の吸水性制御による性能向上検討 口頭講演 (Oral Presentation) A31 会場(Room A31) 浮遊触媒気相成長法による CNT 合成条件最適化に向けた その場ラマン分光測定技術の開発 Random network formation of carbon nanotubes suspended between nano-pillars via kite-growth mechanism Coと Ir 触媒を用いた液相合成法による単層カーボンナノ チューブ成長 CNT 合成における Fe 触媒寿命への Y 層効果	 ○田中 朋^{1,2}, 佐野 雅彦¹, 野口 将高^{1,2}, 宮崎 孝^{1,2}, 宮本 俊江^{1,2}, 金折 恵², 弓削 亮太^{1,2} ○清水 千寛¹, 大矢 剛嗣^{1,2} ○(M2) 古賀 優人¹, 宇佐美 雄生^{1,2}, 田中 啓文^{1,2} ○舘 和英¹, 新井 皓也², 大矢 剛嗣^{1,3} ○新垣 良秋¹, 藤森 利彦^{1,2}, 鄭 サムエル¹, 藤田 淳一¹ ○劉 元嘉¹, 井ノ上 泰輝¹, 小林 慶裕¹ 仲見 果倫¹, カマル サラマ², 才田 隆広^{1,2}, ○丸山 隆浩^{1,2} ○Le Huy Khuong Duy¹, 杉目 恒志², 中野 貴之¹, 井上 翼¹ 	1. 日本電気, 2. 産総研 1. 横国大院理工, 2. 横国大 IMS 1. 九工大生命体工, 2. 九工大 Neumorph センター 1. 横国大理工, 2. 三菱マテリアル, 3. 横国大 IMS 1. 筑波大数理, 2. 住友電工 1. 阪大工 1. 名城大理工, 2. 名城大ナノマテ研 1. 静岡大院工, 2. 近畿大院総理工
0:45 1:00 1:15 1:30 1:45 1:45 9/16(Mc 3:30 3:45 4:00 4:15 4:30	16a-A31-8 16a-A31-9 16a-A31-10 16a-A31-11 on.) 13:30 - 19:15 奨 16p-A31-1 16p-A31-2	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型CNTネットワークを用いたMEMSボロメータ の低周波雑音特性 n型化CNT複合紙を用いた色素増感太陽電池紙の性能向上検討 カーボンナノチューブ/グラフェンナノリボンネット ワークのリザバーコンピューティングへの応用 カーボンナノチューブ複合紙を用いた蒸散型熱電発電紙 の吸水性制御による性能向上検討 口頭講演 (Oral Presentation) A31 会場(Room A31) 浮遊触媒気相成長法によるCNT合成条件最適化に向けた その場ラマン分光測定技術の開発 Random network formation of carbon nanotubes suspended between nano-pillars via kite-growth mechanism CoとIr触媒を用いた液相合成法による単層カーボンナノ チューブ成長 CNT合成におけるFe触媒寿命へのY層効果 その場DRIFTS測定によるカーボンナノチューブ成長下 におけるAl ₂ O ₃ SiO ₂ 担持Co触媒粒子上でのエタノール分 解過程の分析	 ○田中 朋^{1,2}, 佐野 雅彦¹, 野口 将高^{1,2}, 宮崎 孝^{1,2}, 宮本 俊江^{1,2}, 金折 恵², 弓削 亮太^{1,2} ○清水 千寛¹, 大矢 剛嗣^{1,2} ○(M2) 古賀 優人¹, 宇佐美 雄生^{1,2}, 田中 啓文^{1,2} ○舘 和英¹, 新井 皓也², 大矢 剛嗣^{1,3} ○新垣 良秋¹, 藤森 利彦^{1,2}, 鄭 サムエル¹, 藤田 淳一¹ ○劉 元嘉¹, 井ノ上 泰輝¹, 小林 慶裕¹ 中見 果倫¹, カマル サラマ², 才田 隆広^{1,2}, ○丸山 隆浩^{1,2} ○Le Huy Khuong Duy¹, 杉目 恒志², 中野 貴之¹, 井上 翼¹ ○小山 征哉¹, 才田 隆広^{1,2}, 丸山 隆浩^{1,2} 	1. 日本電気, 2. 産総研 1. 横国大院理工, 2. 横国大 IMS 1. 九工大生命体工, 2. 九工大 Neumorph センター 1. 横国大理工, 2. 三菱マテリアル, 3. 横国大 IMS 1. 筑波大数理, 2. 住友電工 1. 阪大工 1. 名城大理工, 2. 名城大ナノマテ研
0:45 1:00 1:15 1:30 1:45 9/16(Mc 3:30 3:45 4:00 4:15 4:30	16a-A31-8 16a-A31-9 16a-A31-10 16a-A31-11 on.) 13:30 - 19:15 契 16p-A31-1 16p-A31-2 16p-A31-3 契 16p-A31-4	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型 CNT ネットワークを用いた MEMS ボロメータ の低周波雑音特性 n型化 CNT 複合紙を用いた色素増感太陽電池紙の性能向 上検討 カーボンナノチューブ/グラフェンナノリボンネット ワークのリザバーコンピューティングへの応用 カーボンナノチューブ複合紙を用いた蒸散型熱電発電紙 の吸水性制御による性能向上検討 口頭講演 (Oral Presentation) A31 会場(Room A31) 浮遊触媒気相成長法による CNT 合成条件最適化に向けた その場ラマン分光測定技術の開発 Random network formation of carbon nanotubes suspended between nano-pillars via kite-growth mechanism Coと Ir 触媒を用いた液相合成法による単層カーボンナノ チューブ成長 CNT 合成における Fe 触媒寿命への Y層効果 その場 DRIFTS 測定によるカーボンナノチューブ成長下 における Al ₂ O ₃ SiO ₂ 担持 Co 触媒粒子上でのエタノール分 解過程の分析	 ○田中 朋^{1,2}, 佐野 雅彦¹, 野口 将高^{1,2}, 宮崎 孝^{1,2}, 宮 本 俊江^{1,2} 金折 恵², 弓削 亮太^{1,2} ○清水 千寛¹, 大矢 剛嗣^{1,2} ○(M2) 古賀 優人¹, 字佐美 雄生^{1,2}, 田中 啓文^{1,2} ○舘 和英¹, 新井 皓也², 大矢 剛嗣^{1,3} ○新垣 良秋¹, 藤森 利彦^{1,2}, 鄭 サムエル¹, 藤田 淳一¹ ○劉 元嘉¹, 井ノ上 泰輝¹, 小林 慶裕¹ 仲見 果倫¹, カマル サラマ², 才田 隆広^{1,2}, ○丸山 隆 浩^{1,2} ○ Le Huy Khuong Duy¹, 杉目 恒志², 中野 貴之¹, 井上 翼¹ ○小山 征哉¹, 才田 隆広^{1,2}, 丸山 隆浩^{1,2} 	1. 日本電気, 2. 産総研 1. 横国大院理工, 2. 横国大 IMS 1. 九工大生命体工, 2. 九工大 Neumorph センター 1. 横国大理工, 2. 三菱マテリアル, 3. 横国大 IMS 1. 筑波大数理, 2. 住友電工 1. 阪大工 1. 名城大理工, 2. 名城大ナノマテ研 1. 静岡大院工, 2. 近畿大院総理工 1. 名城大理, 2. 名城ナノ研
11:00 11:15 11:30 11:45	16a-A31-8 16a-A31-9 16a-A31-10 16a-A31-11 on.) 13:30 - 19:15 奨 16p-A31-1 16p-A31-2	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型CNTネットワークを用いたMEMSボロメータ の低周波雑音特性 n型化CNT複合紙を用いた色素増感太陽電池紙の性能向上検討 カーボンナノチューブ/グラフェンナノリボンネット ワークのリザバーコンピューティングへの応用 カーボンナノチューブ複合紙を用いた蒸散型熱電発電紙 の吸水性制御による性能向上検討 口頭講演 (Oral Presentation) A31 会場(Room A31) 浮遊触媒気相成長法によるCNT合成条件最適化に向けた その場ラマン分光測定技術の開発 Random network formation of carbon nanotubes suspended between nano-pillars via kite-growth mechanism CoとIr触媒を用いた液相合成法による単層カーボンナノ チューブ成長 CNT合成におけるFe触媒寿命へのY層効果 その場DRIFTS測定によるカーボンナノチューブ成長下 におけるAl ₂ O ₃ SiO ₂ 担持Co触媒粒子上でのエタノール分 解過程の分析	 ○田中 朋^{1,2}, 佐野 雅彦¹, 野口 将高^{1,2}, 宮崎 孝^{1,2}, 宮本 俊江^{1,2}, 金折 恵², 弓削 亮太^{1,2} ○清水 千寛¹, 大矢 剛嗣^{1,2} ○(M2) 古賀 優人¹, 宇佐美 雄生^{1,2}, 田中 啓文^{1,2} ○舘 和英¹, 新井 皓也², 大矢 剛嗣^{1,3} ○新垣 良秋¹, 藤森 利彦^{1,2}, 鄭 サムエル¹, 藤田 淳一¹ ○劉 元嘉¹, 井ノ上 泰輝¹, 小林 慶裕¹ 仲見 果倫¹, カマル サラマ², 才田 隆広^{1,2}, ○丸山 隆浩^{1,2} ○Le Huy Khuong Duy¹, 杉目 恒志², 中野 貴之¹, 井上 異¹ ○小山 征哉¹, 才田 隆広^{1,2}, 丸山 隆浩^{1,2} ○ Man Shen¹, Taiki Inoue¹, Yoshihiro Kobayashi¹ 	1. 日本電気, 2. 産総研 1. 横国大院理工, 2. 横国大 IMS 1. 九工大生命体工, 2. 九工大 Neumorph センター 1. 横国大理工, 2. 三菱マテリアル, 3. 横国大 IMS 1. 筑波大数理, 2. 住友電工 1. 阪大工 1. 名城大理工, 2. 名城大ナノマテ研 1. 静岡大院工, 2. 近畿大院総理工 1. 名城大理, 2. 名城ナノ研 1. 1. 2. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.
10:45 11:00 11:15 11:30 11:45 9/16(Mc 13:30 13:45 14:00 14:15 14:30 14:45 15:00	16a-A31-8 16a-A31-9 16a-A31-10 16a-A31-11 on.) 13:30 - 19:15 奨 16p-A31-1 16p-A31-2 16p-A31-3 奨 16p-A31-4 16p-A31-5 E 16p-A31-6 奨 16p-A31-7	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型CNTネットワークを用いたMEMSボロメータ の低周波雑音特性 n型化CNT複合紙を用いた色素増感太陽電池紙の性能向上検討 カーボンナノチューブ/グラフェンナノリボンネット ワークのリザバーコンピューティングへの応用 カーボンナノチューブ複合紙を用いた蒸散型熱電発電紙 の吸水性制御による性能向上検討 口頭講演 (Oral Presentation) A31 会場(Room A31) 浮遊触媒気相成長法による CNT合成条件最適化に向けた その場ラマン分光測定技術の開発 Random network formation of carbon nanotubes suspended between nano-pillars via kite-growth mechanism CoとIr触媒を用いた液相合成法による単層カーボンナノ チューブ成長 CNT合成におけるFe 触媒寿命へのY層効果 その場DRIFTS 測定によるカーボンナノチューブ成長下 におけるAl ₂ O ₃ SiO ₂ 担持 Co 触媒粒子上でのエタノール分 解過程の分析 休憩/Break Thermal defect healing of various kinds of single-walled carbon nanotubes in reactive environment STM-TERSを用いた単層カーボンナノチューブのカイラ ル角とGバンド強度の相関の分析	 ○田中 朋^{1,2}, 佐野 雅彦¹, 野口 将高^{1,2}, 宮崎 孝^{1,2}, 宮本 俊江^{1,2}, 金折 恵², 弓削 亮太^{1,2} ○清水 千寛¹, 大矢 剛嗣^{1,2} ○(M2) 古賀 優人¹, 宇佐美 雄生^{1,2}, 田中 啓文^{1,2} ○舘 和英¹, 新井 皓也², 大矢 剛嗣^{1,3} ○新垣 良秋¹, 藤森 利彦^{1,2}, 鄭 サムエル¹, 藤田 淳一¹ ○劉元嘉¹, 井ノ上 泰輝¹, 小林 慶裕¹ 仲見 果倫¹, カマル サラマ², 才田 隆広^{1,2}, ○丸山 隆浩^{1,2} ○Le Huy Khuong Duy¹, 杉目 恒志², 中野 貴之¹, 井上 裏¹ ○小山 征哉¹, 才田 隆広^{1,2}, 丸山 隆浩^{1,2} ○ Man Shen¹, Taiki Inoue¹, Yoshihiro Kobayashi¹ ○ 服部 卓磨¹, 瀬田 賢斗¹, 春名 泰成¹, 斎藤 彰¹, 桑原 裕司¹ 	 1. 日本電気、2. 産総研 1. 横国大院理工、2. 横国大 IMS 1. 九工大生命体工、2. 九工大 Neumorph センター 1. 横国大理工、2. 三菱マテリアル、3. 横国大 IMS 1. 筑波大数理、2. 住友電工 1. 阪大工 1. 名城大理工、2. 名城大ナノマテ研 1. 静岡大院工、2. 近畿大院総理工 1. 名城大理、2. 名城ナノ研 1. OSaka Univ. Appl Phys 1. 阪大院工
0:45 1:00 1:15 1:30 1:45 1:45 9/16(Mc 3:30 3:45 4:00 4:15 4:30 4:45 5:00 5:15	16a-A31-8 16a-A31-9 16a-A31-10 16a-A31-11 on.) 13:30 - 19:15 契 16p-A31-1 16p-A31-2 16p-A31-3 契 16p-A31-4 16p-A31-5 里 16p-A31-6 契 16p-A31-7	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型CNTネットワークを用いたMEMSボロメータ の低周波雑音特性 n型化CNT複合紙を用いた色素増感太陽電池紙の性能向上検討 カーボンナノチューブ/グラフェンナノリボンネット ワークのリザバーコンピューティングへの応用 カーボンナノチューブ複合紙を用いた蒸散型熱電発電紙 の吸水性制御による性能向上検討 口頭講演 (Oral Presentation) A31 会場(Room A31) 浮遊触媒気相成長法によるCNT合成条件最適化に向けた その場ラマン分光測定技術の開発 Random network formation of carbon nanotubes suspended between nano-pillars via kite-growth mechanism CoとIr触媒を用いた液相合成法による単層カーボンナノ チューブ成長 CNT合成におけるFe触媒寿命へのY層効果 その場DRIFTS測定によるカーボンナノチューブ成長下 におけるAl ₂ O ₃ SiO ₂ 担持Co触媒粒子上でのエタノール分 解過程の分析 体憩/Break Thermal defect healing of various kinds of single-walled carbon nanotubes in reactive environment STM-TERSを用いた単層カーボンナノチューブのカイラ ル角とGバンド強度の相関の分析 単層カーボンナノチューブの成長に対する多機能ガス原 料の速度論的影響の個別追跡	 ○田中 朋^{1,2}, 佐野 雅彦¹, 野口 将高^{1,2}, 宮崎 孝^{1,2}, 宮本 俊江^{1,2} 金折 恵², 弓削 亮太^{1,2} ○清水 千寛¹, 大矢 剛嗣^{1,2} ○(M2) 古賀 優人¹, 字佐美 雄生^{1,2}, 田中 啓文^{1,2} ○舘 和英¹, 新井 皓也², 大矢 剛嗣^{1,3} ○新垣 良秋¹, 藤森 利彦^{1,2}, 鄭 サムエル¹, 藤田 淳一¹ ○劉 元嘉¹, 井ノ上 泰輝¹, 小林 慶裕¹ 仲見 果倫¹, カマル サラマ², 才田 隆広^{1,2}, ○丸山 隆浩^{1,2} ○Le Huy Khuong Duy¹, 杉目 恒志², 中野 貴之¹, 井上 裏¹ ○小山 征哉¹, 才田 隆広^{1,2}, 丸山 隆浩^{1,2} ○ Man Shen¹, Taiki Inoue¹, Yoshihiro Kobayashi¹ ○服部 卓磨¹, 瀬田 賢斗¹, 春名 泰成¹, 斎藤 彰¹, 桑原 裕司¹ ○大塚 慶吾¹, 堀澤 駿太¹, 丸山 茂夫¹ 	 1. 日本電気、2. 産総研 1. 横国大院理工、2. 横国大 IMS 1. 九工大生命体工、2. 九工大 Neumorph センター 1. 横国大理工、2. 三菱マテリアル、3. 横国大 IMS 1. 筑波大数理、2. 住友電工 1. 阪大工 1. 名城大理工、2. 名城大ナノマテ研 1. 静岡大院工、2. 近畿大院総理工 1. 名城大理、2. 名城ナノ研 1. 〇Saka Univ. Appl Phys 1. 阪大院工 1. 東大工
10:45 11:00 11:15 11:30 11:45 9/16(Mc 13:30 13:45 14:00 14:15 14:30	16a-A31-8 16a-A31-9 16a-A31-10 16a-A31-11 on.) 13:30 - 19:15 契 16p-A31-1 16p-A31-2 16p-A31-3 契 16p-A31-4 16p-A31-5 里 16p-A31-6 契 16p-A31-7	カーボンナノチューブ複合紙を用いたガスセンサの金属 粒子添加による応答性評価 半導体型CNTネットワークを用いたMEMSボロメータ の低周波雑音特性 n型化CNT複合紙を用いた色素増感太陽電池紙の性能向 上検討 カーボンナノチューブ/グラフェンナノリボンネット ワークのリザバーコンピューティングへの応用 カーボンナノチューブ複合紙を用いた蒸散型熱電発電紙 の吸水性制御による性能向上検討 口頭講演 (Oral Presentation) A31 会場(Room A31) 浮遊触媒気相成長法によるCNT合成条件最適化に向けた その場ラマン分光測定技術の開発 Random network formation of carbon nanotubes suspended between nano-pillars via kite-growth mechanism CoとIr触媒を用いた液相合成法による単層カーボンナノ チューブ成長 CNT合成におけるFe触媒寿命へのY層効果 その場DRIFTS測定によるカーボンナノチューブ成長下 におけるAl ₂ O ₃ SiO ₂ 担持Co触媒粒子上でのエタノール分 解過程の分析 体憩/Break Thermal defect healing of various kinds of single-walled carbon nanotubes in reactive environment STM-TERSを用いた単層カーボンナノチューブのカイラ ル角とGバンド強度の相関の分析	 ○田中 朋^{1,2}, 佐野 雅彦¹, 野口 将高^{1,2}, 宮崎 孝^{1,2}, 宮本 俊江^{1,2} 金折 恵², 弓削 亮太^{1,2} ○清水 千寛¹, 大矢 剛嗣^{1,2} ○(M2) 古賀 優人¹, 字佐美 雄生^{1,2}, 田中 啓文^{1,2} ○舘 和英¹, 新井 皓也², 大矢 剛嗣^{1,3} ○新垣 良秋¹, 藤森 利彦^{1,2}, 鄭 サムエル¹, 藤田 淳一¹ ○劉 元嘉¹, 井ノ上 泰輝¹, 小林 慶裕¹ 仲見 果倫¹, カマル サラマ², 才田 隆広^{1,2}, ○丸山 隆浩^{1,2} ○Le Huy Khuong Duy¹, 杉目 恒志², 中野 貴之¹, 井上 裏¹ ○小山 征哉¹, 才田 隆広^{1,2}, 丸山 隆浩^{1,2} ○ Man Shen¹, Taiki Inoue¹, Yoshihiro Kobayashi¹ ○服部 卓磨¹, 瀬田 賢斗¹, 春名 泰成¹, 斎藤 彰¹, 桑原 裕司¹ ○大塚 慶吾¹, 堀澤 駿太¹, 丸山 茂夫¹ 	 1. 日本電気、2. 産総研 1. 横国大院理工、2. 横国大 IMS 1. 九工大生命体工、2. 九工大 Neumorph センター 1. 横国大理工、2. 三菱マテリアル、3. 横国大 IMS 1. 筑波大数理、2. 住友電工 1. 阪大工 1. 名城大理工、2. 名城大ナノマテ研 1. 静岡大院工、2. 近畿大院総理工 1. 名城大理、2. 名城ナノ研 1. 〇Saka Univ. Appl Phys 1. 阪大院工 1. 東大工

16:15 16:30	奨 16p-A31-11	休憩/Break ボンドオーダーベース機械学習原子間ボテンシャルによ る新規超硬質炭素同素体の探索	○(D)小幡 郁真¹,久間 馨²,大塚 慶吾¹,丸山 茂夫¹	1. 東京大工, 2. 信州大先鋭材料研
16:45	16p-A31-12	過渡熱応答測定によるCNTフォレストの熱抵抗評価	○渡辺 倭¹, 中野 貴之¹, 井上 翼¹	1.静岡大院工
17:00	16p-A31-13	TIM利用に向けた CNT フォレストのフィルム化	○奥村 友貴¹, 中野 貴之¹, 井上 翼¹	1.静岡大院工
17:15	奨 16p-A31-14	カーボンナノチューブのドーブ状態における錯体化学と 高耐熱化技術	○河崎 佳保¹, 小柴 康子¹², 衛 慶碩³³, 赤池 幸紀°, 舟橋 正浩¹², 石田 謙司¹².⁵, 堀家 匠平¹.².₃.6	1.神戸大院工, 2.神戸大先端膜工学セ, 3.産総研ナノ材, 4.筑波大院理, 5.九大院工, 6.神戸大環境セ
17:30	16p-A31-15	ソフトアニオン配位によるp型カーボンナノチューブの	○河崎 佳保 ¹, 西中 茉佑子 ¹, 小柴 康子 ¹, ², 衛 慶碩 ³, ⁴,	1.神戸大院工,2.神戸大先端膜工学セ,3.産総研ナノ材,
17:45		特異なラマンスペクトル変化 休憩/Break	舟橋 正浩 ^{1,2} , 石田 謙司 ^{1,2,5} , 堀家 匠平 ^{1,2,3,6}	4.筑波大院理, 5.九大院工, 6.神戸大環境セ
18:00	奨 16p-A31-16	カーボンナノチューブ配向膜による高偏光度熱光源の開発	○ (DC) 侯野 真一朗¹, Zacheo Andrea¹, 志村 惟¹, Yu Shengjie², Doumani Jacques², 小松 夏実², 河野 淳一 郎², 牧 英之¹.3	1. 慶大, 2. ライス大, 3. 慶大スピントロニクス研究セン ター
18:15	16p-A31-17	タンニン酸を用いた新規カーボンナノチューブヒドロゲ ルの開発	○大久保 敦康¹, 大矢 剛嗣¹.²	1. 横国大理工, 2. 横国大 IMS
18:30	奨 16p-A31-18	CNTを面直方向に電界整列させた樹脂シートの作製		1. 九州大学
18:45	16p-A31-19	ビニルシランを用いた CVD法による多層 CNT 上への		1.愛知工業大学, 2.株式会社ジャバンアドバンストケミ
19:00	奨 16p-A31-20	SiC コーティング K平均法を用いた CNT/エポキシ樹脂複合材料界面の樹脂構造の分類	中井康夫 ³ , 五島 敬史郎 ¹ , 安原 重雄 ² , 竹内 和歌奈 ¹ ○平石 剣舞 ¹ , 屋山 巴 ¹ , 赤城 文子 ¹	カルズ, 3.高圧ガス工業株式会社 1.工学院大
17.2 グ	゛ラフェン / Grapher		_	
9/18(9:00	(Wed.) 9:00 - 12:00 18a-A37-1	口頭講演 (Oral Presentation) A37 会場 (Room A37) 電気化学発光免疫分析用バイオチップの作製に向けた多	○石塚 冬亜¹, 渡辺 剛志¹, 黄 晋二¹	1.青学大理工
9:15	18a-A37-2	孔質セルロース/グラフェン積層膜の作製と評価 透明アンテナへの応用に向けたグラフェン/Agナノワイ	○小島 怜 □ 品田 大和 □ 渡辺 剛去 □ 蓋 悪 一 □	1. 青学大理工
		ヤ複合膜の作製		
9:30	奨 18a-A37-3	グラフェンのKバンドにおける電波透過特性評価	○富澤 嵩成 1 ,奥田 崚太 2 ,庭野 和彦 2 ,太田 直登 2 ,渡 辺 剛志 1 ,預賀 良介 1 ,黄 晋二 1	
9:45	奨 18a-A37-4	温度制御下におけるグラフェン - 流動相界面の起電力計 測	〇高野 航一 1 , 岩本 直也 1 , 本田 光裕 2 , 種村 眞幸 2 , 山下 一郎 3 , 小宮 敦樹 1 , 岡田 健 1	1. 東北大, 2. 名工大, 3. 阪大
10:00	奨 E 18a-A37-5	Controlled n-type doping in graphene using a photobase generator andpolyethylene oxide blends	○ (D)YUQING WANG ^{1,2} , Masatou Ishihara ¹ , Kazuhiro Kirihara ¹ , Shohei Horike ³ , Qingshuo Wei ^{1,2}	1.AIST, 2.Univ. Tsukuba, 3.Kobe Univ.
10:15 10:30	奨 E 18a-A37-6	休憩/Break Reduced Cobalt-Phthalocyanine Covalently	○ (M2)Yuxiang Shen¹, Ryo Toyoshima¹, Ken	1.Fac. of Eng., UTokyo
10:45	奨 18a-A37-7	Functionalized Graphene Oxide for Fast, Sensitive, and Reproducible Ammonia Sensors. 大気下での二酸化窒素検出に向けたCoフタロシアニン修	Uchida¹ ○ (M1) 木川田 和希¹, 矢沢 直輝¹, 中西 竜大¹, 生田	1. 東京農工大学
11:00	18a-A37-8	飾グラフェンFETの開発 Pd修飾ジグザグ・グラフェン・ナノリボンによる水素ガ	昂 1 , 前橋 兼三 1 横澤 峻元 1 , 鎌田 雅博 1 , 田中 貴久 2 , 田上 勝規 3 , 宇佐	1.アンリツ先端研, 2.慶大理工, 3.(株) アスムス
11:15	E 18a-A37-9	スセンシング Experimental and simulation of suspended graphene	見 護 ³ , ○松井 朋裕 ¹ ○ (PC)Sankar Ganesh Ramaraj ¹ , Haolong Zhou ¹ ,	1.Univ. of Tokyo
11.15	L 10a 1151 7	surface acoustic wave skin gas sensor for effective detection of acetone gas molecules	Hiroyasu Yamahara ¹ , Hitoshi Tabata ¹	1.Oliv. of Tokyo
11:30	18a-A37-10	15 μ m画素サイズ Type-II 超格子 / グラフェン赤外線検 出器の開発	○福島 昌一郎¹, 嶋谷 政彰¹, 岩川 学¹, 小川 新平¹	1.三菱電機株式会社
11:45	18a-A37-11	グラフェンイメージセンサの均一性向上: グラフェン光 ゲートダイオードにおける界面層の構造検討	○嶋谷 政彰¹,福島 昌一郎¹,岩川 学¹,小川 新平¹	1.三菱電機
9/18(\ 13:30	Wed.) 13:30 - 16:30 18p-A37-1	口頭講演 (Oral Presentation) A37 会場(Room A37) 高エネルギーイオン照射法によるグラフェンへの異種原 子ドービング	○圓谷 志郎 ¹ , 本田 充紀 ² , 水口 将輝 ³ , 渡邉 英雄 ⁴ , 大 島 武 ^{1.5} , 好田 誠 ^{5.1}	1.量研, 2.原子力機構, 3.名古屋大, 4.九州大, 5.東北大
13:45	18p-A37-2	m面サファイア基板上に減圧CVD成長したグラフェンの		1.名城大理工
14:00	奨 18p-A37-3	配向性評価 HPPSプラズマによるシリコン基板上への触媒フリー直	○大石 侑叶¹, 篠原 正典², 前田 文彦³, 松本 貴士⁴	1.福岡大院工, 2.福岡大工, 3.福工大, 4.東京エレクトロ
14:15	奨 18p-A37-4	接グラフェン成長 Ar-H ₂ 混合ガスを用いたCVD法によるAg箔上へのグラ	○ (M1) 岩谷 光¹. 前田 文彦¹	ン テクノロジーソリューションズ(株) 1. 福工大工
		フェンCVD成長		A A Library of A Long to G Little Armer
14:30	奨 18p-A37-5	NbCの熱分解により作製したグラフェンにおける強い Nb-C相互作用	○倪 遠致¹, 伊藤 孝寛², 乗松 航³	1.名大院工, 2.名大SRセ, 3.早大基幹理工
14:45 15:00	奨 18p-A37-6	休憩/Break 光電子制御タウンゼント放電プラズマによるグラフェン の構造制御と解析	○(B)福田 旺土¹,内藤 陽大¹,野田 浩矢¹²,古賀 万 尋¹,出村 翼¹,西山 輝¹,篠原 正典³,高橋 和敏⁴,鷹林 将¹	1.有明高専, 2. 九大, 3. 福岡大, 4. 佐賀大シンクロ
15:15	奨 18p-A37-7	多層グラフェンの光吸収スペクトルにおける遮蔽効果の 解析とフェルミ準位制御	13	1. 阪大院工, 2. 岡山大
15:30	奨 18p-A37-8	解析とフェル、単位的脚 顕微ラマン分光と機械学習によるグラフェンのキャリア ドープ空間分布評価	〇後藤 陸 $^{1.2}$, 吉成 朝子 $^{1.2}$, 岩崎 拓哉 $^{2.3.4}$, 安藤 康伸 6 , 松村 太郎 5 , 小嗣 真人 1 , 永村 直 住 $^{1.2.4}$	1. 東理大 , 2.NIMS, 3.JAEA, 4.JST さきがけ , 5.AIST, 6. 東工大
15:45	18p-A37-9	グラフェンを介した水素同位体イオンの量子トンネル効	○保田論 ¹ , 矢野 雅大 ¹ , 寺澤 知潮 ¹ , Wilson Diño ² , 福	1.原子力機構, 2.大阪大学, 3.東京大学
16:00	18p-A37-10		谷 克之 ³ 丸山 実那¹, Sultana Nadia¹, 高 燕林¹, ○岡田 晋¹	1. 筑波大数理
16:15		電子物性 ジグザグ グラフェン ナノメッシュの特異な熱伝導率	○横澤 峻元¹, 松井 朋裕¹	1.アンリツ先端研
	状物質 / Layered m			
9/190 9:00	(Thu.) 9:00 - 12:00 19a-A31-1	口頭講演 (Oral Presentation) A31 会場 (Room A31) MoS ₂ の Si 基板上 CVD 選択成長に向けた前駆体/触媒溶液塗布法の検討	○(M1) 西村 隆之介¹, 渡辺 健太郎¹.²	1.信州大学, 2.信州大学 ICCER, IFES
9:15	19a-A31-2	vdWエピタキシーによるサファイア基板上MoS2の面内		1. 物材機構, 2. 東京エレクトロン テクノロジーソリュー
9:30	奨 19a-A31-3	配向メカニズム 有機原料を用いたALD法によるWS₂薄膜成長		ションズ㈱ 1.明治大理工, 2.気相成長株式会社, 3.東工大, 4.明大 MPEI
9:45 10:00	奨 19a-A31-4 奨 19a-A31-5	スパッタリング法による MoTe ₂ 組成比制御の検討 粉体ターゲットを用いたスパッタ法で作製した HfS ₂ 膜の	整³,澤本 直美¹⁴, 横川 凌¹⁴, 小椋 厚志¹⁴ ○(M2) 中西 大樹¹, 横川 凌¹², 小椋 厚志¹² ○石川 太一¹, 堀 幸妃¹², 岡田 直也², 横川 凌¹³, 小椋	MREL 1.明治大理工, 2.明大 MREL 1.明治大理工, 2. 産総研, 3.明大 MREL
10:15	19a-A31-6	H ₂ Sアニールによる膜質改善 偏析ゲルマネンの成長機構のその場ラマン散乱分光によ	厚志 ^{1.3} ○寺澤 知潮 ^{1.2} , 勝部 大樹 ³ , 矢野 雅大 ¹ , 小澤 孝拓 ² ,	1. 原研, 2. 東大生研, 3.JFCC
10:30		る解明 休憩/Break	津田泰孝¹, 吉越章隆¹, 朝岡秀人¹, 鈴木誠也¹	•
10:00		PPRA/ DICAK		

10:45	E 19a-A31-7	CVD synthesis of isolated pentagonal h-BN single crystals		1.Meijo Univ., 2.Nanomat. Res. Center
11:00	奨 19a-A31-8	CVD成長におけるCu(111)上のhBN島の臨界サイズと 形状の理論研究	○(M2) 今村 僚', 影島 博之 '	1. 島根大院自然科学
11:15	奨 19a-A31-9	GaS/GaSeへテロ構造ナノベルトの成長	○遠藤 由大¹, 関根 佳明¹, 谷保 芳孝¹	1.NTT物性研
1:30	19a-A31-10	MoS_2 上への $Ag(111)$ 配向膜形成とグラフェンナノリボン の表面合成	〇鈴木 誠也 ', 矢野 雅大 '	1.原子力機構
1:45	19a-A31-11	Na 触媒法によるグラファイト層間化合物 $LnC_6(Ln=Sm,Eu,Yb)$ の合成	〇伊豫 彰 1 , 藤久 裕司 1 , 後藤 義人 1 , 石田 茂之 1 , 永崎 洋 1 , 荻野 拓 1 , 川島 健司 2	1.産総研, 2.イムラ・ジャバン
9/19(T	hu.) 13:30 - 18:15	口頭講演 (Oral Presentation) A31会場(Room A31)	什, <u>伙</u> 乳 和,川商 庭刊	
13:30	招 19p-A31-1	「第56回講演奨励賞受賞記念講演」 二次元磁性層状物質の人エヘテロ界面におけるバルク光 起電力デバイス応用	○朝田 秀一¹, 篠北 啓介¹, 松田 一成¹	1.京大エネ研
13:45	19p-A31-2	2次元半導体トランジスタにおけるスピン注入極性の ゲート制御	○植田 暁子¹, 北岡 幸恵¹, 今村 裕志¹	1. 産総研
14:00	19p-A31-3	電子輸送層に $\mathrm{Ti_3C_2T_x}$ MXene を用いた薄膜フレキシブル	○佐々木 光生¹,大井 寛崇²,横田 知之¹	1. 東大院, 2. 日本材料技研
14:15	19p-A31-4	有機フォトダイオードの開発 スパッタ Pt電極の適用による WSe ₂ p-FETの向上	司², 宮田 耕充³, 畑山 祥吾⁴, 齊藤 雄太⁴.6, 入沢 寿史⁴,	1. 東京大, 2. 埼玉大, 3. 都立大, 4. 産総研, 5.NIMS, 6. 引北大
14:30	19p-A31-5	原子状水素化処理によるn型硫化モリブデン薄膜の作製	谷口尚 ⁵ , 渡邊 賢司 ⁵ , 長汐 晃輔 ¹ ○李 柯澄 ¹ , 許 誠浩 ¹ , 土田 正道 ¹ , 清水 耕作 ¹	1. 日大生産工
4:45	19p-A31-6	とnチャンネルTFTの高性能化検討 スマネン分子を用いた不揮発メモリと構造依存性	○川合 遼一¹, 桐原 芳治¹, 芦原 栄斗¹, 勝亦 亮介¹, 藤	1 車豆都市大
1.13	170 1131 0	ス、インガーを用いた中華元とできて開始的日出	江麗香 ¹ ,三河空斗 ¹ ,野平博司 ¹ ,石川亮佑 ¹ ,三谷祐一郎 ¹	
5:00	奨 19p-A31-7	【注目講演】単層 WSe₂電流励起発光素子への高密度電流 注入	〇大井 浩司 1 , 欧 昊 1 , 蒲 江 2 , 遠藤 尚彦 3 , 宮田 耕充 3 , 竹延 大志 1	1.名大工, 2.東工大理, 3.都立大理
15:15	奨 19p-A31-8	グラフェン/TMD/グラフェン接合におけるスピン保存 共鳴トンネル効果	○(M2)川瀬仁平 ¹ ,瀬尾優太 ¹ ,小野寺桃子 ¹ ,張奕勁 ¹ ,渡邊賢司 ² ,谷口尚 ² ,守谷頼 ¹ ,町田友樹 ¹	1. 東大生研, 2.NIMS
15:30	奨 19p-A31-9	hBN上に直接合成したWS ₂ /WSe ₂ 〜テロ構造の層間励起子		1. 都立大理, 2. 物材機構
15:45		休憩/Break		
16:00	招 19p-A31-10	「分科内招待講演」 WSe ₂ 上のALD実現に向けたUV-O ₃ 暴露と真空アニール による最表面へのSe欠陥導入	〇小島 拓也1, 堀場 大輔1, 柯 梦南1, 青木 伸之1	1.千葉大工
6:15	奨 19p-A31-11	トンネルFET用高濃度ソース材料のCVT合成における 輸送剤選択	〇杉山 紀成 1 , 森戸 智 2 , 西村 知紀 1 , 金橋 魁利 1 , 上野 啓司 2 , 長汐 晃輔 1	1. 東大院工, 2. 埼玉大院理工
6:30	奨 19p-A31-12	劈開単層 MoS ₂ の ToF-SIMS による Nb 不純物均一性評価		1. 東大工, 2. 埼玉大理
6:45		二重折り畳み4層 MoS_2 の構造及び物性評価	〇四谷 祥太郎 1 ,遠藤 尚彦 2 ,宮田 耕充 2 ,桐谷 乃輔 1	
7:00	E 19p-A31-14	Electrostatic properties of boron nitride nanotubes	○ Nadia Sultana¹, Yanlin Gao¹, Mina Maruyama¹, Susumu Okada¹	1.Univ. of Tsukuba
7:15 7:30	奨 19p-A31-15 奨 19p-A31-16	ドナー性分子接合 MoS_2 における電気伝導描像の考察 hBN 基板上多層 $Nb_xMo_{1:x}S_2/MoS_2$ 面内へテロ構造の電子 輸送特性	○松山 圭吾¹, 大熊 光¹, 上野 和紀¹, 桐谷 乃輔¹ ○(M2) 戸井田 尚大¹, 山口 将大¹, 遠藤 尚彦¹, 中西 勇介¹, 渡邊 賢司², 谷口 尚², 長汐 晃輔³, 宮田 耕充¹	1. 東大院総合 1. 都立大物理, 2. 物材機構, 3. 東大工
17:45	19p-A31-17	アミン系分子の表面処理による単層 MoS ₂ の縮退伝導挙動	○小林 尭史¹, Jain Puneet¹, 桐谷 乃輔¹	1.東大院総合
8:00		MoS ₂ 多層膜の光吸収向上に向けた素子構造の検討 口頭講演 (Oral Presentation) A31会場 (Room A31)	○金 明玉¹, 岡田 至崇¹	1. 東大先端研
9:00	20a-A31-1	SiC 基板上に直接成長したWS2/グラフェンへテロ構造の構造解析	〇小川 友以 ¹, Erkilic Ufuk¹, Wang Shengnan¹, 谷保 芳孝 ¹	1.NTT 物性科学基礎研
9:15	奨 E 20a-A31-2	Quasi-one-dimensional moiré in large-angle twisted bilayer WTe ₂	O Xiaohan Yang ¹ , Limi Chen ² , Yijin Zhang ¹ , Kohei Aso ² , Wataru Yamamori ³ , Rai Moriya ¹ , Kenji Watanabe ⁴ , Takashi Taniguchi ⁴ , Takao Sasagawa ³ , Yukiko Yamada-Takamura ² , Oshima Yoshifumi ² , Tomoki Machida ¹	1.IIS Univ. Tokyo, 2.JAIST, 3.Tokyo Tech., 4.NIMS
9:30	奨 20a-A31-3	偏光顕微鏡による強誘電 SnS 薄膜の構造相転移とドメイ	〇來村 颯樹 1 ,名苗 遼 1 ,西村 知紀 1 ,金橋 魁利 1 ,長汐	1.東大マテリアル
9:45	20a-A31-4	ン壁の動的挙動観察 MOCVD-MoS ₂ /sapphireの結晶方位に界面層が与える影		1. 名古屋大, 2.NIMS
0:00	20a-A31-5	響のTEM解析 ポリマースタンプ押付条件によるバブル構造発生に関す	嵐 信行 1 \bigcirc (M1) 小久保 大地 1 , 清水 歩 1 , 青栁 上 1 , 茂木 裕幸 1 ,	1. 筑波大数理
0:15	奨 20a-A31-6	る検討 金を用いた剥離法がグラフェン等層状物質の結晶品質に	嵐田 雄介¹, 吉田 昭二¹, 武内 修¹, 重川 秀実¹ ○濱田 葵生¹.², 唐 超¹.³, 田村 紘一¹.², 佐藤 昭¹, 尾辻	1. 東北大通研, 2. 東北大工学研究科, 3. 東北大学際研
0:30		与える影響 休憩/Break	泰一1	
10:45	20a-A31-7 奨E 20a-A31-8	層状半導体GeS ₂ のレーザー光酸化バターニング Atomic Layer Etching of the Quantum Spin Hall Insulator WTe ₂ Towards the Study of Topological Josephson Junction Devices	○ (M2) 田原 匠陽¹, 上野 啓司², 野内 宠¹ ○ (P)Michael Daniel Randle¹, Russell Deacon¹³, Manabu Ohtomo², Masayuki Hosoda², Kenji Watanabe⁴, Takashi Taniguchi⁵, Shota Okazaki⁴, Takao Sasagawa⁴, Kenichi Kawaguchi², Shintaro Sato², Koji Ishbashi¹.³	1.大阪公立大院工, 2.埼玉大院理工 1.Advanced Device Laboratory, RIKEN, 2.Fujitsu Research, Fujitsu Ltd., 3.RIKEN Center for Emergent Matter Science (CEMS), 4.Research Center for Electronic and Optical Materials, NIMS, 5.Research Center for Materials Nanoarchitectonics, NIMS, 6. Laboratory for Materials and Structures, TIT
11:15	20a-A31-9	ヤヌスTMDの空間選択パターニング手法の開発	○畢 定坤 ^{1,2} , 盧 衛子 ^{1,2} , 青木 颯馬 ^{1,2} , 孫 田依姗 ^{1,2} ,	1.東北大院工, 2.東北大材料科学高等研究所
1:30	奨 20a-A31-10	$W_{\rm o}$ Te $_{\rm e}$ 原子細線への金属原子挿入と光学特性	小倉 宏斗 ^{1,2} , 加藤 俊顕 ^{1,2} ○(D) 夏井 隆佑 ¹ , 中西 勇介 ¹ , 劉 峥 ² , グエン フン タ ン ³ , 林 永昌 ² , 遠藤 尚彦 ¹ , 末永 和知 ⁴ , 齋藤 理一郎 ³ ,	1. 都立大理, 2.AIST, 3. 東北大理, 4. 阪大産研
1:45	20a-A31-11	異方的な単層 MoS ₂ サスペンド構造の励起子特性評価	宫田 耕充 1 \bigcirc (M1) 青柳 \bot^{1} , 小久保 大地 1 , 清水	1. 筑波大数理
9/20(F 3:15	Fri.) 13:15 - 17:00 20p-A31-1	口頭講演 (Oral Presentation) A31 会場(Room A31) 軟質ポリ塩化ビニルを用いたサスペンド原子層構造作製	○小野寺 桃子¹, 安宅 学¹, 張 奕勁¹, 守谷 賴¹, 渡邊 賢	1. 東大生研, 2. 物材機構
13:30	20p-A31-2	法 導電性 AFM を利用した CVD 成長単層 WSe $_2$ の点欠陥評	司 2 , 谷口尚 2 , 年吉 洋 1 , 町田 友樹 1 〇 (M1) 澤井 悠太 1 , 遠藤 尚彦 1 , 宮田 耕充 1	1.都立大理
3:45	20p-A31-3	価 マイカ基板上に成長した単層MoSe ₂ の発光特性	○遠藤 尚彦¹, 張 文金¹, 渡邊 賢司², 谷口 尚², 宮田 耕	1.都立大理, 2.物材機構
			充¹	

14:00	20p-A31-4	hBN 基板上ヤヌス WSSe/WSe₂ ヘテロ二層の発光特性	○小川 朋也¹,張 文金¹,中條 博史²,3.4,青木 颯馬²,3,浦野 裕斗⁵,遠藤 尚彦¹,中西 勇介¹,渡邊 賢司⁵,谷口尚⁵,加藤 俊顕²,3,北浦 良⁵,宮田 耕充¹	1. 都立大理, 2. 東北大工, 3. 東北大 AIMR, 4.KOKUSAI ELECTRIC(株), 5. 物材機構
14:15	20p-A31-5	強誘電リモートドーピングによる単層 $\mathrm{MoS_2}$ のキャリア 変調およびh-BN 中間層による遮蔽効果	〇栄 凱蓬 1 , 野呂 諒介 2 , 西垣 颯人 2 , 丁 明达 2 , 姚 瑶 2 , 井ノ上 泰輝 2 , 片山 竜二 2 , 小林 慶裕 2 , 松田 一成 3 , 毛 利 真一郎 1	1. 立命館大理工, 2. 阪大工, 3. 京大エネ研
14:30	20p-A31-6	In-situ-ALD-Al ₂ O ₃ 越しに SVA を施した PVD-MoS ₂ 膜	○野澤 俊輔 1 , 岡村 俊吾 1 , 松永 尚樹 1 , 黒原 啓太 1 , 若 林 整 1	1.東工大
14:45	20p-A31-7	WSe ₂ 上における F6-TCNNQ 単分子層形成評価	〇松田 健生 1 , 小島 拓也 1 , 野口 裕士 1 , 柯 梦南 1 , 熊谷 翔平 2 , 岡本 敏宏 2 , 青木 伸之 1	1. 千葉大院, 2. 東工大院
15:00		休憩/Break		
15:15	20p-A31-8	二次元半導体材料の界面準位密度評価手法	○(M1)佐藤 優¹, 蓮沼 隆¹	1.筑波大
15:30	20p-A31-9	層状ヒ化ゲルマニウム膜の熱酸化による膜厚制御	○蓮見 歩太 ^{1,2} , 浦上 法之 ^{1,2} , 橋本 佳男 ^{1,2}	1.信州大工, 2.信州大 先鋭材料研
15:45	20p-A31-10	二次元層状金属 NbS ₂ の実効仕事関数評価	〇堀 幸妃 1,2 , 張 文馨 1 , 入沢 寿史 1 , 小椋 厚志 2,3 , 岡田 直也 1	1. 産総研, 2. 明治大, 3. 明治大 MREL
16:00	20p-A31-11	TMDC 膜質の In-situ-ALD-Al $_2$ O $_3$ カバー成膜時基板温度 依存性	○布施 太翔¹, 松永 尚樹¹, 岡村 俊吾¹, 黒原 啓太¹, 伊東 壮真¹, 野澤 俊輔¹, 白倉 孝典¹, 若林 整¹	1.東工大
16:15	20p-A31-12	局所的な曲率構造を有するヤヌスWSSe面内へテロ系の エネルギー論と電子状態	○丸山 実那¹, 岡田 晋¹, 高 燕林¹	1. 筑波大数理
16:30	20p-A31-13	CVD-monolayer MoS ₂ MIS キャパシタにおける接触電極 の形状依存性	〇鶴岡 大樹 1 , 遠藤 尚彦 2 , 宮田 耕充 2 , 青木 伸之 1 , 柯 梦南 1	1. 千葉大工, 2. 東京都立大
16:45	20p-A31-14	熱電応用のための $\mathrm{WTe_2}$ ナノワイヤの合成及び性能評価	○(M1C)伊瀬 亘¹, 横倉 聖也¹.², 和泉 廣樹¹.², 鳥田 紬宏¹.²	1.北大院総化, 2.北大院工

<u>敏宏^{1,2}</u> 合同セッションK「ワイドギャップ酸化物半導体材料・デバイス」/ Joint Session K "Wide bandgap oxide semiconductor materials and devices"

)/10/Thu) 12.20 15.20	ポスター課室 (Pootor Proportation) D会担(Pootor D)		
19p-P05-1	ポスター講演 (Poster Presentation) P会場(Room P) ミスト CVD 法による β -Ga2O3(010) および (001) 基板	○去學和用1 宣田 健铃2 她 永四3 枯木 选一2 去川	1 良取士学 2 南北士学 3 三重士学
19p-1 05-1	上へのホモエピタキ シャル成長	○ 小石 和	1. 局以八十, 2. 宋礼八十, 3. 二里八十
19p-P05-2	M ist CVD 法 β - Ga_2O_3 成膜における不純物取り込みの検討	15	1.工学院大学, 2.(株) ノベルクリスタルテクノロジー
19p-P05-3	Mist CVD法における α -Ga ₂ O ₃ 成長用 Ga(C ₅ H ₇ O ₂) ₃ 水溶液の静置時間変化	. ,	1.工学院大学
19p-P05-4	β -Ga ₂ O ₃ (001) エピタキシャル基板における Wake 型 エッチピットに対応する積層欠陥解析		1.京都工繊大,2.(株)日立ハイテク,3.(一財)ファイセラミックスセンター,4.三重大
19p-P05-5	α -Al ₂ O ₃ 上及びアモルファス SiO ₂ 上への Mist CVD 法 In_2 O ₃ 成膜における原料溶液添加塩酸濃度依存性		
19p-P05-6	TiO_2 をソルベントとした FZ 法による β - Ga_2O_3 単結晶の育成		1. 宇都宮大工
19p-P05-7	FZ 法による Si 添加 β -Ga2O3単結晶の育成		1. 宇都宮大工
19p-P05-8	ミストCVDによるZnOナノ粒子分散Ga ₂ O ₃ 薄膜の作製 と構造評価		1. 静岡大学総研, 2. 静岡大光医工, 3. 静岡大電研
19p-P05-9	高エネルギーH, He イオン照射した β - $\mathrm{Ga_2O_3}$ エビ基板の 欠陥準位評価	○中野 由崇¹, 伊藤 成志²	1.中部大工, 2.住重アテックス
19p-P05-10	eta - Ga_2O_3 (100) 結晶のテラヘルツ~可視領域における偏光透過スペクトル	〇丸山 桜大 1 , 湯葢 邦夫 2 3, 菅原 孝昌 2 , 豊田 英之 1 , 石川 真人 4 , 加藤 有行 1 , 鵜沼 毅也 1	1. 長岡技科大院工, 2. 東北大金研, 3. 九大院工, 4. 千朝理
19p-P05-11	ϵ -GaFeO $_3$ 基板上 κ -Ga $_2$ O $_3$ エピタキシャル薄膜の圧電 応答力顕微鏡測定	〇宮戸 祐治 1 ,大西 晃佑 1 ,山田 啓文 1 ,西中 浩之 2	1. 龍谷大 先端理工, 2. 京都工繊大 工芸
19p-P05-12	$(RhGa)_2O_3$ および $(RhAl)_2O_3$ の構造安定性および電子状態の理論解析	○松原 健太¹, 秋山 亨¹, 河村 貴宏¹	1. 三重大院工
19p-P05-13	ナノインデンテーション法による VB 法で育成した eta - Ga_2O_3 単結晶の強度評価	○(M1C)小川 颯大¹, 太子 敏則¹	1.信州大工
19p-P05-14	${\rm ZnGa_2O_4}$ 薄膜における深紫外線照射下のインビーダンス 特性	\bigcirc (M1) 加瀬 伶也 1 , 前田 竜之介 1 , 小熊 佑弥 1 , 山本 和貫 2 , 石井 聡 1	1.東京電機大, 2.千葉大院工
19p-P05-15	r-Ge _x Sn _{1-x} O ₂ /r-SnO ₂ 超格子の作製と構造解析	〇高橋 由依 1 ,高根 倫史 1 ,若松 岳 1 ,磯部 優貴 1 ,金子 健太郎 2 ,田中 勝久 1	1. 京大, 2. 立命館大
19p-P05-16	RFリアクティブマグネトロンスバッタ成膜 NiO エピタ キシャル薄膜の低温バッファ層の導入が与える影響	○服部 汰星¹, 杉山 睦¹²	1.東理大 創域理工, 2.東理大 総研
<u> </u>	c面サファイアへのナノ粒子分散 (Zn,Mg)O 薄膜のミスト CVD	南 裕子1,原 和彦1.2.3	
19p-P05-18	/ce{Ar + N2} 混合雰囲気で成膜したN添加ZnO膜の特性 評価		
19p-P05-19	ZnO膜の電気特性におけるN添加とアニールの効果	〇山田 祐美加 $^{1.2}$,大森 陽生 2 ,舩木 修平 2 ,山田 容士 2	
19p-P05-20	アニーリングによる Ti ドープ ZnO 透明導電薄膜の特性 評価		1. 工学院大院, 2. 工学院大工
	反応性スパッタリングで作製した Zr ドープ ZnO 薄膜の 諸特性		1.工学院大院, 2.工学院大工
	ZnO層の硫化処理によるZn(O,S)層の形成がp-NiO/ n-ZnO太陽電池へ与える影響	○笠 春輝¹, 小出 祐菜¹, 杉山 睦¹²	1. 東理大 創域理工, 2. 東理大 総研
19p-P05-23	アルミニウム薄膜を用いたIn-Ga-Zn-Oの金属誘起結晶 化	○西村 宥紀 ¹ , 髙橋 崇典 ¹ , 星川 輝 ¹ , 川戸 勇人 ¹ , 浦岡 行治 ¹	
	固相結晶化した多結晶 ${\rm In_2O_3}$ 薄膜における格子定数の膜厚依存性評価	行治 ¹	
<u> </u>	非晶質 Ga-Sn-O TFT のトランジスタ特性のスパッタ成 膜投入電力依存性	○(M1)篠田 太陽¹, 木村 睦¹², 河西 秀典²	1. 龍谷大院先端理工, 2. 革材プロ研センター
19p-P05-26	マグネトロンスパッタ法により低温プロセスで作製した SnO_2 透明導電膜の低比抵抗化に関する研究	○(M1C)藤本穏 ^{1,3} , 岡伸人 ¹ , 西田哲明 ² , 野本淳 — ³ , 鯉田崇 ³	1.近畿大産, 2.環境材料研究所, 3.産総研
E 19p-P05-27	Post-Annealing derived Mist CVD AlO _x /Al _x M _{1-x} O _y (M=Al, Hf) Properties for High-Temperature Sensors Applications	○ (PC)Abdul A Kuddus¹, Keiji Ueno², Hajime Shirai², Shinichiro Mouri¹	1.Ritsumeikan Univ., 2.Saitama Univ.
19p-P05-28	溶液法IZO薄膜のUPSピークとオゾン検出感度の関係	○笹島 宏青¹, 森本 貴明¹, 石井 啓介¹	1.防衛大
E 19p-P05-29	Thermal Diffusion type Indium Doping in ZnO Nanoparticles	○ (D)Abdul Md Halim¹, Toshiyuki Yoshida¹, Yasuhisa Fujita¹	1.Shimane University
19p-P05-30	ESRを用いた水熱合成法で育成した ZnO 単結晶中の欠陥 と不純物の評価	○阿部 貴美 ¹ , 長田 洋 ¹ , Wiens Eli ² , Belev George ² , Sammynaiken Ramaswami ² , Kasap Safa ³	1. 岩手大, 2.SSSC, 3.Univ. of Sask.

	19p-P05-31	大電力バルスマグネトロンスバッタを用いた結晶性 IGZOの成膜	〇永田 健人 1 ,太田 和哉 2 ,竹中 弘祐 2 ,節原 裕一 2 ,太 田 貴之 1	1. 名城大理工, 2. 阪大接合研
	E 19p-P05-32	Study the deposition mechanism for ZnO thin films using a novel deposition method, "Electrostatic Spray Deposition" and property measurement		1.Department of Electrical Engineering, Tokyo University of Science, 2.University of Dhaka, Faculty of Science, Dhaka-1000, Bangladesh, 3.Research Institrute,
	E 19p-P05-33	Thermal Pressing Effect on sprayed n-type and p-type ZnO Nanoparticle Layers	○ (M2)Shrestha Dey Monty, Toshiyuki Yoshida, Yasuhisa Fujita	RIST, Tokyo University of Scienece
合同セ	ッションK「ワイド	ギャップ酸化物半導体材料・デバイス」/ Joint Session K "		evices"
		口頭講演 (Oral Presentation) A22会場 (Room A22)		
9:00	18a-A22-1	耐食性・導電性酸化物の燃料電池セパレータおよび水素 生成技術への応用	努 ¹ , 金子 健太郎 ⁴	4.立命館大半導体応用研究センター
9:15	18a-A22-2	固体イオン交換を活用した酸化物固溶体の合成:(Na,Ag) GaO ₂ の例		1. 東北大多元研, 2. 富山高専
9:30	18a-A22-3	大電力パルスマグネトロンスパッタを用いた酸化スズの 成膜	○齋藤 祐太¹, 太田 貴之¹	1.名城大理工
9:45	18a-A22-4	反応性プラズマ蒸着法による Ga 添加 ZnO 薄膜の成長機 序及び構造制御	〇北見 尚久 $^{1.2}$, パラニ ラジャセカラン 2 , 山本 哲也 2 , 牧野 久雄 2	1.住友重機械, 2.高知工科大総研
10:00	18a-A22-5	膜厚30nm以下のGa添加ZnO超薄膜の構造と電気特性 効果	○ (PC)Palani Rajasekaran ¹ , 北見 尚久 ^{2, 1} , 小林 信太郎 ³ , 稲葉 克彦 ³ , 牧野 久雄 ¹ , 山本 哲也 ¹	1. 高知工科大総研, 2. 住友重機械 (株), 3. (株) リガク
10:15	18a-A22-6	Ga 添加酸化亜鉛薄膜における高キャリア密度における キャリア輸送の上限値	〇山本 哲也 1 , 北見 尚久 $^{1.2}$, バラニ ラジャセカラン 1 、牧野 久雄 1	1. 高知工科大学総研, 2. 住友重機械工業(株)
10:30 10:45	18a-A22-7	休憩/Break HドーピングによるIn2O3系透明導電膜の弾性率低下	○木菱 完太¹, 山寺 真理¹, 小林 翔¹, 鷹野 一朗¹, 相川 慎也¹	1.工学院大
11:00	18a-A22-8	In ₂ O ₃ 成膜における副生成物の表面吸着性に関する理論的な評価		1.株式会社 KOKUSAI ELECTRIC
11:15	18a-A22-9	酸素雰囲気下での室温 UV 照射による IBO TFT のヒステリシス改善	○山寺 真理¹, 木菱 完太¹, 相川 慎也¹	1.工学院大工
11:30	18a-A22-10	Mist-CVD法を用いたIn-Sn-Zn-O薄膜の堆積とTFT特	○堀口 史生¹, 福田 翔一¹, 江波戸 慶吾¹, 清水 耕作¹	1. 日大生産工
11:45	18a-A22-11	性 CO ₂ センサー応用に向けた溶液プロセスLaドープ	○小林 亮太¹,曹 博聞¹,相川 慎也¹	1.工学院大工
12:00	18a-A22-12	In ₂ O ₃ TFTのバイアスストレス評価 Cu/CuO混合ターゲットを用いたDCスパッタによる Cu ₂ O膜の光学的及び電気的特性の評価	○関口 晨雄¹, 宮島 晋介¹	1.東工大
12:15	18a-A22-13	メサ加工SOI基板上へのクラックフリー厚膜Er添加 CeO。の成長	○稲葉智宏¹,徐学俊¹,俵毅彦²,尾身博雄³,山本秀樹¹,眞田治樹¹	1.NTT 物性研, 2. 日大, 3. 大和大
9/18(V	Wed.) 13:45 - 19:30	口頭講演 (Oral Presentation) A22 会場(Room A22)	例,具山 伯例	
13:45	奨 18p-A22-1	ミスト CVD 法で作製した高移動度 Ge ドープ α - Ga_2O_3 薄膜の電気特性	〇若松	1.京大院工, 2.兵庫県立工業技術センター, 3.立命館大総研
14:00	奨 18p-A22-2	ミスト CVD による rh-ITO 上への (Ga, Fe) ₂ O ₃ の形成と光 学的評価		1. 京工繊大電
14:15	奨 18p-A22-3	窒素ラジカル照射処理した Ga_2O_3 (010) 基板上に MBE成長した Ga_2O_3 薄膜	〇中岡 蔵 1 , 谷口 奨季 1 , 上原 知起 1 , 稲嶌 仁 1 , 本田 智 子 1 , 東脇 正高 1,2	1.大阪公大院工, 2. 情通機構
14:30	奨 18p-A22-4	MOVPE法による Si ドープ β -Ga $_2$ O $_3$ (010) ホモエビタキシャル成長		
14:45	奨 18p-A22-5	トリメチルガリウム系 MOVPEによる β - Ga_2O_3 成長メカニズムの調査	\bigcirc (M1) 寺内 悠真 1 , 奥山 貴仁 1 , 窪田 翔海 1 , 吉永 純 也 1,2 , 佐々木 捷悟 3 , 石川 真人 4 , 熊谷 義直 1,3	1. 東京農工大院工, 2. 大陽日酸株式会社, 3. 東京農工大 FLOuRISH, 4. 気相成長株式会社
15:00	奨 18p-A22-6	ミスト CVD による Si ドープ β -($\mathrm{Al_xGa_{1-x}}$) $_2\mathrm{O_3}$ 薄膜のエピタキシャル成長	○保坂 祥馬¹, 三宅 裕樹¹², 西中 浩之¹	1.京工繊大, 2. ミライズ
15:15 15:30	奨 18p-A22-7	ミスト CVD 法による(-201) β -Ga ₂ O ₃ 上の NiO 薄膜成長及び評価 休憩/Break	○安井 弦¹, 三宅 裕樹¹², 西中 浩之¹	1. 京工繊大, 2. ミライズ
15:45	奨 18p-A22-8	ドストCVD法による岩塩構造MgZnO/MgOダブルヘテ	○小川 広太郎¹, 愛智 宏行¹, 三富 俊希¹, 田中 恭輔¹,	1.工学院大
16:00	奨 18p-A22-9	ロ及び超格子構造の製作検討 ミストCVD法による岩塩構造MgZnO/MgO量子井戸の	山口智広1,本田徹1,尾沼猛儀1	
16:15	奨 18p-A22-10	井戸層組成依存性	本田 徹¹, 尾沼 猛儀¹ ○飯田 真太郎¹, 池之上 卓己¹, 三宅 正男¹	1. 京大院エネ科
16:30		ZnO 膜の作製 SiO ₂ 保護膜による β -Ga ₂ O ₃ SBD のリーク電流への影響	○酒井 隆司¹, 南條 拓真¹, 湯田 洋平¹, 林田 哲郎¹, 野	
10.30	× 10p 1122 11	SIO2所政(Kicks S P GagOg SDD V) / 他in Vか音	口 宗隆¹, 海老原 洪平¹, 田中 梨菜¹, 古橋 壮之¹, 綿引 達郎¹	
16:45		(001) 面方位 HVPE エピ厚膜 β 型酸化ガリウムショット キーバリアダイオードのキラー欠陥の断面 SEM 観察	藤田 実3, 川崎 克己3, 大石 敏之1, 嘉数 誠1	1.佐賀大院理工, 2.(株) ノベルクリスタルテクノロジー, 3.TDK (株)
17:00	奨 18p-A22-13	ミスト化学気相堆積法で作製した Nb ドープ TiO_2 薄膜の 膜構造と溶媒の関係	〇内藤蓮人 ¹ ,吉田真子 ¹ ,小野田滉 ¹ ,有賀恵美 ¹ ,中村彩夏 ¹ ,簾智仁 ² ,中山亮 ² ,清水亮太 ² ,金子健太郎 ³ ,佐藤泰史 ⁴ ,一杉太郎 ² ,山田直臣 ¹	
17:15	奨 18p-A22-14	導電性 Nb ドープ TiO $_2$ 薄膜のミスト化学堆積法における Nb 源の検討	〇中村 彩夏 1 , 有賀 恵美 1 , 内藤 蓮人 1 , 簾 智仁 2 , 中山 亮 2 , 清水 亮太 2 , 金子 健太郎 3 , 一杉 太郎 2 , 山田 直	1. 中部大院工, 2. 東大院理, 3. 立命館大
17:30		休憩/Break	ǹ	
17:45	18p-A22-15	Sb 添加した r-GeO ₂ 薄膜の r-TiO ₂ 基板上での結晶成長	○矢倉 藤也 ^{1,2} , 清水 悠吏 ^{1,2} , 衣斐 豊祐 ¹ , 高橋 勲 ¹ , 金子 健太郎 ^{1,3}	1.Patentix株式会社, 2. 立命館大学理工, 3. 立命館大学半 導体応用センター
18:00	奨 18p-A22-16	n型伝導ルチル構造二酸化ゲルマニウム薄膜の作製		4 PARTHER 1. Patentix 株式会社, 2. 立命館大理工, 3. 立命館大学半導体応用研究センター
18:15	奨 18p-A22-17	p-チャネルトランジスタに向けた非晶質 Ga-O-S薄膜の 作製	○ (M2) 船田 貴光¹, 是石 和樹¹, 相馬 拓人¹, 吉松 公平¹, 大友 明¹	
18:30	奨 18p-A22-18	$In(OH)_3$ をPLDターゲットとした In_2O_3 薄膜トランジスタの作製		1.北大院情報, 2.北大電子研
18:45	奨 E 18p-A22-19	Impact of in-situ AlO _x passivation on 2-nm-thick InO _x for performance and stability improvement		1.AIST, 2.KOKUSAI ELECTRIC
19:00	将 10~ 102 20	performance and stability improvement マイクロ波リモートプラズマ源を用いた原子層堆積法に	Tatsurou ¹	1 本自生農士 9 福港エフテッカ
	授 18p-A22-20	よる In_2O_3 薄膜の成膜	岡 行治 ¹	
19:15	夹 18p-A22-21	半導体積層作製技術を応用した高効率な水分子加熱	○(M2) 大塚 知紀', 松田 竜一', 渡辺 俊哉', 太田 早 紀 ² , 金子 健太郎 ³	1.立命館大理工, 2.三菱重工業(株), 3.立命館大半導体応用研究センター

9/20(F 9:00	Fri.) 9:00 - 11:45 20a-A22-1	口頭講演 (Oral Presentation) A22会場 (Room A22) 硫黄蒸気アニールにより作製した SnSO ₄ の結合状態評価	○(M1)守屋 賢人¹,渡邉 大輝¹,小川 大樹¹,山口 智	1.工学院大
9:15	20a-A22-2	硫化アニールによる SnS 薄膜作製:硫黄原料粉末仕込み	広¹, 相川 慎也¹ ○渡邉 大輝¹. 守屋 腎人¹. 相川 慎也¹	1. 工学院大工
		量による高純度化の検討		
9:30 9:45	20a-A22-3 20a-A22-4	低温液相プロセスによるSnO ₂ 薄膜の作製と特性評価 還元雰囲気スパッタリングと成膜後アニーリングによる SnO ₂ ターゲットからのSnO製作最適化	○ (M2) 三里 康¹, Madan Niraula¹, 市村 正也¹ ○小林 翔¹, 木菱 完太¹, 相川 慎也¹	1. 名工大 1. 工学院大工
0:00	20a-A22-5	TEM 観察を用いた ${ m TiO_2}$ (001) 基板上ルチル型 ${ m GeO_2}$ 薄膜 の構造解析	○ (D) 高根 倫史 1 , 小西 伸弥 1 , 大多 亮 2 , 早坂 祐一 郎 3 , 若松 岳 1 , 磯部 優貴 1 , 金子 健太郎 4 , 田中 勝久 1	1. 京大, 2. 北大, 3. 東北大, 4. 立命館大
0:15 0:30	20a-A22-6	休憩/Break ミストCVD法により作製した酸化亜鉛薄膜の熱処理によ る特性変化	○大橋 亮介¹, 安岡 龍哉¹, 岡田 達樹¹, 川原村 敏幸¹.²	1.高知工科大シスエ, 2.総研
10:45	20a-A22-7	Cu, N共添加 ZnO 薄膜の電気特性の熱処理温度依存性		1.明大理工
1:00	20a-A22-8	表面実装パッケージ型ZnO圧力センサの圧力応答性評価	○遠藤 治之¹, 二瓶 貴之¹, 目黒 和幸¹, 小田 英樹¹, 柏 葉 安兵衛²	1.岩手県工技センタ, 2.岩手大
11:15	20a-A22-9	岩塩構造MgZnO混晶のバンド端付近における光学特性	〇三富 俊希 1 , 小川 広太郎 1 , 田中 恭輔 1 , 根本 亮佑 1 , 太田 優一 2 , 山口 智広 1 , 本田 徹 1 , 尾沼 猛儀 1	1. 工学院大, 2. 富山県立大
1:30	20a-A22-10	ミスト CVD 法を用いた ${\rm LiGa_5O_8}$ 薄膜のエピタキシャル成長	○池之上 卓己¹, 堀内 亮¹, 三宅 正男¹	1.京大院エネ科
9/20(F 13:00	ri.) 13:00 - 16:30 招 20p-A22-1	口頭講演 (Oral Presentation) A22 会場(Room A22) 「第56 回講演奨励賞受賞記念講演」 Ni/ β -Ga $_2$ O $_3$ ショットキー障壁高さの温度依存性の起源:温度上昇に伴う β -Ga $_2$ O $_3$ 価電子帯上端の上昇と伝導帯底の低下		1.東大工, 2.ノベルクリスタルテクノロジー
13:15	20p-A22-2	LiNbO $_3$ 基板と格子整合可能な α -(In, Fe) $_2$ O $_3$ と α -(In, Ga) $_2$ O $_3$ の薄膜成長	○島添 和樹¹, 西中 浩之¹	1.京都工繊電子
13:30	20p-A22-3		○陳 智ジン¹,田所 弘晃¹,大下倉 太朗¹,宮本 美幸¹, 印南 享¹,嘉村 輝雄¹	1.三菱ガス化学
13:45	20p-A22-4	ンヤル膜の育成 HVPE 法による (011) 面 β - Ga_2O_3 基板上のホモエピタキシャル成長		1.ノベルクリスタルテクノロジー
14:00	20p-A22-5	β -Ga ₂ O ₃ HVPE エピウエハの活性化アニール条件検討	AL 2 4 7 7 4 7	1.ノベルクリスタルテクノロジー
14:15	20p-A22-6	β -Ga ₂ O ₃ 結晶のOVPE成長における熱力学計算を用いた成長速度制御		1. 阪大院工
14:30 14:45	20p-A22-7	休憩/Break 垂直ブリッジマン法による β -Ga ₂ O ₃ 基板結晶の X 線ト	○山口 博路¹ 加藤 右黍ヱ¹ 五十崑 拓也² 上田 攸	1. 産総研, 2.(株) ノベルクリスタルテクノロジー
15:00	20p-A22-8	ボグラフィによる欠陥解析 MOCVD 法で成膜した (001) 面 β -Ga ₂ O ₃ の縦型パワー	貴², 輿 公祥², 渡辺 信也², 山腰 茂伸², 倉又 朗人²	1.ノベルクリスタルテクノロジー
		デバイス実証		
15:15	20p-A22-9	MBE 法による NiO/ β -Ga ₂ O ₃ ヘテロ接合技術の開発	○山口 博隆¹, 反保 衆志¹, 永井 武彦¹, 中田 義昭², 佐々木 公平²	1.産総研, 2.(株) ノベルクリスタルテクノロジー
15:30	20p-A22-10	β - Ga_2O_3 における塩素系ドライエッチングによるキャリアプロファイル異常とその可動性	○上村 崇史 ¹, 東脇 正高 ¹.²	1.情通機構, 2.大阪公立大院工
15:45	20p-A22-11	C 面サファイア基板上選択成長 $lpha$ - Ga_2O_3 の発光特性	○神野 莉衣奈¹, 池 尚玟², Pholsen Natthajuks¹, 大槻 秀夫¹, 岩本 敏¹.²	1. 東大先端研, 2. 東大生産研
16:00	20p-A22-12	【注目講演】可視光領域におけるシングルモード α -Ga ₂ O ₃ 導波路の作製と光導波の観測	○(M2)飯嶋 航大 ¹ ,大槻 秀夫 ¹ ,池 尚玟 ² ,神野 莉衣 奈 ^{1,3} ,深津 晋 ³ ,岩本 敏 ^{1,2}	1. 東大先端研, 2. 東大生産研, 3. 東大院総合文化
16:15	20p-A22-13	酸化ガリウムを用いたフォトニック結晶ナノビーム共振 器の設計		1. 東大先端研, 2. 東大生産研
			M "Phonon Engineering"	
		はプログラム冒頭にございます。 ポスター講演 (Poster Presentation) P会場(Room P)		
	18p-P05-1	SEM/熱画像カメラを用いた単一繊維材料の熱拡散率計 測	〇望月 拓海 1 ,濱崎	1.静大総
		ンエンジニアリング」/ Joint Session M "Phonon Enginee 口頭講演 (Oral Presentation) D62会場 (Room D62)	ring"	
9:00	奨 19a-D62-1	AFM型局所熱拡散率測定による化学増幅型レジストの熱 拡散率分布	○(M2)森岡 亮太¹,劉 芽久哉²,森川 淳子¹	1.東工大物質, 2.産総研
9:15	19a-D62-2	パルス光励起ラマン分光法を用いた時間分解熱輸送測定	○関本 祐紀¹, 八木 貴志¹	1. 産総研
9:30	19a-D62-3	の開発 強誘電性ネマチック液晶の相転移における熱拡散率	○劉 芽久哉 1 , 山崎 亮雅 2 , 亀垣 柊 2 , 西川 浩矢 3 , 荒 岡 史人 3 , 森川 淳子 2	1. 産総研, 2. 東工大, 3. 理研 CEMS
9:45	19a-D62-4	低熱伝導度材料における音響フォノン減衰の解析	○平田 圭佑¹, 松波 雅治¹, 竹内 恒博¹	1.豊田工大
10:00 10:15	奨 19a-D62-5	休憩/Break 高Ge組成SiGe薄膜の液浸ラマンスペクトルに現れるブ	○前田 唯葉¹, 横川 凌¹², 小椋 厚志¹.²	1. 明治大理工, 2. 明治大MREL
10:30	19a-D62-6	ロードピークの温度依存性評価 金属・半導体マイクロ円環構造の加熱による縦光学フォ	○貴志 優彦¹, Hnin Lai Lai Aye¹, 吉川 大樹¹, 石谷 善	1. 千葉大院工
10:45	E 19a-D62-7	ノン共鳴輻射 Exploration of mid-infrared thermal radiation mechanisms		1.Chiba Univ.
		at longitudinal-optical phonon energy via u-GaAs/Au mesa-type surface stripe structures	Yoshikawa ¹ , Yoshihiro Ishitani ¹	
11:00	19a-D62-8	ハイスループットな時間分解サーモリフレクタンス技術 の開発	○有馬 寛人¹, 山下 雄一郎¹, 八木 貴志¹	1.産総研
11:15	E 19a-D62-9	Thermospectroscopic imaging and thermophysical property measurement of PCM in the textile-replicated MEMS structure	○ Khayala Agharahimli¹, Meguya Ryu², Shuji Kamegaki³, Junko Morikawa³, Roberto Li Voti¹	1.La Sapienza Univ, 2.AIST, 3.Tokyo Tech
		口頭講演 (Oral Presentation) D62会場(Room D62)		
13:00	招 19p-D62-1	「第56回講演奨励賞受賞記念講演」 フォノニック結晶を用いた単一欠陥中心のフォノン自然 放出の制御	〇車一宏 ^{1,2} , Pingault Benjamin ^{1,3} , Chia Cleaven ¹ , Haas Michael ¹ , D Joe Graham ¹ , Rimoli Assumpcao Daniel ¹ , Weiyi Ding Sophie ¹ , Jin Chang ¹ , Xin C. J. ¹ , Yeh Matthew ¹ , Sinclair Neil ¹ , Lončar Marko ¹	1.Harvard University, 2.東大先端研, 3.Delft Universit
13:15	奨 19p-D62-2	複数共鳴フォノニック構造の音響メタ表面を用いた吸音・		1. 岡山大院環境生命自然
13:30	延 E 19p-D62-3	環境発電デバイスの設計 Automated tailoring of the phonon dispersion for highly	(P)Michele Diego ¹ , Matteo Pirro ¹ , Byunggi Kim ¹ ,	1.IIS, Univ. of Tokyo
		anisotropic phononic crystal	Roman Anufriev ¹ , Masahiro Nomura ¹	

13:45	19p-D62-4	トポロジカルエッジモードを用いた単位格子間拡散方向の制御	○舟山 啓太¹, 廣谷 潤², 三浦 篤志¹, 田中 宏哉¹	1. 豊田中研, 2. 京大工
4:00	輕 10 D(0 E	休憩/Break	○ 心底 松亚 1 益田 日却 1 1	1 市十工 2 N
14:15	奨 19p-D62-5	サーモリフレクタンス法と Gibbs Excess モデルの検証と その応用	○永廣 怜平 ¹ , 前田 晃輔 ¹ , Isotta Eleonora ² , Jiang Shizhou ² , Snyder G. Jeffrey ² , Balogun Oluwaseyi ² , 塩 見 淳一郎 ¹	1.東大工, 2.Northwestern大
4:30	19p-D62-6	光へテロダイン光熱変位法による人工的に制御した Si 粒 界構造の界面熱コンダクタンス測定	〇原田 知季 1 , 沓掛 健太朗 2 , 宇佐美 徳隆 2 , 碇 哲雄 1 , 福山 敦彦 1	1. 宮崎大工, 2. 名大
4:45	19p-D62-7	CeO_2 電気化学熱トランジスタ:熱伝導率の CeO_2 膜厚依存性	\bigcirc (PC) ジョン アロン 1 , 卞 志平 2 , 吉村 充生 2 , コンヒョンジュン 2 , 曲 勇作 1 , 太田 裕道 1	1.北大電子研, 2.北大院情報
5:00	E 19p-D62-8	Effect of Capping Layers on $\mathrm{CeO_2}\text{-}\mathrm{based}$ Electrochemical Thermal Transistors		1.IST-Hokkado U., 2.U. Tokyo, 3.RIES-Hokkaido U.
5:15	奨 19p-D62-9	土類酸化物 LnO_2 $(Ln=$ $Ce,$ $Pr,$ $Tb)$ を用いた全固体熱トランジスタの特性評価	○ (M2) 吉村 充生¹, タム ジェイソン², 卞 志平¹, コ ン ヒョンジュン¹, ジョン アロン³, フウ ビン², 幾原 雄一², 曲 勇作³, 太田 裕道³	1. 北大院情報, 2. 東大総研, 3. 北大電子研
5:30 5:45	19p-D62-10	休憩/Break 強い2次元水素結合ネットワークを有するホウ酸単結晶		1. 東工大, 2. 産総研, 3. 東北大
6:00		の熱輸送特性 遷移金属ダイカルコゲナイドモアレ超格子の熱伝導	川 智行³, 福島 孝典¹ ○許 斌¹, 安 盟¹, 増渕 覚², 町田 友樹², 塩見 淳一郎¹	
6:15	奨 E 19p-D62-12	Optimizing cryogenic graphene: how Golomb ruler-		1.Univ. of Tokyo, 2.SCUT, 3.Bohai Univ., 4.LIMMS
6:30	奨 19p-D62-13	designed isotope interfaces suppress thermal transport 一次元熱拡散シミュレーションを用いた CNT 集合体の 熱伝導率測定	Qiang Han ² , Masahiro Nomura ¹ ○黒野陽斗 ¹ , 杉目 恒志 ² , 濱崎 拡 ¹ , 中野 貴之 ¹ , 池田 浩也 ¹ , 井上 翼 ¹	1. 静大院工, 2. 近畿大院総理工
6:45		休憩/Break	110,712,4	
7:00		過渡熱応答測定による金属-CNT界面熱抵抗の考察	○林 孝祐¹, 中野 貴之¹, 井上 翼¹	1. 静大院工
7:15	•	超伝導デバイスを用いた $\mathrm{SiO_2/Si}$ 界面を持つ $\mathrm{SiO_2}$ 層のフォノン減衰長の測定	○ (M2) 飯塚 竜也¹, Jutarat Tanarom¹, 水柿 義直¹, 島 田 宏¹	
7:30	19p-D62-16	アモルファス酸化物界面の遷移領域におけるフォノンブ リッジング:分子動力学による解析	○(M2)西村 祐亮¹, 渡辺 留久人¹, 渡邉 孝信¹	1.早大理工
7:45	奨 19p-D62-17	熱ポンピング現象を用いた熱流スイッチング素子の高性 能化	○ (M2) 樋田 怜史¹, 竹内 恒博¹, 松波 雅治¹, 平田 圭佑¹	1. 豊田工大
		1 合同セッション M「フォノンエンジニアリング」のコー	ドシェア / Code-sharing Session of 9.4 & M	
		口頭講演 (Oral Presentation) C301会場 (Room C301)		. + 1 // *** 0 + + + #* 1
:00		SiGe 界面と短周期フォノニック結晶ナノ構造による Si 薄膜の σ / κ 比の向上	郎1.2, 野村 政宏1	
:15	18a-C301-2	Si系ナノドット含有Ge薄膜の熱電特性		1. 阪大院基礎工, 2. 阪大 OTRI
:30	E 18a-C301-3	Investigation of Heat Flux Sensitivity of Silicon-Large Scale Integrated Thermoelectric Device	○ (DC)Md MehdeeHasan Mahfuz¹, Taisei Mito¹, Tatsuya Hayashi¹, Takeo Matsuki¹, Takanobu Watanabe¹	1.Waseda Univ.
:45	18a-C301-4	プレーナ型集積マイクロ熱電発電デバイス発電性能のSi ナノワイヤ幅依存性	○三嶋 真雄紀¹, 三浦 拓也¹, 新井 崇平¹, 松木 武雄¹, 渡邉 孝信¹	1.早大理工
0:00	奨 18a-C301-5	実用熱電材料 $\mathrm{Bi_2Te_{3z}Se_x}$ のラマン振動モードのエネルギーと半値幅に対する Se 置換の影響	○劉 鋭安 ¹ , 宮田 全展 ¹ , 小矢野 幹夫 ¹	1.北陸先端大
0:15 0:30	18a-C301-6	休憩/Break 酸化を抑制したナノバルク Si-Ge 系熱電材料の熱電特性	○(M1)石原 崚伍¹, 奥村 拓真¹, 平田 圭佑¹, 松波 雅 治¹. 竹内 恒博¹	1. 豊田工大
0:45 1:00	18a-C301-7 18a-C301-8	多相からなる Ag_3SnP_7 焼結体における複合効果の検討 非化学量論組成制御による $Co添加ハーフ・ホイスラー台$	○(DC)中村 太一¹, 宮田 全展¹, 小矢野 幹夫¹	1. 北陸先端大 1. 横国大理工
1 15	E 10 C001 0	金TiNiSnの熱電性能向上	C(MO)H P 1 C 1 C 2 P: O1: 1	AND A MARK ON A COMMON
1:15	E 18a-C301-9	Investigation of p-type thermoelectric properties for Mn		1. Yokohama Nat Univ, 2. Nat Inst for Mat Sci
≻ □.	セッション N 「	doped β -FeSi₂ インフォマティクス応用 / Joint Session N	Hiroshi Nakatsugawa ¹	
		インフォマティクス/応用」/ Joint Session N はプログラム冒頭にございます。	IIIIOIIIIatics	
		ポスター講演 (Poster Presentation) P会場(Room P)		
	17p-P04-1	グラフニューラルネットワークポテンシャルを用いた蓄 電池用安定負極材料の安定性予測	○多田 幸平 1.2, 尾崎 弘幸 2, 清林 哲 2	1.大阪大基礎工, 2. 産総研
	E 17p-P04-2	Neural Network Potentials for Accurate Activation Energy Calculation of Proton Hopping	OThang Duy Dang ¹ , Naoki Matsumura ¹ , Yuta Yoshimoto ¹ , Yasufumi Sakai ¹ , Atsushi Ishikawa ² , Junichiro Otomo ²	1.Fujitsu Limited, 2.Tokyo Institute of Technology
	17p-P04-3	テキスト入力による材料構造データ作成アプリケーショ ン	•	1.富士通
	17p-P04-4	本文からの磁石製造条件の自動抽出	○岡 博之¹, 石井 真史¹	1.NIMS
	17p-P04-5	自己教師あり学習と fine tuning を組み合わせた吸着エネルギー予測		1.富士通, 2.東工大院, 3.アトモニア
	17p-P04-6	AI支援型分子設計システムにおける光学特性予測と光学 スペクトル生成		1.山形大ROEL
	17p-P04-7	データベースと機械学習モデルを活用したアンモニア合 成触媒の探索	○(M1) 堀田 拓弥¹, 旭 良司¹	1.名大工
	17p-P04-8	イオン伝導体結晶構造探索へのパーシステントホモロ ジー適用の検討	○吉武 道子¹, 長田 貴弘¹	1. 物材機構
	17p-P04-9	ウェーブレットとPCAを組み合わせたTEM画像のハイ コントラスト化		1.NIMS
	ッションN「インフ	セグメント回帰を用いたデータ変化点の抽出と解析 ォマティクス応用」/ Joint Session N "Informatics" 口頭講演 (Oral Presentation) A21 会場 (Room A21)	○柳生 進二郎¹, 長田 貴弘¹	1.NIMS
0:00	18a-A21-1	量子インスパイアード技術を活用した無機材料探索手法 の検証	〇橋口 和弘 1 , 丸尾 昭人 1 , 岩根 慎司 1 , 實宝 秀幸 1 , 菅 義訓 2	1.富士通株式会社, 2.トヨタ自動車株式会社
:15	18a-A21-2	二値化潜在空間を使った材料特性のモデル化と最適化	〇石田 真彦¹	1.NEC事業開発統括部
9:30 9:45	18a-A21-3 18a-A21-4	結晶構造の幾何概念学習 グラフ理論による多面体に基づいた結晶構造生成手法の	○小澤 圭右¹, 鈴木 哲平¹, 外海 俊輔², 板倉 智也²	1. デンソーIT ラボ, 2. デンソー 1. パナソニック ホールディングス(株), 2. 名古屋大
0:00	18a-A21-5	構築 孤立原子の電子構造を説明変数とするグラフニューラル	○柴田 基洋¹,溝口 照康¹	1.東大生研
0:15	18a-A21-6	ネットワークの検討 結晶グラフによる熱電材料特性グローバルマッピング	○橋本 佑介¹, Xue Jia², Hao Li², 笘居 高明¹	1. 東北大学際研, 2. 東北大AIMR
0.13	104-1121-0	THERE ノノトロの公然地内が刊正ノローバルメリモノク	○ 1997年 [H/I] , Auc Jiā , HāO Dī , 占佔 同功	·····································

		休憩/Break		
10:30 10:45	18a-A21-7	が窓/Bleak グラフニューラルネットワークポテンシャルでNi/Ge界 面を再現するための訓練データセットの検討	○(M1)内藤 真慈¹, 西村 祐亮¹, 渡邉 孝信¹	1.早大理工
11:00	18a-A21-8	SiO ₂ /Si界面用グラフニューラルネットワークポテンシャルの構築に効果的なデータセットの検討	○(M1)竹松 孝太朗¹, 平井 健太郎¹, 西村 祐亮¹, 渡 邉 孝信¹	1.早大理工
11:15	18a-A21-9	Beyond 2nm ロジックノード向け単元系金属配線 – SiO ₂ 絶縁膜間の界面熱抵抗:ニューラルネットワークボテン シャルを利用した分子動力学計算		1. 早大 SEES, 2. 早大理工
11:30	18a-A21-10	汎用ニューラルネットワークポテンシャル PFP を用いた 結晶構造探索	○柴山 拓也¹, 篠原 航平¹, 今村 秀明¹, 西村 亮彦¹, 高本 聡¹, 品川 幾¹	1.PFN
11:45	18a-A21-11	汎用ニューラルネットワークポテンシャルPFPの全安定 元素対応とロバスト性の向上		1.PFN
9/18(W 13:30	/ed.) 13:30 - 17:15 18p-A24-1	口頭講演 (Oral Presentation) A24会場(Room A24) Local formal charge を用いた新規チタン酸窒化物構造の 探索	○青木 祐太1	1.シュレーディンガー(株)
13:45	18p-A24-2	特徴量の組み合わせ最適化による材料特性決定要因の解明	○尾崎 仁亮¹,池田 潤¹	1.村田製作所
14:00	18p-A24-3	学習済みモデルを特徴量抽出器として用いた外挿的物性 予測の検討	○杉浦 佑 ^{1,2} , 柴田 基洋 ^{1,3} , 川口 直登 ³, 溝口 照康 ^{1,3}	1.東大生研, 2. 三菱マテリアル, 3.東大院工
14:15	18p-A24-4	所定の結晶構造と物性を達成できる勾配ベースの逆問題 解法によるマテリアルデザイン手法	○藤井 亮宏 ¹, Augustin Lu¹, 牛久 祥孝 ², 渡邉 聡 ¹	1.東京大工, 2.OMRON SINIC X Corp.
14:30 14:45	招 18p-A24-5	休憩/Break 「第56回講演奨励賞受賞記念講演」 タンデムNNによる薄膜トランジスタの欠陥分布・電子 伝導の逆問題解析	〇木村 公俊 1, 井手 啓介 1, 細野 秀雄 1, 神谷 利夫 1	1.東工大
15:00	18p-A24-6	機械学習を用いた光へテロダイン光熱変位信号からのSi の熱拡散率とキャリア寿命の推定	○浦野 翔大¹,原田 知季¹,沓掛 健太朗²,宇佐美 徳 隆².碇 哲雄¹,福山 敦彦¹	1. 宮崎大工, 2. 名大院工
15:15	奨 18p-A24-7	深層学習モデルと粒子群最適化アルゴリズムを組み合わせた2次元フォノニック結晶の分散特性に関する逆問題解析		1. 岡山大院環境生命自然
15:30	18p-A24-8	非負値行列因子分解を活用したInGaN量子井戸構造のマルチモーダル発光スペクトルイメージング解析	〇岩満 一功 1 , 坂井 健太 2 , 赤瀬 善太郎 1 , 山口 敦史 2 , 冨谷 茂隆 1	1. 奈良先端大, 2. 金沢工大
15:45 16:00	18p-A24-9	休憩/Break バーシステントホモロジーを用いた微細組織の解釈可能 な構造評価	○江口 琉斗 ^{1,2} , Yu Wen ^{1,2} , 橋本 綾子 ^{1,2}	1. 物材研, 2. 筑波大
16:15	奨 18p-A24-10	不確実性を活用した材料画像予測の信頼性判定技術の開発	○王 宇¹, 山本 浩之¹, 谷本 明佳¹	1.日立製作所 研究開発グループ
16:30 16:45	奨 18p-A24-11 18p-A24-12	深層学習を活用した超伝導電線の3Dフィラメント微細	○(DC)石山 隆光 ^{1,2} , 野沢 公暉¹, 末益 崇¹, 都甲 薫¹ ○安東 昂亮¹, 西谷 慶輝¹, 石橋 辰則¹, 嶋田 雄介², 児	
17:00	奨 18p-A24-13	構造解析 GAN を活用した擬似的な三次元多結晶 Si 組織の生成	玉 一宗 ³ , 田中 秀樹 ³ , 山本 明保 ¹ ○弟子丸 拓巳 ¹ , 沓掛 健太朗 ^{1,2,3} , 工藤 博章 ⁴ , 勝部 涼司 ¹ , 宇佐美 徳隆 ^{1,2,5}	1.名大院工,2.名大未来研,3.理研AIP,4.名大院情報,5.名大未来機構
		口頭講演 (Oral Presentation) A21会場 (Room A21)		a dC-1-1-100-14t
9:00	20a-A21-1	蛍光体におけるEu価数に対する機械学習の検証実験	○小山 幸典¹, 高力 由香子¹, 原田 昌道¹, 広崎 尚登¹,	1.物材機構
	200 1121 1		武田 隆史1	
9:15	奨 20a-A21-2	結晶構造の複雑性による結晶系の分類	武田隆史¹ ○(B)西堀 結貴¹², 伊藤 優成¹², 武市 泰男¹², 小野 寛太¹²	1. 阪大工, 2. 阪大 OTRI スピン
9:15 9:30			\bigcirc (B) 西堀 結貴 ^{1,2} , 伊藤 優成 ^{1,2} , 武市 泰男 ^{1,2} , 小野 寛太 ^{1,2}	1. 阪大工, 2. 阪大OTRI スピン 1. 九大院工, 2. 九大 CMS, 3. 九大 I2CNER, 4. 九大 RIIT
	奨 20a-A21-2	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統	 ○(B)西堀 結貴^{1,2}, 伊藤 優成^{1,2}, 武市 泰男^{1,2}, 小野 寛太^{1,2} ○(D)Phua Yin Kan¹, 藤ヶ谷 剛彦^{1,2,3}, 加藤 幸一 	1. 九大院工, 2. 九大CMS, 3. 九大I2CNER, 4. 九大RIIT
9:30 9:45 10:00	奨 20a-A21-2 20a-A21-3	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際模断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究	 ○(B)西堀 結貴^{1,2}, 伊藤 優成^{1,2}, 武市 泰男^{1,2}, 小野 寛太^{1,2} ○(D)Phua Yin Kan¹, 藤ヶ谷 剛彦^{1,2,3}, 加藤 幸一郎^{1,2,4} ○石井 真史¹, 松田 朝彦¹, 山下 翔平², 丹羽 尉博², 稲田 康宏³ 	1. 九大院工, 2. 九大 CMS, 3. 九大 I2CNER, 4. 九大 RIIT 1. NIMS, 2. KEK, 3. 立命館大
9:30 9:45	奨 20a-A21-2 20a-A21-3 20a-A21-4	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際横断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究 休憩/Break テキストと結晶構造の対照学習による材料の埋め込み表	 ○(B) 西堀 結貴 ^{1,2}, 伊藤 優成 ^{1,2}, 武市 泰男 ^{1,2}, 小野 寛太 ^{1,2} ○(D) Phua Yin Kan¹, 藤ヶ谷 剛彦 ^{1,2,3}, 加藤 幸一郎 ^{1,2,4} ○石井 真史 ¹, 松田 朝彦 ¹, 山下 翔平 ², 丹羽 尉博 ², 稲田 康宏 ³ ○谷藤 幹子 ¹, 林 正治 ¹, 山地 一禎 ¹, Foppiano Luca², Sae Dieb³ ○鈴木 雄太 ¹, 谷合 竜典 ², 五十嵐 亮 ², 斉藤 耕太 	 1.九大院工, 2.九大 CMS, 3.九大 I2CNER, 4.九大 RIIT 1.NIMS, 2.KEK, 3.立命館大 1.国立情報学研究所, 2.ScienciaLAB, 3.物質材料研究機構 1.トヨタ自動車, 2.オムロンサイニックエックス, 3.ラ
9:30 9:45 10:00 10:15	獎 20a-A21-2 20a-A21-3 20a-A21-4 20a-A21-5	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際横断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究 休憩/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用 論文の自動スクリーニングのための大規模言語モデルの	○ (B) 西堀 結貴 ^{1,2} , 伊藤 優成 ^{1,2} , 武市 泰男 ^{1,2} , 小野 寬太 ^{1,2} ○ (D) Phua Yin Kan ¹ , 藤ヶ谷 剛彦 ^{1,2,3} , 加藤 幸一郎 ^{1,2,4} ○ 石井 真史 ¹ , 松田 朝彦 ¹ , 山下 翔平 ² , 丹羽 尉博 ² , 稲田 康宏 ³ ○ 谷藤 幹子 ¹ , 林 正治 ¹ , 山地 一禎 ¹ , Foppiano Luca ² , Sae Dieb ³ ○ 鈴木 雄太 ¹ , 谷合 竜典 ² , 五十嵐 亮 ² , 斉藤 耕太郎 ^{3,4} , 千葉 直也 ⁵ , 牛久 祥孝 ² , 小野 寬太 ⁴	1. 九大院工, 2. 九大 CMS, 3. 九大 I2CNER, 4. 九大 RIIT 1. NIMS, 2. KEK, 3. 立命館大 1. 国立情報学研究所, 2. Sciencia LAB, 3. 物質材料研究機 構
9:30 9:45 10:00 10:15 10:30	獎 20a-A21-2 20a-A21-3 20a-A21-4 20a-A21-5 獎 20a-A21-6	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際横断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究 休憩/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用	 ○ (B) 西堀 結貴 ^{1,2}, 伊藤 優成 ^{1,2}, 武市 泰男 ^{1,2}, 小野 寛太 ^{1,2} ○ (D) Phua Yin Kan ¹, 藤ヶ谷 剛彦 ^{1,2,3}, 加藤 幸一郎 ^{1,2,4} ○ 石井 真史 ¹, 松田 朝彦 ¹, 山下 翔平 ², 丹羽 尉博 ², 稲田 康宏 ³ ○ 谷藤 幹子 ¹, 林 正治 ¹, 山地 一禎 ¹, Foppiano Luca ², Sae Dieb ³ ○ 鈴木 雄太 ¹, 谷合 竜典 ², 五十嵐 亮 ², 斉藤 耕太郎 ^{3,4}, 千葉 直也 ⁵, 牛久 祥孝 ², 小野 寛太 ⁴ ○ 鈴木 雄太 ^{1,2}, 栗田 修平 ^{3,2} ○ 坂本 浩隆 ¹, 白川 裕規 ¹ 	1. 九大院工, 2. 九大 CMS, 3. 九大 I2CNER, 4. 九大 RIIT 1. NIMS, 2.KEK, 3. 立命館大 1. 国立情報学研究所, 2. Sciencia LAB, 3. 物質材料研究機構 1. トヨタ自動車, 2. オムロンサイニックエックス, 3. ランデフト, 4. 阪大工, 5. 東北大情報
9:30 9:45 10:00 10:15 10:30 10:45 11:00	獎 20a-A21-2 20a-A21-3 20a-A21-4 20a-A21-5 獎 20a-A21-6 20a-A21-7 20a-A21-8 20a-A21-9	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際模断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究 体想/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用 論文の自動スクリーニングのための大規模言語モデルの応用 大規模言語モデルによる論文からの実験条件抽出	 ○(B) 西堀 結貴 ^{1,2}, 伊藤 優成 ^{1,2}, 武市 泰男 ^{1,2}, 小野 寛太 ^{1,2} ○(D) Phua Yin Kan¹, 藤ヶ谷 剛彦 ^{1,2,3}, 加藤 幸一郎 ^{1,2,4} ○石井 真史 ¹, 松田 朝彦 ¹, 山下 翔平 ², 丹羽 尉博 ², 稲田康宏 ³ ○谷藤 幹子 ¹, 林 正治 ¹, 山地 一禎 ¹, Foppiano Luca², Sae Dieb ³ ○鈴木 雄太 ¹, 谷合 竜典 ², 五十嵐 亮 ², 斉藤 耕太郎 ^{3,4}, 千葉 直也 ⁵, 牛久 祥孝 ², 小野 寬太 ⁴ ○鈴木 雄太 ^{1,2}, 栗田 修平 ^{3,2} ○坂本 浩隆 ¹, 白川 裕規 ¹ ○石井 真史 ¹, 渡邊 泰史 ¹, 岡 博之 ¹, 進藤 裕之 ² 	 1.九大院工, 2.九大 CMS, 3.九大 I2CNER, 4.九大 RIIT 1.NIMS, 2.KEK, 3.立命館大 1.国立情報学研究所, 2.ScienciaLAB, 3.物質材料研究機構 1.トヨタ自動車, 2.オムロンサイニックエックス, 3.ランデフト, 4.阪大工, 5.東北大情報 1.トヨタ自動車, 2.理研AIP, 3.国立情報学研究所 1.トヨタ自動車(株)
9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30	獎 20a-A21-2 20a-A21-3 20a-A21-4 20a-A21-5 獎 20a-A21-6 20a-A21-7 20a-A21-8 20a-A21-9	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際横断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究 休憩/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用 論文の自動スクリーニングのための大規模言語モデルの応用 大規模言語モデルによる論文からの実験条件抽出 LLMを使った材料開発(I) モデル比較による開発スコープ ストラクチュアル・ホール理論に基づく画期的研究発生メカニズム解明(II)	 ○(B) 西堀 結貴 ^{1,2}, 伊藤 優成 ^{1,2}, 武市 泰男 ^{1,2}, 小野 寛太 ^{1,2} ○(D) Phua Yin Kan¹, 藤ヶ谷 剛彦 ^{1,2,3}, 加藤 幸一郎 ^{1,2,4} ○石井 真史 ¹, 松田 朝彦 ¹, 山下 翔平 ², 丹羽 尉博 ², 稲田康宏 ³ ○谷藤 幹子 ¹, 林 正治 ¹, 山地 一禎 ¹, Foppiano Luca², Sae Dieb ³ ○鈴木 雄太 ¹, 谷合 竜典 ², 五十嵐 亮 ², 斉藤 耕太郎 ^{3,4}, 千葉 直也 ⁵, 牛久 祥孝 ², 小野 寬太 ⁴ ○鈴木 雄太 ^{1,2}, 栗田 修平 ^{3,2} ○坂本 浩隆 ¹, 白川 裕規 ¹ ○石井 真史 ¹, 渡邊 泰史 ¹, 岡 博之 ¹, 進藤 裕之 ² 	1. 九大院工, 2. 九大 CMS, 3. 九大 I2CNER, 4. 九大 RIIT 1. NIMS, 2. KEK, 3. 立命館大 1. 国立情報学研究所, 2. ScienciaLAB, 3. 物質材料研究機構 1. トヨタ自動車, 2. オムロンサイニックエックス, 3. ランデフト, 4. 阪大工, 5. 東北大情報 1. トヨタ自動車, 2. 理研 AIP, 3. 国立情報学研究所 1. トヨタ自動車 (株) 1. NIMS, 2. Mat Brain
9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30	獎 20a-A21-2 20a-A21-3 20a-A21-4 20a-A21-5 獎 20a-A21-6 20a-A21-7 20a-A21-8 20a-A21-9 20a-A21-10 Fri.) 13:30 - 16:30	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFS データベースの国際横断検索の実現と公開 論文データカタログ Open Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究 休憩/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用 論文の自動スクリーニングのための大規模言語モデルの応用 大規模言語モデルによる論文からの実験条件抽出 LLMを使った材料開発 (I) モデル比較による開発スコープ ストラクチュアル・ホール理論に基づく画期的研究発生メカニズム解明 (II)	○ (B) 西堀 結貴 ^{1,2} , 伊藤 優成 ^{1,2} , 武市 泰男 ^{1,2} , 小野 寬太 ^{1,2} ○ (D) Phua Yin Kan¹, 藤ヶ谷 剛彦 ^{1,2,3} , 加藤 幸一郎 ^{1,2,4} ○ 石井 真史 ¹ , 松田 朝彦 ¹ , 山下 翔平 ² , 丹羽 尉博 ² , 稲田 康宏 ³ ○ 谷藤 幹子 ¹ , 林 正治 ¹ , 山地 一禎 ¹ , Foppiano Luca², Sae Dieb³ ○ 鈴木 雄太 ¹ , 谷合 竜典 ² , 五十嵐 亮 ² , 斉藤 耕太郎 ^{3,4} , 千葉 直也 ⁵ , 牛久 祥孝 ² , 小野 寬太 ⁴ ○ 鈴木 雄太 ^{1,2} , 栗田 修平 ^{3,2} ○ 坂本 浩隆 ¹ , 白川 裕規 ¹ ○ 石井 真史 ¹ , 渡邊 泰史 ¹ , 岡 博之 ¹ , 進藤 裕之 ² ○ 品川 啓介 ¹	1. 九大院工, 2. 九大 CMS, 3. 九大 I2CNER, 4. 九大 RIIT 1. NIMS, 2. KEK, 3. 立命館大 1. 国立情報学研究所, 2. ScienciaLAB, 3. 物質材料研究機構 1. トヨタ自動車, 2. オムロンサイニックエックス, 3. ランデフト, 4. 阪大工, 5. 東北大情報 1. トヨタ自動車, 2. 理研 AIP, 3. 国立情報学研究所 1. トヨタ自動車 (株) 1. NIMS, 2. MatBrain 1. 福岡女子大
9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30	獎 20a-A21-2 20a-A21-3 20a-A21-4 20a-A21-5 獎 20a-A21-6 20a-A21-7 20a-A21-8 20a-A21-9	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際横断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究 休憩/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用 論文の自動スクリーニングのための大規模言語モデルの応用 大規模言語モデルによる論文からの実験条件抽出 LLMを使った材料開発(I) モデル比較による開発スコープ ストラクチュアル・ホール理論に基づく画期的研究発生メカニズム解明(II)	○(B) 西堀 結貴 ^{1,2} , 伊藤 優成 ^{1,2} , 武市 泰男 ^{1,2} , 小野 寬太 ^{1,2} ○(D) Phua Yin Kan ¹ , 藤ヶ谷 剛彦 ^{1,2,3} , 加藤 幸一郎 ^{1,2,4} ○石井 真史 ¹ , 松田 朝彦 ¹ , 山下 翔平 ² , 丹羽 尉博 ² , 稲田 康宏 ³ ○谷藤 幹子 ¹ , 林 正治 ¹ , 山地 一禎 ¹ , Foppiano Luca ² , Sae Dieb ³ ○鈴木 雄太 ¹ , 谷合 竜典 ² , 五十嵐 亮 ² , 斉藤 耕太郎 ^{3,4} , 千葉 直也 ⁵ , 牛久 祥孝 ² , 小野 寬太 ⁴ ○鈴木 雄太 ^{1,2} , 栗田 修平 ^{3,2} ○坂本 浩隆 ¹ , 白川 裕規 ¹ ○石井 真史 ¹ , 渡邊 泰史 ¹ , 岡 博之 ¹ , 進藤 裕之 ² ○品川 啓介 ¹	1. 九大院工, 2. 九大 CMS, 3. 九大 I2CNER, 4. 九大 RIIT 1. NIMS, 2. KEK, 3. 立命館大 1. 国立情報学研究所, 2. ScienciaLAB, 3. 物質材料研究機構 1. トヨタ自動車, 2. オムロンサイニックエックス, 3. ランデフト, 4. 阪大工, 5. 東北大情報 1. トヨタ自動車, 2. 理研 AIP, 3. 国立情報学研究所 1. トヨタ自動車 (株) 1. NIMS, 2. Mat Brain
9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 9/20(13:30	獎 20a-A21-2 20a-A21-3 20a-A21-4 20a-A21-5 髮 20a-A21-6 20a-A21-7 20a-A21-8 20a-A21-9 20a-A21-10 Fri.) 13:30 - 16:30 20p-A21-1	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際横断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究体態/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用 論文の自動スクリーニングのための大規模言語モデルの応用 大規模言語モデルによる論文からの実験条件抽出 LLMを使った材料開発(I)モデル比較による開発スコープ ストラクチュアル・ホール理論に基づく画期的研究発生メカニズム解明(II) 口頭講演(Oral Presentation) A21 会場(Room A21) 多軌道動的モード分解による高次元力学系の同定 SiC 溶液成長法における潜在空間を利用した長時間プロ	○ (B) 西堀 結貴 ^{1,2} , 伊藤 優成 ^{1,2} , 武市 泰男 ^{1,2} , 小野 寬太 ^{1,2} ○ (D) Phua Yin Kan¹, 藤ヶ谷 剛彦 ^{1,2,3} , 加藤 幸一郎 ^{1,2,4} ○ 石井 真史 ¹ , 松田 朝彦 ¹ , 山下 翔平 ² , 丹羽 尉博 ² , 稲田 康宏 ³ ○ 谷藤 幹子 ¹ , 林 正治 ¹ , 山地 一禎 ¹ , Foppiano Luca², Sae Dieb³ ○ 鈴木 雄太 ^{1,4} , 谷合 竜典 ² , 五十嵐 亮 ² , 斉藤 耕太郎 ^{3,4} , 千葉 直也 ⁵ , 牛久 祥孝 ² , 小野 寬太 ⁴ ○ 鈴木 雄太 ^{1,2} , 栗田 修平 ^{3,2} ○ 坂本 浩隆 ¹ , 白川 裕規 ¹ ○ 石井 真史 ¹ , 渡邊 泰史 ¹ , 岡 博之 ¹ , 進藤 裕之 ² ○ 品川 啓介 ¹	1. 九大院工, 2. 九大 CMS, 3. 九大 I2CNER, 4. 九大 RIIT 1. NIMS, 2. KEK, 3. 立命館大 1. 国立情報学研究所, 2. ScienciaLAB, 3. 物質材料研究機構 1. トヨタ自動車, 2. オムロンサイニックエックス, 3. ランデフト, 4. 阪大工, 5. 東北大情報 1. トヨタ自動車, 2. 理研 AIP, 3. 国立情報学研究所 1. トヨタ自動車 (株) 1. NIMS, 2. Mat Brain 1. 福岡女子大 1. 東京エレクトロン 1. 名大院工, 2. 名大未来研
9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 9/20(t 13:30 13:45	獎 20a-A21-2 20a-A21-3 20a-A21-4 20a-A21-5 奨 20a-A21-6 20a-A21-7 20a-A21-8 20a-A21-9 20a-A21-10 Fri.) 13:30 - 16:30 20p-A21-1 20p-A21-2	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際機断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究体憩/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用 論文の自動スクリーニングのための大規模言語モデルの応用 大規模言語モデルによる論文からの実験条件抽出 LLMを使った材料開発(I) モデル比較による開発スコープ ストラクチュアル・ホール理論に基づく画期的研究発生メカニズム解明(II) 口頭講演(Oral Presentation) A21会場(Room A21) 多軌道動的モード分解による高次元力学系の同定 SiC浴液成長法における潜在空間を利用した長時間プロセスの最適化 研削シミュレーションにおける自己回帰モデルの蓄積誤	○(B)西堀 結貴 ^{1,2} , 伊藤 優成 ^{1,2} , 武市 泰男 ^{1,2} , 小野 寬太 ^{1,2} ○(D)Phua Yin Kan¹, 藤ヶ谷 剛彦 ^{1,2,3} , 加藤 幸一郎 ^{1,2,4} ○石井 真史¹, 松田 朝彦¹, 山下 翔平², 丹羽 尉博², 稲田 康宏 ³ ○谷藤 幹子¹, 林 正治¹, 山地 一禎¹, Foppiano Luca², Sae Dieb³ ○鈴木 雄太¹, 谷合 竜典², 五十嵐 亮², 斉藤 耕太郎 ^{3,4} , 千葉 直也 ⁵ , 牛久 祥孝², 小野 寬太 ⁴ ○鈴木 雄太 ^{1,2} , 梁田 修平 ^{3,2} ○坂本 浩隆¹, 白川 裕規¹ ○石井 真史¹, 渡邊 泰史¹, 岡 博之¹, 進藤 裕之 ² ○品川 啓介 ¹ ○安崎 遼路¹, 山田 翔太 ^{1,4} , 筒井 拓郎¹, 松沢 貴仁 ¹ ○坂本 隆直¹, 沓掛 健太朗 ^{1,2} , 原田 俊太 ^{1,2} , 宇治原 徹 ^{1,2} ○長田 圭一¹, 勝岡 輝行¹, 田中 陸久 ^{1,1} , 川手 章也 ¹ , 関	 1.九大院工, 2.九大 CMS, 3.九大 I2CNER, 4.九大 RIIT 1.NIMS, 2.KEK, 3.立命館大 1.国立情報学研究所, 2.ScienciaLAB, 3.物質材料研究機構 1.トヨタ自動車, 2.オムロンサイニックエックス, 3.ランデフト, 4.阪大工, 5.東北大情報 1.トヨタ自動車, 2.理研AIP, 3.国立情報学研究所 1.トヨタ自動車(株) 1.NIMS, 2.MatBrain 1.福岡女子大 1.東京エレクトロン 1.名大院工, 2.名大未来研 1.アイクリスタル, 2.Mipox株式会社
9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 9/20(113:30 13:45 14:00	獎 20a-A21-2 20a-A21-3 20a-A21-4 20a-A21-5 獎 20a-A21-6 20a-A21-7 20a-A21-7 20a-A21-9 20a-A21-10 Fri.) 13:30 - 16:30 20p-A21-1 20p-A21-2 20p-A21-3	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際横断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究 休憩/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用 論文の自動スクリーニングのための大規模言語モデルの応用 大規模言語モデルによる論文からの実験条件抽出 LLMを使った材料開発(I)モデル比較による開発スコープ ストラクチュアル・ホール理論に基づく画期的研究発生メカニズム解明(II) □頭請演(Oral Presentation) A21 会場(Room A21) 多軌道動的モード分解による高次元力学系の同定 SiC 溶液成長法における潜在空間を利用した長時間プロセスの最適化 研削シミュレーションにおける自己回帰モデルの蓄積誤	○(B) 西堀 結貴 ^{1,2} , 伊藤 優成 ^{1,2} , 武市 泰男 ^{1,2} , 小野 寛太 ^{1,2} ○(D) Phua Yin Kan¹, 藤ヶ谷 剛彦 ^{1,2,3} , 加藤 幸一郎 ^{1,2,4} ○石井 真史¹, 松田 朝彦¹, 山下 翔平², 丹羽 尉博², 稲田康宏 ³ ○谷藤 幹子¹, 林 正治¹, 山地 一禎¹, Foppiano Luca², Sae Dieb³ ○鈴木 雄太 ¹ , 谷合 竜典², 五十嵐 亮², 斉藤 耕太郎 ^{3,4} , 千葉 直也 ⁵ , 牛久 祥孝², 小野 寛太 ⁴ ○鈴木 雄太 ^{1,2} , 栗田 修平 ^{3,2} ○坂本 浩隆¹, 白川 裕規¹ ○石井 真史¹, 渡邊 泰史¹, 岡 博之¹, 進藤 裕之² ○品川 啓介¹ ○安崎 遼路¹, 山田 翔太¹, 筒井 拓郎¹, 松沢 貴仁¹ ○坂本 隆直¹, 沓掛 健太朗 ^{1,2} , 原田 俊太 ^{1,2} , 字治原徹 ^{1,2} ○長田 圭一¹, 勝岡 輝行¹, 田中 陸久¹, 川手 章也¹, 関翔太¹, セバシィ サイド², 渡辺 宣文² ○(M2) 笠原 亮太郎¹, 沓掛 健太朗 ^{1,2} , 原田 俊太 ^{1,2} , 宇治原 徹 ^{1,2}	 1.九大院工, 2.九大 CMS, 3.九大 I2CNER, 4.九大 RIIT 1.NIMS, 2.KEK, 3.立命館大 1.国立情報学研究所, 2.ScienciaLAB, 3.物質材料研究機構 1.トヨタ自動車, 2.オムロンサイニックエックス, 3. ランデフト, 4.阪大工, 5. 東北大情報 1.トヨタ自動車, 2.理研 AIP, 3.国立情報学研究所 1.トヨタ自動車(株) 1.NIMS, 2.MatBrain 1.福岡女子大 1.東京エレクトロン 1.名大院工, 2.名大未来研 1.アイクリスタル, 2.Mipox株式会社 1.名大院工, 2.名大未来研 1.NIMS, 2.筑波大
9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 9/20(13:30 13:45 14:00 14:15	獎 20a-A21-2 20a-A21-3 20a-A21-4 20a-A21-5 獎 20a-A21-6 20a-A21-7 20a-A21-8 20a-A21-9 20a-A21-10 Fri.) 13:30 - 16:30 20p-A21-1 20p-A21-2 20p-A21-3 20p-A21-4 20p-A21-5	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際横断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究 休憩/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用 論文の自動スクリーニングのための大規模言語モデルの応用 大規模言語モデルによる論文からの実験条件抽出 LLMを使った材料開発(I)モデル比較による開発スコープ ストラクチュアル・ホール理論に基づく画期的研究発生メカニズム解明(II) ロ頭講演(Oral Presentation) A21会場(Room A21)多軌道動的モード分解による高次元力学系の同定 SiC溶液成長法における潜在空間を利用した長時間プロセスの最適化 研削シミュレーションにおける自己回帰モデルの蓄積誤差低減の検討 連続工程の全体最適化のための最適化手法の検討	○(B)西堀 結貴 ^{1,2} , 伊藤 優成 ^{1,2} , 武市 泰男 ^{1,2} , 小野 寛太 ^{1,2} ○(D)Phua Yin Kan¹, 藤ヶ谷 剛彦 ^{1,2,3} , 加藤 幸一郎 ^{1,2,4} ○石井 真史¹, 松田 朝彦¹, 山下 翔平², 丹羽 尉博², 稲田康宏³ ○谷藤 幹子¹, 林 正治¹, 山地 一禎¹, Foppiano Luca², Sae Dieb³ ○鈴木 雄太¹, 谷合 竜典², 五十嵐 亮², 斉藤 耕太郎³⁴, 千葉 直也⁵, 牛久 祥孝², 小野 寛太⁴ ○鈴木 雄太¹, 谷合 竜典², 五十嵐 亮², 斉藤 耕太郎³⁴, 千葉 直也⁵, 牛久 祥孝², 小野 寛太⁴ ○ 鈴木 雄太¹², 栗田 修平³³² ○坂本 浩隆¹, 白川 裕規¹ ○石井 真史¹, 渡邊 泰史¹, 岡 博之¹, 進藤 裕之² ○品川 啓介¹ ○安崎 遼路¹, 山田 翔太¹, 筒井 拓郎¹, 松沢 貴仁¹ ○坂本 隆直¹, 沓掛 健太朗¹², 原田 俊太¹², 宇治原徹¹² ○長田 圭一¹, 勝岡 輝行¹, 田中 陸久¹, 川手 章也¹, 関翔太¹, セバシィ サイド², 渡辺 宣文² ○(M2) 笠原 亮太郎¹, 沓掛 健太朗¹², 原田 俊太¹², 宇治原徹¹² ○青嶋 健成¹, 王 威勝¹², 高野 義彦¹² ○(M1)高本 龍世¹³, 中島 優作¹³, 武市 泰男¹³, 濱屋 政志², 牛久 祥孝², 小野 寛太¹³ ○宮島 拓也¹², 中島 優作¹², 武市 泰男¹², 小野 寛	 1.九大院工, 2.九大 CMS, 3.九大 I2CNER, 4.九大 RIIT 1.NIMS, 2.KEK, 3.立命館大 1.国立情報学研究所, 2.ScienciaLAB, 3.物質材料研究機構 1.トヨタ自動車, 2.オムロンサイニックエックス, 3. ランデフト, 4.阪大工, 5. 東北大情報 1.トヨタ自動車, 2.理研 AIP, 3.国立情報学研究所 1.トヨタ自動車(株) 1.NIMS, 2.MatBrain 1.福岡女子大 1.東京エレクトロン 1.名大院工, 2.名大未来研 1.アイクリスタル, 2.Mipox株式会社 1.名大院工, 2.名大未来研 1.NIMS, 2.筑波大
9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 9/20(13:30 13:45 14:00 14:15 14:30 14:45 15:00	獎 20a-A21-2 20a-A21-3 20a-A21-5	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際機断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究体憩/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用 論文の自動スクリーニングのための大規模言語モデルの応用 大規模言語モデルによる論文からの実験条件抽出 LLMを使った材料開発(I) モデル比較による開発スコープストラクチュアル・ホール理論に基づく画期的研究発生メカニズム解明(II) 口頭講演(Oral Presentation) A21会場(Room A21) 多軌道動的モード分解による高次元力学系の同定 SiC溶液成長法における潜在空間を利用した長時間プロセスの最適化 研削シミュレーションにおける自己回帰モデルの蓄積誤差低減の検討 連続工程の全体最適化のための最適化手法の検討 【注目講演】超伝導合金試料の自動アーク炉を用いた合成ロボットアームによる粒子径を制御した粉体粉砕	○(B)西堀 結貴 ^{1,2} , 伊藤 優成 ^{1,2} , 武市 泰男 ^{1,2} , 小野 寛太 ^{1,2} ○(D)Phua Yin Kan¹, 藤ヶ谷 剛彦 ^{1,2,3} , 加藤 幸一郎 ^{1,2,4} ○石井 真史¹, 松田 朝彦¹, 山下 翔平², 丹羽 尉博², 稲田康宏 ³ ○谷藤 幹子¹, 林 正治¹, 山地 一禎¹, Foppiano Luca², Sae Dieb³ ○鈴木 雄太 ¹ , 谷合 竜典², 五十嵐 亮², 斉藤 耕太郎 ^{3,4} , 千葉 直也 ⁵ , 牛久 祥孝², 小野 寛太 ⁴ ○鈴木 雄太 ^{1,2} , 栗田 修平 ^{3,2} ○坂本 浩隆¹, 白川 裕規¹ ○石井 真史¹, 渡邊 泰史¹, 岡 博之¹, 進藤 裕之² ○品川 啓介¹ ○安崎 遼路¹, 山田 翔太¹, 筒井 拓郎¹, 松沢 貴仁¹ ○坂本 隆直¹, 沓掛 健太朗 ^{1,2} , 原田 俊太 ^{1,2} , 字治原 徹 ^{1,2} ○長田 圭一¹, 勝岡 輝行¹, 田中 陸久¹, 川手 章也¹, 関 翔太¹, セパシィ サイド², 渡辺 宣文² ○(M2) 笠原 亮太郎¹, 沓掛 健太朗 ^{1,2} ,原田 俊太 ^{1,2} ,字治原 徹 ^{1,2} ○寺嶋 健成¹, 王 威勝 ^{1,2} ,高野 義彦 ^{1,2} ○「今嶋 健成¹, 王 威勝 ^{1,2} ,高野 義彦 ^{1,2} ○宮島 拓也 ^{1,2} ,中島 優作 ^{1,3} ,武市 泰男 ^{1,3} , 濱屋 政志²,牛久 祥孝²,小野 寛太 ^{1,3} ○宮島 拓也 ^{1,2} ,川崎 海 ^{1,2} ,武市 泰男 ^{1,2} , 濱屋 政志³,	 1.九大院工, 2.九大 CMS, 3.九大 I2CNER, 4.九大 RIIT 1.NIMS, 2.KEK, 3.立命館大 1.国立情報学研究所, 2.ScienciaLAB, 3.物質材料研究機構 1.トヨタ自動車, 2.オムロンサイニックエックス, 3.ランデフト, 4.阪大工, 5.東北大情報 1.トヨタ自動車, 2.理研AIP, 3.国立情報学研究所 1.トヨタ自動車(株) 1.NIMS, 2.MatBrain 1.福岡女子大 1.東京エレクトロン 1.名大院工, 2.名大未来研 1.アイクリスタル, 2.Mipox株式会社 1.名大院工, 2.名大未来研 1.NIMS, 2.筑波大 1.阪大工, 2.OSX, 3.阪大OTRIスピン 1.大阪大工, 2.阪大SRN-OTRI 1.阪大院工, 2.阪大 OTIR スピン, 3.オムロンサイニッ
9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 9/20(t 13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15	獎 20a-A21-2 20a-A21-3 20a-A21-4 20a-A21-5 獎 20a-A21-6 20a-A21-7 20a-A21-7 20a-A21-9 20a-A21-10 Fri.) 13:30 - 16:30 20p-A21-1 20p-A21-2 20p-A21-3 20p-A21-4 20p-A21-5 獎 20p-A21-6 獎 20p-A21-7	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際機断検索の実現と公開 論文データカタログ Open Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究体想/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用 論文の自動スクリーニングのための大規模言語モデルの応用 大規模言語モデルによる論文からの実験条件抽出 LLMを使った材料開発(I) モデル比較による開発スコープストラクチュアル・ホール理論に基づく画期的研究発生メカニズム解明(II) 口頭講演 (Oral Presentation) A21 会場(Room A21)多軌道動的モード分解による高次元力学系の同定 SiC溶液成長法における潜在空間を利用した長時間プロセスの最適化 研削シミュレーションにおける自己回帰モデルの蓄積誤差低減の検討 連続工程の全体最適化のための最適化手法の検討 【注目講演】超伝導合金試料の自動アーク炉を用いた合成ロボットアームによる粒子径を制御した粉体粉砕 体憩/Break 自律材料合成実験に向けた自動粉体分注システムの開発 圧縮応力とせん断応力によるメカノケミカル合成制御 メカノケミカル合成制御AIを用いたハロゲン化鉛系ベロ	○(B)西堀結貴¹², 伊藤 優成¹², 武市泰男¹², 小野寛太¹² ○(D)Phua Yin Kan¹, 藤ヶ谷剛彦¹²³, 加藤幸一郎¹²⁴ ○石井真史¹, 松田朝彦¹, 山下翔平², 丹羽尉博², 稲田康宏³ ○谷藤幹子¹, 林正治¹, 山地一禎¹, Foppiano Luca², Sae Dieb³ ○鈴木 雄太¹, 谷合 竜典², 五十嵐亮², 斉藤 耕太郎³¾, 千葉直也⁵, 牛久祥孝², 小野寛太⁴ ○鈴木 雄太¹², 栗田修平³² ○坂本浩隆¹, 白川 裕規¹ ○石井真史¹, 渡邊 泰史¹, 岡博之¹, 進藤裕之² ○届川 啓介¹ ○安崎遼路¹, 山田翔太¹, 筒井拓郎¹, 松沢貴仁¹ ○坂本隆直¹, 沓掛健太朗¹², 原田俊太¹², 宇治原徹¹² ○長田圭一¹, 勝岡輝行¹, 田中陸久¹, 川手章也¹, 関翔太¹, セバシィサイド², 渡辺宣文² ○(M2) 笠原亮太郎¹, 沓掛健太朗¹², 原田俊太¹², 宇治原徹¹² ○寺嶋健成¹, 王威勝¹², 高野義彦¹² ○(M1) 高本龍世¹³, 中島優作¹³, 武市泰男¹³, 濱屋政志², 牛久祥孝², 小野寛太¹³	 1.九大院工, 2.九大 CMS, 3.九大 I2CNER, 4.九大 RIIT 1.NIMS, 2.KEK, 3.立命館大 1.国立情報学研究所, 2.ScienciaLAB, 3.物質材料研究機構 1.トヨタ自動車, 2.オムロンサイニックエックス, 3.ランデフト, 4.阪大工, 5.東北大情報 1.トヨタ自動車, 2.理研AIP, 3.国立情報学研究所 1.トヨタ自動車(株) 1.NIMS, 2.MatBrain 1.福岡女子大 1.華京エレクトロン 1.名大院工, 2.名大未来研 1.アイクリスタル, 2.Mipox株式会社 1.名大院工, 2.名大未来研 1.NIMS, 2.筑波大 1.阪大工, 2.OSX, 3.阪大OTRI スピン 1.大阪大工, 2.阪大SRN-OTRI 1.阪大院工, 2.阪大SRN-OTRI 1.阪大院工, 2.阪大OTIR スピン, 3.オムロンサイニックエックス
9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 9/20(i 13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15	獎 20a-A21-2 20a-A21-3 20a-A21-5 髮 20a-A21-6 20a-A21-7 20a-A21-7 20a-A21-10 Fri.) 13:30 - 16:30 20p-A21-1 20p-A21-2 20p-A21-3 20p-A21-5 髮 20p-A21-6 髮 20p-A21-7 髮 20p-A21-7	結晶構造の複雑性による結晶系の分類 アニオン交換膜の材料マップ及び教師あり機械学習の統合運用による材料探索の効率化 XAFSデータベースの国際機断検索の実現と公開 論文データカタログOpen Alex を活用した電池材料へのサイエンスナレッジグラフの応用研究 体想/Break テキストと結晶構造の対照学習による材料の埋め込み表現と応用 論文の自動スクリーニングのための大規模言語モデルの応用 大規模言語モデルによる論文からの実験条件抽出 LLMを使った材料開発(I) モデル比較による開発スコープストラクチュアル・ホール理論に基づく画期的研究発生メカニズム解明(II) 口頭講演(Oral Presentation) A21 会場(Room A21)多軌道動的モード分解による高次元力学系の同定 SiC溶液成長法における潜在空間を利用した長時間プロセスの最適化 研削シミュレーションにおける自己回帰モデルの蓄積誤差低減の検討 連続工程の全体最適化のための最適化手法の検討 【注目講演】超伝導合金試料の自動アーク炉を用いた合成ロボットアームによる粒子径を制御した粉体粉砕 体憩/Break 自律材料合成実験に向けた自動粉体分注システムの開発 圧縮応力とせん断応力によるメカノケミカル合成制御	○(B)西堀 結貴 ^{1,2} , 伊藤 優成 ^{1,2} , 武市 泰男 ^{1,2} , 小野 寛太 ^{1,2} ○(D)Phua Yin Kan¹, 藤ヶ谷 剛彦 ^{1,2,3} , 加藤 幸一郎 ^{1,2,4} ○石井 真史¹, 松田 朝彦¹, 山下 翔平², 丹羽 尉博², 稲田康宏 ³ ○谷藤 幹子¹, 林 正治¹, 山地 一禎¹, Foppiano Luca², Sae Dieb³ ○鈴木 雄太¹, 谷合 竜典², 五十嵐 亮², 斉藤 耕太郎 ^{3,4} , 千葉 直也 ⁵ , 牛久 祥孝², 小野 寛太 ⁴ ○鈴木 雄太 ^{1,2} , 突田 修平 ^{3,2} ○坂本 浩隆¹, 白川 裕規¹ ○石井 真史¹, 渡邊 泰史¹, 岡 博之¹, 進藤 裕之² ○品川 啓介 ¹ ○安崎 遼路¹, 山田 翔太¹, 筒井 拓郎¹, 松沢 貴仁¹ ○坂本 隆直¹, 沓掛 健太朗 ^{1,2} , 原田 俊太 ^{1,2} , 字治原 徹 ^{1,2} ○長田 圭一¹, 勝岡 輝行¹, 田中 陸久¹, 川手 章也¹, 関 翔太¹, セバシィ サイド², 渡辺 宣文² ○(M2) 笠原 亮太郎¹, 沓掛 健太朗 ^{1,2} , 原田 俊太 ^{1,2} , 宇治原 徹 ^{1,2} ○寺嶋 健成 ¹ , 王 威勝 ^{1,2} , 高野 養彦 ^{1,2} ○(M1) 高本 龍世 ^{1,3} , 中島 優作 ^{1,3} , 武市 泰男 ^{1,3} , 瀬屋 政志², 牛久 祥孝², 小野 寛太 ^{1,3} ○宮島 拓也 ^{1,2} , 中島 優作 ^{1,2} , 武市 泰男 ^{1,2} , 濱屋 政志³, 牛久 祥孝³, 小野 寛太 ^{1,2}	1. 九大院工, 2. 九大 CMS, 3. 九大 I2CNER, 4. 九大 RIIT 1. NIMS, 2. KEK, 3. 立命館大 1. 国立情報学研究所, 2. ScienciaLAB, 3. 物質材料研究機構 1. トョタ自動車, 2. オムロンサイニックエックス, 3. ランデフト, 4. 阪大工, 5. 東北大情報 1. トョタ自動車 (株) 1. トョタ自動車 (株) 1. NIMS, 2. MatBrain 1. 福岡女子大 1. 東京エレクトロン 1. 名大院工, 2. 名大未来研 1. アイクリスタル, 2. Mipox株式会社 1. 名大院工, 2. 名大未来研 1. NIMS, 2. 筑波大 1. 阪大工, 2. OSX, 3. 阪大 OTRI スピン 1. 大阪大工, 2. 阪大 SRN-OTRI 1. 阪大院工, 2. 阪大 SRN-OTRI, 3. OSX

			$_{ extsf{3}}$ $ extsf{\sum}$ / Code-sharing session		
			<mark>はプログラム冒頭にございます。</mark> ・加速器ビーム分析、7.4 イオンビーム一般のコードシェフ	7 / Code-sharing Session of 2.3 & 7.4	
	Wed.)	13:30 - 18:15	口頭講演 (Oral Presentation) D62 会場(Room D62) Auナノ粒子を内包する SiO ₂ フリースタンディング膜の		1. 滋賀県立大院工, 2. 滋賀県立大工
3:45		18p-D62-2	作製と特性評価 反応性ガス雰囲気下 GCIB 照射によるエッチングのガス 分圧および基板温度依存性	○(M1C)伊藤 汰一¹, 竹内 雅耶¹, 豊田 紀章¹	1. 兵庫県立大学工
4:00	奨	18p-D62-3	中性ガスクラスタービームを用いたCu膜のドライエッチング	\bigcirc (M1) 池田 圭佑 1 , 田中 秀幸 1 , 竹内 雅耶 1 , 豊田 紀 章 1	1. 兵庫県立大工
4:15		18p-D62-4	X-ray PEEM測定用液体セルに向けた GCIB 照射による極 薄 SiNx メンブレンの応力制御	•	1. 兵庫県立大工
4:30		18p-D62-5	自立グラフェン膜への水クラスターイオンビーム照射効 果	\bigcirc (M1C)諸葛 亮佑 1 , 盛谷 浩右 1 , 持地 広造 2 , 乾 徳 夫 1	1. 兵県大工, 2.NPO分析産業人ネット
14:45 15:00	奨	18p-D62-6	CID における有機分子解離メカニズムに関する研究 休憩/Break	○(M1)西坂 光貴¹, 瀬木 利夫¹, 松尾 二郎¹	1. 京大院工
5:15		18p-D62-7	THz加速のための狭線幅差周波光源開発	〇竹家 啓 $^{1.2},$ Yahia Vincent $^{1.2},$ 石月 秀貴 $^{2.1},$ 平等 拓 範 $^{2.1}$	1.分子研, 2.理研
5:30		18p-D62-8	LiF 蒸着フォイルを用いた透過型検出器の検出効率向上	\bigcirc (M1) 仙田 敬 1 , 藤井 睛也 1 , 中溝 珠里 2 , 間嶋 拓也 2 , 安田 啓介 1	
5:45		18p-D62-9	JAEA-AMS-TONOにおける加速器質量分析装置に関する研究開発; 2024年秋	○藤田 奈津子¹,神野 智史¹,南谷 史菜¹,三宅 正恭¹, 松原 章浩²,前田 祐輔¹,木田 福香¹,小川 由美¹,西尾 智博²,大前 昭臣³,宇野 定則³,渡邊 隆広¹,木村 健 二¹,島田 耕史¹	1. 原子力機構, 2. ベスコ, 3. ビームオベレーション
6:00			微量放射性炭素測定のための前処理技術の開発	\bigcirc (P) 南谷 史菜 1 , 藤田 奈津子 1 , 神野 智史 1 , 西尾 智博 2 , 渡邊 隆広 1	
6:15 6:30			都市大タンデムの現状 〜分析用ビームラインの状況〜 東京大学 MALT の現状 ー2024 秋ー	○羽倉尚人¹ ○山形 武靖¹,徳山 裕憲¹,土屋 陽子¹,戸谷 美和子¹, 斉 遠志¹,松崎 浩之¹	1. 都市大 1. 東大MALT
6:45 7:00		18p-D62-13	休憩/Break 36 Clの加速器質量分析における妨害同重体 36 Sのイオン源での抑制	○笹 公和 ^{1,2} , 松村 万寿美 ¹ , 吉田 哲郎 ¹ , 高橋 努 ¹	1. 筑波大応用加速器, 2. 筑波大数物
7:15		18p-D62-14	ハイマツ試料中放射性炭素濃度の年変動に関する研究VI	〇武山 美麗 1,2 , 森谷 透 1,2 , 櫻井 敬久 2 , 宮原 ひろ子 3 , 門叶 冬樹 1,2	1. 山形大AMSセンター, 2. 山形大理, 3. 武蔵美
7:30 7:45		18p-D62-15 18p-D62-16	自然環境におけるヨウ素同位体システムの研究3 Temporal Changes of Iodine-129 in the Canada Basin Over the Past Decade	○松崎 浩之 ¹ , 戸谷 美和子 ¹ , 斉 遠志 ¹ , 山形 武靖 ¹ ○ (P)Yuanzhi Qi ¹ , Takeyasu Yamagata ¹ , Hiroyuki Matsuzaki ¹ , Hisao Nagai ² , Yuichiro Kumamoto ³ , Qiuyu Yang ¹ , Xinru Xu ¹	1. 東大MALT 1.The Univ. of Tokyo, 2.Nihon Univ., 3.JAMSTEC
8:00	奨 E	18p-D62-17	Vertical distributions of ¹²⁹ I and insight of current in the Southern Canada Basin	Qiuyu Tang , Ainru Au ○ (M1)Xinru Xu ¹ , Yuanzhi Qi ¹ , Takeyasu Yamagata ¹ , Hiroyuki Matsuzaki ¹ , Yuichiro Kumamoto ²	1.Univ. of Tokyo, 2.JAMSTEC
			ス・画像工学、4.4 Information Photonics のコードシェア	/ Code-sharing Session of 3.2 & 4.4	
			口頭講演 (Oral Presentation) A37会場 (Room A37) [JSAP-Optica Joint Symposia Invited Talk]	O Yuhong Wan ¹ . Tianlong Man ¹ . Wenxue Zhang ¹ .	1.School of Physics and Optoelectronic Engineering
4:00		16p-A37-2	Incoherent Coded Aperture Correlation Holography Enhanced live cell imaging through polarization digital holographic microscope	Minghua Zhang ¹ , Hongqiang Zhou ¹ (D) Shivam Kumar Chaubey ¹ , Mohit Rathor ¹ , Rupen Tamang ² , Biplob Koch ² , Rakesh Kumar Singh ¹	Beijing University of Technology 1.Dept. of Phy. IIT BHU, 2.Dept of Zoology, BHU
4:15	奨 E	16p-A37-3	Quantitative Zernike Phase-Contrast Microscopy with an Untrained Neural Network	(O)Zinan Zhou ¹ , Keiichiro Toda ¹ , Rikimaru Kurata ² , Kohki Horie ¹ , Ryoichi Horisaki ² , Takuro Ideguchi ¹	1.UTokyo (Science), 2.UTokyo (IST)
4:30	奨 E	16p-A37-4	Generation of structured light beams on HOPS and HyPS using multiplexed holograms	○ (D)SUMIT KUMAR SINGH¹, Kenji Kinashi¹, Naoto Tsutsumi¹, Wataru Sakai¹, Boaz Jessie Jackin¹	1.Kyoto Inst. of Tech.
4:45	招E	16p-A37-5	[JSAP-Optica Joint Symposia Invited Talk] Ultra-wide field-of-view optical focus control with high- speed complex wavefront shaping	O Atsushi Shibukawa ¹	1.Hokkaido Univ.
5:15			休憩/Break		
5:30 5:45		16p-A37-6 16p-A37-7	単一画素計測を用いた波面計測における輝点位置の抽出 1点読み出し時間ドメイン単画素イメージングによるリ	○ (M2) 小林 直弘 1 , 仁田 功 $^{-1}$ ○ 槻 凌多 1 , 深津 晋 1	1. 神戸大院システム情報 1. 東京大院総合文化
6:00	奨	16p-A37-8			1. 富山大医薬理工, 2. 富山大工
6:15	奨	16p-A37-9	- 多芯化の効果 - マルチスポット照明を用いた散乱体深部蛍光イメージン グ	崇史 ² ○(M1)黒田 浩太 ¹ ,小山 卓耶 ² ,大嶋 佑介 ² ,片桐 崇 史 ²	1.富山大理工, 2.富山大工
6:30		16p-A37-10	モーションレスオプティカルスキャニングホログラフィ における多波長イメージングのための照明光変調パター	欠。 ○最田 裕介¹, 西本 篤生¹, 米田 成²³, 野村 孝徳¹	1. 和歌山大システム工, 2. 神戸大院システム情, 3. 神 大 OaSIS
6:45		16p-A37-11	ン設計の検討 チャープパルス位相シフトディジタルホログラフィーに よるビコ秒オーダー間隔の光波面の観測	○福田 涉¹, 唐澤 直樹¹	1. 千歲科技大理工
		9:00 - 11:45 17a-A37-1	口頭講演 (Oral Presentation) A37 会場 (Room A37) [JSAP-Optica Joint Symposia Invited Talk] Deep Neural Network 3D Reconstruction Using One-Shot Color Mapping of Reflectance Direction	○ Hiroshi Ohno¹	1.Toshiba RDC
9:30	Е	17a-A37-2	Fields Corneal quality assessment for corneal transplantation using hyperspectral imaging	○ (D)Maria Merin Antony¹, Murukeshan Vadakke Matham¹	1.Nanyang Techn. Univ.
:45	Е	17a-A37-3	taking hyperspectral magning Enhancing the Accuracy of Identification in Complex Environmental Backgrounds using YOLO V7 and U2NET: Orchid Repotting	$\bigcirc (M2) HUNG WEI HSU^1, Chih\text{-}Chung Wang^1,$	1.National Taiwan University
0:00	招E	17a-A37-4	USAP-Optica Joint Symposia Invited Talk] Compact super multi-view and foveated holographic near eye display for augmented reality and virtual reality applications	○ Jae-Hyeung Park ¹ , Myeong-Ho Choi ^{2, 1} , Woongseob Han ^{2, 1} , Minseong Kim ^{2, 1}	1.Seoul National Univ., 2.Inha Univ.
			休憩/Break		

11:00	17a-A37-6	ダブルバルス励起空中ボクセルの評価と体積映像描画へ の適用	○熊谷 幸汰¹, 遠藤 統伍¹, 早崎 芳夫¹	1.宇都宮大オプティクス
11:15	17a-A37-7	計算機ホログラムを用いた体積的ビーム成形	○(D) 黒尾 奈未¹, 早崎 芳夫¹	1.宇大オプティクス
11:30	17a-A37-8	複数のライン集光ビームを回折する体積ホログラフィッ	○(M2) 玉井 裕基¹, 茨田 大輔²	1. 宇都宮大学光工学, 2. 宇都宮大学 CORE
		ク光学素子の作製		
		口頭講演 (Oral Presentation) A37会場 (Room A37)	O A 300 400 to 1 1211 00 to 12	a da Libba o da Lidaye
13:30 13:45	奨 17p-A37-1 奨 17p-A37-2	機械学習を用いた位相 4 値多重記録画像の位相検出 ハルトマンマスクを用いた位相信号検出精度の評価	○會澤 颯泰 ¹ , 藤村 隆史 ^{1,2} ○大塚 颯斗 ¹ , 藤村 隆史 ^{1,2}	1. 宇大院, 2. 東大生研 1. 宇大院, 2. 東大生研
14:00	グ 17p-A37-2 17p-A37-3	バイアス位相を用いた並列演算空間フォトニックイジン		1. 灰大院情
4:15	17p-A37-4	グマシンの検証実験 BiBO結晶を用いた高輝度量子イメージングのための並 列強度相関測定の検討	○吉村 佳奈子¹, 米田 成¹.², 的場 修¹.²	1. 神戸大院シス情報, 2. 神戸大 OaSIS
4:30	奨 17p-A37-5	LiDAR を用いたグラデーションパターンの位置と姿勢の 検出	○(M2)蓮井 翔太 ^{1,2} , 茨田 大輔 ^{1,2}	1. 宇大光工学, 2. 宇大 CORE
4:45	17p-A37-6	(RIII) 衛星画像と地上雲カメラ画像の連携解析による雲量予測	○穴田 貴康¹ 遠藤 貴雄¹ 土川 拓朗¹	1. 三菱電機(株)
		材料、3.13 光制御デバイス・光ファイバーのコードシェア		X-2-10(1)
9/20(F	Fri.) 9:00 - 10:30	口頭講演 (Oral Presentation) A37会場 (Room A37)		
9:00	20a-A37-1	CsLiB ^o O ¹⁰ を用いた深紫外光波長変換における出力変化 の調査(Ⅱ)	○島田 恭丞¹, 原 拓海¹, 山本 果穂², 村井 良多³, 南部 誠明², 高橋 義典³, 岡田 穣治⁴, 宇佐美 茂佳¹, 今西 正 幸¹, 丸山 美帆子¹, 森 勇介¹.³, 吉村 政志².³	1. 阪大院工, 2. 阪大レーザー研, 3. 創晶超光, 4. スペクトロニクス
9:15	20a-A37-2	CsLiB ₆ O ₁₀ 結晶の深紫外光誘起吸収欠陥の調査	○大浦 龍之介 1 , 山本 \mathbb{R}^2 , 南部 誠明 1 , 村井 良多 3 , 五十嵐 裕紀 4 , 中嶋 誠 1 , 森 勇介 $^{2.3}$, 吉村 政志 $^{1.3}$	1. 阪大レーザー研, 2. 阪大院工, 3. 創晶超光, 4. ギガフォトン
9:30	20a-A37-3	薄膜ニオブ酸リチウムナノ構造の製作(II)	○羽中田 祥司¹, 吉田 凌一¹, 馬場 俊彦¹	1. 横国大院工
9:45	20a-A37-4	TFLN 導波路用グレーティングカプラの構造最適化(II)	○北原 凌成¹, 田原 直樹¹, 馬場 俊彦¹	1.横国大院工
0:00	20a-A37-5	超低損失気体素子キャビティダンプによるパルスレー ザーの高出力化	○米田 仁紀¹, 道根 百合奈¹	1.電通大レーザー
0:15	20a-A37-6	オゾン気体空間位相変調器の開発	○道根 百合奈¹, 米田 仁紀¹	1. 電通大レーザー研
		構造・現象、3.11 ナノ領域光科学・近接場光学のコードシ	ェア / Code-sharing Session of 3.10 & 3.11	
9/19(TI 9:00	hu.) 9:00 - 12:00 奨 19a-A33-1	口頭講演 (Oral Presentation) A33会場 (Room A33) シリコンピラミッドを用いた熱放射取出しによる熱輻射	○(M2)細川 竜冴 ^{1,2} , 嶌田 悦子 ¹ , 石井 智 ^{1,2}	1. 物材機構, 2. 筑波大
9:15	19a-A33-2	増強 プラズモニック共振器からの角度選択性熱放射	○清水 信¹, Benlyas Rihab¹, Liu Zhen¹, 湯上 浩雄¹	1.東北大院工
9:30	授 19a-A33-3	シリコンメタサーフェスのFabry-Pérot BICを利用した近赤外狭帯域光電流増強		1.神戸大院工
9:45	19a-A33-4	カゴメ格子らせん積層型高次ワイルフォノニック結晶の設計	○秦 佑介¹, 鶴田 健二¹	1. 岡山大院自然
10:00	19a-A33-5	金属ナノ構造装荷による軌道角運動量光導波路の形成	○来馬 龍治 ^{1,3} , 滝口 雅人 ^{2,3} , Haidt Peter ³ , 森竹 勇 斗 ¹ , 納富 雅也 ^{1,2,3}	1. 東工大理, 2.NTT NPC, 3.NTT 物性基礎研
0:15	19a-A33-6	休憩/Break イットリウム鉄ガーネットを母材としたH1型フォト		1. 慶應理工, 2. 東大先端研
0:45	19a-A33-7	ニック結晶ナノ共振器の作製 イットリウム鉄ガーネットに基づく磁気光学マイクロ ディスク共振器の作製と評価	敏 $^{\circ}$,太田泰友 1 〇(M1)山家健 † ,北井達也 † ,谷口公太 † ,高思源 † , 今村陸 † ,熊崎基 † ,藤井瞬 † ,田邊孝純 † ,岩本敏 $^{\circ}$,太	
1:00	E 19a-A33-8	Optical Rectenna Based on a Hollow Resonator for		1.Tohoku Univ.
11:15	19a-A33-9	Mid-Infrared Energy Harvesting 光ヘテロダイン光熱変位法によるマイクロビラーとホールの熱物性評価	Yugami¹ ○岩切 孝洋¹, 原田 知季¹, 石井 智², 碇 哲雄¹, 福山 敦 彦¹	1. 宮崎大工, 2. 物材機構
1:30	19a-A33-10 19a-A33-11	銀ナノ粒子電極を装着した熱電変換素子の特性評価 磁気光学薄膜上におけるBIC モードスローライト導波路	○(M2)爲廣 英純¹,久保 若奈¹	1.東京農工大学
1:45		の検討II 構造・現象、3.12 半導体光デバイスのコードシェア / Code	泰友1	1. 废贮柱上,4. 宋上八,3. 宋八儿•••••
		口頭講演 (Oral Presentation) A34会場 (Room A34)	Sharing 3-5351011 01 3.10 & 3.12	
9:30	18a-A34-1	凸型端面構造を有する円形欠陥2次元フォトニック結晶	○左 如氷¹, 足立 雄紀¹, 工藤 悠人¹, 葉 漢嶠¹, 八木 哲	1. 阪大院工
9:45	18a-A34-2	レーザの作製と室温連続発振 フォトニック結晶レーザーの光注入同期動作の実証	哉¹,森藤正人¹,梶井博武¹,丸田章博¹,近藤正彦¹ ○井上卓也¹,森田遼平¹.²,吉田昌宏¹,石崎賢司¹,	1. 京大院工, 2. 東北大院工
0:00	18a-A34-3	InP系フォトニック結晶レーザーの光出力のスケーラビ	De Zoysa Menaka ¹ , 野田 進 ¹ ○伊藤 友樹 ^{1,2} , 青木 健志 ^{1,2} , 藤井 康祐 ^{1,2} , 田中 礼 ¹ ,	1. 住友電工, 2. 京大工
		リティの検討	小笠原 誠¹, 澤田 祐甫¹, 町長 賢一¹, 木村 峻¹, 吉永 弘 幸¹², 藤原 直樹¹², 八木 英樹¹, 柳沢 昌輝¹, 吉田 昌 宏², 井上 卓也², メーナカ デゾイサ², 石崎 賢司², 野 田 進²	
0:15	E 18a-A34-4	First emission of active nano-pixel waveguide using InGaAsP-MQW membrane	○ (M2)ZHESHENG LEI¹, Islam Mohammad Shafiqul¹, Haisong Jing¹, Ryota kuwahata¹, Eisaku Kato², Kiichi Hamamoto¹	1.I-Eggs, Kyushu Univ., 2.The Univ. of Tokyo.
10:30 10:45	18a-A34-5	休憩/Break 親水性直接貼付InP/Si基板上GaInAsP SCH-MQWレー	○(DC)趙亮¹, 矢田涼介¹, ZHANG JUNYU¹, 下村和京¹	1.上智大学
11:00	18a-A34-6	ザの発振特性 異種材料集積波長可変レーザのしきい値電流における 1.55μm帯QD-RSOAの素子長依存性の検討	和彦 1 〇 $(M2)$ 松木 太翼 1 , 松本 敦 2 , 中島 慎也 2 , 梅沢 俊匡 2 , Cheng Chih-Hsien 2 , 赤羽 浩 $^{-2}$, 山本 直克 2 , 川西 哲	1.早大理工, 2.情通機構
1:15				1.NTT NPC, 2.NTT 物性研, 3.NTT 先デ研, 4.東工大
	18a-A34-7		彦 ^{1,2} , 松尾 慎治 ^{1,3} , 納富 雅也 ^{1,2,4}	理
	18a-A34-7 18a-A34-8	振器のレーザ発振 分割領域フォトニック結晶レーザーの周波数変調度増大	○森田 遼平 ^{1,2} , 井上 卓也 ¹ , 仲野 秀栄 ¹ , De Zoysa	1.京大院工, 2.東北大工, 3.KDDI総合研究所, 4.早大理工
1:30		分割領域フォトニック結晶レーザーの周波数変調度増大 の検討 大域的バンド端周波数分布と分割電極導入による短バル ス・高出力フォトニック結晶レーザーの高速変調動作の	○森田 遼平 ^{1,2} , 井上 卓也 ¹ , 仲野 秀栄 ¹ , De Zoysa Menaka ¹ , 石崎 賢司 ¹ , 石村 昇太 ³ , 高橋 英憲 ³ , 釣谷 剛宏 ³ , 鈴木 正敏 ⁴ , 野田 進 ¹	1.京大院工, 2.東北大工, 3.KDDI総合研究所, 4.早大理工 1.京大院工, 2.東北大院工
1:30	18a-A34-8 18a-A34-9	分割領域フォトニック結晶レーザーの周波数変調度増大 の検討 大域的バンド端周波数分布と分割電極導入による短バル ス・高出力フォトニック結晶レーザーの高速変調動作の 提案	○森田 遼平 ^{1,2} , 井上 卓也 ¹ , 仲野 秀栄 ¹ , De Zoysa Menaka ¹ , 石崎 賢司 ¹ , 石村 昇太 ³ , 高橋 英憲 ³ , 釣谷 剛宏 ³ , 鈴木 正敏 ⁴ , 野田 進 ¹ ○ (M1) 柴田 悠樹 ¹ , 井上 卓也 ¹ , 森田 遼平 ^{1,2} , 野田 進 ¹	I
1:30 1:45 [CS.6] 4	18a-A34-8 18a-A34-9 .5 Nanocarbon an	分割領域フォトニック結晶レーザーの周波数変調度増大 の検討 大域的バンド端周波数分布と分割電極導入による短バル ス・高出力フォトニック結晶レーザーの高速変調動作の	○森田 遼平 ^{1,2} , 井上 卓也 ¹ , 仲野 秀栄 ¹ , De Zoysa Menaka ¹ , 石崎 賢司 ¹ , 石村 昇太 ³ , 高橋 英憲 ³ , 釣谷 剛宏 ³ , 鈴木 正敏 ⁴ , 野田 進 ¹ ○ (M1) 柴田 悠樹 ¹ , 井上 卓也 ¹ , 森田 遼平 ^{1,2} , 野田 進 ¹	I
1:30 1:45 [CS.6] 4 9/18(We	18a-A34-8 18a-A34-9 .5 Nanocarbon an	分割領域フォトニック結晶レーザーの周波数変調度増大の検討 大域的バンド端周波数分布と分割電極導入による短バルス・高出力フォトニック結晶レーザーの高速変調動作の 提案 d 2D Materials、17 ナノカーボン・二次元材料のコードシ	○森田 遼平 ^{1,2} , 井上 卓也 ¹ , 仲野 秀栄 ¹ , De Zoysa Menaka ¹ , 石崎 賢司 ¹ , 石村 昇太 ³ , 高橋 英憲 ³ , 釣谷 剛宏 ³ , 鈴木 正敏 ⁴ , 野田 進 ¹ ○ (M1) 柴田 悠樹 ¹ , 井上 卓也 ¹ , 森田 遼平 ^{1,2} , 野田 進 ¹ ェア / Code-sharing Session of 4.5 & 17	I
1:30 1:45 CS.6] 4 9/18(We 0:00	18a-A34-8 18a-A34-9 .5 Nanocarbon an ed.) 10:00 - 12:00 E 18a-A35-1	分割領域フォトニック結晶レーザーの周波数変調度増大の検討 大域的バンド端周波数分布と分割電極導入による短バルス・高出力フォトニック結晶レーザーの高速変調動作の提案 は 2D Materials、17 ナノカーボン・二次元材料のコードシロ頭講演 (Oral Presentation) A35 会場(Room A35) Self-assembly of dopant molecules on MoS ₂ monolayer for degeneracy/heavily doping	○森田 遼平 ^{1,2} , 井上 卓也 ¹ , 仲野 秀栄 ¹ , De Zoysa Menaka ¹ , 石崎 賢司 ¹ , 石村 昇太 ³ , 高橋 英憲 ³ , 釣谷 剛宏 ³ , 鈴木 正敏 ⁴ , 野田 進 ¹ ○ (M1) 柴田 悠樹 ¹ , 井上 卓也 ¹ , 森田 遼平 ^{1,2} , 野田 進 ¹ ェア / Code-sharing Session of 4.5 & 17 ○ (PC)Puneet Jain ¹ , Shotaro Yotsuya ¹ , Kosuke Nagashio ¹ , Daisuke Kiriya ¹	工 1. 京大院工, 2. 東北大院工 1. The Univ. of Tokyo
11:30 11:45 [CS.6] 4	18a-A34-8 18a-A34-9 .5 Nanocarbon an	分割領域フォトニック結晶レーザーの周波数変調度増大の検討 大域的バンド端周波数分布と分割電極導入による短バルス・高出力フォトニック結晶レーザーの高速変調動作の提案 d 2D Materials、17 ナノカーボン・二次元材料のコードシロ頭講演 (Oral Presentation) A35 会場(Room A35) Self-assembly of dopant molecules on MoS ₂ monolayer for	○森田 遼平 ^{1,2} , 井上 卓也 ¹ , 仲野 秀栄 ¹ , De Zoysa Menaka ¹ , 石崎 賢司 ¹ , 石村 昇太 ³ , 高橋 英憲 ³ , 釣谷 剛宏 ³ , 鈴木 正敏 ⁴ , 野田 進 ¹ ○ (M1) 柴田 悠樹 ¹ , 井上 卓也 ¹ , 森田 遼平 ^{1,2} , 野田 進 ¹ ェア / Code-sharing Session of 4.5 & 17 ○ (PC)Puneet Jain ¹ , Shotaro Yotsuya ¹ , Kosuke	工 1. 京大院工, 2. 東北大院工

10:45	E 18a-A35-4	Fabrication and Characterization of Germanium Monosulfide Field-Effect Transistors	○ Qinqiang Zhang¹, Ryo Matsumura¹, Kazuhito Tsukagoshi¹, Naoki Fukata¹	1.MANA-NIMS
11:00 11:15	E 18a-A35-5	休憩/Break Energetics and electronic structures of Nb-doped WSSe	○YANLIN GAO¹, SUSUMU OKADA¹	1.University of Tsukuba
11:30	E 18a-A35-6	Engineering MoSe ₂ Defects via SHI Irradiation for	○ (DC)Aditya Kushwaha¹, Shalini Vardhan¹, Neeraj	Netaji Subhas University of Technology, Dwarka, Sector - 3, Delhi - 110078, India
11:45	E 18a-A35-7	Improved NH ₃ Gas Sensing: A DFT Study Pt Nanocluster Decoration on WSe ₂ for Enhanced NO ₂ Sensing: A DFT Investigation	Goel¹ Neetu Raj Bharti¹, ○ (DC)Aditya Kushwaha¹, Neeraj Goel¹	·
[CS.7]	6.1 強誘電体薄膜、	3.3 絶縁膜技術、13.5 デバイス/配線/集積化技術のコー		
	Ved.) 13:00 - 16:15	口頭講演 (Oral Presentation) B3会場 (Room B3)		
13:00	18p-B3-1	強誘電体ゲート FET を用いた物理リザバー計算における 分極状態と学習性能の関係	○請関優¹, 山田 洋人¹, 藤村 紀文¹, 横松 得滋², 前中 一介², Kasidit Toprasertpong³, 高木 信一³, 吉村 武¹	1. 阪公大工, 2. 兵庫県大工, 3. 東大工
13:15	E 18p-B3-2	Imprint Behavior of Ferroelectric Hf _{0.5} Zr _{0.5} O ₂ Thin Film: Impact of Wake-up	○ (D)Zhenhong Liu¹, Zuocheng Cai¹, Mitsuru Takenaka¹, Shinichi Takagi¹, Kasidit Toprasertpong¹	1.Univ. Tokyo
13:30	18p-B3-3	HZO強誘電体キャパシタにおける wake-up 特性の周波	○伊藤 広恭 1 , 田原 建人 1 , 川野 真琴 1 , 竹中 充 1 , 高木信 $^{-1}$, トープラサートポン カシディット 1	1. 東大院工
13:45	18p-B3-4	数・温度依存性と物理機構の考察 $Hf_{0.5}Zr_{0.5}O_2MFM$ キャパシタに対する最初の電界印加時	□ , トーノノッートホンカンケィット○森田 行則¹, 浅沼 周太郎¹, 太田 裕之¹, 右田 真司¹	1.産総研
14:00	18p-B3-5	における欠陥生成と強誘電性の相関 強誘電性HfO ₂ キャパシタにおける極薄膜下での強誘電	○鳥海 明¹, 右田 真司²	1.自由業, 2.産総研
14:15	18p-B3-6	性の消失 強誘電性HfO2の分極反転時間からみた分極反転機構の	○鳥海 明¹, 右田 真司²	1.自由業, 2.産総研
1400		考察		
14:30 14:45	奨 18p-B3-7	休憩/Break AIN微粒子を均一に添加した多層 $\mathrm{Hf_{0.5}Zr_{0.5}O_{2}}$ 薄膜の強誘	○高野 貴裕¹, 山口 直¹, 大森 和幸¹, 村中 誠志¹	1.ルネサスエレクトロニクス株式会社
15:00	奨 E 18p-B3-8	電体特性の評価 Electro-optic properties of $Hf_{0.5}Zr_{0.5}O_2$ thin films on (La,	○ (D)Afeefa Dastgir¹, Yuan Xueyou¹, Yufan Shen²,	1.Nagoya Univ., 2.Kyoto Univ., 3.Tokyo Tech, MDX
		Sr)MnO ₃ /SrTiO ₃ (100)	Daisuke Kan², Yuichi Shimakawa², Tomoaki Yamada ^{1,3}	
15:15	奨 18p-B3-9	CeO_2 - HfO_2 - ZrO_2 薄膜の格子間隔と強誘電性の評価	○下野園 航平 ¹ ,前川 芳輝 ¹ ,茶谷 那知 ¹ ,岡本 一輝 ¹ , 山岡 和希子 ² ,川島 康 ² ,井上 ゆか梨 ² ,舟窪 浩 ¹	1. 東工大, 2.TDK株式会社
15:30	奨 18p-B3-10	フラッシュランプアニールによるAl:HfO ₂ 薄膜の結晶化		1.兵庫県大工, 2.SCREEN セミコンダクターソリューションズ
15:45	18p-B3-11	機械学習ポテンシャルを用いたHfO2結晶のモデリング の検討	○ (D) 糸矢 祐喜¹, 小林 正治¹²	1. 東大生研, 2. 東大 d.lab
16:00	18p-B3-12	アモルファス HfO_2 における酸素の拡散	○(M2) 本図 優奈¹, 仲村 龍介¹, 鈴木 健之²	1. 滋賀県大工, 2. 阪大産研
		、KS.1 固体量子センサ研究会のコードシェア / Code-sha	ring Session of 6.2 & KS.1	
9:00	(Fri.) 9:00 - 12:00 招 20a-A41-1	口頭講演 (Oral Presentation) A41 会場 (Room A41) 「分科内招待講演」	〇五十嵐 龍治 ^{1, 2, 3, 4}	1.QST量子生命, 2.東工大生命理工, 3.千葉大院融合理
0.00)H 200 ///12 1	ナノダイヤモンド量子センサの材料設計・制御と生命計測への応用	O 11 1 1500 110114	工, 4. 東北大院医
9:30	20a-A41-2	生体量子センサ用ナノダイヤモンドへの電子線照射NV センター形成2	○阿部 浩之 1,2 , 神長 輝 $^{-2}$, 五十嵐 龍治 2 , 大島 武 1	1.QST量子機能創製研究センター, 2.QST量子生命科学 研究所
9:45	奨 20a-A41-3	ナノダイヤモンド中のNV中心を用いた高感度磁気セン シング	○神山 直也¹, 藤原 正規¹, 森岡 直也¹.², 西川 哲理¹, 鈴木 智達³, 神長 輝一³, 五十嵐 龍治³, 水落 憲和¹.²	1. 京大化研 , 2. 京大スピンセンター, 3. 量研
10:00	奨 20a-A41-4	3次元マイクロ波共振器を用いたナノダイヤモンド温度 計測とその応用	○中島 大夢¹, 押味 佳裕¹, 藤原 正澄¹	1. 岡大環自
10:15 10:30	奨 20a-A41-5	休憩/Break 水素終端ダイヤモンド表面下で生じるバンドベンディン		1. 物材機構, 2. 産総研, 3. 量研, 4. 群馬大, 5. 筑波大
10:45	20a-A41-6	グのNV センターを利用した律速要因解析 アンサンブルNVによる低周波交流磁界計測	小野田 \mathbb{Z}^3 , 山口 尚秀 $^{1.5}$ 〇済藤 紘矢 1 , 林 司 1 , 近藤 \mathcal{G}^1 , 出口 洋成 1 , 西林 良	1 位方雷气工業(株) 2 克士化研 3 東北士
10.10	204 1111 0	7 V 7 V 7 M TO G S S SAME A TURNS A STEEL TO S	樹 ¹ , 小林 豊 ¹ , 藤原 正規 ² , 森下 弘樹 ³ , 水落 憲和 ² , 辰 巳夏生 ¹	I. E.A. E.A. C. M. J. B. A. A. L. M. J. C. A. L.
11:00	20a-A41-7	ダイヤモンド量子センサによる交流磁場位相の連続的変 化イメージング		1. 慶大理工, 2. 慶大 CSRN, 3. 中大理工, 4. 金大ナノマリ
11:15	奨 20a-A41-8	脳磁計測に向けたフラックスコンセントレーターによる	2 4 7 1 102 11 4 4	1.東工大
11:30	20a-A41-9	ダイヤモンド量子センサの高感度化 脳機能磁場測定用ダイアモンドマイクロ NV センターア		1.理化学研究所 光量子, 2. 筑波大学
11:45	20a-A41-10	レー素子の開発 ダイヤモンド量子センサによるミリメートル間隔での同	次 ¹ , 和田 智之 ¹ , 青柳 克信 ¹ ○吉村 厚美 ¹ , 金本 あゆみ ¹ , 関口 直太 ¹ , 道榮 力 ² , 宮	1.東工大, 2. 筑波大, 3 NIMS 4 OST
11.10	204 1111 10	時多点磁場測定法の開発	川仁 ³ ,谷口尚 ³ ,寺地德之 ³ ,小野田忍 ⁴ ,大島武 ⁴ ,岩 崎孝之 ¹ ,波多野睦子 ¹	I. A. C. S.
		、7.5 原子・分子線およびビーム関連新技術のコードシェ		
9/16(N 13:00		口頭講演 (Oral Presentation) D63 会場(Room D63) LEED および XPS による Au(111) 基板上の Fe ₃ O ₄ (111)	○石原 江瑚¹, スバギョ アグス¹. 岩崎 翔大¹ 大久保	1.北大院情
13:15	16p-D63-2	薄膜の評価 InSb(111)A上のスタネン成長に向けたSn蒸着量の影響	世生¹, 城内 英大¹, 八田 英嗣¹, 末岡 和久¹ ○横尾 雄士¹, フロランス アントワーヌ¹, 高村(山	
	·		田)由起子1	
13:30	奨 16p-D63-3	人工光合成触媒Ag/Ga ₂ O ₃ の活性に伴う電子状態と反応機構	○(M1)琴川 雄史¹,小川 智史¹,保井 晃³,池永 英司¹.²	1.名大院工, 2.名大IMaSS, 3.JASRI
13:45 14:00	16p-D63-4 16p-D63-5	基板面方位制御によるZnO薄膜の熱電特性操作 Si基板上B20-CoSi薄膜のエピタキシャル成長法の開発	○石部 貴史 1.2, 佐藤 和則 3, 山下 雄一郎 4, 中村 芳	1. 阪大院基礎工, 2. 滋賀医科大 1. 阪大院基礎工, 2. 阪大 OTRI, 3. 阪大院工, 4. 産総研
		休憩/Break	明1.2	
14:15		4D-XPS スペクトルビッグデータの Noise2Noise デノイ		1.シエンタオミクロン, 2.SP8サービス, 3.マツダ, 4.原
14:15 14:30	16p-D63-6	ジングによる多層積層薄膜構造パラメータの高精度抽出		于刀機愽, 5. 兵庫県大, 6. 明冶大, 7.MKEL
	16p-D63-6		志 6,7 , 町田 雅武 1 〇住友 弘二 1 , 吉水 寛人 1 , 大嶋 梓 2 , 山口 真澄 2 , 部家	
14:30 14:45	16p-D63-7	ジングによる多層積層薄膜構造バラメータの高精度抽出 脂質二分子膜と支持基板との間の相互作用	志 6 7, 町田 雅武 1 ○ 住友 弘二 1 ,吉水 寛人 1 ,大嶋 梓 2 ,山口 真澄 2 ,部家 彰 1	1.兵庫県立大工, 2.NTT 物性基礎研・BMC
14:30	16p-D63-7 16p-D63-8 16p-D63-9	ジングによる多層積層薄膜構造バラメータの高精度抽出 脂質二分子膜と支持基板との間の相互作用 ポリグリセリンアクリル膜と原子状水素との表面反応 ナノ構造中電子の量子振動の局在プラズモンへの効果 II	志 6 7, 町田 雅武 1 ○ 住友 弘 $^-$ 1, 吉水 寛人 1 大嶋 梓 2 , 山口 真澄 2 , 部家 彰 1 ○ 部家 彰 1 藤野 雄飛 1 , 住友 弘 $^ ^1$ ○ 市川 昌和 1	1. 兵庫県立大工, 2.NTT 物性基礎研・BMC 1. 兵庫県立大工 1. 東大院工
14:30 14:45 15:00	16p-D63-7 16p-D63-8 16p-D63-9	ジングによる多層積層薄膜構造バラメータの高精度抽出 脂質二分子膜と支持基板との間の相互作用 ポリグリセリンアクリル膜と原子状水素との表面反応 ナノ構造中電子の量子振動の局在ブラズモンへの効果 II 窒化物半導体表面におけるエレクトロンカウンティング 則の検証:ステップおよびキンクを含む表面での検討	志 6 7, 町田 雅武 1 ○ 住友 弘 $^-$ 1, 吉水 寛人 1 大嶋 梓 2 , 山口 真澄 2 , 部家 彰 1 ○ 部家 彰 1 藤野 雄飛 1 , 住友 弘 $^ ^1$ ○ 市川 昌和 1	1. 兵庫県立大工, 2.NTT 物性基礎研・BMC 1. 兵庫県立大工
14:30 14:45 15:00 15:15	16p-D63-7 16p-D63-8 16p-D63-9 16p-D63-10	ジングによる多層積層薄膜構造バラメータの高精度抽出 脂質二分子膜と支持基板との間の相互作用 ポリグリセリンアクリル膜と原子状水素との表面反応 ナノ構造中電子の量子振動の局在プラズモンへの効果 II 窒化物半導体表面におけるエレクトロンカウンティング	志 6 7, 町田 雅武 1 ○ 住友 弘 $^-$ 1, 吉水 寛人 1 大嶋 梓 2 , 山口 真澄 2 , 部家 彰 1 ○ 部家 彰 1 藤野 雄飛 1 , 住友 弘 $^ ^1$ ○ 市川 昌和 1	1. 兵庫県立大工, 2.NTT 物性基礎研・BMC 1. 兵庫県立大工 1. 東大院工

16:30	16p-D63-13	0.2%Be-Cu材料を用いた超高真空容器による積層膜作製 と溶接加工	〇中村 孝夫 1 , 佐々木 優直 2 , 岡橋 和成 2 , 岸川 信介 2 , 黒岩 雅英 2 , 大兼 幹彦 3	1. 三重大学, 2. 東京電子株式会社, 3. 東北大学
16:45		β -FeSi $_2$ コア/Siシェル量子ドットの形成と室温PL特性	○牧原 克典¹, 斎藤 陽斗¹	1.名大院工
17:00	*	二酸化チタンの表面酸素欠損の配列解析	坪倉奏太 ^{1,2} ,河野翔也 ³ ,野間春生 ² ,日置尋久 ¹ ,○ 湊丈俊 ⁴	
17:15	•	超音速NO分子線で照射されたNOのアナターゼ型 TiO ₂ (001)表面における反応	○勝部 大樹¹, 金 庚民², 大野 真也³, 津田 泰孝⁴, 稲見 栄一⁵, 吉越 章隆⁴, 阿部 真之²	3. 横浜国大院工, 4. 原子力機構, 5. 高知工大
17:30		クス: p-Si(001) と n-Si(001) 表面の比較		1.原子力機構, 2.日本大学, 3.東北大学
		竟、12.2 評価・基礎物性のコードシェア / Code-sharing So 口頭講演 (Oral Presentation) B4 会場(Room B4)	ession of 6.6 & 12.2	
13:00 ‡	沼 E 17p-B4-1	[The 56th Young Scientist Presentation Award Speech] High-Spatial-Resolution Mass Spectrometry Imaging of Mouse Retina by Improved Tapping-mode Scanning		1.Graduate school of science, Osaka Univ, 2.National Center for Global Health and Medicine
13:15	招 17p-B4-2	Probe Electrospray Ionization 「第56回請演奨励賞受賞記念請演」 ガラス絶縁電析Au探針による電気化学走査トンネル顕微 鏡計測と探針増強ラマン分光への応用		1.理研, 2.JST さきがけ, 3.名大工, 4.金大ナノ生命科学研, 5.東大新領域, 6.東大工
13:30	奨 17p-B4-3	3D-SFMとMDシミュレーションによるアニオン界面活 性剤結晶/水界面構造の分子スケール解析	○張 皓輝 ¹ , 熊谷 陽一 ¹ , 橋本 遼太 ^{1,2} , 宮田 一輝 ¹ , 森 垣 篤典 ² , Ygor Morais Jaques ³ , Adam S. Foster ³ , 柿澤 恭史 ² , 福間 剛士 ¹	1.金沢大, 2. ライオン (株), 3.Aalto 大
13:45	奨 17p-B4-4	加熱銅製ノズルを通して蒸着したAu(111)基板上のヘキ サブロモトリフェニレン分子のSTM観察		1.広島大先進理工, 2. 情通研機構
14:00	奨 17p-B4-5	DPh-BTBT の 1 次元構造における HOMO と HOMO-1 の軌道混成		1. 筑波大, 2. 京大, 3. 和歌山大
14:15 4	延E 17p-B4-6	Negative Differential Resistance in Single-Molecule Junctions Based on Heteroepitaxial Spherical Au/Pt	○ (D)Dongbao Yin¹, Miku Furushima², Haru Tanaka¹, Seiichiro Izawa¹, Tomoya Ono², Ryo	1.Tokyo Tech, 2.Kobe Univ., 3.Osaka Univ.
14:30	17p-B4-7	Nanogap Electrodes 原子層磁石観察に向けた qPlus AFM/MFM開発 (1)	Shintani³, Yutaka Majima¹	1. 千葉大院工, 2. カールスルーエ工科大, 3. 高知工大, 4. 京大院工, 5. 千葉大分子キラ研
14:45 15:00	17p-B4-8	休憩/Break STM誘起発光を用いたキラルPTCDI分子の光学活性評	○(M2)春名 泰成¹, 服部 卓磨¹, 松羅 翔大², 齋藤 彰¹,	1.阪大院工、2.和歌山大システム工
15:15	17p-B4-9	価 二次元ハニカム格子磁石の表面合成	大須賀 秀次², 桑原 裕司¹	1. 千葉大院工
15:30	17p-B4-10	液中AFMによる半導体ウェーハ絶縁膜表面の吸着力計測	〇岡 大輝 1 , 浅野 吉彦 1 , 五十嵐 陽彦 1 , 松元 亨介 1 , 宮田 一輝 1 , 宇野 恵 2 , 高東 智佳子 2 , 福間 剛士 1	1. 金沢大, 2. 荏原製作所
15:45	17p-B4-11	全固体電池における活物質間接触と電池容量に関する3 次元シミュレーション解析		1.産総研
16:00	17p-B4-12	基準電位制御法を導入した時間分解静電引力顕微鏡による太陽電池材料評価	○竹本 開太¹, 佐藤 捷¹, 石橋 亮太¹, 高橋 琢二¹.²	1.東大生研, 2.東大ナノ量子機構
16:15	17p-B4-13	ヘテロダインポンププローブケルビンプローブフォース 顕微鏡による有機薄膜トランジスタのキャリアダイナミ クス評価	○有長 一輝¹, 小林 圭¹	1. 京大工
16:30	E 17p-B4-14	PEDOT-PSS network layers for neuromorphic physical computing	○ meien Sou¹, Yuma Murano¹, Dock-chil Che¹, Syusaku Nagano², Takuya Matsumoto¹	1.Osaka Univ., 2.Rikkyo Univ.
16:45 17:00	E 17p-B4-15	休憩/Break AFM observation of microparticle latex film under tensile strain	○ Fengyueh Chan ¹ , Yuichiro Nishizawa ² , Yuma Sasaki ² , Natsuki Watanabe ¹ , Daisuke Suzuki ² , Takayuki Uchihashi ^{1,3}	1.Nagoya Univ., 2.Okayama Univ., 3.ExCELLS
17:15	17p-B4-16	【注目講演】原子間力顕微鏡による単一椀状分子の機械的 構造反転		1. 東大新領域, 2. 阪大院工
17:30	17p-B4-17	σ - 非局在系を有する分子接合の電荷輸送特性	○藤井 慎太郎¹, 瀬古 紗弥², 田中 泰地², 吉原 勇輝¹, 古川 俊輔², 西野 智昭¹, 斎藤 雅一²	1.東工大, 2.埼玉大
17:45 18:00	17p-B4-18 17p-B4-19	単一分子架橋系の整流特性の第一原理計算による研究 CNT探針を用いた DNA の液中 FM-AFM 計測	\bigcirc 水野 雄介 1 , 宮澤 佳甫 1,2 , 寺前 圭吾 1 , 児島 亮平 1 ,	1. 神戸大工 1. 金大院, 2.WPI-NanoLSI
18:15	17p-B4-20	原子間力顕微鏡を用いたシロイヌナズナ細胞の力学特性 評価	福間 剛士 1,2 ①山神 見友 1 ,山崎 勇輝 1 ,笹井 美佳 2 ,國枝 正 2,3 ,出 村 拓 2,3 ,細川 陽一郎 1,3,4	1. 奈良先端大物質, 2. 奈良先端大バイオ, 3. 奈良先端大 CDG, 4. 奈良先端大MLC
		1 合同セッション M「フォノンエンジニアリング」のコート		Co C, II /II PO (III / CILLO
9/18(W 9:00		口頭講演 (Oral Presentation) C301会場 (Room C301) SiGe 界面と短周期フォノニック結晶ナノ構造による Si薄膜の σ/κ 比の向上	○柳澤 亮人 1 , 小田島 綾華 1,2 , 井上 貴裕 2 , 澤野 憲太郎 1,2 , 野村 政宏 1	1. 東大生研, 2. 東京都市大
9:15	18a-C301-2	Stranski-Krastanov成長を用いて形成したエピタキシャル Si系ナノドット含有Ge薄膜の熱電特性		1. 阪大院基礎工, 2. 阪大 OTRI
9:30	E 18a-C301-3	Investigation of Heat Flux Sensitivity of Silicon-Large Scale Integrated Thermoelectric Device	○ (DC)Md MehdeeHasan Mahfuz¹, Taisei Mito¹, Tatsuya Hayashi¹, Takeo Matsuki¹, Takanobu Watanabe¹	1.Waseda Univ.
9:45	18a-C301-4	プレーナ型集積マイクロ熱電発電デバイス発電性能のSi ナノワイヤ幅依存性		1.早大理工
10:00	奨 18a-C301-5	実用熱電材料 Bi_2 Te_{3x} Se_x のラマン振動モードのエネルギーと半値幅に対する Se 置換の影響	○劉 鋭安¹, 宮田 全展¹, 小矢野 幹夫¹	1.北陸先端大
10:15 10:30	18a-C301-6	休憩/Break	○ (M1) 石原 峻伍¹, 奥村 拓真¹, 平田 圭佑¹, 松波 雅 治¹, 竹內 恒博¹	1.豊田工大
10:45 11:00		多相からなる Ag_sSnP_7 焼結体における複合効果の検討 非化学量論組成制御による $Co添加ハーフ・ホイスラー合$	\bigcirc (DC) 中村 太 $-^1$, 宮田 全展 1 , 小矢野 幹夫 1	1. 北陸先端大
11:15	E 18a-C301-9	金 TiNiSn の熱電性能向上 Investigation of p-type thermoelectric properties for Mn doped β -FeSi ₂	○ (M2)Umar Farooq ¹ , Sopheap Sam ² , Rio Oshita ¹ , Hiroshi Nakatsugawa ¹	1.Yokohama Nat Univ, 2.Nat Inst for Mat Sci
		クノロジー、12.7 医用工学・バイオチップのコードシェア		
9:00		口頭講演 (Oral Presentation) C32会場(Room C32) 「第22回有機分子・バイオエレクトロニクス分科会 奨励 賞受賞記念講演」	〇酒井 洸児 ^{1,2} , 手島 哲彦 ³ , 後藤 東一郎 ^{1,2} , 中島 寛 ^{1,2} , 山口 真澄 ^{1,2}	1.NTT 物性研, 2.NTT BMC, 3.NTT リサーチ
9:30	19a-C32-2	薄膜自己組立てを用いたバイオデバイス技術 多粒子格納型デジタルイムノアッセイ法によるノロウイ ルス検出系開発	○安浦 雅人¹, 芦葉 裕樹¹, 堀口 諭吉¹, 福田 隆史¹	1. 産総研

18:15

18:30

18:45

特性の温度依存性

影響に関する理論検討

16p-A22-22 エピタキシャル ScAlN/AlGaN/GaN ヘテロ構造の作製

	_, _, ,			
9:45	19a-C32-3	COMSOL有限要素解析法を用いた高感度 Si ナノワイヤ バイオセンサの最適な構造の予測	g^2 , 加治佐 \mathbb{P}^3 , 坂田 利弥 4 , 和泉 孝志 5 , 曾根 逸人 1	4. 東京大院工, 5. 帝京平成大
0:00	19a-C32-4	バンコマイシンの高感度なリアルタイム計測のための表面プラズモンハイドロジェルアプタセンサ	○當麻 浩司¹, 田口 結彩², 飯谷 健太², 荒川 貴博³, 三 林 浩二²	1. 芝浦工大工, 2. 東京医科歯科大, 3. 東京工科大
0:15		休憩/Break		
0:30	19a-C32-5	非レクチンのタンパク質検出に向けた糖鎖高分子バイオ センシング	○寺田 侑平¹, 青木 寛¹	1. 産総研・環境創生
0:45	19a-C32-6	ペプチド修飾した半導体カーボンナノチューブ薄膜バイ オセンサの作製と評価	○(M1)永峯 旭 ¹ ,内山 晴貴 ¹ ,片浦 弘道 ² ,本間 千柊 ³ , 早水 裕平 ³ .大野 雄高 ^{1,4}	1.名大工, 2.産総研, 3.東工大, 4.名大未来研
1:00	奨 19a-C32-7	パリティ時間対称性を用いたスマートコンタクトレンズ 用電力伝送システム	○(M2) 林 立喜 ¹ , アズハリ サマン ¹ , 三宅 丈雄 ¹	1.早大IPS
1:15	奨 19a-C32-8	両面ナノチューブ膜を介した細胞間物質輸送システムの 開発	○ (M2) 水口 侑衣子¹, チョウ ボーウェン¹, 小山 和 洋¹, リュウ ビンフー¹, チョウ ロンタウ¹, ウー ジョ ウジー¹, リン シュウシン¹, 三宅 丈雄¹	1.早大IPS
CS.13)	13.7 化合物及び/	ペワーデバイス・プロセス技術・評価、15.4 Ⅲ-V 族窒化物線		k 15.4
9/16(N	lon.) 13:00 - 19:00	口頭講演 (Oral Presentation) A22会場 (Room A22)		
3:00	16p-A22-1		○古内 久大1.2, 本久 順一1.2, 佐藤 威友2	1.北大院情, 2.北大量集セ
3:15	16p-A22-2	N 極性 GaN に及ぼすドライエッチングの台座の影響	○三島 秀治郎¹, 中村 大輝¹, 新海 聡子¹	1. 九工大院
3:30	16p-A22-3	N極性 AIN 上の GaN のコヒーレント成長に向けた MOVPE成長の条件改善	○ (M2) 古橋 樹 ¹ , プリストフセク マーコス ² , 楊 旭 ²	
3:45	奨 16p-A22-4	N極性GaN/AlGaN/AlN高電子移動度トランジスタの リーク電流が絶縁破壊電圧に及ぼす影響	○ (M2)Zazuli Hiyama Aina¹,藤井 開¹,仁ノ木 亮 祐¹,平田 靖晃¹,木本 大星¹,倉井 聡¹,岡田 成仁¹,田 中 敦之²,新田 州吾²,本田 善央²,天野 浩²,山田 陽 一¹	1.山口大創成科学, 2.名古屋大未来研
4:00	奨 16p-A22-5	ウェハ接合と裏面プロセスを用いたn-GaN N極性面上 オーミック電極形成	○ (M1) 藤家 智希 ¹, 梁 剣波 ¹, 末光 哲也 ², 重川 直輝 ¹	1.大阪公大工, 2.東北大
4:15	奨 16p-A22-6	高出力密度を有する N 極性 GaN/InAlN HEMT の開発	○早坂 明泰¹, 吉田 成輝¹, 向井 章¹, 眞壁 勇夫¹, 辻 幸 详¹, 牧山 剛三¹, 中田 健¹	1.住友電工
4:30	奨 16p-A22-7	N/Mg イオン注入法を用いた縦型 GaN ジャンクションバリアショットキーダイオードの作製及び電気特性評価		1.名大院工, 2.名大未来研, 3.名大 D センター, 4.名大 IAR
4:45	招 16p-A22-8	「第56回講演奨励賞受賞記念講演」 Mgイオン注入p-GaNにおける注入領域および拡散領域 のNイオン連続注入による補償ドナー濃度低減効果	〇角田 健輔 1 ,片岡 恵太 2 ,成田 哲生 2 ,堀田 昌宏 $^{1.3}$,加地 徽 $^{1.3}$,須田 淳 $^{1.3}$	1.名大院工, 2.豊田中研, 3.名大未来研
5:00		休憩/Break		
5:15	招 16p-A22-9	「第56回講演奨励賞受賞記念講演」 Mgチャネリングイオン注入および超高圧アニールを用いて作製した縦型GaN JBSダイオードにおける電流・電圧特性の注入量依存性	〇北川 和輝 1 , Maciej Matys 2 , 上杉 勉 2 , 堀田 昌 宏 $^{1.2}$, 加地 徽 2 , 須田 淳 $^{1.2}$	1.名大院工, 2.名大未来研
5:30	16p-A22-10	OVPE法を用いた Mg イオン注入 GaN の大気圧活性化手	○宇佐美 茂佳¹, 伊藤 佑太², 香川 美幸¹, 横井 創吾¹,	1. 阪大院工, 2. 名大院工, 3. 名大未来研, 4. パナソニック
		法の提案		ホールディングス (株),5.住友化学 (株),6.伊藤忠
			野 浩3, 森 勇介1	
5:45	奨 16p-A22-11	p型GaN表面に発生する電荷についての検討	〇焦 一寧 1 ,高橋 尚伸 1 ,島崎 喬大 1 ,佐藤 威友 1 ,赤澤 正道 1	1.北大量集センター
6:00	招 16p-A22-12	「第56回講演奨励賞受賞記念講演」 分布型分極ドービングによる AIN 系縦型 p-n ダイオード の作製	〇隈部 岳瑠 ¹ , 吉川 陽 ^{2,3} , 川崎 晟也 ¹ , 久志本 真希 ¹ , 本田 善央 ^{3,4,5} , 新井 学 ³ , 須田 淳 ^{1,3} , 天野 浩 ^{3,4,5}	1.名大院工, 2.旭化成, 3.名大IMaSS, 4.名大Dセンター, 5.名大IAR
6:15	奨 16p-A22-13	SiドープAlNショットキーバリアダイオードにおける順 方向リーク電流の解析	〇佐々木 一晴 1 ,廣木 正伸 2 ,熊倉 一英 2 ,平間 一行 2 , 谷保 芳孝 2 ,中野 義昭 1 ,前田 拓也 1	1. 東大工, 2.NTT 物性研
6:30	16p-A22-14	AIN MESFET の高温特性評価	○廣木 正伸¹, 平間 一行¹, 熊倉 一英¹, 谷保 芳孝¹	1.NTT物性研
6:45	16p-A22-15	Al-rich AlGaNマルチチャネルFin構造の作製と評価	○小坂鷹生¹,上野耕平¹,藤岡洋¹	1. 東大生研
7:00	奨 16p-A22-16	MOVPE 法で成膜した AIN 基板上の格子整合 AIN/GaN HEMT の動作実証	○李 太起 1 , 吉川 陽 $^{1.3}$, 隈部 岳曜 2 , 杉山 聖 1 , 新井 学 3 , 須田 淳 $^{2.3}$, 天野 浩 $^{2.3}$	1. 旭化成, 2. 名大院工, 3. 名大 IMaSS
7:15		休憩/Break		
7:30	16p-A22-17	高AINモル分率AIGaN/GaNデュアルゲートHEMTの電 気的特性	〇安藤 裕二 1,2 , 高橋 英匡 1 , 牧迫 隆太郎 1 , 分島 彰 男 3 , 須田 淳 1,2	1.名大院工, 2.名大未来研, 3.熊本大
7:45	奨 16p-A22-18	おけるアバランシェ降伏の確認	新田州吾²,本田善央².3.4,天野浩².3.4	等研究院
18:00	16p-A22-19	AlGaN/GaN ヘテロ界面でのキャリア輸送特性と欠陥分布	○角谷 正友¹, 今中 康貴¹, 中野 由崇², 竹端 寛治¹	1.物材機構, 2.中部大

奨 16p-A22-20 AlGaN/GaN二次元電子ガスにおけるドリフト速度 - 電界 〇若本 裕介 1 , 河原 孝彦 2 , 吉田 成輝 3 , 牧山 剛三 2 , 中 1.東大工, 2.住友電気工業株式会社

16p-A22-21 ScAlN混晶の分極反転における Sc組成および格子拘束の ○秋山 亨¹, 宮本 拓翔¹, 河村 貴宏¹ 1.三重大院工

田健2,前田拓也1

〇奥田 朋也 1 , 太田 隼輔 2 , 河原 孝彦 3 , 牧山 剛三 3 ,中 1 . 理科大院先進工 , 2 . 理科大先進工 , 3 . 住友電工 , 4 . 東大 田 健 3 ,前田 拓也 4 ,小林 篤 $^{1.2}$