		テクニカル)/ Symposium (non-technical)		
		トランスフォーメーションに挑む応用物理:持続可能な未	来社会に向けて/How can Applied Physics accelera	te the green transformation for the sustainable future
3/ 15 (W 3:30		口頭講演 (Oral Presentation) A402 会場(Room A402) オープニング	○筑本 知子¹	1.中部大学超伝導センター
3:35	*	応用物理学会会長挨拶	○平本 俊郎¹	1. 東大牛研
3:40		実現すべき豊かな未来一GX、自律分散社会、そして	○	1.新エネルギー・産業技術総合開発機構
		Well-being -		
4:20	招 15p-A402-4	半導体製造グリーン化に向けた学術的課題: 大量電力消費型産業からの脱却へ	○堀 勝¹	1.名大低温プラズマ
1:50	招 15p-A402-5	革新的GXに貢献する超伝導技術:現状と未来	〇筑本 知子 ¹	1.中部大学超伝導センター
5:20 5:35	型 15n-1/102-6	休憩・名刺交換会/Break 主力電源としての太陽光発電技術	○小長井 誠¹	1.都市大総研
3.00)H 100 ///02 0	- カーボンニュートラル社会の実現に向けてどのような 太陽電池が必要となるか?	C-3-3271 WW	1. 日と・レンスのいが1
6:05	招 15p-A402-7	カーボンニュートラル実現に貢献する蓄電池技術	○小林 弘典¹	1.産総研
6:45		休憩・名刺交換会/Break		
7:00	15p-A402-8	パネルディスカッション	○下山 淳一¹, 伊藤 智², 堀 勝³, 筑本 知子⁴, 小長井 誠⁵, 小林 弘典⁶, 秋永 広幸⁶	1. 青学大理工, 2.NEDO, 3. 名古屋大, 4. 中部大, 5. 東都市大, 6. 産総研
7:50	15p-A402-9	クロージング	○下山淳一1	1.青学大理工
		能発掘プロジェクト 一高等専門学校と応用物理学会の絆ー	/ Got Talent in Japan -KOSEN & JSAP-	
3/15(W		口頭講演 (Oral Presentation) A307会場(Room A307)		
3:30		視野を拡げるための学会:応用物理学会	○益一哉¹	1.東工大
4:10 4:40		高専から大学編入そして研究者への道 磁性ガーネットを用いたスピン波ロジックデバイスとス	○吉橋 幸子¹ ○公慈 ナー¹	1.名大工 1.東北大
	f⊟ 15p-A507-3	ピン制御レーザー開発	○按辦《一	1.宋北人
5:10 5:25	招 15n-A307-/	休憩/Break 高温超伝導体の探索と実用化に向けた取り組み	○松本 凌 ¹ , 田中 博美 ³ , 高野 義彦 ^{1,2}	1. 物材機構, 2. 筑波大, 3. 米子高專
5:55		同価旭伝学体の休米と美州化に同りに取り組み 未来の(日本)企業を支えるみなさんへ ~高専、大学、企 業での経験について~		1. 切付機構, C. 巩成人, S. 不丁向等 1. ソニーセミコンダクタソリューションズ
6:25	招 15p-A307-6	業での経験について~ 光応用研究開発チャレンジは、楽しすぎて、とめられない!	〇堀米 秀嘉 1	1.HOLOMEDIA
		・・ 見! 日本が止まると世界が止まる! ~ わたしたちの半導係	本レジェンド技術 ~ / World Stops When Japan Stop	s! ~ Our Legendary Semiconductor Technologies ~
3/17(9:30	Fri.) 9:30 - 12:05 17a-A402-1	口頭講演 (Oral Presentation) A402 会場(Room A402)	○辰巳 哲也 1.2.3	1.応物, 2.ソニー, 3.東工大
9:35		人と人との心をつなぐ半導体		1.慶應義塾
0:15		レジェンドが語るリソグラフィ開発の歴史と未来	○東木 達彦¹	1.キオクシア
0:30		マイクロ波ECRエッチング装置システム開発とその醍醐		1.日立ハイテク
0:45	招 17a-A402-5	味 やればできる!君だって活躍できる!	○テン ポーリン¹	1.SCREENセミコンダクター
1:00	辺 17a-Δ/02-6	10年後のシリコン地図を一緒に作り上げてみませんか? 露光装置に活きる精密光学技術	○漆原 宏亮¹	1.キヤノン
1:15		半導体に必要な「測る技術」の開発を通じて	○熊倉 健太¹	1. 堀場エステック
1:30		計算で成膜を予測する - マルチスケールシミュレーショ		1.(株)KOKUSAI ELECTRIC
1:45	招 17a-A402-9	ン - 3次元積層の新たな世界へ:Cu-Cu接続の研究から量産	○ 香川 恵永 ¹	1.ソニーセミコンダクタソリューションズ
2:00	17a-A402-10	化まで 閉会の挨拶	○渡部 潔¹	1.SEAJ
一般公		カン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	purce development and industry-academia collabora	
3/17(F	Fri.) 13:45 - 18:30	口頭講演 (Oral Presentation) A402会場 (Room A402)		
3:45		応用物理学会会長挨拶	○平本 俊郎¹	1. 東大生研
3:50 4:00		シンポジウム趣旨説明 半導体業界における人材採用と育成の実際 ~さらなるイ	○大橋 弘美¹	1. 古河電工 1.SCREEN
4.00	10 17p-A402-3	ノベーションに向けたSEAJの活動~	○元小 万足	1.3GREEN
4:25	招 17p-A402-4	半導体デバイス企業が求める人財と産学連携による育成 について	○石丸 一成 1	1.キオクシア
4:50	招 17p-A402-5	半導体産業をめぐる状況変化と人財育成 - STEM と産学 共同の行方 -	○日高 秀人 ¹	1.ルネサスエレクトロニクス
5:15	招 17p-A402-6	熊本大学における半導体人材育成への取り組み	○青柳 昌宏¹	1.熊本大学
5:40 6:00	招 17p-A402-7	休憩/Break これからの半導体産業を牽引するワールドクラスの人材	○常石 哲男 ¹	1.東京エレクトロンデバイス
6:25		育成と産学連携 パネルセッション		1. 東大工、2. 大阪大工、3. 東京エレクトロンデバイス
	P 1110m 0			4. みずほ証券, 5. 東工大工, 6. 東北大, 7. 熊本大工, 8. 国大工
8:20	17p-A402-9	クロージングリマーク	○中野 義昭¹	1.東大工
		ファーンファマーク 点から進むダイバーシティ&インクルージョン / Diversity		
		口頭講演 (Oral Presentation) A402 会場 (Room A402)		
3:00	18p-A402-1		○松下 祥子 ¹	1.東工大
3:05		応用物理学会会長ご挨拶	○平本 俊郎 ^{1,2}	1.応用物理学会会長,2.東大
3:10 4:10	招 18p-A402-3	英文化理解刀 休憩/Break	○田岡 恵 ¹	1.グロービス経営大院
4:10	招 18p-A402-4	OriHime が拓く新しい働き方	○松島 尚樹¹	1.(株)オリィ研究所
5:15	•	休憩/Break		
5:25		ロールモデルは難しい	○桂 ゆかり ^{1,2}	1. 物材機構, 2. 理研
5:55	招 18p-A402-6	ダイバーシティ&インクルージョンの推進	○波多野 睦子¹	1.東工大
6:05 6:10	18n-A402-7	休憩/Break パネルディスカッション	○渡邉 恵理子¹, 桂 ゆかり², 波多野 睦子³, 黄 晋二⁴	1 雷诵大 2 物材研 3 車工大 4 善学
7:45	18p-A402-8		○ 松下 祥子 ¹	1. 电超入, 2. 物材研, 3. 泉工入, 4. 頁子 1. 東工大
ンンオ	^뽃 ジウム(テク	ニカル) / Symposium (technical)		
5 自在		=光=物質強結合系の科学 / Sciences of Strong Light-Mat	ter Interaction for Tailored Quantum Manipulation	
		口頭講演 (Oral Presentation) A304会場 (Room A304)	011 1 497+1	. 1853
3:30 3:35	15p-A304-1 招 15p-A304-2	量子スピード限界で動作する冷却原子型・超高速量子コ	○片山 郁文 ¹ ○大森 賢治 ^{1,2}	1. 横国大 1. 分子研, 2. 総研大
4:05	招 15p-A304-3	ンピュータ 熱平衡下の量子制御に向けた光と物質の超強結合	○馬場 基彰 ¹	1.京大理/白眉
1:35		ナノ構造半導体における量子コヒーレンスと光電機能		1.京大白眉センター

15:05	招 15p-A304-5	磁性ヘテロ構造薄膜の超高速スピン制御	○飯浜 賢志12, 石橋 一晃32, 水上 成美2.4	1.東北大FRIS, 2.東北大AIMR, 3.東北大院工, 4.東北大 CSIS
15:35		休憩/Break		
15:50	招 15p-A304-6	シフトカレントと量子物質制御	〇小川 直毅 1,2	1.理研 CEMS, 2.東大院工
16:20	招 15p-A304-7	強レーザー電場下におけるアト秒電子ダイナミクスの第 一原理的解析	○佐藤 駿丞¹	1.筑波大
16:50	招 15p-A304-8	超伝導体、強相関電子系におけるペタヘルツ電子駆動	〇岩井 伸一郎 1 , 天野 辰哉 1 , 川上 洋平 1 , 伊藤 弘毅 1 , 米満 賢治 2	1.東北大院理, 2.中央大理工
17:20		フェムト秒レーザー加工の光制御	○谷 峻太郎¹, 小林 洋平¹	1. 東大物性研
17:50	15p-A304-10		○廣理 英基¹	1. 京大化研
	表面 / Thin Films			
function		〜物質開発と機能の現状・課題・展望〜 / Frontiers on re	search of hydrate materials -Current status, subject	s, and prospects of materials development and their
3/15(W	ed.) 13:30 - 16:55	口頭講演 (Oral Presentation) A302会場 (Room A302)		
13:30	15p-A302-1	オープニング	○西川 博昭1	1.近畿大
13:35		遷移金属水素化物の薄膜成長と電子機能開発	〇大友 明1	1.東工大物質理工
14:05		強相関酸化物薄膜における水素誘起相転移の制御と応用		1. 阪大 産研
14:35	招 15p-A302-4	薄膜内水素の組成・荷電状態制御による水素化物物性の 開拓	〇清水 亮太	1.東工大物質理工
15:05		休憩・名刺交換会/Break		
15:20		超高圧力下の水素化物超伝導体の合成研究	○清水 克哉¹	1. 阪大基極セ
15:50	招 15p-A302-6	【注目講演】水素複合化による新しいセラミックス材料の 開発と新機能の探求	○ ○高津 浩 ¹	1.京大院工
16:20	招 15p-A302-7	錯体水素化物中の一価および多価陽イオンの高速伝導現	○折茂 慎一1,2,3	1.東北大WPI-AIMR, 2.東北大金研, 3.高エネ機構物構
	•	象とその電池応用 - "ハイドロジェノミクス"の視点か		研
16:50	15n-A202 0	ら ー クロージング	○村岡 祐治 ¹	1. 岡山大
	導 / Superconduct		○13 PU THATE	
	<u>·</u>	 見超伝導デバイスの創出 / Emergence of novel supercondu	cting device by spaciotemporal manipulation	
		口頭講演 (Oral Presentation) E302会場 (Room E302)		
13:30	招 15p-E302-1	超伝導光子検出器を用いた量子もつれ光検出	○岡本 亮 ¹	1. 京大院工
14:00	招 15p-E302-2	多ピクセル高エネルギー分解能ガンマ線超伝導転移端セ	○菊地 貴大¹, 藤井 剛¹, 早川 亮大¹,², ライアン スミ	1. 産総研, 2. 立教大学, 3. 東京大学
		ンサーの開発	ス ³ , 平山 文紀 ¹ , 佐藤 泰 ¹ , 神代 暁 ¹ , 浮辺 雅宏 ¹ , 大野 雅史 ³ , 佐藤 昭 ¹ , 山森 弘毅 ¹	
14:30	15p-E302-3	超伝導中性子検出器による単結晶の中性子イメージング		1.大阪公大, 2.原子力機構 J-PARC センター, 3. ブリ
				ティッシュコロンビア大, 4. 情報通信機構, 5. 産総研,
			彦 ² , 宮嶋 茂之 ⁴ , 日高 睦夫 ⁵ , 鈴木(山形) 聡 ⁶ , 田中 真	6.KEK
			伸 ⁶ , 川又修一 ¹ , 石田 武和 ¹	
14:45	招 15p-E302-4	2030年代のミリ波サブミリ波電波天文学に向けたSISデ	〇小嶋 崇文1, 牧瀬 圭正1, 江崎 翔平1, 田村 友範1, 宮	1.国立天文台, 2.大阪公大
		バイスの研究と高感度受信機の開発	地 晃平1, 単 文磊1, 金子 慶子1, 坂井 了1, 今田 大皓1,	
			上水 和典1, 增井 翔1,2, 鵜澤 佳徳1	
15:15		休憩/Break		
15:35	15p-E302-5	Bi-2212固有ジョセフソン接合型テラヘルツ光源の偏光		1. 筑波大数理, 2. 産総研
15.50	±11 15 5000 6	制御	木 隆成¹, 南 英俊¹, 門脇 和男¹, ○辻本 学¹.²	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15:50	指 15p-E3U2-6	高温超伝導体固有ジョセフソン接合におけるテラヘルツ 位相ダイナミクスの理論	〇加膝 膀,和地 宗政,写开 扣也	1.大阪公大工, 2.大阪府大
16:20	15p-E302-7	鉄系超伝導体のFIB微細加工と対破壊電流密度測定への	○北野 晴久¹ 客 直輝¹ 宮沢 貴麼¹ 神保 恒大郎¹ 太	1. 青学大理工、2. 東大院工、3. 中国東南大
	F ·	応用	山雄基 ¹ ,小阪裕太 ¹ ,為ヶ井強 ² ,孫悦 ³	
16:35	招 15p-E302-8	超伝導/常伝導体界面によるスピン流制御	〇大西 紘平 ¹	1.九大理
17:05		スピン三重項超伝導電流の生成と制御	○小森 祥央¹	1.名大理
		原子層物質における多彩な超伝導現象	〇若村 太郎 ¹	1.NTT物性研
		ケトロニクス / Organic Molecules and Bioelectronics		
		ノロジーを駆使したウイルス検出最前線 - ヒト感染性ウイ.		
		detection -Realization of a pandemic-free society with g	raphene FET sensors capable of rapid detection of h	uman infectious viruses-
		口頭講演 (Oral Presentation) A410 会場(Room A410) オープニング	○松本 和彦 ¹	1 PC L
13:30 13:35	15p-A410-1			1. 阪大産研 1. 三菱電機
13:45		CMOS電位検出センサアレイ技術によるマルチウィルス		1. 豊橋技科大
	24	検出		
14:15	15p-A410-4	集積化グラフェン FET によるウイルス検出(1)	○松本和彦¹,山本佳織¹,佐藤夏岐¹,坂野喜代治¹,	1. 阪大産研, 2. 村田製作所
	-		西原 佳代子1, 矢野 真美子1, 小野 尭生1, 金井 康1, 牛	
			場 翔太², 宮川 成人², 谷 晋輔², 木村 雅彦²	
14:30	15p-A410-5	集積化グラフェンFETによるウイルス検出 (2)	○松本和彦¹,山本佳織¹,佐藤夏岐¹,坂野喜代治¹,	1. 阪大産研, 2. 村田製作所
			西原 佳代子1, 矢野 真美子1, 小野 尭生1, 金井 康1, 牛	
		11.4 + 11.7 / 11.7 / 12.7	場 翔太², 宮川 成人², 谷 晋輔², 木村 雅彦²	
14:45	招 15p-A410-6	社会実装に向けたロバストなグラフェンFETバイオセン		1.村田製作所, 2.阪大産研, 3.JST さきがけ, 4.阪大 OTRI
15.15		サの開発	尭生 ^{2,3} , 金井 康 ^{2,4} , 谷 晋輔 ¹ , 木村 雅彦 ¹ , 松本 和彦 ²	
15:15 15:30	±22 1En ∧/110 7	休憩・名刺交換会/Break 臨床におけるニーズとウイルス―生体分子相互作用の最	○液溴 洋亚1	1 古庇医士
10.50	10 10h-W410-1	職体におりるニースとリイルス一生体分子相互作用の販 新知見	○収运 片丁	1.京府医大
16:00	招 15n-A410-8	利利見 AIナノポアを用いた感染症迅速検査法	○谷口 正輝 ¹	1. 阪大産研
16:30		グラフェンFETセンサの社会実装に向けての展望	○木村 雅彦¹, 松本 和彦²	1.村田製作所, 2.阪大産研
17:00		ウイルスセンサの社会実装に向けての大学の取り組み		1.中部大生命, 2.東海大医, 3.香川大医, 4.京都府医大,
			渡邊 洋平 ⁴ , 松本 和彦 ⁵	5. 阪大産研
17:30	15p-A410-11	閉会の辞	○松本 和彦¹	1. 阪大産研
	体 / Semiconducto			
		研究開発動向 / Research and Development Trends in Po	lycrystalline Thin-Film Solar Cells	
		口頭講演 (Oral Presentation) E502会場 (Room E502)	O/- 1 W1 45 FF 40 A 1	1 NEDO 700
10:00		カーボンニュートラルに向けた太陽光発電の役割拡大 Cu ₂ SnS ₃ 系太陽電池の特徴と高効率化技術	○仁木 栄 ¹ , 熊野 裕介 ¹ ○金井 綾香 ¹ , 杉山 睦 ² , 荒木 秀明 ³ , 田中 久仁彦 ¹	1.NEDO TSC 1.E网技士 2.声理士 3.E网享車
10:30 11:00		Cu ₂ SnS ₃ 系太陽電池の特徴と高効率化技術 リン系カルコパイライト太陽電池の現状と展開	○ 安开 綾香 , 杉山 蛭 , 氘木 秀明 , 田中 久仁 序 。 ○野瀬 嘉太郎¹	1.長岡技大, 2.東理大, 3.長岡高専 1.京都大工
11:30		CdTe 太陽電池の高効率化技術	○新本 哲也¹	1. 出光興産 株式会社
	7H 230 E302 4	MINI GIO ININI TIOIA III		

0/45/11	1) 10 00 17 00			
3/15(Wo		口頭講演 (Oral Presentation) E502 会場 (Room E502) 光の共鳴吸収を可能にする nm スケールの n型ドーパント	○城之下 勇¹	1.個人参加
15.50	15p E502 1	領域	O942 1 33	1. pg/\>/H
13:45	15p-E502-2	その形成用イオン注入後のアニール方法 光の共鳴吸収を可能にする nm スケールの n 型ドーパン ト領域	○城之下 勇¹	1.個人参加
		そのエネルギー変換効率		
14:00	15p-E502-3	多接合よびSiタンデム太陽電池の損失解析と高効率化の 動向	〇山口 真史', 中村 京太郎', 尾崎 亮', 小島 信晃', 大 下 祥雄 ¹	1.豊田工大
14:15 14:45	招 15p-E502-4	ボトムセル応用に向けた CIS 太陽電池の研究 休憩/Break	〇上川 由紀子 1	1. 産総研
15:00		CIS太陽電池の高効率化とトップセル応用に向けた研究		1.東工大院
15:30	招 15p-E502-6	【注目講演】Cu ₂ O/Siタンデム太陽電池の開発と展望	〇和田淳 ¹ , 芝崎 聡一郎 ¹ , 中川 直之 ¹ , 保西 祐弥 ¹ , 水 野 幸民 ¹ , 山崎 六月 ¹ , 吉尾 紗良 ¹ , 西田 靖孝 ¹ , 杉本	1.東芝 研究開発センター, 2.東芝 生産技術センター
16:00	招 15p-E502-7	各種化合物薄膜太陽電池の電子状態のキャラクタリゼ	〇寺田 教男1	1. 鹿児島大学
16:30	招 15p-E502-8	-ション 化合物薄膜太陽電池とペロブスカイト太陽電池 - 類似点 と相違点 -	○根上 卓之¹	1.立命館大
	カーボン / Nanoca	rbon Technology		
		応用の最新動向 / Recent progresses of device applicatio 口頭講演 (Oral Presentation) A205 会場 (Room A205)	ns of low-dimensional materials	
13:30		オープニング	○大野 雄高¹	1.名大未来研
13:40		低次元材料の最新研究動向と応用展開への期待	○勝又 康弘¹	1. 科学技術振興機構
14:10	招 15p-A205-3	高信頼性、小セル面積、高スイッチング速度を目指した 16 Mb NRAMの開発	○齋藤 仁¹, 渡邉 純一¹, 田村 哲朗¹, 佐次田 直也¹, 原 浩太¹, 川畑 邦範¹, 藤井 淳¹, 大野 潤¹, 中久保 敦¹, 児 島 学¹, ルアン ハリー², セン ラフール²	
14:40		3次元化した単層グラフェンの蓄電デバイスへの応用	○西原 洋知¹	1.東北大AIMR
15:10	奨 15p-A205-5	CVD成長した数層h-BN膜の磁気トンネル接合素子への 応用	○楠瀬 宏規¹,深町 悟²,河原 憲治²,堺 研一郎³,木村 崇⁴,日比野 浩樹⁵,吾郷 浩樹¹.²	1. 九大院総理工, 2. 九大 GIC, 3. 久留米高専, 4. 九大院理, 5. 関学大工
15:25	15p-A205-6	大面積グラフェンデバイスの作製	〇川田 和則 1 , 中村 孝子 1 , 川木 俊輔 1 , 古賀 義紀 1 , 長 谷川 雅考 1	1.エアメンブレン
15:40 16:00	招 15p-A205-7	休憩・名刺交換会/Break シート状広帯域テラヘルツ・赤外撮像センサと全方位検 査分析応用	○河野 行雄 1.2.3	1.中央大, 2.東工大, 3.情報研
16:30	招 15p-A205-8	グラフェンイメージセンサの開発	○小川 新平¹, 嶋谷 政彰¹, 福島 昌一郎¹, 岩川 学¹	1.三菱電機
17:00		チップ上ナノカーボン光・電子デバイス	○牧 英之 ¹	1.慶大理工
17:30	15p-A205-10	遷移金属ダイカルコゲナイド単層混晶膜を用いた波長可 変発光デバイス	倉 宏斗 2 , 遠藤 尚彦 2 , 劉 崢 3 , 入沢 寿史 3 , 柳 和宏 2 , 中 西 勇介 2 , 高 燕林 4 , 丸山 実那 4 , 岡田 晋 4 , 篠北 啓介 5 ,	
17:45	15p-A205-11	CNTネットワークの抵抗温度係数ゲート電圧依存性	松田一成 5 ,宮田 耕充 2 ,竹延 大志 1 〇殿内 規之 $^{1.2}$,福田 紀香 1 ,宮崎 孝 $^{1.2}$,澁谷 泰蔵 $^{1.2}$,田中 朋 $^{1.2}$,弓削 亮太 $^{1.2}$	1.日本電気, 2.産総研
18:00		クロージング	○長汐 晃輔¹	1.東大工
2 放射線	l / Ionizing Radiati			
2 放射線 【現地の 3/16(Th	!/ Ionizing Radiati み開催・オンライ: hu.) 13:30 - 18:00	on ☑配信なし】T2 物質の超秩序構造とその応用 ~結晶と非晶 ☑頭講演 (Oral Presentation) A404会場(Room A404)	1質のはざまの科学~ / Materials with Hyperordered	Structures and their Applications
2 放射線 【現地の <i>ä</i>	l / Ionizing Radiati み開催・オンライ: hu.) 13:30 - 18:00 招 16p-A404-1	on ×配信なし】T2 物質の超秩序構造とその応用 〜結晶と非晶		Structures and their Applications
2 放射線 【現地の 3/16(Th 13:30	k / Ionizing Radiat み開催・オンライ: hu.) 13:30 - 18:00 招 16p-A404-1 招 16p-A404-2	on 配信なし】T2 物質の超秩序構造とその応用 〜結晶と非晶 口頭講演 (Oral Presentation) A404会場(Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 蛍光 X 線ホログラフィーと陽電子消滅寿命分光による 長	質のはざまの科学~ / Materials with Hyperordered 〇木本 浩司 ¹ 〇小野寺 陽平 ¹ ○北浦 守 ¹⁰ , 正井 博和 ¹ , 渡邊 真太 ² , 山本 裕太 ³ , 加	Structures and their Applications 1. 物材機構 1. 京大複合研 1. 産総研, 2. 東工大, 3. 奈良先端大, 4. 名工大, 5. Univ.
2 放射線 【現地の 3/16(Th 13:30 14:00	k / Ionizing Radiat み開催・オンライ: hu.) 13:30 - 18:00 招 16p-A404-1 招 16p-A404-2	on 配信なし】T2 物質の超秩序構造とその応用 〜結晶と非晶 口頭講演 (Oral Presentation) A404 会場(Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測	質のはざまの科学~ / Materials with Hyperordered ○木本 浩司 ¹ ○小野寺 陽平 ¹ ○北浦 守 ¹⁰ , 正井 博和 ¹ , 渡邊 真太 ² , 山本 裕太 ³ , 加藤 達也 ^{4,5} , 木村 耕治 ⁴ , 八方 直久 ⁶ , 林 好一 ^{4,7} , 小玉	Structures and their Applications 1. 物材機構 1. 京大複合研 1. 産総研, 2. 東工大, 3. 奈良先端大, 4. 名工大, 5. Univ. Grenoble Alpes, 6. 広島市立大, 7. JASRI/SPring8, 8. 埼
2 放射線 【現地の 3/16(Th 13:30 14:00	A / Ionizing Radiati み開催・オンライ: hu.) 13:30 - 18:00 招 16p-A404-1 招 16p-A404-2 16p-A404-3	on 配信なし】T2 物質の超秩序構造とその応用 〜結晶と非晶 口頭講演 (Oral Presentation) A404会場(Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 蛍光 X 線ホログラフィーと陽電子消滅寿命分光による 長	質のはざまの科学~ / Materials with Hyperordered ○木本 浩司 ¹ ○小野寺 陽平 ¹ ○北浦 守 ¹⁰ , 正井 博和 ¹ , 渡邊 真太 ² , 山本 裕太 ³ , 加藤 達也 ^{4,5} , 木村 耕治 ⁴ , 八方 直久 ⁶ , 林 好一 ^{4,7} , 小玉 翔平 ⁸ , 武田 博明 ⁸ , 中西 貴之 ⁹	Structures and their Applications 1. 物材機構 1. 京大複合研 1. 産総研, 2. 東工大, 3. 奈良先端大, 4. 名工大, 5. Univ. Grenoble Alpes, 6. 広島市立大, 7. JASRI/SPring8, 8. 埼玉大, 9. 物材機構, 10. 山形大学
2 放射線 【現地の。 3/16(Th 13:30 14:00 14:30	2 / Ionizing Radiati み開催・オンライ: hu.) 13:30 - 18:00 招 16p-A404-1 招 16p-A404-2 16p-A404-3	on 一配信なし】T2物質の超秩序構造とその応用 ~結晶と非晶口頭講演 (Oral Presentation) A404 会場 (Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 蛍光 X 線ホログラフィーと陽電子消滅寿命分光による 長残光蛍光体結晶中共賦活イオンの局所構造解析 インバースモード蛍光 X 線ホログラフィーを用いた Mn ドープ BiFeO3 薄膜の電場下における構造解析 休憩/Break 小型・超高精細マイクロLED ディスプレイ実現の鍵を握	質のはざまの科学~ / Materials with Hyperordered ○	Structures and their Applications 1. 物材機構 1. 京大複合研 1. 産総研, 2. 東工大, 3. 奈良先端大, 4. 名工大, 5. Univ. Grenoble Alpes, 6. 広島市立大, 7. JASRI/SPring8, 8. 埼玉大, 9. 物材機構, 10. 山形大学
2 放射線 【現地の。 3/16(TF 13:30 14:00 14:30 14:45 15:00 15:15	2 / Ionizing Radiati み開催・オンライ: hu.) 13:30 - 18:00 招 16p-A404-1 招 16p-A404-2 16p-A404-3 招 16p-A404-4	on ・配信なし】T2 物質の超秩序構造とその応用 〜結晶と非晶口頭講演 (Oral Presentation) A404会場 (Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 蛍光 X 線ホログラフィーと陽電子消滅寿命分光による 長 残光蛍光体結晶中共賦活イオンの局所構造解析 インバースモード蛍光 X 線ホログラフィーを用いた Mn ドープ BiFeO3 薄膜の電場下における構造解析 休憩/Break 小型・超高精細マイクロ LED ディスプレイ実現の鍵を握る Eu添加 GaN 赤色 LED の高輝度化に向けて	○ (1.物材機構 1.京大複合研 1.産終研, 2.東工大, 3.奈良先端大, 4.名工大, 5.Univ. Grenoble Alpes, 6. 広島市立大, 7.JASRI/SPring8, 8.埼玉大, 9.物材機構, 10.山形大学 1.兵庫県立大院工, 2.名工大院工, 3.広島市立大院情報 1.阪大院工
2 放射線 【現地の2 3/16(T) 13:30 14:00 14:30 14:45	2 / Ionizing Radiati み開催・オンライ: hu.) 13:30 - 18:00 招 16p-A404-1 招 16p-A404-2 16p-A404-3 招 16p-A404-4 招 16p-A404-5	on 一配信なし】T2物質の超秩序構造とその応用 ~結晶と非晶口頭講演 (Oral Presentation) A404 会場 (Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 蛍光 X 線ホログラフィーと陽電子消滅寿命分光による 長残光蛍光体結晶中共賦活イオンの局所構造解析 インバースモード蛍光 X 線ホログラフィーを用いた Mn ドープ BiFeO3 薄膜の電場下における構造解析 休憩/Break 小型・超高精細マイクロLED ディスプレイ実現の鍵を握	○ 大本 浩司 ¹ ○ 小野寺 陽平 ¹ ○ 小野寺 陽平 ¹ ○ 北浦 守 ¹⁰ , 正井 博和 ¹ , 渡邊 真太 ² , 山本 裕太 ³ , 加藤 達也 ^{4,5} , 木村 耕治 ⁴ , 八方 直久 ⁶ , 林 好一 ^{4,7} , 小玉 翔平 ⁸ , 武田 博明 ⁸ , 中西 貴之 ⁹ ○ 中嶋 誠二 ¹ , 加藤 廉 ¹ , 有馬 知希 ¹ , 木村 耕治 ² , 八方 直久 ³ , 林 好一 ² , 藤沢 浩訓 ¹ ○ 藤原 康文 ¹	1.物材機構 1.京大複合研 1.産齢研, 2.東工大, 3.奈良先端大, 4.名工大, 5.Univ. Grenoble Alpes, 6.広島市立大, 7.JASRI/SPring8, 8.埼玉大, 9.物材機構, 10.山形大学 1.兵庫県立大院工, 2.名工大院工, 3.広島市立大院情報 1.阪大院工
2 放射線 【現地の。 3/16(TH 13:30 14:00 14:30 14:45 15:00 15:15 15:45 16:00 16:15	2 / Ionizing Radiati み開催・オンライ: hu.) 13:30 - 18:00 招 16p-A404-1 招 16p-A404-2 16p-A404-4 招 16p-A404-5 16p-A404-7 招 16p-A404-7	on レ配信なし】T2物質の超秩序構造とその応用〜結晶と非晶口頭講演(Oral Presentation)A404 会場(Room A404)透過電子顕微鏡による微細構造解析の現状ガラスの秩序を解明する量子ビーム計測 蛍光 X 線ホログラフィーと陽電子消滅寿命分光による 長残光蛍光体結晶中共賦活イオンの局所構造解析 インバースモード蛍光 X 線ホログラフィーを用いた Mn ドーブ BiFeO。薄膜の電場下における構造解析 休憩/Break 小型・超高精細マイクロ LED ディスプレイ実現の鍵を握る Eu添加 GAN 赤色 LED の高輝 にたし向けて構造歪によるチタン系酸化物の誘電率増大効果 リチウムイオン電池用負極材料 Tis,Nb ₁₀ O ₂₉ の負極特性と量子ビームを用いた平均・局所構造の検討ゼオライトの構造制御と機能発現	質のはざまの科学~ / Materials with Hyperordered ○木本 浩司 ¹ ○小野寺 陽平 ¹ ○北浦 守 ¹⁰ , 正井 博和 ¹ , 渡邊 真太 ² , 山本 裕太 ³ , 加藤 遼也 ^{4,5} , 木村 耕治 ⁴ , 八方 直久 ⁶ , 林 好一 ^{4,7} , 小玉 翔平 ⁸ , 武田 博明 ⁸ , 中西 貴之 ⁹ ○中嶋 誠二 ¹ , 加藤 廉 ¹ , 有馬 知希 ¹ , 木村 耕治 ² , 八方直久 ³ , 林 好一 ² , 藤沢 浩訓 ¹ ○藤原 康文 ¹ ○鳥野 雄帆 ¹ , 旭 良司 ¹ , Alex Kutana ¹ ○(M1) 永井 竜 ¹ , 北村 尚斗 ¹ , 石橋 千晶 ¹ , 井手本 康 ¹ ○武脇 隆彦 ¹	1.物材機構 1.京大複合研 1.産総研,2.東工大,3.奈良先端大,4.名工大,5.Univ. Grenoble Alpes, 6. 広島市立大,7.JASRI/SPring8,8.埼玉大,9.物材機構,10.山形大学 1.兵庫県立大院工,2.名工大院工,3.広島市立大院情報 1.阪大院工 1.名大工 1.東理大理工 1.三菱ケミカル(株)
2 放射線 【現地の3 3/16(TH 13:30 14:00 14:30 14:45 15:00 15:15 15:45 16:00	2 / Ionizing Radiati み開催・オンライ: hu.) 13:30 - 18:00 招 16p-A404-1 招 16p-A404-2 16p-A404-4 招 16p-A404-5 16p-A404-7 招 16p-A404-7	on レ配信なし】T2物質の超秩序構造とその応用〜結晶と非晶口頭講演 (Oral Presentation) A404 会場 (Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 蛍光 X 線ホログラフィーと陽電子消滅寿命分光による 長 残光蛍光体結晶中共賦活イオンの局所構造解析 インバースモード蛍光 X 線ホログラフィーを用いた Mn ドープ BiFeO3 薄膜の電場下における構造解析 休憩/Break 小型・超高精細マイクロLED ディスプレイ実現の鍵を握 る Eu添加 GaN 赤色 LED の高輝度化に向けて 構造歪によるチタン系酸化物の誘電率増大効果 リチウムイオン電池用負極材料 Ti ₂ Nb ₁₀ O ₂₉ の負極特性と量子ビームを用いた平均・局所構造の検討	質のはざまの科学~ / Materials with Hyperordered ○木本 浩司 ¹ ○小野寺 陽平 ¹ ○北浦 守 ¹⁰ , 正井 博和 ¹ , 渡邊 真太 ² , 山本 裕太 ³ , 加藤 遼也 ^{4,5} , 木村 耕治 ⁴ , 八方 直久 ⁶ , 林 好一 ^{4,7} , 小玉 翔平 ⁸ , 武田 博明 ⁸ , 中西 貴之 ⁹ ○中嶋 誠二 ¹ , 加藤 廉 ¹ , 有馬 知希 ¹ , 木村 耕治 ² , 八方直久 ³ , 林 好一 ² , 藤沢 浩訓 ¹ ○藤原 康文 ¹ ○鳥野 雄帆 ¹ , 旭 良司 ¹ , Alex Kutana ¹ ○(M1) 永井 竜 ¹ , 北村 尚斗 ¹ , 石橋 千晶 ¹ , 井手本 康 ¹ ○武脇 隆彦 ¹	1.物材機構 1.京大複合研 1.産総研, 2.東工大, 3.奈良先端大, 4.名工大, 5.Univ. Grenoble Alpes, 6. 広島市立大, 7.JASRI/SPring8, 8.埼玉大, 9.物材機構, 10. 山形大学 1.兵庫県立大院工, 2.名工大院工, 3.広島市立大院情報 1.阪大院工 1. セスエ 1.東理大理工 1.三菱ケミカル (株) 1.産総研, 2.物材機構, 3.東大, 4.KEK, 5.京大, 6.弘前
2 放射線 【現地の。 3/16(TH 13:30 14:00 14:30 14:45 15:00 15:15 15:45 16:00 16:15	2 / Ionizing Radiati み開催・オンライ: hu.) 13:30 - 18:00 招 16p-A404-1 招 16p-A404-2 16p-A404-4 招 16p-A404-5 16p-A404-7 招 16p-A404-7	on レ配信なし】T2物質の超秩序構造とその応用〜結晶と非晶口頭講演(Oral Presentation)A404 会場(Room A404)透過電子顕微鏡による微細構造解析の現状ガラスの秩序を解明する量子ビーム計測 蛍光 X 線ホログラフィーと陽電子消滅寿命分光による 長残光蛍光体結晶中共賦活イオンの局所構造解析 インバースモード蛍光 X 線ホログラフィーを用いた Mn ドーブ BiFeO。薄膜の電場下における構造解析 休憩/Break 小型・超高精細マイクロ LED ディスプレイ実現の鍵を握る Eu添加 GaN 示色 LED の高輝 にたし向けて構造歪によるチタン系酸化物の誘電率増大効果 リチウムイオン電池用負極材料 Tis,Nb ₁₀ O ₂₉ の負極特性と量子ビームを用いた平均・局所構造の検討ゼオライトの構造制御と機能発現	□ ○ 大本 浩司 1 ○ 小野寺 陽平 1 ○ 小野寺 陽平 1 ○ 小野寺 陽平 1 ○ 小野寺 陽平 1 ○ 北浦守 10, 正井 博和 1, 渡邊 真太 2, 山本 裕太 3, 加藤 達也 4.5, 木村 耕治 4, 八方 直久 6, 林 好一 4.7, 小玉 翔平 8, 武田 博明 8, 中西 貴之 9 ○ 中嶋 誠二 1, 加藤 廉 1, 有馬 知希 1, 木村 耕治 2, 八方 直久 3, 林 好一 2, 藤沢 浩訓 1 ○ 藤原 康文 1 ○ 島野 雄帆 1, 旭良司 1, Alex Kutana 1 ○ (M1) 永井 竜 1, 北村 尚斗 1, 石橋 千晶 1, 井手本 康 1 ○ 武脇 隆彦 1 ○ 正井 博和 1, 小原 真司 2, 脇原 徹 3, 柴崎 裕樹 4, 小野寺 陽平 5, 増野 敦信 6, 助永 壮平 7, 尾原 幸治 8, 酒井 雄	1.物材機構 1.京大複合研 1.産総研, 2.東工大, 3.奈良先端大, 4.名工大, 5.Univ. Grenoble Alpes, 6. 広島市立大, 7.JASRI/SPring8, 8.埼玉大, 9.物材機構, 10. 山形大学 1.兵庫県立大院工, 2.名工大院工, 3.広島市立大院情報 1.阪大院工 1. セスエ 1.東理大理工 1.三菱ケミカル (株) 1.産総研, 2.物材機構, 3.東大, 4.KEK, 5.京大, 6.弘前
2 放射線 【現地の3 3/16(TH 13:30 14:00 14:30 14:45 15:00 15:15 15:45 16:00 16:15 16:45	2 / Ionizing Radiati A開催・オンライ: hu.) 13:30 - 18:00 招 16p-A404-1 招 16p-A404-2 16p-A404-4 招 16p-A404-5 16p-A404-7 招 16p-A404-8 16p-A404-9	On P配信なし】T2 物質の超秩序構造とその応用 ~結晶と非晶 口頭請漢 (Oral Presentation) A404 会場 (Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 蛍光 X線ホログラフィーと陽電子消滅寿命分光による 長 残光蛍光体結晶中共賦活イオンの局所構造解析 インバースモード蛍光 X線ホログラフィーを用いた Mn ドープBiFeO3薄膜の電場下における構造解析 体想/Break 小型・超高精細マイクロLEDディスプレイ実現の鍵を握 るEu添加 GaN 赤色 LED の高輝度化に向けて 構造歪によるチタン系酸化物の誘電率増大効果 リチウムイオン電池用負極材料 Ti ₂ Nb ₁₀ O ₂₉ の負極特性と量子ビームを用いた平均・局所構造の検討 ゼオライトの構造制御と機能発現 室温における永久高密度化した非晶質 SiO ₂ の作製 体想/Break 大規模第一原理計算と機械学習を用いた超秩序構造解析 化学結合ネットワーク中のリングに基づくガラスの構造	質のはざまの科学~ / Materials with Hyperordered ○木本 浩司 ¹ ○小野寺 陽平 ¹ ○北浦守 ¹⁰ , 正井 博和 ¹ , 渡邊 真太 ² , 山本 裕太 ³ , 加藤 達也 ^{4,5} , 木村 耕治 ⁴ , 八方 直久 ⁶ , 林 好一 ^{4,7} , 小玉 翔平 ⁸ , 武田 博明 ⁸ , 中西 貴之 ⁹ ○中嶋 誠二 ¹ , 加藤 廉 ¹ , 有馬 知希 ¹ , 木村 耕治 ² , 八方 直久 ³ , 林 好一 ² , 藤沢 浩訓 ¹ ○藤原 康文 ¹ ○島野 雄帆 ¹ , 旭 良司 ¹ , Alex Kutana ¹ ○(M1) 永井 竜 ¹ , 北村 尚斗 ¹ , 石橋 千晶 ¹ , 井手本 康 ¹ ○武脇 隆彦 ¹ ○正井 博和 ¹ , 小原 真司 ² , 脇原 徹 ³ , 柴崎 裕樹 ⁴ , 小野 寺陽平 ⁵ , ¹ 増野 敦信 ⁶ , 助永 壮平 ⁷ , 尾原 幸治 ⁸ , 酒井 雄 樹 ^{9,10} , 東 正樹 ^{10,9} ○宮崎 剛 ¹ ○志賀 元紀 ^{1,5} , 平田 秋彦 ^{2,6} , 小野寺 陽平 ^{3,6} , 正井 博	1.物材機構 1.京大複合研 1.意総研、2.東工大、3.奈良先端大、4.名工大、5.Univ. Grenoble Alpes, 6.広島市立大、7.JASRI/SPring8, 8.埼玉大, 9.物材機構, 10.山形大学 1.兵庫県立大院工、2.名工大院工、3.広島市立大院情報 1.阪大院工 1.名大工 1.東理大理工 1.三菱ケミカル(株) 1.産総研、2.物材機構、3.東大、4.KEK、5.京大、6.弘前大、7.東北大、8.JASRI、9.KISTEC、10.東工大 1.物材機構 1.東北大、2.早稲田大、3.京大、4.産総研、5.理研、6.物
2 放射線 【現地の3 3/16(TH 13:30 14:00 14:30 14:45 15:00 15:15 15:45 16:00 16:15 16:45 17:00 17:15 17:45 3 光・フ	2 / Ionizing Radiati み開催・オンライ: hu.) 13:30 - 18:00 招 16p-A404-1 招 16p-A404-2 16p-A404-4 招 16p-A404-5 16p-A404-7 招 16p-A404-7 招 16p-A404-9 招 16p-A404-11 オトニクス / Opti	On 一配信なし】T2 物質の超秩序構造とその応用 ~結晶と非晶 「頭睛漢 (Oral Presentation) A404 会場 (Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 蛍光 X線ホログラフィーと陽電子消滅寿命分光による 長 残光蛍光体結晶中共賦活イオンの局所構造解析 インパースモード蛍光 X線ホログラフィーを用いた Mn ドーブBiFeO3 薄膜の電場下における構造解析 体想/Break 小型・超高精細マイクロ LED ディスプレイ実現の鍵を握る を返添加 Gan があ色 LED の高輝度 化に向けて 構造歪によるチタン系酸化物の誘電率均大効果 リチウムイオン電池用負極材料 Ti ₂ Nb ₁₀ O ₂₉ の負極特性と 量子ビームを用いた平均・局所構造の検討 ゼオライトの構造制御と機能発現 室温における永久高密度化した非晶質 SiO ₂ の作製 休憩/Break 大規模第一原理計算と機械学習を用いた超秩序構造解析 化学結合ネットワーク中のリングに基づくガラスの構造 秩序の解析 Sand Photonics	○ 大本 浩司 ¹ ○ 小野寺 陽平 ¹ ○ 小野寺 陽平 ¹ ○ 北浦守 ¹⁰ , 正井 博和 ¹ , 渡邊 真太 ² , 山本 裕太 ³ , 加藤 遼也 ^{4,5} , 木村 耕治 ⁴ , 八方 直久 ⁶ , 林 好一 ^{4,7} , 小玉 翔平 ⁸ , 武田 博明 ⁸ , 中西 貴之 ⁹ ○ 中嶋 誠二 ¹ , 加藤 廉 ¹ , 有馬 知希 ¹ , 木村 耕治 ² , 八方 直久 ³ , 林 好一 ² , 藤沢 浩訓 ¹ ○ 藤原 康文 ¹ ○ 鳥野 雄帆 ¹ , 旭 良司 ¹ , Alex Kutana ¹ ○ (M1) 永井 竜 ¹ , 北村 尚斗 ¹ , 石橋 千晶 ¹ , 井手本 康 ¹ ○ 武脇 隆彦 ¹ ○ 正井 博和 ¹ , 小原 真司 ² , 脇原 徹 ³ , 柴崎 裕樹 ⁴ , 小野 寺 陽平 ⁵ , 增野 敦信 ⁶ , 助永 壮平 ⁷ , 尾原 幸治 ⁸ , 酒井 雄 樹 ^{9,10} , 東 正樹 ^{10,9} ○ 宮崎 剛 ¹	1. 物材機構 1. 京大複合研 1. 京大複合研 1. 京大複合研 1. 産総研, 2. 東工大, 3. 奈良先端大, 4. 名工大, 5. Univ. Grenoble Alpes, 6. 広島市立大, 7. JASRI/SPring8, 8. 埼玉大, 9. 物材機構, 10. 山形大学 1. 兵庫県立大院工, 2. 名工大院工, 3. 広島市立大院情報 1. 阪大院工 1. 名大工 1. 東理大理工 1. 三菱ケミカル (株) 1. 産総研, 2. 物材機構, 3. 東大, 4. KEK, 5. 京大, 6. 弘前大, 7. 東北大, 8. JASRI, 9. KISTEC, 10. 東工大
2 放射線 「現地の。 3/16(TH 13:30 14:00 14:30 14:45 15:00 15:15 15:45 16:00 16:15 16:45 17:00 17:15 17:45 3 光・フ T6 レー・	# / Ionizing Radiati	のI 一配信なし】T2 物質の超秩序構造とその応用 ~結晶と非晶 口頭講演 (Oral Presentation) A404 会場 (Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 蛍光 X 線ホログラフィーと陽電子消滅寿命分光による 長 残光蛍光体結晶中共賦活イオンの局所構造解析 インパースモード蛍光 X線ホログラフィーを用いた Mn ドーブBiFeO3 薄膜の電場下における構造解析 休憩/Break 小型・超高精細マイクロ LED ディスプレイ実現の鍵を握 る Eu添加 GaN 赤色 LED の高輝度化に向けて 構造歪によるチタン系酸化物の誘電率増大効果 リチウムイオン電池用負極材料 Ti_Nb ₁₀ O ₂₉ の負極特性と 量子ビームを用いた平均・局所構造の検討 ゼオライトの構造制御と機能発現 室温における永久高密度化した非晶質 SiO ₂ の作製 体態/Break 大規模第一原理計算と機械学習を用いた超秩序構造解析 化学結合ネットワーク中のリングに基づくガラスの構造 秩序の解析 ss and Photonics	質のはざまの科学~ / Materials with Hyperordered ○木本 浩司 ¹ ○小野寺 陽平 ¹ ○北浦守 ¹⁰ , 正井 博和 ¹ , 渡邊 真太 ² , 山本 裕太 ³ , 加藤 達也 ^{4,5} , 木村 耕治 ⁴ , 八方 直久 ⁶ , 林 好一 ^{4,7} , 小玉 翔平 ⁸ , 武田 博明 ⁸ , 中西 貴之 ⁹ ○中嶋 誠二 ¹ , 加藤 廉 ¹ , 有馬 知希 ¹ , 木村 耕治 ² , 八方 直久 ³ , 林 好一 ² , 藤沢 浩訓 ¹ ○藤原 康文 ¹ ○島野 雄帆 ¹ , 旭 良司 ¹ , Alex Kutana ¹ ○(M1) 永井 竜 ¹ , 北村 尚斗 ¹ , 石橋 千晶 ¹ , 井手本 康 ¹ ○武脇 隆彦 ¹ ○正井 博和 ¹ , 小原 真司 ² , 脇原 徹 ³ , 柴崎 裕樹 ⁴ , 小野 寺陽平 ⁵ , ¹ 増野 敦信 ⁶ , 助永 壮平 ⁷ , 尾原 幸治 ⁸ , 酒井 雄 樹 ^{9,10} , 東 正樹 ^{10,9} ○宮崎 剛 ¹ ○志賀 元紀 ^{1,5} , 平田 秋彦 ^{2,6} , 小野寺 陽平 ^{3,6} , 正井 博	1.物材機構 1.京大複合研 1.意総研、2.東工大、3.奈良先端大、4.名工大、5.Univ. Grenoble Alpes, 6.広島市立大、7.JASRI/SPring8, 8.埼玉大, 9.物材機構, 10.山形大学 1.兵庫県立大院工、2.名工大院工、3.広島市立大院情報 1.阪大院工 1.名大工 1.東理大理工 1.三菱ケミカル(株) 1.産総研、2.物材機構、3.東大、4.KEK、5.京大、6.弘前大、7.東北大、8.JASRI、9.KISTEC、10.東工大 1.物材機構 1.東北大、2.早稲田大、3.京大、4.産総研、5.理研、6.物
2 放射線 「現地の。 3/16(TH 13:30 14:00 14:30 14:45 15:00 15:15 15:45 16:00 16:15 16:45 17:00 17:15 17:45 3 光・フ T6 レー・	# / Ionizing Radiati	On 一配信なし】T2 物質の超秩序構造とその応用~結晶と非晶口頭講演 (Oral Presentation) A404 会場 (Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 蛍光 X線ホログラフィーと陽電子消滅寿命分光による 長残光蛍光体結晶中共賦活イオンの局所構造解析 インバースモード蛍光 X線ホログラフィーを用いた Mn ドーブBiFeO3 薄膜の電場下における構造解析 休憩/Break 小型・超高精細マイクロ LED ディスプレイ実現の鍵を握る Eu 添加 GaN 赤色 LED の高輝度化に向けて構造歪によるチタン系酸化物の誘電率増大効果 リチウムイオン電池用負極材料 Ti₂Nb10O29の負極特性と量子ビームを用いた平均・局所構造の検討ゼオライトの構造制御と機能発現 室温における永久高密度化した非晶質 SiO2 の作製 休憩/Break 大規模第一原理計算と機械学習を用いた超秩序構造解析 化学結合ネットワーク中のリングに基づくガラスの構造 秩序の解析 C字話 の解析 Break 大規模第一原理計算と機械学習を用いた超秩序構造解析 化学結合ネットワーク中のリングに基づくガラスの構造 秩序の解析 C字話 の解析 Break 大規模第一原理計算と機械学習を用いた超秩序構造解析 C字話合本 アーク中のリングに基づくガラスの構造 秩序の解析 C字話音解 / Recent Progress of laser ablation 口頭講演 (Oral Presentation) A201 会場 (Room A201) バルスレーザーアプレーションによる微細構造物形成の	質のはざまの科学~ / Materials with Hyperordered ○木本 浩司¹ ○小野寺 陽平¹ ○北浦守¹⁰, 正井 博和¹, 渡邊 真太², 山本 裕太³, 加藤 彦也⁴.⁵, 木村 耕治⁴, 八方 直久 °, 林 好一⁴.², 小玉 翔平 °, 武田 博明 в, 中西 貴之 ° ○中嶋 誠二¹, 加藤 廉¹, 有馬 知希¹, 木村 耕治², 八方 直久 ³, 林 好一², 藤沢 浩訓¹ ○藤原 康文¹ ○鳥野 雄帆¹, 旭 良司¹, Alex Kutana¹ ○(M1) 永井 竜¹, 北村 尚斗¹, 石橋 千届¹, 井手本 康¹ ○武脇 隆彦¹ ○正井 博和¹, 小原 真司², 脇原 微³, 柴崎 裕樹⁴, 小野寺 陽平⁵, 増野 敦信 °, 助永 壮平 ⁷ , 尾原 幸治 ⁸ , 酒井 雄樹 ^{9,10} , 東 正樹 ^{10.9} ○宮崎 剛¹ ○志賀 元紀 ^{1.5} , 平田 秋彦 ^{2.6} , 小野寺 陽平 ^{3.6} , 正井 博和⁴	1.物材機構 1.京大複合研 1.意総研、2.東工大、3.奈良先端大、4.名工大、5.Univ. Grenoble Alpes, 6.広島市立大、7.JASRI/SPring8, 8.埼玉大, 9.物材機構, 10.山形大学 1.兵庫県立大院工、2.名工大院工、3.広島市立大院情報 1.阪大院工 1.名大工 1.東理大理工 1.三菱ケミカル(株) 1.産総研、2.物材機構、3.東大、4.KEK、5.京大、6.弘前大、7.東北大、8.JASRI、9.KISTEC、10.東工大 1.物材機構 1.東北大、2.早稲田大、3.京大、4.産総研、5.理研、6.物
2 放射線 【現地の3 3/16(TH 13:30 14:00 14:30 14:45 15:00 15:15 15:45 16:00 16:15 16:45 17:00 17:15 17:45 3 光・フ T6 レー・3 3/16(TH	# / Ionizing Radiati	On 一配信なし】T2 物質の超秩序構造とその応用〜結晶と非晶 「頭講演 (Oral Presentation) A404 会場(Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測	質のはざまの科学~ / Materials with Hyperordered ○木本 浩司 ¹ ○小野寺 陽平 ¹ ○北浦守 ¹⁰ , 正井 博和 ¹ , 渡邊 真太 ² , 山本 裕太 ³ , 加藤 達也 ^{4,5} , 木村 耕治 ⁴ , 八方 直久 ⁶ , 林 好一 ^{4,7} , 小玉 翔平 ⁸ , 武田 博明 ⁸ , 中西 貴之 ² ○中嶋 誠二 ¹ , 加藤 廉 ¹ , 有馬 知希 ¹ , 木村 耕治 ² , 八方 直久 ³ , 林 好一 ² , 藤沢 浩訓 ¹ ○藤原 康文 ¹ ○島野 雄帆 ¹ , 旭 良司 ¹ , Alex Kutana ¹ ○(M1) 永井 竜 ¹ , 北村 尚斗 ¹ , 石橋 千晶 ¹ , 井手本 康 ¹ ○武脇 隆彦 ¹ ○正路 隆彦 ¹ ○正路 摩 ³ , ²	1.物材機構 1.京大複合研 1.産総研,2.東工大,3.奈良先端大,4.名工大,5.Univ. Grenoble Alpes,6.広島市立大,7.JASRI/SPring8,8.埼玉大,9.物材機構,10.山形大学 1.兵庫県立大院工,2.名工大院工,3.広島市立大院情報 1.阪大院工 1.名大工 1.東理大理工 1.三菱ケミカル(株) 1.産総研,2.物材機構,3.東大,4.KEK,5.京大,6.弘前大,7.東北大,8.JASRI,9.KISTEC,10.東工大 1.物材機構 1.東北大,2.早稲田大,3.京大,4.産総研,5.理研,6.物材機構 1.東北大,2.早稲田大,3.京大,4.産総研,5.理研,6.物材機構
2 放射線 「現地の3 3/16(TH 13:30 14:00 14:30 14:45 15:00 15:15 15:45 16:00 16:15 17:00 17:15 17:45 3 光・フ 17:16 レー・・・・ 3/16(TH 13:30	# / Ionizing Radiati	On 一配信なし】T2 物質の超秩序構造とその応用 ~結晶と非晶 口頭講演 (Oral Presentation) A404 会場 (Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 蛍光 X 線ホログラフィーと陽電子消滅寿命分光による 長 残光蛍光体結晶中共賦活イオンの局所構造解析 インバースモード蛍光 X 線ホログラフィーを用いた Mn ドーブ BiFeO3 薄膜の電場下における構造解析 休憩 /Break 小型・超高精細マイクロ LED ディスプレイ実現の鍵を握 る Eu 添加 GaN 赤色 LED の高輝度化に向けて 構造歪によるチタン系酸化物の誘電率増大効果 リチウムイオン電池用負極材料 Ti ₅ Nb ₁₀ O ₂₉ の負極特性と量子ビームを用いた平均・局所構造の検討 ゼオライトの構造制御と機能発現 室温における永久高密度化した非晶質 SiO ₂ の作製 休憩 /Break 大規模第一原理計算と機械学習を用いた超秩序構造解析 化学結合ネットワーク中のリングに基づくガラスの構造 秩序の解析 cs and Photonics の		1.物材機構 1.京大複合研 1.産総研, 2.東工大, 3.奈良先端大, 4.名工大, 5.Univ. Grenoble Alpes, 6.広島市立大, 7.JASRI/SPring8, 8.埼玉大, 9.物材機構, 10.山形大学 1.兵庫県立大院工, 2.名工大院工, 3.広島市立大院情報 1.阪大院工 1.名大工 1.東理大理工 1.三菱ケミカル(株) 1.産総研, 2.物材機構, 3.東大, 4.KEK, 5.京大, 6.弘前大, 7.東北大, 8.JASRI, 9.KISTEC, 10.東工大 1.物材機構 1.東北大, 2.早稲田大, 3.京大, 4.産総研, 5.理研, 6.物材機構 1.東北大, 2.早稲田大, 3.京大, 4.産総研, 5.理研, 6.物材機構
2 放射線 「現地の。 3/16(TH 13:30 14:00 14:30 14:45 15:00 15:15 15:45 16:00 16:15 17:45 3 光・フ T6 レー・ 3/16(TH 13:30 14:00	# / Ionizing Radiati	On 一配信なし】T2 物質の超秩序構造とその応用 ~結晶と非晶 口頭講演 (Oral Presentation) A404 会場 (Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 蛍光 X線ホログラフィーと陽電子消滅寿命分光による 長 残光蛍光体結晶中共賦活イオンの局所構造解析 インバースモード蛍光 X線ホログラフィーを用いた Mn ドープBiFeO3薄膜の電場下における構造解析 休憩/Break 小型・超高精細マイクロ LED ディスプレイ実現の鍵を握る Eu添加 GaN 赤色 LED の高輝度化に向けて 構造歪によるチタン系酸化物の誘電率増大効果 リチウムイオン電池用負極材料 Ti ₂ Nb ₁₀ O ₂₉ の負極特性と量子ビームを用いた平均・局所構造の検討 ゼオライトの構造制御と機能発現 室温における永久高密度化した非晶質 SiO ₂ の作製 休憩/Break 大規模第一原理計算と機械学習を用いた超秩序構造解析 化学結合ネットワーク中のリングに基づくガラスの構造秩序の解析 cs and Photonics の新展開 / Recent Progress of laser ablation 口頭講演 (Oral Presentation) A201 会場 (Room A201) パルスレーザーアプレーションによる微細構造物形成の基礎と応用 レーザー生成プラズマ支援アプレーション (LIPAA) による透明材料へのナノ周期構造 (LIPSS) 作製		1.物材機構 1.京大複合研 1.京大複合研 1.産総研, 2.東工大, 3.奈良先端大, 4.名工大, 5.Univ. Grenoble Alpes, 6.広島市立大, 7.JASRI/SPring8, 8.埼玉大, 9.物材機構, 10.山形大学 1.兵庫県立大院工, 2.名工大院工, 3.広島市立大院情報 1.阪大院工 1.名大工 1.東理大理工 1.三菱ケミカル (株) 1.産総研, 2.物材機構, 3.東大, 4.KEK, 5.京大, 6.弘前大, 7.東北大, 8.JASRI, 9.KISTEC, 10.東工大 1.物材機構 1.東北大, 2.早稲田大, 3.京大, 4.産総研, 5.理研, 6.物材機構 1.東北大, 2.早稲田大, 3.京大, 4.産総研, 5.理研, 6.物材機構 1.東海大総科研, 2.京大化研 1.弘前大理工, 2.理研
2 放射線 「現地の3 3/16(TH 13:30 14:40 14:30 14:45 15:00 15:15 15:45 16:00 16:15 17:00 17:15 17:45 3 光・フ 13:30 14:00 14:15 14:45 15:15	# / Ionizing Radiati	On 一配信なし】T2 物質の超秩序構造とその応用〜結晶と非晶 「回頭講演 (Oral Presentation) A404 会場 (Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 電光 X線ホログラフィーと陽電子消滅寿命分光による長 残光蛍光体結晶中共賦活イオンの局所構造解析 インバースモード蛍光 X線ホログラフィーを用いたMn ドーブBiFeO3 薄膜の電場下における構造解析 休憩/Break 小型・超高精細マイクロLEDディスプレイ実現の鍵を握 るEu添加GaN赤色LEDの高輝度化に向けて 構造歪によるチタン系酸化物の誘電率増大効果 リチウムイオン電池用負極材料 Ti₂Nb10O29の負極特性と量子ビームを用いた平均・局所構造の検討 ゼオライトの構造制御と機能発現 室温における永久高密度化した非晶質 SiO2 の作製 体態/Break 大規模第一原理計算と機械学習を用いた超秩序構造解析 化学結合ネットワーク中のリングに基づくガラスの構造 をま and Photonics の新展開 / Recent Progress of laser ablation 口頭講演 (Oral Presentation) A201 会場 (Room A201) パルスレーザーアプレーションによる微細構造物形成の基礎と応用 レーザー生成プラズマ支援アプレーション (LIPAA) による透明材料へのナノ周期構造 (LIPSS) 作製 レーザー加工過程の学理:ミクローマクロシミュレーションによる解析 軟X線レーザーによるアプレーション研究 休憩/Break	□ (本本 浩司 1 ○ 小野寺 陽平 1 ○ 北浦守 10 。 正井 博和 1 。 渡邊 真太 2 。 山本 裕太 3 。 加藤 達也 4.5 。 木村 耕治 4 。 八方 直久 6 。 林 好一 4.7 。 小玉 翔平 8 。 武田 博明 8 。 中画 鼓之 2 ○ 中嶋 誠二 1 。 加藤 廉 1 。 有馬 知希 1 。 木村 耕治 2 。 八方 直久 3 。 林 好一 2 。 藤沢 浩訓 1 ○ 藤原 康文 1 ○ 島野 雄帆 1 。 旭 良司 1 。 Alex Kutana 1 ○ (M1) 永井 竜 1 。 北村 尚斗 1 。 石橋 千晶 1 ,井手本 康 1 ○ 武脇 隆彦 1 ○ 正井 博和 1 ,小原 真司 2 。 脇原 徹 3 ,柴崎 裕樹 4 ,小野寺 陽平 5 ,增野 敦信 。 助永 壮平 7 。 尾原 幸治 8 ,酒井 雄樹 9 .10 ,東 正樹 10 。 宮崎 剛 1 ○ 志賀 元紀 1 .5 ,平田 秋彦 2 6 ,小野寺 陽平 3 .6 ,正井 博和 4 ○ 橋田 昌樹 1 .2 ,升野 振一郎 2 ○ 中平 敬太 1 ,三浦 矛巧 1 ,花田 修賢 1 ,小幡 孝太郎 2 ,杉岡 幸次 2 ○ 乙部 智仁 1 2 ○ 乙田 雅彦 1	1. 物材機構 1. 京大複合研 1. 産総研, 2. 東工大, 3. 奈良先端大, 4. 名工大, 5.Univ. Grenoble Alpes, 6. 広島市立大, 7. JASRI/SPring8, 8. 埼玉大, 9. 物材機構, 10. 山形大学 1. 兵庫県立大院工, 2. 名工大院工, 3. 広島市立大院情報 1. 阪大院工 1. 名大工 1. 東理大理工 1. 三菱ケミカル (株) 1. 産総研, 2. 物材機構, 3. 東大, 4. KEK, 5. 京大, 6. 弘前大, 7. 東北大, 8. JASRI, 9. KISTEC, 10. 東工大 1. 物材機構 1. 東北大, 2. 早稲田大, 3. 京大, 4. 産総研, 5. 理研, 6. 物材機構 1. 東海大総科研, 2. 京大化研 1. 弘前大理工, 2. 理研 1. 量研, 2. 東大光量子 1. 量研関西研
2 放射線 「現地の。 3/16(TH 13:30 14:400 14:45 15:00 15:15 15:45 16:00 16:15 17:00 17:15 17:45 3 光・フ T6 レー・ 3/16(TH 13:30 14:45 15:15 15:30	# / Ionizing Radiati	On 一配信なし】T2 物質の超秩序構造とその応用 ~結晶と非晶 「頭講漢 (Oral Presentation) A404 会場(Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測	質のはざまの科学~ / Materials with Hyperordered ○木本 浩司 ¹ ○小野寺 陽平 ¹ ○北浦守 ¹⁰ , 正井 博和 ¹ , 渡邊 真太 ² , 山本 裕太 ³ , 加藤 達也 ^{4.5} , 木村 耕治 ⁴ , 八方 直久 ⁶ , 林 好一 ^{4.7} , 小玉 翔平 ⁸ , 武田 博明 ⁸ , 中西 貴之 ² ○中嶋 誠二 ¹ , 加藤 廉 ¹ , 有馬 知希 ¹ , 木村 耕治 ² , 八方 直久 ³ , 林 好一 ² , 藤沢 浩訓 ¹ ○藤原 康文 ¹ ○島野 雄帆 ¹ , 旭 良司 ¹ , Alex Kutana ¹ ○(M1) 永井 竜 ¹ , 北村 尚斗 ¹ , 石橋 千晶 ¹ , 井手本 康 ¹ ○武脇 隆彦 ¹ ○正井 博和 ¹ , 小原 真司 ² , 脇原 徹 ³ , 柴崎 裕樹 ⁴ , 小野 寺陽平 ³ , 增野 敦信 ⁶ , 肋永 壮平 ⁷ , 尾原 幸治 ⁸ , 酒井 雄樹 ^{9,10} , 東 正樹 ^{10,9} ○宮崎 剛 ¹ ○志賀 元紀 ^{1.5} , 平田 秋彦 ^{2.6} , 小野寺 陽平 ^{3.6} , 正井 博和 ⁴ ○橋田 昌樹 ^{1.2} , 升野 振一郎 ² ○ 乙部 智仁 ^{1.2} ○ 石野 雅彦 ¹ ○ 小幡 孝太郎 ¹ , カバジェロ ルカス フランセスク ¹ , 川端 祥太 ^{1,2} , 宮地 悟代 ² , 杉岡 幸次 ¹	1.物材機構 1.京大複合研 1.産総研, 2.東工大, 3.奈良先端大, 4.名工大, 5.Univ. Grenoble Alpes, 6.広島市立大, 7.JASRI/SPring8, 8.埼玉大, 9.物材機構, 10.山形大学 1.兵庫県立大院工, 2.名工大院工, 3.広島市立大院情報 1.阪大院工 1.名大工 1.東理大理工 1.三菱ケミカル (株) 1.産総研, 2.物材機構, 3.東大, 4.KEK, 5.京大, 6.弘前大, 7.東北大, 8.JASRI, 9.KISTEC, 10.東工大 1.物材機構 1.東北大, 2.早稲田大, 3.京大, 4.産総研, 5.理研, 6.物材機構 1.東海大総科研, 2.京大化研 1.弘前大理工, 2.理研 1.量研, 2.東大光量子 1.量研関西研 1.理研 光量子, 2.東京農工大
2 放射線 【現地の3 3/16(TH 13:30 14:40 14:30 14:45 15:00 15:15 15:45 16:00 16:15 17:45 3 光・フ 17:45 3 光・フ 13:30 14:40 14:45 15:15	# / Ionizing Radiati	On 一配信なし】T2 物質の超秩序構造とその応用 ~結晶と非晶 「頭講演 (Oral Presentation) A404 会場 (Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測 質光 X線ホログラフィーと陽電子消滅寿命分光による長 残光蛍光体結晶中共賦活イオンの局所構造解析 インバースモード蛍光 X線ホログラフィーを用いたMn ドープBiFeO3 薄膜の電場下における構造解析 休憩/Break 小型・超高精細マイクロLEDディスプレイ実現の鍵を握 るをし添加 GaN 赤色 LED の高輝度化に向けて 構造歪によるチタン系酸化物の誘電率増大効果 リチウムイオン電池用負極材料 Ti ₂ Nb ₁₀ O ₂₉ の負極特性と量子ビームを用いた平均・局所構造の検討 ゼオライトの構造制御と機能発現 室温における永久高密度化した非晶質 SiO ₂ の作製 休憩/Break 大規模第一原理計算と機械学習を用いた超秩序構造解析 化学結合ネットワーク中のリングに基づくガラスの構造 秩序の解析 as and Photonics 「の新展開 / Recent Progress of laser ablation 「D頭講演 (Oral Presentation) A201 会場 (Room A201) パルスレーザーアブレーションによる微細構造物形成の基礎と応用 レーザー組ズラズマ支援アブレーション(LIPAA)による透明材料へのナノ周期構造 (LIPSS) 作製 レーザー加工過程の学理:ミクローマクロシミュレーションによる解析 軟X線レーザーによるアプレーション研究 休憩/Break GHzパーストモードフェムト秒レーザーによる高品質・	質のはざまの科学~ / Materials with Hyperordered ○木本 浩司 ¹ ○小野寺 陽平 ¹ ○北浦守 ¹⁰ , 正井 博和 ¹ , 渡邊 真太 ² , 山本 裕太 ³ , 加藤 達也 ^{4.5} , 木村 耕治 ⁴ , 八方 直久 ⁶ , 林 好一 ^{4.7} , 小玉 翔平 ⁸ , 武田 博明 ⁸ , 中西 貴之 ² ○中嶋 誠二 ¹ , 加藤 廉 ¹ , 有馬 知希 ¹ , 木村 耕治 ² , 八方 直久 ³ , 林 好一 ² , 藤沢 浩訓 ¹ ○藤原 康文 ¹ ○島野 雄帆 ¹ , 旭 良司 ¹ , Alex Kutana ¹ ○(M1) 永井 竜 ¹ , 北村 尚斗 ¹ , 石橋 千晶 ¹ , 井手本 康 ¹ ○武脇 隆彦 ¹ ○正井 博和 ¹ , 小原 真司 ² , 脇原 徹 ³ , 柴崎 裕樹 ⁴ , 小野 寺陽平 ³ , 增野 敦信 ⁶ , 肋永 壮平 ⁷ , 尾原 幸治 ⁸ , 酒井 雄樹 ^{9,10} , 東 正樹 ^{10,9} ○宮崎 剛 ¹ ○志賀 元紀 ^{1.5} , 平田 秋彦 ^{2.6} , 小野寺 陽平 ^{3.6} , 正井 博和 ⁴ ○橋田 昌樹 ^{1.2} , 升野 振一郎 ² ○ 乙部 智仁 ^{1.2} ○ 石野 雅彦 ¹ ○ 小幡 孝太郎 ¹ , カバジェロ ルカス フランセスク ¹ , 川端 祥太 ^{1,2} , 宮地 悟代 ² , 杉岡 幸次 ¹	1. 物材機構 1. 京大複合研 1. 産総研, 2. 東工大, 3. 奈良先端大, 4. 名工大, 5.Univ. Grenoble Alpes, 6. 広島市立大, 7. JASRI/SPring8, 8. 埼玉大, 9. 物材機構, 10. 山形大学 1. 兵庫県立大院工, 2. 名工大院工, 3. 広島市立大院情報 1. 阪大院工 1. 名大工 1. 東理大理工 1. 三菱ケミカル (株) 1. 産総研, 2. 物材機構, 3. 東大, 4. KEK, 5. 京大, 6. 弘前大, 7. 東北大, 8. JASRI, 9. KISTEC, 10. 東工大 1. 物材機構 1. 東北大, 2. 早稲田大, 3. 京大, 4. 産総研, 5. 理研, 6. 物材機構 1. 東海大総科研, 2. 京大化研 1. 弘前大理工, 2. 理研 1. 量研, 2. 東大光量子 1. 量研関西研
2 放射線 「現地の。 3/16(TH 13:30 14:400 14:45 15:00 15:15 15:45 16:00 16:15 17:00 17:15 17:45 3 光・フ T6 レー・ 3/16(TH 13:30 14:45 15:15 15:30	# I for A	On 一配信なし】T2 物質の超秩序構造とその応用 ~結晶と非晶 「頭講漢 (Oral Presentation) A404 会場(Room A404) 透過電子顕微鏡による微細構造解析の現状 ガラスの秩序を解明する量子ビーム計測	質のはざまの科学~ / Materials with Hyperordered ○木本 浩司¹ ○小野寺 陽平¹ ○北浦守¹⁰, 正井 博和¹, 渡邊 真太², 山本 裕太³, 加藤 遼也⁴⁵, 木村 耕治⁴, 八方 直久 °, 林 好一⁴⁻², 小玉 翔平², 武田 博明⁵, 中西 貴之² ○中嶋 誠二¹, 加藤 廉¹, 有馬 知希¹, 木村 耕治², 八方 直久³, 林 好一², 藤沢 浩訓¹ ○藤原 康文¹ ○鳥野 雄帆¹, 旭 良司¹, Alex Kutana¹ ○(M1) 永井 竜¹, 北村 尚斗¹, 石橋 千晶¹, 井手本 康¹ ○武脇 隆彦¹ ○正井 博和¹, 小原 真司², 脇原 徹³, 柴崎 裕樹⁴, 小野寺 陽平⁵, 贈野 敦信 °, 助永 壮平², 尾原 幸治⁵, 酒井 雄樹⁵,¹⁰, 東 正樹¹⁰.⁰ ○宮崎 剛¹ ○志賀 元紀¹.⁵, 平田 秋彦².⁶, 小野寺 陽平³.⁶, 正井 博和⁴ ○橋田 昌樹¹.², 升野 振一郎² ○中平 敬太¹, 三浦 矛巧¹, 花田 修賢¹, 小幡 孝太郎², 杉岡 幸次² ○乙部 智仁¹.² ○石野 雅彦¹ ○小幡 孝太郎¹, カバジェロ ルカス フランセスク¹, 川端 祥太¹², 宮地 悟代², 杉岡 幸次¹ ○具志堅 英雄¹, 谷 水城², 石川 顕一²	1.物材機構 1.京大複合研 1.京大複合研 1.京大複合研 1.産総研, 2.東工大, 3.奈良先端大, 4.名工大, 5.Univ. Grenoble Alpes, 6.広島市立大, 7.JASRI/SPring8, 8.均 玉大, 9.物材機構, 10.山形大学 1.兵庫県立大院工, 2.名工大院工, 3.広島市立大院情報 1.阪大院工 1.名大工 1.東理大理工 1.三菱ケミカル (株) 1.産総研, 2.物材機構, 3.東大, 4.KEK, 5.京大, 6.弘前大, 7.東北大, 8.JASRI, 9.KISTEC, 10.東工大 1.物材機構 1.東北大, 2.早稲田大, 3.京大, 4.産総研, 5.理研, 6.物材機構 1.東海大総科研, 2.京大化研 1.弘前大理工, 2.理研 1.量研, 2.東大光量子 1.量研関西研 1.理研 光量子, 2.東京農工大

17:00	招 16p-A201-8	熱的レーザーアブレーションを活用した材料加工と微粒	○中村 大輔¹, 矢筒 俊吾¹, 堀之内 一貴¹, 辻 剛志²	1. 九大シス情, 2. 島根大総理工
17:30	招 16p-A201-9	子作製 レーザー誘起ブレークダウン分光法による水中その場元	○作花 哲夫¹	1.京大院工
T7 + /	火熱亦換が抜く異々	素分析 分野横断型光科学の新地平/New horizon in interdisciplina	ury photonics pionograd by papa-photothermal conve	arcian
		口頭講演 (Oral Presentation) A307会場 (Room A307)	ny photonics pioneered by hano-photothermal conve	ELZIOII
13:30	16p-A307-1	オープニング(趣旨説明):ナノ光熱変換が拓く異分野横	○飯田 琢也 1.2	1.大阪公立大院理, 2.大阪公立大LAC-SYS研
13:40	招 16p-A307-2	断型光科学の新地平 光熱流体効果を利用したコロイド粒子・相変化材料系へ の群知能の実装	〇斎木 敏治 1 , 中山 牧水 1 , 遠藤 博紀 1 , 高橋 廣守 1 , 長瀬 暉 1 , 山本 詠士 1 , 齊藤 雄太 2 , 畑山 祥吾 2 , 牧野 孝太郎 2	1.慶大理工, 2.産総研
14:05 14:30		局在プラズモンを用いたナノスケール温度場造形 光渦の下での光熱・光圧による連続体の質量輸送の理論 研究		1. 神戸高専 1. 阪大院基礎工, 2. 阪公大 LAC-SYS研, 3. 千葉大院工, 4. 千葉大キラリティー研, 5. 阪公大院理
14:55 15:20		光熱誘起マイクロバブルが拓く熱流体制御技術 異種プローブの光濃縮による迅速・高感度なDNA定量 分析法の開発		1.京大院・工 1.大阪公立大LAC-SYS研, 2.大阪公立大院理, 3.大阪公立大院工, 4. 阪大院基礎工
15:35	16p-A307-7	光によって駆動される自発運動微小液滴	〇納谷 昌之 $^{1.2}$, 佐藤 守 1 , 三友 秀之 3 , 居城 邦治 3 , 斎 木 敏治 1	1. 慶大理工, 2. 納谷ラボ, 3. 北大電子研
15:50 16:05	+77 16 n A 207 0	休憩・名刺交換会/Break 局所レーザー加熱を利用したナノ材料の選択合成	○藤原 英樹¹	1 业海兴国土
16:30		満州レーザー加熱を利用したアノ材料の選択合成 微細構造を用いた光熱変換での実効的な吸収率と熱伝導		1. 北海学園大 1. 物材機構, 2. 筑波大, 3.JST さきがけ
		率の制御		
16:55		光熱変換の分子流体力学への展開	○辻 徹郎¹	1.京大情報
17:20	招 16p-A307-11	中赤外フォトサーマル定量位相顕微鏡による単一生細胞 イメージング	〇并手口 拓郎	1.東大
17:45		微生物の光濃縮によるセンシング・環境テクノロジーの 創成	果 ^{1,3} ,飯田 琢也 ^{2,3}	1. 阪公大院工, 2. 阪公大院理, 3. 阪公大LAC-SYS研
18:10		クロージング トこ、サギロの特別と内田 / Michaelies Dharies and soul	○伊都 将司 ^{1,2}	1. 阪大院基礎工, 2. 大公大 LAC-SYS 研
		キミー共振器の物理と応用 / Mietronics -Physics and appl 口頭講演 (Oral Presentation) A205 会場(Room A205)	cations of Dielectric Mile Resonators	
13:30		ミートロニクス~誘電体ミー共振器の物理と応用	○高原 淳一 1.2	1.阪大院工, 2.阪大フォトニクスセ
13:35		ミー共鳴ナノアンテナによる光と物質の相互作用の増大		1.神戸大院工, 2.JST さきがけ
14:05 14:35		カソードルミネセンスによるミー共鳴モードの可視化 局在共鳴と光回折の協奏現象 - 表面格子共鳴、Kerker 効	○三宮 エ¹	1.東工大物質理工 1.京大院工
14.55	16 10p-A203-4	果、BICs-	O11开设力	1. 水入別上
15:05 15:35		全誘電体メタ表面を用いた磁気光学効果の増強 休憩・名刺交換会/Break		1. 慶應理工, 2. 東大先端研
15:50 16:20		誘電体ナノ構造の高感度バイオセンシング応用 メタサーフェスの光センサーへの展開		1. 徳島大 pLED, 2. 理研 1. 物材機構
16:50		誘電体導波路型メタサーフェスによる機能性光学素子		1. 農工大工
17:20		【注目講演】誘電体メタサーフェスが拓く高感度・多次元		1.NTT 先端集積デバイス研
		イメージング		
15.50	16 1005 10		O## W]	1 H= L-
17:50 6 薄膜・	16p-A205-10 表面 / Thin Films	クロージング	○藤井 稔¹	1. 神戸大工
6 薄膜·	表面 / Thin Films	クロージング	○藤井 稔 ¹	1. 神戸大工
6 薄膜· T11 誘f 3/16(表面 / Thin Films 配体研究における機 「hu.) 9:00 - 12:30	クロージング and Surfaces 械学習 / Machine learning on dielectrics study 口頭講演 (Oral Presentation) A404会場(Room A404)		
6 薄膜· T11 誘電	表面 / Thin Films 配体研究における機 「hu.) 9:00 - 12:30	クロージング and Surfaces 械学習 / Machine learning on dielectrics study		1.神戸大工 1.JFCC, 2.東工大
6 薄膜· T11 誘f 3/16(表面 / Thin Films 電体研究における機 Fhu.) 9:00 - 12:30 招 16a-A404-1	クロージング and Surfaces 械学習 / Machine learning on dielectrics study 口頭講演 (Oral Presentation) A404 会場(Room A404) 第一原理計算を活用したデータ駆動型強誘電体・誘電体		
6 薄膜· T11 誘電 3/16(7 9:00 9:30	表面 / Thin Films 意体研究における機 Thu.) 9:00 - 12:30 招 16a-A404-1 招 16a-A404-2	クロージング and Surfaces 城学習 / Machine learning on dielectrics study 口頭請漢 (Oral Presentation) A404 会場(Room A404) 第一原理計算を活用したデータ駆動型強誘電体・誘電体 材料研究 機械学習を活用した強誘電体・圧電体の研究 Machine learning for discovery of meaningful chemical and physical contributors to piezoresponse force	〇森分博紀 ^{1,2} 〇保科拓也 ¹	1.JFCC, 2.東工大
6 薄膜· T11 誘電 3/16(7 9:00 9:30	表面 / Thin Films 意体研究における機 Thu.) 9:00 - 12:30 招 16a-A404-1 招 16a-A404-2	クロージング and Surfaces 械学習 / Machine learning on dielectrics study 口頭講演 (Oral Presentation) A404 会場(Room A404) 第一原理計算を活用したデータ駆動型強誘電体・誘電体 材料研究 機械学習を活用した強誘電体・圧電体の研究 Machine learning for discovery of meaningful chemical	〇森分博紀 ^{1,2} 〇保科拓也 ¹	1. 東工大物質理工
6 薄膜 T11 誘 3/16(* 9:00 9:30 10:00 10:30 10:45	表面 / Thin Films 配体研究における機 Fhu.) 9:00 - 12:30 招 16a-A404-1 招 16a-A404-2 招 E 16a-A404-3	クロージング and Surfaces	〇森分博紀 1,2 〇保科拓也 1 〇Nazanin Bassiri-Gharb 1 〇平永良臣 1 , 野口雄貴 1 , 三村和仙 2 , 清水荘雄 2 , 舟蹇浩 2 , 長康雄 1	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大
6 薄膜· T11 誘f 3/16(1 9:00 9:30 10:00	表面 / Thin Films 配体研究における機 Fhu.) 9:00 - 12:30 招 16a-A404-1 招 16a-A404-2 招 E 16a-A404-3	クロージング and Surfaces	〇森分博紀 1,2 〇保科拓也 1 〇Nazanin Bassiri-Gharb 1 〇平永良臣 1 , 野口雄貴 1 , 三村和仙 2 , 清水荘雄 2 , 舟蹇浩 2 , 長康雄 1	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大
6 薄膜 T11 誘 3/16(9:00 9:30 10:00 10:30 10:45	表面 / Thin Films B体研究における機 Fhu.) 9:00 - 12:30 招 16a-A404-1 招 16a-A404-2 招 E 16a-A404-3 16a-A404-4 招 16a-A404-5	クロージング and Surfaces 械学習 / Machine learning on dielectrics study □頭請漢 (Oral Presentation) A404 会場(Room A404) 第一原理計算を活用したデータ駆動型強誘電体・誘電体 材料研究 機械学習を活用した強誘電体・圧電体の研究 Machine learning for discovery of meaningful chemical and physical contributors to piezoresponse force microscopy 休憩/Break 局所C-Vマップの機械学習解析に基づくグレイン境界と 強誘電ドメイン挙動の相関に関する統計的評価 強誘電体の非線形ダイナミクスを活かしたリザバーコン ビューティング イオン液体の分子ダイナミクスと電気化学反応を利用し	 ○森分博紀^{1,2} ○保科拓也¹ ○Nazanin Bassiri-Gharb¹ ○平永良臣¹, 野口雄貴¹, 三村和仙², 清水荘雄², 舟窪浩², 長康雄¹ ○トープラサートポンカシディット¹, 名幸 瑛心¹, 中根了昌¹, 竹中充¹, 高木信一¹ 	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大
6 薄膜 T11 誘 3/16(* 9:00 9:30 10:00 10:30 10:45 11:00 11:30	表面 / Thin Films を研究における機 Fhu.) 9:00 - 12:30 招 16a-A404-1 招 16a-A404-2 招 E 16a-A404-3 相 16a-A404-4 招 16a-A404-6 招 16a-A404-7 (クロ・ナノスケー	クロージング and Surfaces	 ○森分 博紀^{1,2} ○保科 拓也¹ ○Nazanin Bassiri-Gharb¹ ○平永 良臣¹, 野口 雄貴¹, 三村 和仙², 清水 荘雄², 舟 窪 浩², 長 康雄¹ ○トープラサートポン カシディット¹, 名幸 瑛心¹, 中根 了昌¹, 竹中 充¹, 高木 信一¹ ○木下 健太郎¹ ○矢嶋 赳彬¹ 	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大 1.東大 1.東大 1.東東大理 1.九大シス情
6 薄膜 T11 誘 3/16(* 9:00 9:30 10:00 10:30 10:45 11:00 11:30	表面 / Thin Films S体研究における機 Fhu.) 9:00 - 12:30 招 16a-A404-1 招 16a-A404-2 招 E 16a-A404-3 16a-A404-4 招 16a-A404-6 招 16a-A404-7 (クロ・ナノスケー hu.) 13:30 - 18:25	クロージング and Surfaces	○森分 博紀 ^{1,2} ○保科 拓也 ¹ ○Nazanin Bassiri-Gharb ¹ ○平永 良臣 ¹ , 野口 雄貴 ¹ , 三村 和仙 ² , 清水 荘雄 ² , 舟 窪 浩 ² , 長 康雄 ¹ ○トーブラサートポン カシディット ¹ , 名幸 瑛心 ¹ , 中根 了昌 ¹ , 竹中 充 ¹ , 高木 信一 ¹ ○木下 健太郎 ¹ ○矢嶋 赳彬 ¹ nterface Technologies for Micro and Nanoscale Fab	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大 1.東大 1.東大 1.東東大理 1.九大シス情
6 薄膜 T11 誘 3/16(1 9:00 9:30 10:00 10:30 10:45 11:00 11:30 12:00 T12 マ 3/16(T	表面 / Thin Films を	タロージング and Surfaces	○森分博紀 ^{1,2} ○保科 拓也 ¹ ○Nazanin Bassiri-Gharb ¹ ○平永 良臣 ¹ , 野口 雄貴 ¹ , 三村 和仙 ² , 清水 荘雄 ² , 舟 窪 浩 ² , 長 康雄 ¹ ○トーブラサートボン カシディット ¹ , 名幸 瑛心 ¹ , 中根 了昌, 竹中 充 ¹ , 高木 信一 ¹ ○木下 健太郎 ¹ ○矢嶋 赳彬 ¹ nterface Technologies for Micro and Nanoscale Fab	1. 東工大物質理工 1. Georgia Tech 1. 東北大, 2. 東工大 1. 東北大, 1. 東北大 1. 東北
6 薄膜 T11 誘 3/16(* 9:00 9:30 10:00 10:30 10:45 11:00 11:30 12:00 T12 マ 3/16(T 13:30	表面 / Thin Films Mc 研究における機 Chu.) 9:00 - 12:30 招 16a-A404-1 招 16a-A404-2 招 E 16a-A404-3 16a-A404-4 招 16a-A404-5 招 16a-A404-7 (クロ・ナノスケー hu.) 13:30 - 18:25 招 16p-A302-1 招 16p-A302-2	クロージング and Surfaces 検学習 / Machine learning on dielectrics study 口頭請漢 (Oral Presentation) A404 会場(Room A404) 第一原理計算を活用したデータ駆動型強誘電体・誘電体 材料研究 機械学習を活用した強誘電体・圧電体の研究 Machine learning for discovery of meaningful chemical and physical contributors to piezoresponse force microscopy 休憩/Break 局所C-Vマップの機械学習解析に基づくグレイン境界と 強誘電ドメイン挙動の相関に関する統計的評価 強誘電体の非線形ダイナミクスを活かしたリザバーコン ビューティング イオン液体の分子ダイナミクスと電気化学反応を利用し た物理リザバー プロトンを用いたニューロモルフィック情報素子の設計 ル微細加工の表面界面先端技術 / Advanced Surface and I 口頭講演(Oral Presentation)A302 会場(Room A302) エネルギー自立分散ロボットに向けた集積 MEMS テクノ ロジ 3 次元リソグラフィ技術を用いたメカニカルメタマテリアル発電 シリコン酸化膜エレクトレットのMEMS アクチュエー	○森分博紀 ^{1,2} ○保科拓也 ¹ ○Nazanin Bassiri-Gharb ¹ ○平永良臣 ¹ , 野口 雄貴 ¹ , 三村和仙 ² , 清水荘雄 ² , 舟窪浩 ² , 長康雄 ¹ ○トープラサートボンカシディット ¹ , 名幸 瑛心 ¹ , 中根了昌, 竹中充 ¹ , 高木信一 ¹ ○木下健太郎 ¹ ○矢嶋 赳彬 ¹ nterface Technologies for Micro and Nanoscale Fab ○三田 吉郎 ¹ ○鈴木 孝明 ¹	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大 1.東大 1.東大 1.東東大理 1.九大シス情ではication 1.東大工
6 薄膜 T11 誘 3/16(*) 9:00 9:30 10:00 10:30 10:45 11:00 11:30 12:00 T12 マ / 3/16(T 13:30 14:05	表面 / Thin Films S体研究における機 Fhu.) 9:00 - 12:30 招 16a-A404-1 招 16a-A404-2 招 E 16a-A404-3 16a-A404-4 招 16a-A404-5 招 16a-A404-5 招 16a-A404-7 (クロ・ナノスケーhu.) 13:30 - 18:25 招 16p-A302-1 招 16p-A302-2 招 16p-A302-3	クロージング and Surfaces	○森分 博紀 ^{1,2} ○保科 拓也 ¹ ○Nazanin Bassiri-Gharb ¹ ○平永 良臣 ¹ , 野口 雄貴 ¹ , 三村 和仙 ² , 清水 荘雄 ² , 舟 窪浩 ² , 長 康雄 ¹ ○トープラサートポン カシディット ¹ , 名幸 瑛心 ¹ , 中根 了昌 ¹ , 竹中 充 ¹ , 高木 信一 ¹ ○木下 健太郎 ¹ ○矢嶋 赳彬 ¹ nterface Technologies for Micro and Nanoscale Fab ○三田 吉郎 ¹ ○鈴木 孝明 ¹ ○年吉 洋 ¹	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大 1.東大 1.東大 1.東大理 1.九大シス情ではion 1.東大工 1.群馬大学理工
6 薄膜 T11 誘 3/16(*) 9:00 9:30 10:00 10:30 10:45 11:00 11:30 12:00 T12 マ / 3/16(T 13:30 14:05	表面 / Thin Films B体研究における機 Fhu.) 9:00 - 12:30 招 16a-A404-1 招 16a-A404-2 招 E 16a-A404-3 16a-A404-4 招 16a-A404-5 招 16a-A404-6 招 16a-A404-7 イクロ・ナノスケー hu.) 13:30 - 18:25 招 16p-A302-1 招 16p-A302-2 招 16p-A302-3 招 E 16p-A302-4	クロージング and Surfaces 枝学習 / Machine learning on dielectrics study 口頭講演 (Oral Presentation) A404 会場(Room A404) 第一原理計算を活用したデータ駆動型強誘電体・誘電体 材料研究 機械学習を活用した強誘電体・圧電体の研究 Machine learning for discovery of meaningful chemical and physical contributors to piezoresponse force microscopy 休憩/Break 局所C-Vマップの機械学習解析に基づくグレイン境界と 強誘電ドメイン学動の相関に関する統計的評価 強誘電体の非線形ダイナミクスを活かしたリザバーコン ビューティング イオン液体の分子ダイナミクスと電気化学反応を利用した物理リザバープロトンを用いたニューロモルフィック情報素子の設計ル微細加工の表面界面先端技術 / Advanced Surface and 口頭講演 (Oral Presentation) A302 会場(Room A302) エネルギー自立分散ロボットに向けた集積 MEMSテクノロジ 3 次元リソグラフィ技術を用いたメカニカルメタマテリアル発電 シリコン酸化膜エレクトレットのMEMSアクチュエータ・エナジーハーベスタ応用	○森分博紀 ^{1,2} ○保科拓也 ¹ ○Nazanin Bassiri-Gharb ¹ ○平永良臣 ¹ , 野口雄貴 ¹ , 三村和仙 ² , 清水荘雄 ² , 舟窪浩 ² , 長康雄 ¹ ○トープラサートポンカシディット ¹ , 名幸 瑛心 ¹ , 中根了昌 ¹ , 竹中充 ¹ , 高木信一 ¹ ○木下健太郎 ¹ ○矢嶋 赳彬 ¹ nterface Technologies for Micro and Nanoscale Fable ○三田吉郎 ¹ ○鈴木孝明 ¹ ○年吉洋 ¹ ○Agnes Tixier-Mita ¹ , Satoshi Ihida ¹ , Toshiyoshi Hiroshi ¹	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大 1.東大 1.東大 1.東東大理 1.九大シス情ではication 1.東大工 1.群馬大学理工 1.東大生産研
6 薄膜 〒11 誘す 3/16(*) 9:00 9:30 10:00 10:30 10:45 11:00 11:30 12:00 11:2 マ 3/16(T 13:30 14:05 14:40 15:15	表面 / Thin Films M	クロージング and Surfaces	○森分博紀 ^{1,2} ○保科拓也 ¹ ○R科拓也 ¹ ○Nazanin Bassiri-Gharb ¹ ○平永良臣 ¹ , 野口 雄貴 ¹ , 三村和仙 ² , 清水荘雄 ² , 舟窪浩 ² , 長康雄 ¹ ○トープラサートボンカシディット ¹ , 名幸 瑛心 ¹ , 中根了昌, 竹中充 ¹ , 高木信一 ¹ ○木下健太郎 ¹ ○矢嶋 赳彬 ¹ nterface Technologies for Micro and Nanoscale Fab ○三田 吉郎 ¹ ○鈴木 孝明 ¹ ○年吉 洋 ¹ ○Agnes Tixier-Mita ¹ , Satoshi Ihida ¹ , Toshiyoshi Hiroshi ¹ ○渡邊 健夫 ¹ , 原田 哲男 ¹ , 山川 進二 ¹	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大 1.東大 1.東東大理 1.九大シス情 rication 1.東大工 1.群馬大学理工 1.東大生産研 1.Univ. Tokyo
6 薄膜 T11 誘 3/16(* 9:00 9:30 10:00 10:30 10:45 11:00 11:30 12:00 T12 マー 3/16(T 13:30 14:05 14:40 15:15 16:05	表面 / Thin Films 大田	内ロージング and Surfaces 技学習 / Machine learning on dielectrics study 口頭請漢 (Oral Presentation) A404 会場 (Room A404) 第一原理計算を活用したデータ駆動型強誘電体・誘電体 材料研究 機械学習を活用した強誘電体・圧電体の研究 Machine learning for discovery of meaningful chemical and physical contributors to piezoresponse force microscopy 休憩/Break 局所C-Vマップの機械学習解析に基づくグレイン境界と強誘電ドメイン挙動の相関に関する統計的評価 最誘電体の非線形ダイナミクスを活かしたリザバーコンピューティング イオン液体の分子ダイナミクスを電気化学反応を利用した物理リザバープロトンを用いたニューロモルフィック情報素子の設計 地微細加工の表面界面先端技術 / Advanced Surface and 口頭講演 (Oral Presentation) A302 会場 (Room A302) エネルギー自立分散ロボットに向けた集積 MEMSテクノロジ 3次元リソグラフィ技術を用いたメカニカルメタマテリアル発電 シリコン酸化膜エレクトレットのMEMSアクチュエータ・エナジーハーベスタ応用 Bio-sensors based on Thin-Film-Transistor Technology 休憩/Break EUV リソグラフィー技術開発の現状および今後の展開について	○森分 博紀 ^{1,2} ○保科 拓也 ¹ ○ (Nazanin Bassiri-Gharb ¹ ○ 平永 良臣 ¹ , 野口 雄貴 ¹ , 三村 和仙 ² , 清水 荘雄 ² , 舟 窪浩 ² , 長 康雄 ¹ ○ トープラサートポン カシディット ¹ , 名幸 瑛心 ¹ , 中根 了昌 ¹ , 竹中 充 ¹ , 高木 信一 ¹ ○ 大下 健太郎 ¹ ○ 矢嶋 赳彬 ¹ nterface Technologies for Micro and Nanoscale Fab ○ 三田 吉郎 ¹ ○ 鈴木 孝明 ¹ ○ 年吉 洋 ¹ ○ Agnes Tixier-Mita ¹ , Satoshi Ihida ¹ , Toshiyoshi Hiroshi ¹ ○ 渡邊 健夫 ¹ , 原田 哲男 ¹ , 山川 進二 ¹ ○ 酒井 啓太 ¹	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大 1.東大 1.東大 1.東大 1.東大 1.東大 1.東大 1.東大 1.東
6 薄膜 T11 誘 3/16(9:00 9:30 10:00 10:30 10:45 11:00 11:30 12:00 13/16(T 13:30 14:05 14:40 15:15 16:05 16:40 17:15	表面 / Thin Films M	クロージング and Surfaces	○森分博紀 ^{1,2} ○保科 拓也 ¹ ○ Nazanin Bassiri-Gharb ¹ ○平永良臣 ¹ , 野口 雄貴 ¹ , 三村和仙 ² , 清水 荘雄 ² , 舟窪浩 ² , 長康雄 ¹ ○トープラサートポンカシディット ¹ , 名幸 瑛心 ¹ , 中根 了昌 ¹ , 竹中充 ¹ , 高木信一 ¹ ○木下健太郎 ¹ ○矢嶋 赳彬 ¹ nterface Technologies for Micro and Nanoscale Fab ○三田 吉郎 ¹ ○命木 孝明 ¹ ○年吉 洋 ¹ ○ Agnes Tixier-Mita ¹ , Satoshi Ihida ¹ , Toshiyoshi Hiroshi ¹ ○渡邊 健夫 ¹ , 原田 哲男 ¹ , 山川 進二 ¹ ○酒井 啓太 ¹ ○浅川 鋼児 ¹	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大 1.東大 1.東大 1.東大理 1.九大シス情 rication 1.東大工 1.群馬大学理工 1.東大生産研 1.Univ. Tokyo 1.兵庫県大高度研 1.キヤノン 1.キオクシア
10:30 10:30 10:45 11:30 11:30 11:30 11:30 11:30 11:30 11:30 14:05 14:40 15:15 16:40 17:15	表面 / Thin Films 大田	内ロージング and Surfaces 技学習 / Machine learning on dielectrics study 口頭講演 (Oral Presentation) A404 会場 (Room A404) 第一原理計算を活用したデータ駆動型強誘電体・誘電体 材料研究 機械学習を活用した強誘電体・圧電体の研究 Machine learning for discovery of meaningful chemical and physical contributors to piezoresponse force microscopy 休憩/Break 局所C-Vマップの機械学習解析に基づくグレイン境界と強誘電ドメイン挙動の相関に関する統計的評価 最誘電ドメイン挙動の相関に関する統計的評価 最誘電ドメイン挙動の相関に関する統計的評価 世級・大・大・大・大・大・大・大・大・大・大・大・大・大・大・大・大・大・大・大	○森分博紀 ^{1,2} ○保科 拓也 ¹ ○ Nazanin Bassiri-Gharb ¹ ○平永良臣 ¹ , 野口 雄貴 ¹ , 三村和仙 ² , 清水 荘雄 ² , 舟窪浩 ² , 長康雄 ¹ ○トープラサートポンカシディット ¹ , 名幸 瑛心 ¹ , 中根 了昌 ¹ , 竹中充 ¹ , 高木信一 ¹ ○木下健太郎 ¹ ○矢嶋 赳彬 ¹ nterface Technologies for Micro and Nanoscale Fab ○三田 吉郎 ¹ ○命木 孝明 ¹ ○年吉 洋 ¹ ○ Agnes Tixier-Mita ¹ , Satoshi Ihida ¹ , Toshiyoshi Hiroshi ¹ ○渡邊 健夫 ¹ , 原田 哲男 ¹ , 山川 進二 ¹ ○酒井 啓太 ¹ ○浅川 鋼児 ¹	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大 1.東大 1.東大 1.東大理 1.九大シス情 rication 1.東大工 1.群馬大学理工 1.東大生産研 1.Univ. Tokyo 1.兵庫県大高度研 1.キヤノン 1.キオクシア
10:30 10:30 10:45 11:30 11:30 12:00 11:30 14:05 14:40 15:15 16:05 16:40 17:15	表面 / Thin Films 大田	クロージング and Surfaces 械学習 / Machine learning on dielectrics study □頭講漢 (Oral Presentation) A404 会場(Room A404)第一原理計算を活用したデータ駆動型強誘電体・誘電体 材料研究 機械学習を活用した強誘電体・圧電体の研究 Machine learning for discovery of meaningful chemical and physical contributors to piezoresponse force microscopy 休憩/Break 局所C-Vマップの機械学習解析に基づくグレイン境界と 強誘電ドメイン挙動の相関に関する統計的評価 強誘電ドタイン学動の相関に関する統計的評価 強誘電ドタイン学動の相関に関する統計的評価 強誘電体の非線形ダイナミクスと電気化学反応を利用した物理リザパープレトンを用いたニューロモルフィック情報素子の設計 ル気細加工の表面界面先端技術 / Advanced Surface and I 口頭講演(Oral Presentation)A302 会場(Room A302)エネルギー自立分散ロボットに向けた集積 MEMSテクノロジ 3次元リソグラフィ技術を用いたメカニカルメタマテリアル発電 シリコン酸化膜エレクトレットのMEMSアクチュエータ・エナジーハーベスタ応用 Bio-sensors based on Thin-Film-Transistor Technology 休憩/Break EUV リソグラフィー技術開発の現状および今後の展開について 半導体デバイス製造用ナノインプリントリソグラフィの 開発状況 半導体リソグラフィの微細化、エッチング耐性の限界を 打破する「プラスα」技術:誘導自己組織化 (DSA)と逐次浸透合成 (SIS) CFET 性能パランス整合に向けた三次元異種チャネル集	○森分博紀 ^{1,2} ○保科拓也 ¹ ○保科拓也 ¹ ○P永良臣 ¹ , 野口 雄貴 ¹ , 三村和仙 ² , 清水荘雄 ² , 舟窪浩 ² , 長康雄 ¹ ○トープラサートボンカシディット ¹ , 名幸 瑛心 ¹ , 中根了昌 ¹ , 竹中充 ¹ , 高木信一 ¹ ○木下健太郎 ¹ ○矢嶋 赳彬 ¹ nterface Technologies for Micro and Nanoscale Fab ○三田吉郎 ¹ ○鈴木孝明 ¹ ○介書 洋 ○Agnes Tixier-Mita ¹ , Satoshi Ihida ¹ , Toshiyoshi Hiroshi ¹ ○渡邊 健夫 ¹ , 原田 哲男 ¹ , 山川 進二 ¹ ○酒井 啓太 ¹ ○浅川 鋼児 ¹ ○張文馨 ¹ , 余心仁 ^{2,3} , 洪子杰 ^{2,4} , 李耀仁 ^{2,4} , 趙天生 ⁴ , 王永和 ³ , 前田 辰郎 ¹	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大 1.東大 1.東大 1.東大理 1.九大シス情 ication 1.東大工 1.群馬大学理工 1.東大生産研 1.Univ. Tokyo 1.兵庫県大高度研 1.キオクシア 1.産総研, 2.台湾半導体研, 3.台湾成功大, 4.台湾陽明交通大
10:30 10:30 10:45 11:30 11:30 11:30 12:00 11:30 14:05 14:40 15:15 16:05 16:40 17:15	表面 / Thin Films 大田	内ロージング and Surfaces 検学習 / Machine learning on dielectrics study 口頭講演 (Oral Presentation) A404 会場 (Room A404) 第一原理計算を活用したデータ駆動型強誘電体・誘電体 材料研究 機械学習を活用した強誘電体・圧電体の研究 Machine learning for discovery of meaningful chemical and physical contributors to piezoresponse force microscopy 休憩/Break 局所C-Vマップの機械学習解析に基づくグレイン境界と 強誘電体の非線形ダイナミクスを活かしたリザバーコン ビューティング イオン液体の分子ダイナミクスを電気化学反応を利用した物理リザバー プロトンを用いたニューロモルフィック情報素子の設計 心織加工の表面界面先端技術 / Advanced Surface and 口頭講演 (Oral Presentation) A302 会場 (Room A302) エネルギー自立分散ロボットに向けた集積 MEMS テクノロジ 3 次元リソグラフィ技術を用いたメカニカルメタマテリアル発電 シリコン酸化膜エレクトレットのMEMS アクチュエータ・エナジーハーベスタ応用 Bio-sensors based on Thin-Film-Transistor Technology 体憩/Break EUV リソグラフィー技術開発の現状および今後の展開に ついて 半導体デバイス製造用ナノインプリントリソグラフィの 開発状況 半導体デバイス製造用ナノインプリントリソグラフィの 開発状況 半導体アバイス製造用ナノインプリントリングラフィの 開発状況 半導体アバイス製造用ナノインプリントリングラフィの 開発状況 半導体アバイス製造用ナノインプリントリングラフィの 開発状況 半導体リングラフィの微細化、エッチング耐性の限界を 打破する「プラス α」技術:誘導自己組織化 (DSA)と逐次浸透合成 (SIS) CFET 性能バランス整合に向けた三次元異種チャネル集 積技術 ス/Plasma Electronics は何か〜プラズマプロセスの新展開に期待して〜 / What	○森分博紀 ^{1,2} ○保科拓也 ¹ ○Nazanin Bassiri-Gharb ¹ ○平永良臣 ¹ , 野口 雄貴 ¹ , 三村和仙 ² , 清水荘雄 ² , 舟窪浩 ² , 長康雄 ¹ ○トープラサートポンカシディット ¹ , 名幸 瑛心 ¹ , 中根了昌 ¹ , 竹中充 ¹ , 高木信一 ¹ ○木下健太郎 ¹ ○矢嶋 赳彬 ¹ nterface Technologies for Micro and Nanoscale Fable ○三田 吉郎 ¹ ○命木 孝明 ¹ ○年吉洋 ¹ ○Agnes Tixier-Mita ¹ , Satoshi Ihida ¹ , Toshiyoshi Hiroshi ¹ ○渡邊 健夫 ¹ , 原田 哲男 ¹ , 山川 進二 ¹ ○酒井 啓太 ¹ ○浅川 鋼児 ¹ ○張文馨 ¹ , 余心仁 ^{2,3} , 洪 子杰 ^{2,4} , 李耀仁 ^{2,4} , 趙 天生 ⁴ , 王 永和 ³ , 前田 辰郎 ¹ s Plasma-Driven Science - Expectations for New De	1.JFCC, 2.東工大 1.東工大物質理工 1.Georgia Tech 1.東北大, 2.東工大 1.東大 1.東大 1.東大理 1.九大シス情 ication 1.東大工 1.群馬大学理工 1.東大生産研 1.Univ. Tokyo 1.兵庫県大高度研 1.キャノン 1.キオクシア 1.産総研, 2.台湾半導体研, 3.台湾成功大, 4.台湾陽明交通大

14:30	招	16p-A402-3	機械学習・量子アニーリングを活用したプラズマプロセ スの解析と制御	〇白谷 正治 1, 鎌滝 晋礼 1	1.九大シス情
15:00			休憩·名刺交換会/Break		
15:15		16p-A402-4	【注目講演】機械学習エッチング深さモニタの高精度化に	○江藤 宗一郎¹, 中元 茂², 福地 巧祐²	1.日立製作所, 2.日立ハイテク
15:30	担	16n-Δ/102-5	向けた学習アルゴリズムの開発 半導体における計測インフォマティクス	○冨谷 茂隆 ^{1,2,3}	1.ソニーセミコンダクタ, 2.ソニーグループ, 3.東工大
16:00			マルチモーダルAI材料インフォマティクスによる複雑材		1. 産総研
			料機能予測		
16:30	170	40 4400 7	休憩·名刺交換会/Break	0.00	
16:45 17:15			プラズマ気相・液体の化学的相互作用の解明 触媒反応における非平衡プラズマ化学の活用	○佐藤 孝紀 ¹ ○野崎 智洋 ¹	1. 室蘭工大理工 1. 東工大
17:45			プラズマ駆動型化学反応系の複合分析と機能材料の開拓		1.大阪公大, 2.東大
18:15			休憩・名刺交換会/Break		
18:25		16p-A402-10	パネルディスカッション	〇石川 健治 1 ,浜口 智志 2 ,成田 絵美 3 ,白谷 正治 4 ,富 谷 茂隆 5 ,室賀 駿 6 ,佐藤 孝紀 7 ,野崎 智洋 8 ,吉田 朋 子 9	1.名古屋大学, 2.大阪大学, 3.量研, 4.九州大学, 5.ソニー, 6.産総研, 7.室蘭工大, 8.東工大, 9.大阪公大
9 応用物	勿性 /	Applied Mate	rials Science	.1	
			協奏 / Quantum Cooperation between Materials and Info	rmation	
	-		口頭講演 (Oral Presentation) A410 会場 (Room A410)	O.1. ## 777.0.1	1 = 1 = 1
13:30 14:00			ダイヤモンド量子センサによる物性研究 チューリング機構を用いたマヨラナ準粒子の創発	○小林 研介¹ ○浅場 智也¹	1. 東大理 1. 京大理
14:30			散逸と非平衡外場駆動の結合による量子制御の理論構築		1. 理研 CEMS
			とその応用		
15:00	招	16p-A410-4	電荷・スピン・光子のテラヘルツ量子インターフェース	〇黒山 和幸1	1.東大生研
15:30	+77	16n-A410 E	休憩/Break 共振器 QED による原子と光子の量子操作	○青木 隆朗 ^{1,2}	1 日經中十 2 NanoOT
15:45 16:15			共振器QEDによる原子と光子の軍子操作 クラウドによる量子計算・量子技術の社会実装	〇 宇都宮 聖子 ¹	1.早稲田大, 2.NanoQT 1.AWS ジャパン
16:45			量子コンピュータ・量子アニーリングマシンの最先端と		1. 産総研
			物性研究への展開		
17:15	奨	16p-A410-8	量子ニューラルネットワークにおける量子特徴マップの		1.総研大情報学専攻, 2.沖縄科学技術大学院大学, 3.国
12 右機	公子	・バイナエレク	解析 7トロニクス / Organic Molecules and Bioelectronics	William J. Munro ^{4,3} , 根本 香絵 ^{2,3,1}	立情報学研究所, 4.NTT物性研
			分極の自発配向制御とその応用 / Control and device appli	ication of spontaneous orientation of polar molecule	es
			口頭講演 (Oral Presentation) E402 会場 (Room E402)		
13:30			オープニング	○松原 亮介¹	1. 静岡大学
13:35			有機半導体蒸着膜における自発的配向分極現象	○野口裕 ¹	1.明治大理工
14:05	拍	16p-E4UZ-3	極低温赤外多角入射分解分光法による分子性固体の構造 と物性解析	〇羽馬 智也,長澤 扣海,佐藤 巧天,長台川 健,沿 舘 直樹 ¹	1. 果大先進研
14:35		16p-E402-4	極性有機分子の配向緩和過程を利用した新規配向制御法		1. 千葉大院融合, 2. 千葉大工, 3. 千葉大先進, 4. 千葉大
		•	の開発: 回転型 Kelvin Probe による配向形成の観測	夫 ^{1,2,3,4}	MCRC, 5. 群馬大院理工
14:50			休憩/Break		
15:05	招	16p-E402-5	プッシュプル型極性色素分子の非晶性ポリマー中での無 電界ポーリング現象	〇杉田 篤史 1	1.静大工
15:35	招	16p-E402-6	極性分子設計による蒸着薄膜の自発分極制御	○田中 正樹 ¹	1. 農工大院工
			Molecular Designs through Intramolecular Interactions	○ WeiChih Wang ^{1, 2} , Kyohei Nakano ¹ , ChainShu	1.RIKEN, 2.NYCU
			for Large and Stable Spontaneous Orientation	Hsu ² , Keisuke Tajima ¹	
16:20			Polarization 休憩/Break		
16:35		16p-E402-8	極性植物分子の自発配向	○赤池 幸紀¹,細貝 拓也¹,小野 裕太郎²,鶴田 諒平²,	1. 産総研, 2. 筑波大
		1		山田 洋一 ²	
16:50	招	16p-E402-9	極性有機分子をエレクトレットとして使用した振動発電	○田中 有弥¹	1.群馬大院理工
10 业谱	i/+ / c	Semiconducto	素子:分子配向制御によるデバイスの高出力化		
			rs on:BEOLからチップレット、そして未来へ / Connection:	From BEOL to Tiplet, and to the Future	
			口頭講演 (Oral Presentation) E302会場 (Room E302)		
9:00			BEOL技術の変遷と最近の動向	○上野 和良¹	1. 芝浦工大工
9:30	招	16a-E302-2	半導体実装工学の重要性と先端パッケージング・システ	○福島 誉史¹	1.東北大院工
10:00	招	16a-F302-3	ム集積の動向 マルチ IP SoC によるドメイン・スペシフィック・アクセ	○大内 直一1	1.産総研
20.00	111	_50 _502 5	ラレータの NRE コスト削減		ram ever 77 1
10:30			休憩・名刺交換会/Break		
10:40			ウエハレベルハイブリッド接合を用いた3次元実装技術		1. 産総研
11:10 11:40			3 D・チップレット集積のための半導体微細加工技術 半導体パッケージング向け先端基板技術の動向	○森川 泰宏¹ ○松木 隆一¹, 中澤 信司¹, 大井 淳¹, 片桐 規貴¹, 荒木	1.アルバック 先進研 1 新米雷気工業
11.40	111	10a-E3UZ - 0	〒〒147、ノノ ノノ川リカ海釜似類別別川	○似不 隆一,中澤 信可,大井 淳,万 侗 規貞, 而不 康 ¹	±・がい 电スレー木
T25 究标	極のラ	ボ・オートメ	ーション:半導体ギガFabを実験用巨大ロボットとして動	194	conductor Giga Fab as a Giant Robotic Experimenter?
3/16(T	Γhu.) 1	13:30 - 18:30	口頭講演 (Oral Presentation) E302会場 (Room E302)		
13:30			オープニング「なぜ、いま、半導体ギガ Fab?」	○秋永 広幸 ¹	1. 産総研デバイス技術
13:35 14:05			半導体 Fab のオペレーション 半導体 Fab の自動化を実現する Automated Material	○小林 俊英 ¹ ○本告 陽一 ¹	1.産業タイムズ社 1.村田機械
2 1.00	111	_ JP _ LOOL J	Handling System	1/2	(DA) PAN
14:35	招	16p-E302-4	MEC技術の半導体Fabへの適用	○天野 英晴 ¹	1.慶大理工
15:05	477	16 F200 F	休憩・名刺交換会/Break	○英田 排 → 1	1 市京柳本十份田
15:20	抬	1op-E3U2-5	センサ貼るだけで即データ収集 - 環境発電で働く無線 IoTシステム	○藤田 博之 ¹	1.東京都市大総研
			研究者を「自由に」、そして「創造的に」する新たな研究	〇一杉 太郎 1,2	1.東大理, 2.東工大物質理工
15:50	招	16p-E302-6	開発環境		
15:50 16:20			ロボティックバイオロジーによる生命科学の加速 一研究	○高橋 恒一1.2.3	1.理化学研究所, 2.慶應義塾大学, 3.大阪大学
16:20	招	16p-E302-7	ロボティックバイオロジーによる生命科学の加速 一研究 室の自律化と科学的発見の自動化に向けて一		
16:20 16:50	招招	16p-E302-7	ロボティックバイオロジーによる生命科学の加速 一研究 室の自律化と科学的発見の自動化に向けて一 IoB時代を迎え変わる半導体産業	○池田修二1	1.tei Solutions
16:20	招招	16p-E302-7	ロボティックバイオロジーによる生命科学の加速 一研究 室の自律化と科学的発見の自動化に向けて一	○池田 修二 ¹ ○秋永 広幸 ¹ , 三河 巧 ² , 青野 真士 ³ , 小林 俊英 ⁴ , 本告	1.tei Solutions
16:20 16:50	招招	16p-E302-7 16p-E302-8 16p-E302-9	ロボティックバイオロジーによる生命科学の加速 一研究 室の自律化と科学的発見の自動化に向けて一 IoB時代を迎え変わる半導体産業 パネルディスカッション	○池田 修二¹ ○秋永 広幸¹, 三河 巧², 青野 真士³, 小林 俊英⁴, 本告陽一⁵, 天野 英晴⁶, 一杉 太郎², 藤田 博之², 高橋 恒一°, 池田 修二¹º	1.tei Solutions 1. 産総研, 2.SCREENセミコンダクタ, 3.Amoeba
16:20 16:50	招招	16p-E302-7 16p-E302-8 16p-E302-9	ロボティックバイオロジーによる生命科学の加速 一研究 室の自律化と科学的発見の自動化に向けて一 IoB時代を迎え変わる半導体産業	○池田 修二¹ ○秋永 広幸¹, 三河 巧², 青野 真士³, 小林 俊英⁴, 本告陽一⁵, 天野 英晴⁶, 一杉 太郎², 藤田 博之², 高橋 恒一°, 池田 修二¹º	1.tei Solutions 1. 産総研, 2.SCREENセミコンダクタ, 3.Amoeba Energy, 4. 産業タイムズ, 5. 村田機械, 6. 慶大, 7. 東大,

	泉 / Ionizing Radiati	ion		
		on な様々な材料/Various materials for radiation measureme	ents	
		口頭講演 (Oral Presentation) A404会場 (Room A404)		
9:30		シンチレータの植物研究応用	○田野井 慶太朗¹	1.東大院農
10:00	招 17a-A404-2	固体有機材料における電荷蓄積とその光機能	○嘉部 量太1	1.沖縄科技大
10:30	招 17a-A404-3	液体シンチレーターを指向した有機近赤外発光材料開発	〇田中 一生1	1.京大院工
		気体を用いた放射線検出器の研究	○藤原健¹	1.産総研
3/17(Fri.) 13:00 - 15:00	口頭講演 (Oral Presentation) A404会場 (Room A404)		
13:00	招 E 17p-A404-1	Progress on Ce:Li ₆ Y(BO ₃) ₃ single crystals toward	O Dongsheng YUAN ¹ , Encarnacion G. VILLORA ¹ ,	1.NIMS
		thermal neutron detection	Kiyoshi SHIMAMURA ¹	
13:30		非晶質材料を用いた放射線検出	○正井 博和¹	1. 産総研
14:00		透明セラミックスの蛍光体材料	〇村松 克洋 1	1.神島化学工業
14:30	招 1/p-A404-4	様々なプロセスを活用した無機蛍光粉末材料の合成とそ	〇片桐 清文	1. 広島大院先進理工
2 标触	湶 / Ionizing Radiati	の応用		
		inology and Nanofabrication		
		と未来 / Current status of Accelerator Mass Spectrometry	in Japan and the next step	
		口頭講演 (Oral Presentation) A304会場 (Room A304)		
9:00	17a-A304-1	オープニング	○山形 武靖¹	1.東京大学 MALT
9:10	招 17a-A304-2	加速器質量分析を理解する	○松崎 浩之1	1.東大MALT
9:40	招 17a-A304-3	加速器質量分析における新しい同重体分離手法の研究開	〇三宅 泰斗 ¹ , 山形 武靖 ² , 松崎 浩之 ²	1. 理研仁科センター, 2. 東大 MALT
		発		
10:10		休憩/Break		
10:20	招 17a-A304-4	レーザー光脱離法を活用した環境試料中 ⁹⁰ Srの加速器質		1.原子力機構, 2.ウィーン大学, 3.筑波大学
		量分析	Oscar ² , Steier Peter ² , Golser Robin ² , 坂口 綾 ³	
10:50		JAEA-AMS-TONOにおける超小型 AMS の開発	〇藤田 奈津子¹, 松原 章浩², 神野 智史¹, 木村 健二¹	
11:20	搯 1/a-A304-6	炭素14年代測定における試料処理 - 埋没資料と樹木年輪	○ 収 4 稼 ***	1. 歴博, 2. 総研大
11.50	17. 1204 7	を中心に - 総合討論・クロージング	○笹 公和¹, 山形 武靖²	1 築油大学 2 東古大学MAIT
11:50 3 # · -	17a-A304-7 フォトニクス / Opti		○世 石和,田沙 氏閉	1.筑波大学, 2.東京大学MALT
		cs and Photonics を加速する応用物理 -五感に拡がる AR/VR - / Applied	Physics Accelerating the Metaverse - Towards Mult	timodality in AR/VR-
		口頭講演 (Oral Presentation) A410 会場 (Room A410)	Thysics Accelerating the Metaverse Towards Main	imodality in Art, Vit
9:30		メタバースを加速する応用物理 - 五感に拡がる AR/VR	○栗村 直¹	1.物材機構
-	*	_		
9:35	招 17a-A410-2	メタバースとXR技術	〇武川 洋1	1.ソニーグループ (株)
10:20	招 17a-A410-3	メタバースと VR 技術がもたらす社会変化と技術課題	〇岩城 進之介1	1.バーチャルキャスト
11:05		休憩・名刺交換会/Break		
11:20	招 17a-A410-4	メタバース出力機器としての空中ディスプレイ	〇山本 裕紹1	1. 宇都宮大工
11:50	招 17a-A410-5	Aroma Shooterを用いた香り情報通信	○金 東煜 ¹	1.アロマジョイン
3/17(口頭講演 (Oral Presentation) A410会場 (Room A410)		
14:00		メタバース思考:身体と環境のDX	〇稲見 昌彦1	1. 東大先端研
14:45		液晶を用いた電子ホログラフィ立体表示の革新技術	〇藤掛 英夫¹, 石鍋 隆宏¹, 柴田 陽生¹	1.東北大工
15:15	招 17p-A410-3	AR/VR グラスの光学系	〇吉川 浩 1	1. 日本大理工
15:45	IT 47 .440.4	休憩·名刺交換会/Break	OMT # 40 ± 1	4 ++ 1
16:00		超音波で空中に触感をつくる	〇篠田 裕之 ¹	1. 東京大 1. 明治大
16:30 17:00		味覚ディスプレイがメタバースに拓く未来	○宮下 芳明¹ ○岩村 幹生¹	1. H カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ カ
	±77 175 ∧ //10 6			1.NII - 1 / T - 1 -
		XR・メタバースが切り拓くフロンティア 閉会挨拶		1 三菱雷機先端総研 2 産総研
17:45	17p-A410-7	閉会挨拶	○佐竹 徹也¹, 秋永 広幸²	1.三菱電機先端総研, 2.産総研
17:45 6 薄膜·	17p-A410-7 ·表面 / Thin Films	閉会挨拶 and Surfaces	○佐竹 徹也¹, 秋永 広幸²	
17:45 6 薄膜·	17p-A410-7 ・表面 / Thin Films 体量子ビット・スピ	閉会挨拶	○佐竹 徹也¹, 秋永 広幸²	
17:45 6 薄膜 · T13 固体 materia	17p-A410-7 ・表面 / Thin Films 体量子ビット・スピ als	閉会挨拶 and Surfaces	○佐竹 徹也¹, 秋永 広幸²	
17:45 6 薄膜 · T13 固体 materia	17p-A410-7 ・表面 / Thin Films 体量子ビット・スピ als Fri.) 13:25 - 17:40 17p-A302-1	開会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場(Room A302) オーブニング(趣旨説明)	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2}	
17:45 6 薄膜· T13 固体 materia 3/17(17p-A410-7 ・表面 / Thin Films 体量子ビット・スピ als Fri.) 13:25 - 17:40 17p-A302-1	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場(Room A302)	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2}	based on quantum bits and spin defects in solid-state
17:45 6 薄膜: T13 固体 materia 3/17(13:25 13:30	17p-A410-7 ・表面 / Thin Films 体量子ビット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2	開会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オープニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ	○佐竹 徽也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2} ○宮本 良之 ¹	based on quantum bits and spin defects in solid-state 1.京大化研, 2.京大CSRN 1.産総研
17:45 6 薄膜: T13 固值 materia 3/17(13:25 13:30	17p-A410-7 ・表面 / Thin Films 体量子ビット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2	開会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オープニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2}	based on quantum bits and spin defects in solid-state 1.京大化研, 2.京大CSRN
17:45 6 薄膜: T13 固位 materia 3/17(1 13:25 13:30 14:00 14:30	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2	開会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2} ○宮本 良之 ¹ ○岩崎 孝之 ¹	based on quantum bits and spin defects in solid-state 1. 京大化研, 2. 京大CSRN 1. 產総研 1. 東工大
17:45 6 薄膜・ T13 固位 materia 3/17(1 13:25 13:30 14:00 14:30 14:50	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3	開会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302 会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV 族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2} ○宮本 良之 ¹ ○岩崎 孝之 ¹ ○阿部 英介 ¹	based on quantum bits and spin defects in solid-state 1. 京大化研, 2. 京大CSRN 1. 産総研 1. 東工大 1. 理研
17:45 6 薄膜 T13 固 materia 3/17(1 13:25 13:30 14:00 14:30 14:50 15:20	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302 会場(Room A302) オープニング(趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV 族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン量子ピットの量子コヒーレンス	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2} ○宮本 良之 ¹ ○岩崎 孝之 ¹	based on quantum bits and spin defects in solid-state 1. 京大化研, 2. 京大CSRN 1. 產総研 1. 東工大
17:45 6 薄膜 T13 固 materia 3/17(13:25 13:30 14:00 14:30 14:50 15:20	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5	開会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302 会場 (Room A302) オープニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV 族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン量子ピットの量子コヒーレンス 休憩・名刺交換会/Break	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2} ○宮本 良之 ¹ ○岩崎 孝之 ¹ ○阿部 英介 ¹ ○米田 淳 ¹	1. 京大化研,2. 京大CSRN 1. 東工大 1. 東工大 1. 東工大
17:45 6 薄膜 T13 固 materia 3/17(13:25 13:30 14:00 14:30 14:50 15:20 15:50 16:10	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-5	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オープニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算によるアプローチ IV 族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン量子ピットの量子コヒーレンス 休憩・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水洛 憲和 ^{1,2} ○宮本 良之 ¹ ○岩崎 孝之 ¹ ○阿部 英介 ¹ ○米田 淳 ¹ ○大島 武 ¹	1.京大化研, 2.京大CSRN 1.東工大 1.東工大 1.東工大 1.東工大
17:45 6 薄膜 T13 固 materia 3/17(13:25 13:30 14:00 14:30 14:50 15:20	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-6	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン量子ピットの量子コヒーレンス 休憩・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のシリコン空孔量子光源	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2} ○宮本 良之 ¹ ○岩崎 孝之 ¹ ○阿部 英介 ¹ ○米田 淳 ¹ ○大島 武 ¹ ○森岡 直也 ^{1,2}	1.京大化研, 2.京大CSRN 1.東工大 1.東工大 1.東工大 1.東工大 1.東工大 1.東田大
17:45 6 薄膜 T13 固价 materia 3/17(13:25 13:30 14:00 14:30 14:50 15:50 16:10 16:40 17:10	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オープニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算によるアプローチ IV 族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン量子ピットの量子コヒーレンス 休憩・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2} ○宮本 良之 ¹ ○岩崎 孝之 ¹ ○阿部 英介 ¹ ○米田 淳 ¹ ○大島 武 ¹ ○森岡 直也 ^{1,2}	1.京大化研, 2.京大CSRN 1.東工大 1.東工大 1.東工大 1.東工大
17:45 6 薄膜 T13 固 materia 3/17(13:25 13:30 14:00 14:50 15:20 15:50 16:10 16:40 17:10 7 ピーク	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス 休憩・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のシリコン空孔量子光源 六方晶窒化ホウ素中のスピン欠陥の光検出磁気共鳴評価 unology and Nanofabrication	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2} ○宮本 良之 ¹ ○岩崎 孝之 ¹ ○阿部 英介 ¹ ○米田 淳 ¹ ○大島 武 ¹ ○森岡 直也 ^{1,2}	1.京大化研, 2.京大CSRN 1.東工大 1.東工大 1.東工大 1.東工大 1.東工大 1.東田大
17:45 6 薄膜 T13 固 materia 3/17(13:25 13:30 14:00 14:30 15:20 15:50 16:10 16:40 17:10 7 ビーク 2 放射線	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-4 招 17p-A302-4 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 紹 17p-A302-7 紹 17p-A302-7 紹 17p-A302-8 ム応用 / Beam Tech 線 / Ionizing Radiati	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス 休憩・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のシリコン空孔量子光源 六方晶窒化ホウ素中のスピン欠陥の光検出磁気共鳴評価 unology and Nanofabrication	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2} ○宮本 良之 ¹ ○岩崎 孝之 ¹ ○阿部 英介 ¹ ○米田 淳 ¹ ○大島 武 ¹ ○森岡 直也 ^{1,2}	1.京大化研, 2.京大CSRN 1.東工大 1.東工大 1.東工大 1.東工大 1.東工大 1.東田大
17:45 6 薄膜 T13 固作 materia 3/17(13:25 13:30 14:00 14:30 15:20 15:50 16:10 16:40 7 ビーム 2 放射線 T15 イ	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-8 ム応用 / Beam Tech 泉 / Ionizing Radiati	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場(Room A302) オーブニング(趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン屋子ビットの量子コヒーレンス (水憩・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のシリコン空孔量子光源 六方晶窒化ホウ素中のスピン欠陥の光検出磁気共鳴評価 inology and Nanofabrication	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2} ○宮本 良之 ¹ ○岩崎 孝之 ¹ ○阿部 英介 ¹ ○米田 淳 ¹ ○大島 武 ¹ ○森岡 直也 ^{1,2}	1.京大化研, 2.京大CSRN 1.東工大 1.東工大 1.東工大 1.東工大 1.東工大 1.東田大
17:45 6 薄膜 T13 固作 materia 3/17(13:25 13:30 14:00 14:30 15:20 15:50 16:10 16:40 7 ビーム 2 放射線 T15 イ	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-5 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A302-8 は応用 / Beam Teath オンピー 人分析の最 Fri.) 14:00 - 17:10 17p-A304-1	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算によるアプローチ IV 族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン量子ピットの量子コヒーレンス 休息・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥の光検出磁気共鳴評価 inology and Nanofabrication on 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304会場 (Room A304) はじめに	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2} ○宮本 良之 ¹ ○岩崎 孝之 ¹ ○阿部 英介 ¹ ○米田 淳 ¹ ○大島 武 ¹ ○森岡 直也 ^{1,2} ○山崎 雄一 ¹	1.京大化研, 2.京大CSRN 1.東工大 1.東工大 1.東工大 1.東工大 1.東工大 1.東田大
17:45 6 薄膜 T13 固作 materia 3/17(13:25 13:30 14:50 15:20 15:50 16:10 17:10 7 ピーカ 2 放射線 T15 イ 3/17(17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-5 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A302-8 は応用 / Beam Teath オンピー 人分析の最 Fri.) 14:00 - 17:10 17p-A304-1	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場(Room A302) オーブニング(趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算によるアプローチ IV 族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン量子ピットの量子コヒーレンス ・ジリコン中のスピン気を分野では、大角を大きなのでは、大角を大きなのでは、大力には、大力には、大力には、大力には、大力には、大力には、大力には、大力に	○佐竹 徹也 ¹ , 秋永 広幸 ² edge research on quantum science and technology ○水落 憲和 ^{1,2} ○宮本 良之 ¹ ○岩崎 孝之 ¹ ○阿部 英介 ¹ ○米田 淳 ¹ ○大島 武 ¹ ○森岡 直也 ^{1,2} ○山崎 雄一 ¹	1.京大化研, 2.京大CSRN 1.產総研 1.東工大 1.理研 1.東工大 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN
17:45 6 薄膜 T13 国 materia 3/17(1 13:25 13:30 14:00 14:30 14:50 15:50 16:10 16:40 17:10 7 ピーク 2 放射線 T15 イコ 3/17(1 14:00 14:05	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-6 招 17p-A302-7 招 17p-A302-7 招 17p-A302-8 人応用 / Beam Tech 泉 / Ionizing Radiat オンピーム分析の記 17p-A304-1 招 17p-A304-2	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算によるアプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン量子ピットの量子コヒーレンス (大名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥の光検出磁気共鳴評価 Inclogy and Nanofabrication on 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレンジから天文学研究へ	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○岩崎 孝之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○瀬木 利夫¹ ○木下 哲一¹	based on quantum bits and spin defects in solid-state 1. 京大化研, 2. 京大CSRN 1. 産総研 1. 東工大 1. 聖研 1. 東工大 1. 量研 1. 京大化研, 2. 京大CSRN 1. 量研
17:45 6 薄膜 T13 固价 materia 3/17(1 13:25 13:30 14:30 14:50 15:50 16:10 16:40 17:10 7 ビーグ 2 放射網 T15 イマ 3/17(1 14:00	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-6 招 17p-A302-7 招 17p-A302-7 招 17p-A302-8 人応用 / Beam Tech 泉 / Ionizing Radiat オンピーム分析の記 17p-A304-1 招 17p-A304-2	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算によるアプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン量子ピットの量子コヒーレンス (休憩・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 にいての表別では、まず、表別では、表別で、表別で、表別で、表別で、表別で、表別で、表別で、表別で、表別で、表別で	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○岩崎 孝之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○瀬木 利夫¹ ○木下 哲一¹	1.京大化研, 2.京大CSRN 1.產総研 1.東工大 1.理研 1.東工大 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研
17:45 6 薄膜 T13 固作 materia 3/17(13:25 13:30 14:00 14:50 15:20 15:50 16:10 16:40 17:10 7 ピーク 2 放射線 T15 イン 3/17(14:00 14:05	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-6 招 17p-A302-7 招 17p-A302-7 オ 17p-A302-8 A応用 / Beam Tech 像 / Ionizing Radiati オンピーム分析の記 17p-A304-1 招 17p-A304-2 招 17p-A304-3	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス 使化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のシリコン空孔量子光源 六方晶窒化ホウ素中のスピン欠陥の光検出磁気共鳴評価 mology and Nanofabrication ion 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレンジから天文学研究へ QST量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○岩崎孝之¹ ○阿部 英介¹ ○米田淳¹ ○大島 武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○瀬木 利夫¹ ○木下 哲一¹ ○及川 将一¹, 石川 剛弘¹, 須田 充¹	1.京大化研, 2.京大CSRN 1.產総研 1.東工大 1.理研 1.東工大 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研
17:45 6 薄膜 T13 国 materia 3/17(1 13:25 13:30 14:00 14:30 14:50 15:50 16:10 16:40 17:10 7 ピーク 2 放射線 T15 イコ 3/17(1 14:00 14:05	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-6 招 17p-A302-7 招 17p-A302-7 招 17p-A302-8 人応用 / Beam Tech 泉 / Ionizing Radiat オンピーム分析の記 17p-A304-1 招 17p-A304-2	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン保留・アプロークリコン中のスピンケ陥形成と特性評価 炭化ケイ素中のスピンケ陥形成と特性評価 炭化ケイ素中のシリコン空孔量子光源 六方晶窒化ホウ素中のスピンケ陥の光検出磁気共鳴評価 mology and Nanofabrication ion 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレンジから天文学研究へ QST量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集東イオンビーム分析技術による時分割捕集された大気	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○岩崎 孝之¹ ○阿部 英介¹ ○米田淳¹ ○大島 武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○瀬木 利夫¹ ○太下 哲一¹ ○及川 将一¹, 石川 剛弘¹, 須田 充¹ ○加田 涉¹, 白井 洸貴¹, 菊池 涼太¹, 張 錦汕¹, 熊谷 貴	1.京大化研, 2.京大CSRN 1.產総研 1.東工大 1.理研 1.東工大 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研
17:45 6 薄膜 T13 固体 materia 3/17(13:25 13:30 14:00 14:30 15:50 16:10 16:40 17:10 7 ビーム 2 放射線 T15 イミ 3/17(14:00 14:35 14:35	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-6 招 17p-A302-7 招 17p-A302-7 オ 17p-A302-8 A応用 / Beam Tech 像 / Ionizing Radiati オンピーム分析の記 17p-A304-1 招 17p-A304-2 招 17p-A304-3	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算によるアプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン量子ビットの量子コヒーレンス シリコン中のスピン定番子ビットの量子コヒーレンス (旅化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のシリコン空孔量子光源 大方晶窒化ホウ素中のスピン欠陥の光検出磁気共鳴評価 inology and Nanofabrication ion 新動向 / Latest trends in ion beam analysis 「珂購講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレンジから天文学研究へ QST量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集束イオンビーム分析技術による時分割捕集された大気 中微粒子試料の特徴量解析	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○岩崎孝之¹ ○阿部 英介¹ ○米田淳¹ ○大島武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○瀬木 利夫¹ ○太下 哲一¹ ○及川 将一¹, 石川 剛弘¹, 須田 充¹	1.京大化研, 2.京大CSRN 1.產総研 1.東工大 1.理研 1.東工大 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研
17:45 6 薄膜 T13 固价 materia 3/17(1 13:25 13:30 14:30 14:50 15:50 16:10 16:40 17:10 7 ビーグ 2 放射線 T15 イェ 3/17(1 14:00 14:05 14:35 15:05	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-5 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-8 は応用 / Beam Each オンピー 人分析の長 オンピー 人分析の長 Fri.) 14:00 - 17:10 17p-A304-1 招 17p-A304-2 招 17p-A304-3	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV 族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス 休憩・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥の光検出磁気共鳴評価 inology and Nanofabrication ion 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレ ンジから天文学研究へ QST 量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集束イオンビーム分析技術による時分割捕集された大気 中微粒子試料の特徴量解析 休憩/Break	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○宮本 良之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○放川 将一¹, 石川 剛弘¹, 須田 充¹ ○加田 渉¹, 臼井 洗貴¹, 菊池 涼太¹, 張 錦汕¹, 熊谷 貴美代², 田子 博², 佐藤 隆博³, 石井 保行³, 花泉 修¹	1.京大化研, 2.京大CSRN 1.產総研 1.東工大 1.理研 1.東工大 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大院工 1.清水建設 1.QST量医研 1.群馬大, 2.群馬県衛生環境研究所, 3.量研
17:45 6 薄膜 T13 固作 materia 3/17(13:25 13:30 14:30 14:50 15:20 16:40 17:10 7 ピーム 2 放射線 T15 イで 14:00 14:05 14:35 15:05	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A302-8 A応用 / Beam Tech 東 / Ionizing Radiatt オンピーム分析の最 Fri.) 14:00 - 17:10 17p-A304-1 招 17p-A304-2 招 17p-A304-3	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算によるアプローチ IV 族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス 体憩・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥の光検出磁気共鳴評価 nology and Nanofabrication on 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304 会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレンジから天文学研究へ QST 量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集束イオンピーム分析技術による時分割捕集された大気 中微粒子試料の特徴量解析 休憩/Break 産業界でのイオンピーム分析の活用状況	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○宮本 良之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○放川 将一¹, 石川 剛弘¹, 須田 充¹ ○加田 涉¹, 白井 洸貴¹, 菊池 涼太¹, 張 錦汕¹, 熊谷 貴 美代², 田子 博², 佐藤 隆博³, 石井 保行³, 花泉 修¹ ○小北 哲也¹	based on quantum bits and spin defects in solid-state 1. 京大化研, 2. 京大CSRN 1. 産総研 1. 東工大 1. 聖研 1. 東工大 1. 量研 1. 京大化研, 2. 京大CSRN 1. 量研 1. 京大代研, 2. 京大CSRN 1. 量研 1. 京大院工 1. 清水建設 1. QST量医研 1. 群馬大, 2. 群馬県衛生環境研究所, 3. 量研
17:45 6 薄膜 T13 国作 materia 3/17(1 13:25 13:30 14:00 14:30 14:50 15:20 16:10 16:40 17:10 7 ピーク 2 放射線 T15 イェ 3/17(1 14:05 14:35 15:05	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A304-1 オ 17p-A304-1 オ 17p-A304-3 17p-A304-4 オ 17p-A304-5 オ 17p-A304-6	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算によるアプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス ・シリコン中のスピン屋子ピットの量子コヒーレンス ・ 名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥の光検出磁気共鳴評価 inology and Nanofabrication on 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレンジから天文学研究へ QST量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集束イオンピーム分析技術による時分割捕集された大気 中微粒子試料の特徴量解析 休憩/Break 産業界でのイオンピーム分析の活用状況 50年を迎えるイオンピーム分析技術のこれから	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○営本 良之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○瀬木 利夫¹ ○木下 哲一¹ ○及川 将一¹, 石川 剛弘¹, 須田 充¹ ○加田 涉¹, 臼井 洸貴¹, 菊池 涼太¹, 張 錦汕¹, 熊谷 貴美代², 田子 博², 佐藤 隆博³, 石井 保行³, 花泉 修¹ ○小北 哲也¹ ○松尾 二郎¹	based on quantum bits and spin defects in solid-state 1. 京大化研, 2. 京大CSRN 1. 産総研 1. 東工大 1. 理研 1. 東工大 1. 量研 1. 京大化研, 2. 京大 CSRN 1. 量研 1. 京大院工 1. 清水建設 1. QST 量医研 1. 群馬大, 2. 群馬県衛生環境研究所, 3. 量研 1. 東レリサーチセンター 1. 京大院工
17:45 6 薄膜 T13 国作 materia 3/17(1 13:25 13:30 14:00 14:30 14:50 15:20 16:10 16:40 17:10 7 ピーク 2 放射線 T15 イェ 3/17(1 14:05 14:35 15:05	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A304-1 オ 17p-A304-1 オ 17p-A304-3 17p-A304-4 オ 17p-A304-5 オ 17p-A304-6	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン量子ピットの量子コヒーレンス シリコン中のスピン量子ピットの量子コヒーレンス (木憩・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥の光検出磁気共鳴評価 Inclogy and Nanofabrication on 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレ ンジから天文学研究へ QST量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集束イオンピーム分析技術による時分割捕集された大気 中微粒子試料の特徴量解析 体憩/Break 産業界でのイオンピーム分析技術のこれから Transnational Access to European Ion Beam	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○宮本 良之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○放川 将一¹, 石川 剛弘¹, 須田 充¹ ○加田 涉¹, 白井 洸貴¹, 菊池 涼太¹, 張 錦汕¹, 熊谷 貴 美代², 田子 博², 佐藤 隆博³, 石井 保行³, 花泉 修¹ ○小北 哲也¹	based on quantum bits and spin defects in solid-state 1. 京大化研, 2. 京大CSRN 1. 産総研 1. 東工大 1. 聖研 1. 東工大 1. 量研 1. 京大化研, 2. 京大 CSRN 1. 量研 1. 京大代研, 2. 京大 CSRN 1. 量研 1. 京大院工 1. 清水建設 1. QST 量医研 1. 群馬大, 2. 群馬県衛生環境研究所, 3. 量研
17:45 6 薄膜 T13 固作 materia 3/17(13:25 13:30 14:00 14:30 14:50 15:20 15:20 16:10 16:40 17:10 7 ピーク 2 放射線 T15 イン 3/17(14:05 14:05 14:35 15:05	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-6 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A304-7 17p-A304-1 招 17p-A304-2 招 17p-A304-2 招 17p-A304-4	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス ・シリコン中のスピン保略形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のシリコン空孔量子光源 ・ 方晶窒化ホウ素中のスピン欠陥の光検出磁気共鳴評価 mology and Nanofabrication on 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレンジから天文学研究へ QST量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集束イオンピーム分析技術による時分割捕集された大気 中微粒子試料の特徴量解析 休憩/Break 産業界でのイオンピーム分析の活用状況 50年を迎えるイオンピーム分析の活用状況 50年を迎えるイオンピーム分析の活用状況 50年を迎えるイオンピーム分析の活用状況 50年を迎えるイオンピーム分析がのこれから Transnational Access to European Ion Beam Centers:RADIATE and ReMade@ARI	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹・² ○宮本 良之¹ ○営崎 孝之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹・² ○山崎 雄一¹ ○瀬木 利夫¹ ○木下 哲一¹ ○及川 将一¹, 石川 剛弘¹, 須田 充¹ ○加田 渉¹, 臼井 洗貴¹, 菊池 涼太¹, 張 錦汕¹, 熊谷 貴美代², 田子 博², 佐藤 隆博³, 石井 保行³, 花泉 修¹ ○小北 哲也¹ ○松尾 二郎¹ ○下acsko Stefan¹	1.京大化研, 2.京大CSRN 1.産総研 1.東工大 1.理研 1.東工大 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大代研, 2.京大CSRN 1.量研 1.京大院工 1.清水建設 1.QST量医研 1.群馬大, 2.群馬県衛生環境研究所, 3.量研 1.東レリサーチセンター 1.京大院工 1.京大院工
17:45 6 薄膜 T13 固作 materia 3/17(13:25 13:30 14:00 14:50 15:20 15:50 16:10 17:10 7 ピーク 2 放射線 T15 イ: 3/17(14:00 14:05 14:35 15:05 15:20 15:35 16:35 16:35	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 オ 17p-A304-7 オ 17p-A304-1 オ 17p-A304-4 オ 17p-A304-7 オ 17p-A304-7	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス ・ジリコン中のスピン保陥形成と特性評価 炭化ケイ素中のシリコン空孔量子光源 大方晶窒化ホウ素中のスピン欠陥の光検出磁気共鳴評価 mology and Nanofabrication on 新動向 / Latest trends in ion beam analysis コ頭講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレンジから天文学研究へ QST量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集束イオンピーム分析技術による時分割捕集された大気 中微粒子試料の特徴量解析 休憩/Break 産業界でのイオンピーム分析の活用状況 50年を迎えるイオンピーム分析技術のこれから Transnational Access to European Ion Beam Centers:RADIATE and ReMade@ARI	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○岩崎 孝之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○瀬木 利夫¹ ○木下 哲一¹ ○及川 将一¹, 石川 剛弘¹, 須田 充¹ ○加田 涉¹, 臼井 洸貴¹, 菊池 涼太¹, 張 錦汕¹, 熊谷 貴美代², 田子 博², 佐藤 隆博³, 石井 保行³, 花泉 修¹ ○小北 哲也¹ ○松尾 二郎¹	based on quantum bits and spin defects in solid-state 1. 京大化研, 2. 京大CSRN 1. 産総研 1. 東工大 1. 理研 1. 東工大 1. 量研 1. 京大化研, 2. 京大 CSRN 1. 量研 1. 京大院工 1. 清水建設 1. QST 量医研 1. 群馬大, 2. 群馬県衛生環境研究所, 3. 量研 1. 東レリサーチセンター 1. 京大院工
17:45 6 薄膜 T13 固价 materia 3/17(13:25 13:30 14:00 15:20 15:50 16:10 16:40 17:10 7 ビーグ 3/17(14:00 14:05 14:35 15:20 15:35 16:05 16:35 17:05	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-5 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A302-8 は応用 / Beam East オンピー 上分析の最 / Ionizing Radiati オンピー 上分析の最 ア / In 17p-A304-1 招 17p-A304-2 招 17p-A304-3 17p-A304-4 招 17p-A304-6 招 17p-A304-7 17p-A304-7	開会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV 族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス 休憩・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥の光検出磁気共鳴評価 mology and Nanofabrication fon 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレ ンジから天文学研究へ QST量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集束イオンピーム分析技術による時分割捕集された大気 中微粒子試料の特徴量解析 休憩/Break 産業界でのイオンピーム分析技術のこれから Transnational Access to European lon Beam Centers:RADIATE and ReMade@ARI クロージング プトロニクス / Organic Molecules and Bioelectronics	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○岩崎 孝之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○放川 将一¹, 石川 剛弘¹, 須田 充¹ ○加田 涉¹, 臼井 洸貴¹, 菊池 涼太¹, 張 錦汕¹, 熊谷 貴美代², 田子 博², 佐藤 隆博³, 石井 保行³, 花泉 修¹ ○小北 哲也¹ ○松尾 二郎¹ ○不窓ko Stefan¹ ○瀬木 利夫¹ ○瀬木 利夫¹ ○満木 利夫¹ ○瀬木 利夫¹ ○本宮 登記 大島 大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「	1.京大化研, 2.京大CSRN 1.産総研 1.東工大 1.理研 1.東工大 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大院工 1.清水建設 1.QST量医研 1.群馬大, 2.群馬県衛生環境研究所, 3.量研 1.東レリサーチセンター 1.京大院エ 1.市大院エ 1.京大院エ 1.京大院エ 1.京大院エ 1.京大院エ 1.京大院エ
17:45 6 薄膜 T13 固信 materia 3/17(13:25 13:30 14:30 14:50 15:20 15:50 16:10 16:40 17:10 7 ピーク 2 放射線 T15 イン 3/17(14:00 14:05 14:35 15:20 15:35 16:05 16:35 17:05	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-5 招 17p-A302-5 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-8 は応用 / Beam Tech オ / Ionizing Radiatt オ ンピー ム分析の最 テri.) 14:00 - 17:10 17p-A304-1 招 17p-A304-2 招 17p-A304-3 17p-A304-4 招 17p-A304-5 招 17p-A304-6 招 17p-A304-7 17p-A304-7	閉会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス ・ジリコン中のスピン保陥形成と特性評価 炭化ケイ素中のシリコン空孔量子光源 大方晶窒化ホウ素中のスピン欠陥の光検出磁気共鳴評価 mology and Nanofabrication on 新動向 / Latest trends in ion beam analysis コ頭講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレンジから天文学研究へ QST量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集束イオンピーム分析技術による時分割捕集された大気 中微粒子試料の特徴量解析 休憩/Break 産業界でのイオンピーム分析の活用状況 50年を迎えるイオンピーム分析技術のこれから Transnational Access to European Ion Beam Centers:RADIATE and ReMade@ARI	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○岩崎 孝之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○放川 将一¹, 石川 剛弘¹, 須田 充¹ ○加田 涉¹, 臼井 洸貴¹, 菊池 涼太¹, 張 錦汕¹, 熊谷 貴美代², 田子 博², 佐藤 隆博³, 石井 保行³, 花泉 修¹ ○小北 哲也¹ ○松尾 二郎¹ ○不窓ko Stefan¹ ○瀬木 利夫¹ ○瀬木 利夫¹ ○満木 利夫¹ ○瀬木 利夫¹ ○本宮 登記 大島 大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「	1.京大化研, 2.京大CSRN 1.産総研 1.東工大 1.理研 1.東工大 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大化研, 2.京大CSRN 1.量研 1.京大院工 1.清水建設 1.QST量医研 1.群馬大, 2.群馬県衛生環境研究所, 3.量研 1.東レリサーチセンター 1.京大院エ 1.市大院エ 1.京大院エ 1.京大院エ 1.京大院エ 1.京大院エ 1.京大院エ
17:45 6 薄膜 T13 固信 materia 3/17(13:25 13:30 14:30 14:50 15:20 15:50 16:10 16:40 17:10 7 ピーク 2 放射線 T15 イン 3/17(14:00 14:05 14:35 15:20 15:35 16:05 16:35 17:05	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A302-8 A応用 / Beam Tech 家 / Ionizing Radiati ナンピーム分析の最 Fri.) 14:00 - 17:10 17p-A304-1 招 17p-A304-2 招 17p-A304-3 17p-A304-4 招 17p-A304-5 招 17p-A304-7	開会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド申カラーセンターへの第一原理計算によるアプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ピットの集積化とコヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス 外想・名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥の光検出磁気共鳴評価 mology and Nanofabrication on 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレンジから天文学研究へ QST 量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集束イオンピーム分析技術による時分割捕集された大気 中微粒子試料の特徴量解析 休憩/Break 産業界でのイオンピーム分析技術の活用状況 50年を迎えるイオンピーム分析技術のこれから Transational Access to European Ion Beam Centers:RADIATE and ReMade@ARI クロージング トロニクス / Organic Molecules and Bioelectronics 現在・過去・未来:光電変換を中心として / Organic Sem	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹.² ○宮本 良之¹ ○岩崎 孝之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹.² ○山崎 雄一¹ ○放川 将一¹, 石川 剛弘¹, 須田 充¹ ○加田 涉¹, 臼井 洸貴¹, 菊池 涼太¹, 張 錦汕¹, 熊谷 貴美代², 田子 博², 佐藤 隆博³, 石井 保行³, 花泉 修¹ ○小北 哲也¹ ○松尾 二郎¹ ○不窓ko Stefan¹ ○瀬木 利夫¹ ○瀬木 利夫¹ ○満木 利夫¹ ○瀬木 利夫¹ ○本宮 登記 大島 大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「大田・「	based on quantum bits and spin defects in solid-state 1. 京大化研, 2. 京大CSRN 1. 産総研 1. 東工大 1. 理研 1. 東工大 1. 量研 1. 京大代研, 2. 京大 CSRN 1. 量研 1. 京大院工 1. 清水建設 1. QST量医研 1. 群馬大, 2. 群馬県衛生環境研究所, 3. 量研 1. 東レリサーチセンター 1. 京大院工 1. Helmholtz-Zentrum Dresden-Rossendorf 1. 京大院工 Sing on Photovoltaic Conversion 1. 分子研
17:45 6 薄膜 T13 国 materia 3/17(13:25 13:30 14:00 14:30 14:50 15:20 15:50 16:10 16:40 17:10 7 ピーク 2 放射線 T15 イ: 3/17(14:05 14:05 14:35 15:05 15:20 15:35 16:05 16:35 17:05 12 有機 3/17(10:30	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A304-1 オ 17p-A304-1 オ 17p-A304-2 オ 17p-A304-3 17p-A304-4 オ 17p-A304-7	開会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場(Room A302) オーブニング(趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算による アプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン量子ピットの量子コヒーレンス ・リコン中のスピン量子ピットの量子コヒーレンス ・リコン中のスピン大陥形成と特性評価 炭化ケイ素中のスピン大陥形成と特性評価 炭化ケイ素中のスピン大陥の光検出磁気共鳴評価 inology and Nanofabrication on 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304会場(Room A304)はじめに 加速器質量分析による同重体分離・検出限界へのチャレンジから天文学研究へ QST量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集束イオンビーム分析技術による時分割捕集された大気中微粒子試料の特徴量解析 体想/Break 産業界でのイオンビーム分析の活用状況 50年を迎えるイオンピーム分析の活用状況 50年を迎えるイオンピーム分析があったれから Transnational Access to European Ion Beam Centers:RADIATE and ReMade@ARI クロージング トロニクス / Organic Molecules and Bioelectronics 現在・過去・未来・光電変換を中心として / Organic Sem 口頭講演 (Oral Presentation) E402会場 (Room E402) 新しいフェーズに入った有機太陽電池 Organic semiconductors - from a lab curiosity to	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹・² ○宮本 良之¹ ○宮本 良之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹・² ○山崎 雄一¹ ○放川 将一¹, 石川 剛弘¹, 須田 充¹ ○加田 涉¹, 白井 洸貴¹, 菊池 涼太¹, 張 錦汕¹, 熊谷 貴美代², 田子 博², 佐藤 隆博³, 石井 保行³, 花泉 修¹ ○小北 哲也¹ ○松尾 二郎¹ ○下acsko Stefan¹ ○瀬木 利夫¹ ○瀬木 利夫¹ ○商店の ○夜にない ○夜にはない ○夜にない ○	based on quantum bits and spin defects in solid-state 1. 京大化研, 2. 京大CSRN 1. 産総研 1. 東工大 1. 理研 1. 東工大 1. 量研 1. 京大化研, 2. 京大 CSRN 1. 量研 1. 京大院工 1. 清水建設 1. QST 量医研 1. 群馬大, 2. 群馬県衛生環境研究所, 3. 量研 1. 東レリサーチセンター 1. 京大院工 1. Helmholtz-Zentrum Dresden-Rossendorf 1. 京大院工 Sing on Photovoltaic Conversion
17:45 6 薄膜 T13 国 materia 3/17(13:25 13:30 14:00 14:30 14:50 15:20 15:50 16:10 16:40 17:10 7 ピーク 2 放射線 T15 イ: 3/17(14:05 14:05 14:35 15:05 15:20 15:35 16:05 16:35 17:05 12 有機 3/17(10:30	17p-A410-7 ・表面 / Thin Films 体量子ピット・スピ als Fri.) 13:25 - 17:40 17p-A302-1 招 17p-A302-2 招 17p-A302-3 招 17p-A302-4 招 17p-A302-5 招 17p-A302-5 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A302-7 招 17p-A304-1 招 17p-A304-1 招 17p-A304-2 招 17p-A304-3 17p-A304-4 招 17p-A304-7 日 17p-A304-7	開会挨拶 and Surfaces ン欠陥を用いた量子科学技術研究の最前線 / The leading- 口頭講演 (Oral Presentation) A302会場 (Room A302) オーブニング (趣旨説明) ダイヤモンド中カラーセンターへの第一原理計算によるアプローチ IV族元素を用いたダイヤモンド量子光源 休憩・名刺交換会/Break 超伝導量子ビットの集積化とコヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス シリコン中のスピン屋子ピットの量子コヒーレンス ・ 名刺交換会/Break 炭化ケイ素中のスピン欠陥形成と特性評価 炭化ケイ素中のスピン欠陥の光検出磁気共鳴評価 inology and Nanofabrication on 新動向 / Latest trends in ion beam analysis 口頭講演 (Oral Presentation) A304会場 (Room A304) はじめに 加速器質量分析による同重体分離・検出限界へのチャレンジから天文学研究へ QST量医研静電加速器施設におけるマイクロPIXE/PIGE 分析の動向 集束イオンビーム分析技術による時分割捕集された大気 中微粒子試料の特徴量解析 体憩/Break 産業界でのイオンピーム分析の活用状況 50年を迎えるイオンピーム分析技術のこれから Transnational Access to European Ion Beam Centers:RADIATE and ReMade@ARI クロージング トロニクス / Organic Molecules and Bioelectronics 現在・過去・未来・光電変換を中心として / Organic Sem 口頭講演 (Oral Presentation) E402会場 (Room E402) 新しいフェーズに入った有機太陽電池	○佐竹 徹也¹, 秋永 広幸² edge research on quantum science and technology ○水落 憲和¹・² ○宮本 良之¹ ○岩崎孝之¹ ○阿部 英介¹ ○米田 淳¹ ○大島 武¹ ○森岡 直也¹・² ○山崎 雄一¹ ○瀬木 利夫¹ ○木下 哲一¹ ○及川 将一¹, 石川 剛弘¹, 須田 充¹ ○加田 涉¹, 臼井 洸貴¹, 菊池 涼太¹, 張 錦汕¹, 熊谷 貴美代², 田子 博², 佐藤 隆博³, 石井 保行³, 花泉 修¹ ○小北 哲也¹ ○松尾 二郎¹ ○下acsko Stefan¹ ○瀬木 利夫¹ iconductor Devices: Present, Past, and Future: Foculorical Compact Applies and Future: Foculorical Compact Applie	based on quantum bits and spin defects in solid-state 1. 京大化研, 2. 京大CSRN 1. 産総研 1. 東工大 1. 理研 1. 東工大 1. 量研 1. 京大代研, 2. 京大 CSRN 1. 量研 1. 京大院工 1. 清水建設 1. QST量医研 1. 群馬大, 2. 群馬県衛生環境研究所, 3. 量研 1. 東レリサーチセンター 1. 京大院工 1. Helmholtz-Zentrum Dresden-Rossendorf 1. 京大院工 Sing on Photovoltaic Conversion 1. 分子研

	招 17a-E402-3	有機半導体のバルク・界面電子構造とデバイス物理の狭	〇石井 久夫 1.2.3	1. 千葉大融合理工, 2. 千葉大先進, 3. 千葉大MCRC
0/47/5	5.1\10.00 10.15	間で		
		口頭講演 (Oral Presentation) E402会場 (Room E402) 有機半導体単結晶における価電子バンド分散の実測	〇中山 泰生 ¹	1.東理大理工
13:30 14:00		有機半導体の伝導帯バンド構造の実測と伝導機構の解明		1. 未建入程工 1. 千葉大院工, 2. 千葉大 MCRC
14:30		パンド伝導性有機半導体単結晶薄膜を用いた柔らかエレ		1.東大院新領域
15.00		クトロニクス		
15:00 15:15	+77 17 ₂	休憩・名刺交換会/Break 有機高分子材料における階層性と金属伝導	○竹延 大志¹	1.名大工
15:15		有機半導体多結晶薄膜におけるみかけのキャリア移動度		1. 奈良先端大物質創成
16:15		真空蒸着で行った有機太陽電池研究と発光素子への展開		1.東工大フロンティア研, 2.JST さきがけ
16:45	14 116 E-10E 0	休憩·名刺交換会/Break	O1) /+ IIX	1.3(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
17:00	招 17p-E402-7	高分子系有機半導体を用いた太陽電池	○尾坂 格¹	1. 広大院先進理工
17:30		有機薄膜太陽電池の光電変換メカニズム	○大北 英生¹	1. 京大院工
18:00	17p-E402-9	超薄型有機太陽電池を利用した再充電可能なサイボーグ		1. 理研, 2. 早稲田大, 3. 福井工大, 4. 南洋理工大, 5. 東大
		昆虫	仁 ^{2,1} , イシンヨン ¹ , 古澤 和也 ³ , 佐藤 裕崇 ⁴ , 梅津 信	エ
12 1/ 🛎	/ - / 0 · · · · ·		二郎 ² , 染谷 隆夫 ^{1.5}	
	体 / Semiconducto ィスプレイの次のキ	rs ラーアプリをねらえ!酸化物半導体の最前線/What is ne:	vt killer annlication after display? I eading edge tech	analogy of axide semicondutor
		口頭講演 (Oral Presentation) E302会場 (Room E302)	actions approacion arcor arcpray. Eduant out of coor	mores, et exide comportance.
13:30	招 17p-E302-1	アモルファス酸化物半導体における機能開拓の最前線	〇井手 啓介 ¹ , 細野 秀雄 ² , 神谷 利夫 ²	1.東工大フロ研, 2.東工大元素
14:00	招 17p-E302-2	半導体デバイス向け IGZO 量産成膜技術の開発	〇長坂 恵一 1 , 岩下 浩之 2 , Zeng Hao 2 , 石橋 翔太 2 , 吉 松 孝宗 1 , 藁科 尚士 1 , 冨田 博之 1 , 北田 亨 2 , 前原 大 樹 1	1.東京エレクトロン、2.東京エレクトロン テクノロジー ソリューションズ
14:30	切 17n_F202_2	酸化物半導体デバイスにおける原子層堆積技術の最前線	1-2	1.物材機構
15:00	лн ттр-E30Z-3	酸化物干導体デバイスにおりる原丁層堆積技術の取削線 休憩・名刺交換会/Break	▽エ四日 区/7	±- (2/17)(17)(17) -±-
15:05	招 17p-E302-4	極微細 c-axis aligned crystalline In-Ga-Zn Oxide FET とその応用	○國武 寬司¹, 小山 潤¹, 津田 一樹¹, 齋藤 暁¹, 奥野 直樹¹, 大貫 達也¹, 高橋 正弘¹, 井坂 史人¹, 神保 安	1.株式会社 半導体エネルギー研究所
			弘 ¹ , 宮入 秀和 ¹ , 方堂 涼太 ¹ , 笹川 慎也 ¹ , 伊藤 俊一 ¹ , 荒澤 亮 ¹ , 元吉 良輔 ¹ , 和久田 真弘 ¹ , 村川 努 ¹ , 八窪	
15:35	招 17n-F302-F	酸化物半導体デバイスへの期待-強誘電体ゲートトラン	裕人¹, 松嵜 隆徳¹, 加藤 清¹, 山﨑 舜平¹ ○徳光 永輔¹	1.北陸先端大
10.00	1H TIP CO02-0	ジスタを中心として -	C POSC SINTE	2. 101±204007
16:05	招 17p-E302-6	酸化物半導体によるAIコンピューティングの最前線	〇木村 睦 1,2 ,宮戸 祐治 1 ,新谷 道広 3 ,藤井 茉美 4 ,曲 勇作 5 ,河西 秀典 1 ,松田 時宜 4 ,神谷 利夫 5	1. 龍谷大先端理工, 2. 奈良先端科学技術大, 3. 京都工織 大電気電子工, 4. 近畿大理工, 5. 北海道大電子科学研,
16:35	17p-E302-7	三次元集積デバイス応用に向けた原子層堆積法で成膜した三元系非晶質酸化物半導体In-Ga-O	〇高橋 崇典 1 ,上沼 睦典 1 ,小林 正治 2 ,浦岡 行治 1	6.東京工業大フロンティア材料研 1.奈良先端大, 2.東京大学
16:50		休憩・名刺交換会/Break		
16:55	17p-E302-8	バネルディスカッション		1.東京大学, 2.奈良先端科学技術大学院大学, 3.キオクシア, 4.東京工業大学, 5.東京エレクトロン, 6.物質材料研究機構, 7.半導体エネルギー研究所, 8.北陸先端科学技術大学院大学, 9. 龍谷大学
T27 with	h コロナ時代に資す	る MEMS・微細加工技術の動向と展望 / Trends and Prosp	pects of MEMS and Microfabrication Technologies (
		口頭講演 (Oral Presentation) E502会場 (Room E502)	·	•
13:30	17p-E502-1		○秦 誠一¹	1.名古屋大学
13:35 14:05		MEMS デバイスを支える微細加工技術 VR/AR メタバースに向けたウェアラブル MEMS 実装技	○宮島 博志 ¹	1.住友精密工業
14:05	指 17p-E3U2-3	がR/AR メダハースに向りたりェアフノル MEMIS 美教技	〇向伝 畝一	1.東大工
14:35	招 17p-E502-4	可視光向け光導波路技術とレーザ投影への応用	〇橋本 俊和 ¹	1.NTT 先デ研
15:05	17p-E502-5		○秦 誠一¹	1. 名古屋大学
15:15		休憩・名刺交換会/Break		
15:25		微細加工を利用したウイルスセンシング	〇芦葉 裕樹¹	1. 産総研
15:55	招 17p-E502-7	with コロナ時代におけるバイオセンシングのための生体	〇合田 達郎 '	1. 東洋大理工
16:25		田子######		1.未件八柱工
	坦 17n_F502_8	界面構築技術 MEMS ドップラーセンサとそのヘルスケアへの応用	○澤田 廉十1	
		MEMSドップラーセンサとそのヘルスケアへの応用	○澤田 廉士¹ ○高尾 英邦¹	1.Palmens株式会社
16:55	17p-E502-9	MEMSドップラーセンサとそのヘルスケアへの応用	○澤田 廉士 ¹ ○高尾 英邦 ¹	
16:55 フォーカ T29 量子	17p-E502-9 カストセッション「 子コンピューティン	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 AIエレクトロニクス」/ Focused Session "AI Electronics" グデバイス技術の最前線 / Latest trend of device technolo	○高尾 英邦¹	1.Palmens株式会社
16:55 フォーカ T29 量子 3/17(17p-E502-9 カストセッション「 子コンピューティン (Fri.) 9:30 - 11:45	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 AIエレクトロニクス」/ Focused Session "AI Electronics" グデバイス技術の最前線 / Latest trend of device technolo 口頭講演 (Oral Presentation) A307会場(Room A307)	○高尾 英邦 ¹ ogies for quantum computing	1.Palmens株式会社 1.香川大創工
16:55 フォーカ T29 量子 3/17() 9:30	17p-E502-9 カストセッション「 子コンピューティン (Fri.) 9:30 - 11:45 招 17a-A307-1	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 AIエレクトロニクス」/ Focused Session "AI Electronics" グデバイス技術の最前線 / Latest trend of device technolo 口頭講演 (Oral Presentation) A307会場(Room A307) シリコン量子ビットデバイスの開発	○高尾 英邦 ¹ pgies for quantum computing ○梅茶 清悟 ¹	1.Palmens株式会社 1.香川大創工 1.理化学研究所
16:55 フォーカ T29 量子 3/17(17p-E502-9 カストセッション「 子コンピューティン (Fri.) 9:30 - 11:45 招 17a-A307-1	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 AIエレクトロニクス」/ Focused Session "AI Electronics" グデバイス技術の最前線 / Latest trend of device technolo 口頭講演 (Oral Presentation) A307会場(Room A307) シリコン量子ビットデバイスの開発 超伝導量子コンピュータとダイヤモンド量子中継の融合	○高尾 英邦 ¹ pgies for quantum computing ○梅茶 清悟 ¹	1.Palmens株式会社 1.香川大創工
16:55 フォーカ T29 量子 3/17() 9:30	17p-E502-9 カストセッション「 子コンピューティン (Fri.) 9:30 - 11:45 招 17a-A307-1 招 17a-A307-2	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 AIエレクトロニクス」/ Focused Session "AI Electronics" グデバイス技術の最前線 / Latest trend of device technolo 口頭講演 (Oral Presentation) A307会場(Room A307) シリコン量子ビットデバイスの開発	○高尾 英邦 ¹ pgies for quantum computing ○樽茶 清悟 ¹ ○小坂 英男 ¹	1.Palmens株式会社 1.香川大創工 1.理化学研究所
16:55 フォーカ T29 量子 3/17(1 9:30 10:00	17p-E502-9 カストセッション「 子コンピューティン (Fri.) 9:30 - 11:45 招 17a-A307-1 招 17a-A307-2	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 AIエレクトロニクス」/ Focused Session "AI Electronics" グデバイス技術の最前線 / Latest trend of device technole 口頭講演 (Oral Presentation) A307会場 (Room A307) シリコン量子ビットデバイスの開発 超伝導量子コンピュータとダイヤモンド量子中継の融合による量子インターネットに向けた挑戦 分散型量子計算のためのナノファイバー共振器 QEDデバ	○高尾 英邦 ¹ Delies for quantum computing ○ 梅茶 清悟 ¹ ○ 小坂 英男 ¹ ○ 青木 隆朗 ^{1,2}	1.Palmens株式会社 1.香川大創工 1.理化学研究所 1.横国大
16:55 フォーガ T29 量子 3/17(9:30 10:00 10:30 11:00	17p-E502-9 カストセッション「 テコンピューティン Fri.) 9:30 - 11:45 招 17a-A307-1 招 17a-A307-2 招 17a-A307-3	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 AIエレクトロニクス」/ Focused Session "AI Electronics" グデバイス技術の最前線 / Latest trend of device technole 口頭講演 (Oral Presentation) A307 会場 (Room A307) シリコン量子ビットデバイスの開発 超伝導量子コンピュータとダイヤモンド量子中継の融合による量子インターネットに向けた挑戦 分散型量子計算のためのナノファイバー共振器 QED デバイス技術 量子ドット列を介したスピン量子ビットの断熱量子状態 転送 Design of an optical nanocavity utilizing photonic band gap effect in an AIN-diamond hybrid nanobeam structure	○高尾 英邦 ¹ Degies for quantum computing ○樽茶 清悟 ¹ ○小坂 英男 ¹ ○青木 隆朗 ^{1,2} ○(M1) 湯田 秀明 ¹ , 藤田 高史 ¹ , 大岩 顕 ¹ ○Yeting Yang ^{1,2} , Gao Siyuan ^{1,2} , Iwamoto Satoshi ^{1,2}	1.Palmens株式会社 1.香川大創工 1.理化学研究所 1.横国大 1.早稲田大, 2.NanoQT 1.阪大産研 1.RCAST, 2.IIS
16:55 フォーカ T29 量子 3/17(0 9:30 10:00 10:30 11:00 11:15	17p-E502-9 カストセッション 「 デコンビューディン (Fri.) 9:30 - 11:45 招 17a-A307-1 招 17a-A307-2 招 17a-A307-4 E 17a-A307-6	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 Al エレクトロニクス」/ Focused Session "Al Electronics" グデバイス技術の最前線 / Latest trend of device technole 口頭講演 (Oral Presentation) A307会場 (Room A307) シリコン量子ビットデバイスの開発 超伝導量子コンピュータとダイヤモンド量子中継の融合による量子インターネットに向けた挑戦 分散型量子計算のためのナノファイバー共振器QEDデバイス技術 量子ドット列を介したスピン量子ビットの断熱量子状態 転送 Design of an optical nanocavity utilizing photonic band gap effect in an AlN-diamond hybrid nanobeam structure 非対称ブルズアイ光共振器内に埋め込まれた量子井戸の光吸収増強に関する理論解析	○高尾 英邦 ¹ Degies for quantum computing ○樽茶 清悟 ¹ ○小坂 英男 ¹ ○青木 隆朗 ^{1,2} ○(M1) 湯田 秀明 ¹ , 藤田 高史 ¹ , 大岩 顕 ¹ ○Yeting Yang ^{1,2} , Gao Siyuan ^{1,2} , Iwamoto Satoshi ^{1,2}	1.Palmens株式会社 1.香川大創工 1.理化学研究所 1.横国大 1.早稲田大, 2.NanoQT 1.阪大産研
16:55 フォーカ 729 量子 3/17(0 9:30 10:00 10:30 11:00 11:15 11:30	17p-E502-9 カストセッション 「 テコンピューティン (Fri.) 9:30 - 11:45 招 17a-A307-1 招 17a-A307-2 招 17a-A307-4 E 17a-A307-6 Fri.) 13:30 - 17:00	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 Alエレクトロニクス」/ Focused Session "Al Electronics" グデバイス技術の最前線 / Latest trend of device technole 口頭講演 (Oral Presentation) A307会場 (Room A307) シリコン量子ビットデバイスの開発 超伝導量子コンピュータとダイヤモンド量子中継の融合による量子インターネットに向けた挑戦 分散型量子計算のためのナノファイバー共振器 QEDデバイス技術 量子ドット列を介したスピン量子ピットの断熱量子状態 転送 Design of an optical nanocavity utilizing photonic band gap effect in an AlN-diamond hybrid nanobeam structure 非対称プルズアイ光共振器内に埋め込まれた量子井戸の光吸収増強に関する理論解析 口頭講演 (Oral Presentation) A307会場 (Room A307)	○高尾 英邦 ¹ Degies for quantum computing ○樽茶 清悟 ¹ ○小坂 英男 ¹ ○青木 隆朗 ^{1,2} ○(M1) 湯田 秀明 ¹ , 藤田 高史 ¹ , 大岩 顕 ¹ ○Yeting Yang ^{1,2} , Gao Siyuan ^{1,2} , Iwamoto Satoshi ^{1,2}	1.Palmens株式会社 1.香川大創工 1.理化学研究所 1.横国大 1.早稲田大, 2.NanoQT 1.阪大産研 1.RCAST, 2.IIS 1.東大院工
16:55 フォーカ T29 量子 3/17(0 9:30 10:00 10:30 11:00 11:15	17p-E502-9 カストセッション 「 テコンピューティン Fri.) 9:30 - 11:45 招 17a-A307-1 招 17a-A307-3 17a-A307-4 E 17a-A307-5 17a-A307-6 Fri.) 13:30 - 17:00 招 17p-A307-1	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 Al エレクトロニクス」/ Focused Session "Al Electronics" グデバイス技術の最前線 / Latest trend of device technole 口頭講演 (Oral Presentation) A307会場 (Room A307) シリコン量子ビットデバイスの開発 超伝導量子コンピュータとダイヤモンド量子中継の融合による量子インターネットに向けた挑戦 分散型量子計算のためのナノファイバー共振器QEDデバイス技術 量子ドット列を介したスピン量子ビットの断熱量子状態 転送 Design of an optical nanocavity utilizing photonic band gap effect in an AlN-diamond hybrid nanobeam structure 非対称ブルズアイ光共振器内に埋め込まれた量子井戸の光吸収増強に関する理論解析	の高尾 英邦 ¹ Degies for quantum computing O 樽茶 清悟 ¹ O 小坂 英男 ¹ O 青木 隆朗 ^{1,2} (M1) 湯田 秀明 ¹ , 藤田 高史 ¹ , 大岩 顕 ¹ O Yeting Yang ^{1,2} , Gao Siyuan ^{1,2} , Iwamoto Satoshi ^{1,2} (P)JI SANGMIN ¹ , 岩本 敏 ¹	1.Palmens株式会社 1.香川大創工 1.理化学研究所 1.横国大 1.早稲田大, 2.NanoQT 1.阪大産研 1.RCAST, 2.IIS
16:55 フォーカ 3/17(0 9:30 10:00 10:30 11:00 11:15 11:30 3/17(F 13:30	17p-E502-9 カストセッション 「 デコンピューディン Fri.) 9:30 - 11:45 揺 17a-A307-1 揺 17a-A307-3 17a-A307-4 E 17a-A307-5 17a-A307-6 Fri.) 13:30 - 17:00 揺 17p-A307-1 17p-A307-2	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 AIエレクトロニクス」/ Focused Session "AI Electronics" グデバス技術の最前線 / Latest trend of device technole 口頭講演 (Oral Presentation) A307 会場(Room A307)シリコン量子ピットデバイスの開発 超伝導量子コンピュータとダイヤモンド量子中継の融合による量子インターネットに向けた挑戦 分散型量子計算のためのナノファイバー共振器 QED デバイス技術 量子ドット列を介したスピン量子ピットの断熱量子状態 転送 Design of an optical nanocavity utilizing photonic band gap effect in an AIN-diamond hybrid nanobeam structure 非対称ブルズアイ光共振器内に埋め込まれた量子井戸の光吸収増強に関する理論解析 口頭講演 (Oral Presentation) A307会場(Room A307)超伝導量子ピットの平面集積 超伝導量子ピットの平面集積 超伝導量子ピット集積化のためのジョセフソン接合特性 均一化 進行波型ジョセフソンバラメトリック増幅器による超伝	○高尾 英邦 ¹ pgies for quantum computing ○樽茶 清悟 ¹ ○小坂 英男 ¹ ○青木 隆朗 ^{1,2} ○(M1) 湯田 秀明 ¹ , 藤田 高史 ¹ , 大岩 顕 ¹ ○Yeting Yang ^{1,2} , Gao Siyuan ^{1,2} , Iwamoto Satoshi ^{1,2} ○(P)JI SANGMIN ¹ , 岩本 敏 ¹ ○蔡 兆申 ^{1,2} ○高橋 剛 ^{1,2} , 高馬 悟覚 ^{1,2} , 土肥 義康 ^{1,2} , 佐藤 信太郎 ^{1,2} , 玉手 修平 ² , 中村 泰信 ^{2,3} ○山田 隆宏 ¹ , 浦出 芳郎 ¹ , 石川 豊史 ¹ , 辻本 学 ¹ , 藤井	1.Palmens株式会社 1.香川大創工 1.理化学研究所 1.横国大 1.早稲田大, 2.NanoQT 1.阪大産研 1.RCAST, 2.IIS 1.東大院工 1.東京理科大, 2.理研 1.富士通, 2.理研 1.富士通, 2.理研, 3.東大
16:55 フォーカ 3/17(0 9:30 10:00 10:30 11:00 11:15 11:30 3/17(F 13:30 14:00	17p-E502-9 カストセッション 「 デコンビューディン (Fri.) 9:30 - 11:45 揺 17a-A307-1 揺 17a-A307-2 揺 17a-A307-4 E 17a-A307-5 17a-A307-6 Fri.) 13:30 - 17:00 揺 17p-A307-2 17p-A307-3	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 AIエレクトロニクスJ / Focused Session "AI Electronics" グデバイス技術の最前線 / Latest trend of device technole 口頭講演 (Oral Presentation) A307会場 (Room A307)シリコン量子ビットデバイスの開発 超伝導量子コンピュータとダイヤモンド量子中継の融合による量子インターネットに向けた挑戦 分散型量子計算のためのナノファイバー共振器QEDデバイス技術 量子ドット列を介したスピン量子ビットの断熱量子状態 転送 Design of an optical nanocavity utilizing photonic band gap effect in an AIN-diamond hybrid nanobeam structure 非対称ブルズアイ光共振器内に埋め込まれた量子井戸の光吸収増強に関する理論解析 口頭講演 (Oral Presentation) A307会場 (Room A307) 超伝導量子ビットの平面集積 超伝導量子ビット集積化のためのジョセフソン接合特性 均一化 進行波型ジョセフソンパラメトリック増幅器による超伝導量子ビットの単一試行読み出し測定 超伝導磁束量子ビット・LC共振器深強結合系の時間領域	○高尾 英邦¹ Ogies for quantum computing ○樽茶 清悟¹ ○小坂 英男¹ ○青木 隆朗¹² ○(M1) 湯田 秀明¹, 藤田 高史¹, 大岩 顕¹ ○Yeting Yang¹², Gao Siyuan¹², Iwamoto Satoshi¹² ○(P)JI SANGMIN¹, 岩本 敏¹ ○蔡 兆申¹² ○高橋 剛¹², 高馬 悟覚¹², 土肥 義康¹², 佐藤 信太郎¹², 玉手修平², 中村 泰信²³ ○山田 隆宏¹, 浦出 芳郎¹, 石川 豊史¹, 辻本 学¹, 藤井剛¹, 永澤 秀一', 水林 亘', 猪股 邦宏¹ ○布施 智子¹, 吉原 文樹¹², Ashhab Sahel¹, 角柳 孝	1.Palmens株式会社 1.香川大創工 1.理化学研究所 1.横国大 1.早稲田大, 2.NanoQT 1.阪大産研 1.RCAST, 2.IIS 1.東大院工 1.東京理科大, 2.理研 1.富士通, 2.理研, 3.東大 1.産総研 1.情報通信研究機構, 2.東京理科大, 3.NTT物性基礎研,
16:55 フォーカ 729 量子 3/17(0 9:30 10:00 10:30 11:00 11:15 11:30 3/17(F 13:30 14:00	17p-E502-9 カストセッション 「 デコンビューディン (Fri.) 9:30 - 11:45 揺 17a-A307-1 揺 17a-A307-2 揺 17a-A307-4 E 17a-A307-5 17a-A307-6 Fri.) 13:30 - 17:00 揺 17p-A307-2 17p-A307-3	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 Al エレクトロニクス」/ Focused Session "Al Electronics" グデバイス技術の最前線 / Latest trend of device technole 口頭講演 (Oral Presentation) A307会場 (Room A307) シリコン量子ビットデバイスの開発 超伝導量子コンピュータとダイヤモンド量子中継の融合による量子インターネットに向けた挑戦 分散型量子計算のためのナノファイバー共振器QEDデバイス技術 量子ドット列を介したスピン量子ビットの断熱量子状態 転送 Design of an optical nanocavity utilizing photonic band gap effect in an AlN-diamond hybrid nanobeam structure 非対称ブルズアイ光共振器内に埋め込まれた量子井戸の光吸収増強に関する理論解析 口頭講演 (Oral Presentation) A307会場 (Room A307) 超伝導量子ビットの平面集積 超伝導量子ビット集積化のためのジョセフソン接合特性 均一化 能行波型ジョセフソンバラメトリック増幅器による超伝導量子ビットの単一試行読み出し測定	○高尾 英邦¹ Ogies for quantum computing ○樽茶 清悟¹ ○小坂 英男¹ ○青木 隆朗¹² ○(M1) 湯田 秀明¹, 藤田 高史¹, 大岩 顕¹ ○Yeting Yang¹², Gao Siyuan¹², Iwamoto Satoshi¹² ○(P) JI SANGMIN¹, 岩本 敏¹ ○蔡 兆申¹² ○高橋 剛¹², 高馬 悟覚¹², 上肥 義康¹², 佐藤 信太郎¹², 玉手修平², 中村 泰信²³ ○山田 隆宏¹, 浦出 芳郎¹, 石川 豊史¹, 辻本 学¹, 藤井剛¹, 永澤 秀一¹, 水林 亘¹, 猪股 邦宏¹ ○布施 智子¹, 吉原 文樹¹², Ashhab Sahel¹, 角柳 孝輔³, 齊藤 志郎³, 仙場 浩一¹⁴	1.Palmens株式会社 1.香川大創工 1.理化学研究所 1.横国大 1.早稲田大, 2.NanoQT 1.阪大産研 1.RCAST, 2.IIS 1.東大院工 1.東京理科大, 2.理研 1.富士通, 2.理研, 3.東大 1.産総研 1.情報通信研究機構, 2.東京理科大, 3.NTT物性基礎研, 4.東大
16:55 フォーカ 1729 量子 3/17(0 9:30 10:00 10:30 11:00 11:15 11:30 3/17(F 13:30 14:00 14:15	17p-E502-9 カストセッション 「 テコンピューティン (Fri.) 9:30 - 11:45 招 17a-A307-1 招 17a-A307-2 招 17a-A307-4 E 17a-A307-5 17a-A307-6 Fri.) 13:30 - 17:00 招 17p-A307-1 17p-A307-2 17p-A307-3	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 Alエレクトロニクス」/Focused Session "Al Electronics" グデバイス技術の最前線 / Latest trend of device technole 口頭講演 (Oral Presentation) A307会場 (Room A307)シリコン量子ビットデバイスの開発 超伝導量子コンピュータとダイヤモンド量子中継の融合による量子インターネットに向けた挑戦 分散型量子計算のためのナノファイバー共振器 QEDデバイス技術 量子ドット列を介したスピン量子ピットの断熱量子状態 転送 Design of an optical nanocavity utilizing photonic band gap effect in an AlN-diamond hybrid nanobeam structure 非対称ブルズアイ光共振器内に埋め込まれた量子井戸の光吸収増強に関する理論解析 口頭講演 (Oral Presentation) A307会場 (Room A307) 超伝導量子ピットの平面集積 超伝導量子ピットの単一試行読み出し測定 超伝導磁束量子ピット・LC共振器深強結合系の時間領域 測定 超伝導機束量子ピット・LC共振器深強結合系の時間領域 測定	○高尾 英邦¹ ②傳茶 清悟¹ ○小坂 英男¹ ○青木 隆朗¹.² ○(M1) 湯田 秀明¹, 藤田 高史¹, 大岩 顕¹ ○Yeting Yang¹.², Gao Siyuan¹.², Iwamoto Satoshi¹.² ○(P)JI SANGMIN¹, 岩本 敏¹ ○蔡 兆申¹.² ○高橋 剛¹.², 高馬 悟覚¹.², 土肥 義康¹.², 佐藤 信太郎¹.², 玉手 修平², 中村 泰信².³ ○山田隆宏¹, 浦出 芳郎¹, 石川 豊史¹, 辻本 学¹, 藤井剛¹, 永澤 秀一¹, 水林 亘¹, 猪股 邦宏¹ ○布施 智子¹, 吉原 文樹¹.², Ashhab Sahel¹, 角柳 孝輔³, 齊藤 志郎³, 仙場 浩一¹.⁴	1.Palmens 株式会社 1.香川大創工 1.理化学研究所 1.横国大 1.早稲田大, 2.NanoQT 1.阪大産研 1.RCAST, 2.IIS 1.東大院工 1.東京理科大, 2.理研 1.富士通, 2.理研 1.富士通, 2.理研, 3.東大 1.産総研 1.情報通信研究機構, 2.東京理科大, 3.NTT物性基礎研, 4.東大
16:55 フォーカ 17:29 量子 3/17(0 9:30 10:00 10:30 11:15 11:30 3/17(F 13:30 14:00 14:15 14:30 14:45 15:00	17p-E502-9 カストセッション 「 テコンピューティン (Fri.) 9:30 - 11:45 招 17a-A307-1 招 17a-A307-2 招 17a-A307-4 E 17a-A307-5 17a-A307-6 Fri.) 13:30 - 17:00 招 17p-A307-1 17p-A307-2 17p-A307-3	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 Al エレクトロニクス」/ Focused Session "Al Electronics" グデバイス技術の最前線 / Latest trend of device technolo 口頭講演 (Oral Presentation) A307会場 (Room A307)シリコン量子ビットデバイスの開発 超伝導量子コンピュータとダイヤモンド量子中継の融合による量子インターネットに向けた挑戦 分散型量子計算のためのナノファイバー共振器QEDデバイス技術 量子ドット列を介したスピン量子ビットの断熱量子状態 転送 Design of an optical nanocavity utilizing photonic band gap effect in an AlN-diamond hybrid nanobeam structure 非対称ブルズアイ光共振器内に埋め込まれた量子井戸の光吸収増強に関する理論解析 口頭講演 (Oral Presentation) A307会場 (Room A307) 超伝導量子ビットの平面集積 超伝導量子ビット集積化のためのジョセフソン接合特性 均一化 進行波型ジョセフソンパラメトリック増幅器による超伝導量子ビットの単一試行読み出し測定 超伝導磁束量子ビット・LC共振器深強結合系の時間領域測定 超伝導共振器を用いたボソニック量子ビット実装の取り 組み 超伝導共振器を用いたボソニック量子ビットの特性評価	○高尾 英邦¹ ②傳茶 清悟¹ ○小坂 英男¹ ○青木 隆朗¹.² ○(M1) 湯田 秀明¹, 藤田 高史¹, 大岩 顕¹ ○Yeting Yang¹.², Gao Siyuan¹.², Iwamoto Satoshi¹.² ○(P)JI SANGMIN¹, 岩本 敏¹ ○蔡 兆申¹.² ○高橋 剛¹.², 高馬 悟覚¹.², 土肥 義康¹.², 佐藤 信太郎¹.², 玉手 修平², 中村 泰信².³ ○山田隆宏¹, 浦出 芳郎¹, 石川 豊史¹, 辻本 学¹, 藤井剛¹, 永澤 秀一¹, 水林 亘¹, 猪股 邦宏¹ ○布施 智子¹, 吉原 文樹¹.², Ashhab Sahel¹, 角柳 孝輔³, 齊藤 志郎³, 仙場 浩一¹.⁴	1.Palmens 株式会社 1.香川大創工 1.理化学研究所 1.横国大 1.早稲田大, 2.NanoQT 1.阪大産研 1.RCAST, 2.IIS 1.東大院工 1.東京理科大, 2.理研 1.富士通, 2.理研 1.富士通, 2.理研, 3.東大 1.産総研 1.情報通信研究機構, 2.東京理科大, 3.NTT物性基礎研, 4.東大
16:55 フォーカ 3/17(0 9:30 10:00 10:30 11:00 11:15 11:30 3/17(F 13:30 14:00 14:15 14:45	17p-E502-9 カストセッション 「 デコンビューディン (Fri.) 9:30 - 11:45 揺 17a-A307-1 揺 17a-A307-2 揺 17a-A307-4 E 17a-A307-5 17a-A307-6 Fri.) 13:30 - 17:00 揺 17p-A307-1 17p-A307-2 17p-A307-3 17p-A307-4 17p-A307-5 17p-A307-6	MEMSドップラーセンサとそのヘルスケアへの応用 閉会挨拶 Alエレクトロニクス」/Focused Session "Al Electronics" グデバイス技術の最前線 / Latest trend of device technole 口頭講演 (Oral Presentation) A307会場 (Room A307)シリコン量子ビットデバイスの開発 超伝導量子コンピュータとダイヤモンド量子中継の融合による量子インターネットに向けた挑戦 分散型量子計算のためのナノファイバー共振器 QEDデバイス技術 量子ドット列を介したスピン量子ピットの断熱量子状態 転送 Design of an optical nanocavity utilizing photonic band gap effect in an AlN-diamond hybrid nanobeam structure 非対称ブルズアイ光共振器内に埋め込まれた量子井戸の光吸収増強に関する理論解析 口頭講演 (Oral Presentation) A307会場 (Room A307) 超伝導量子ピットの平面集積 超伝導量子ピットの単一試行読み出し測定 超伝導磁束量子ピット・LC共振器深強結合系の時間領域 測定 超伝導機束量子ピット・LC共振器深強結合系の時間領域 測定	○高尾 英邦¹ ○関ies for quantum computing ○	1.Palmens株式会社 1.香川大創工 1.理化学研究所 1.横国大 1.早稲田大, 2.NanoQT 1.阪大産研 1.RCAST, 2.IIS 1.東大院工 1.東京理科大, 2.理研 1.富士通, 2.理研, 3.東大 1.産総研 1.情報通信研究機構, 2.東京理科大, 3.NTT物性基礎研 4.東大 1.NTT物性基礎研 1.NTT物性基礎研

16:00 16:15		•	Nbバッファ層を用いた超伝導Ta膜のマイクロ波特性評価 超伝導磁束量子ビットを利用したInterconnectionにおけ	圭正¹, 水林 亘¹, 猪股 邦宏¹	1. 産総研 1. 産総研 D-Tech, 2. 富士通量子研
16:30	招 1	.7p-A307-10	る結合調整に関する検討 ヘリウム表面上の電子を用いた量子ビット実現へ向けて: LC共振回路を用いた読み出し	〇川上 恵里加1	1.理化学研究所
			CC共振回路を用いた読み出し sciplinary Physics and Related Areas of Science and Tecl pの社会人教育・生涯学習の展開 / Vocational career educ		nnology inheritance
3/18(Sat.) 13	3:30 - 16:00	口頭講演 (Oral Presentation) A404会場(Room A404)		
13:30 14:00			東海大学における原子力人材育成の現状と今後 研修プログラムを通じた教育スキルの向上	〇吉田 茂生 1 , 浅沼 徳子 1 , 若杉 圭一郎 1 〇山本 堅 $^-$ 1, 立花 優 1 , Mazur Michal 1 , 太田 とも 美 1	1. 東海大工 1. 北大
14:30 14:45	招 18	.8p-A404-3	休憩/Break 教育現場における実験技術の普及と継承 教員向け実験講習会を例として	○增子 寛 ¹	1.(元) 麻布高等学校
15:15	招 1	.8p-A404-4	「リフレッシュ理科教室」をきっかけとした幅広い対象者	○葛生 伸 ¹	1.福井大工
15:45	18	8p-A404-5	への啓発活動 地域連携活動のための正課外学生プロジェクトチームに おける学年間のスキル及び知識の継承	○長谷川 誠¹	1.千歲科技大理工
			and Surfaces		distributed and account
			システムにおける情報処理・創造の最前線 / Frontiers of i 口頭講演 (Oral Presentation) A302 会場(Room A302)	nformation processing and generation in brains and	inanimate autonomous distributed systems
13:00			オープニング	○土屋 敬志¹	1.物材機構
13:05 13:55			脳における情報創成のメカニズム 神経模倣振動子の自律分散ネットワークと同期発振によ る機能化		1. 取力大脳研 1. 阪大産研
14:45 15:00	招 18	.8p-A302-4	休憩・名刺交換会/Break 高次元複雑ダイナミクスとブレインモルフィックコン ピューティング	○堀尾 喜彦¹	1.東北大通研
15:50 16:40			次世代型AI の実現における群知能の必要性 パネルディスカッション	〇土屋 敬志 1 , 神吉 輝夫 2 , 栗原 聡 3 , 坂上 雅道 4 , 堀尾	1. 慶大理工 1. 物材機構, 2. 阪大, 3. 慶應大, 4. 玉川大, 5. 東北大
17:10	18	8p-A302-7	クロージング	喜彦 ⁵ ○矢嶋 赳彬 ¹	1. 九大シス情
10 スヒ	:"ントロ	ニクス・マク	ネティクス / Spintronics and Magnetics		
			グネティクスによる微弱生体信号計測技術の進展 / Progre 口頭講演 (Oral Presentation) A307 会場(Room A307)	ss of the feeble biological signal measurement tech	nique by spintronics and magnetics
13:30			TMRセンサによる生体磁場計測の進展		1. 東北大工, 2. スピンセンシングファクトリー, 3. 東北 大医, 4. コニカミノルタ, 5. 東北大 AIMR, 6. 東北大 CSIS
14:00	招 E 1	.8p-A307-2	Imaging of biomagnetism using diamond quantum	所で、中主信和、女勝・康大 ○ Keigo Arai ^{1, 2}	1.Tokyo Tech, 2.JST PRESTO
14:30	招 1:	8n-A307-3	sensors フレキシブル磁気抵抗素子による生体力学情報センシン	〇千莲 大坳 1,2,3,4	1. 阪大産研, 2. 東北大 SRIS, 3. 阪大 CSRN, 4. 阪大 OTRI
	, H	.ор 7.007 о	グ		
15:00			休憩/Break		
	招 1:	8n-A307-4		○藪 F 信 ¹	1 東北大学
15:15 15:45	招 1	.8p-A307-5	高周波駆動薄膜磁界センサの開発とバイオ応用 神経磁場計測システム	○藪上信 ¹ ○足立 善昭 ¹	1. 東北大学 1. 金沢工大
15:15 15:45 16:15	招 18	.8p-A307-5 .8p-A307-6	高周波駆動薄膜磁界センサの開発とバイオ応用 神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用	○足立 善昭 ¹ ○伊藤 陽介 ¹	
15:15 15:45 16:15 フォー シンポ	招 18 招 18 ーカス ジウムの	.8p-A307-5 .8p-A307-6 トセッシ のプログラム	高周波駆動薄膜磁界センサの開発とバイオ応用神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用ョン「AIエレクトロニクス」/ Focused Sesはプログラム冒頭にございます。	○足立 善昭 ¹ ○伊藤 陽介 ¹	1. 金沢工大
15:15 15:45 16:15 フォー シンポ フォー	招 18 招 18 一力ス ジウムの カストセ	.8p-A307-5 .8p-A307-6 .トセッシ のプログラム セッション「	高周波駆動薄膜磁界センサの開発とバイオ応用 神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用 ョン「AIエレクトロニクス」/ Focused Ses はプログラム冒頭にございます。 AIエレクトロニクス」/ Focused Session "AI Electronics"	○足立 善昭 ¹ ○伊藤 陽介 ¹	1. 金沢工大
15:15 15:45 16:15 フォー シンポ フォー	招 16 招 16 一 力 ス ジウムの カストセ Wed.) 9 奨 18	.8p-A307-5 .8p-A307-6 .トセッシ のプログラム セッション「/ 9:00 - 11:30 5a-B414-1	高周波駆動薄膜磁界センサの開発とバイオ応用神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用 ヨン「AIエレクトロニクス」/ Focused Ses はプログラム冒頭にございます。 AIエレクトロニクス」/ Focused Session "AI Electronics" 口頭講演 (Oral Presentation) B414 会場(Room B414) 深層スパイキングニューラルネットワークのための 新しい脳型学習アルゴリズム	○足立善昭 ¹ ○伊藤陽介 ¹ sion "Al Electronics" ○井上克馬 ¹ ,張永博 ¹ ,中島光雅 ² ,國吉康夫 ¹ ,中嶋 浩平 ¹	1. 金沢工大 1. 京大院工
15:15 15:45 16:15 フォー シンポ フォー 3/15(招 16 招 16 一 力 ス ジウムの カストセ Wed.) 9 奨 18	.8p-A307-5 .8p-A307-6 .トセッシ のプログラム セッション「/ 9:00 - 11:30 5a-B414-1	高周波駆動薄膜磁界センサの開発とバイオ応用神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用 ョン「AIエレクトロニクス」/ Focused Ses はプログラム冒頭にございます。 AIエレクトロニクス」/ Focused Session "AI Electronics" 口頭講演 (Oral Presentation) B414 会場(Room B414) 深層スパイキングニューラルネットワークのための 新し	○足立善昭 ¹ ○伊藤陽介 ¹ sion "Al Electronics" ○井上克馬 ¹ ,張永博 ¹ ,中島光雅 ² ,國吉康夫 ¹ ,中嶋 浩平 ¹	1. 金沢工大 1. 京大院工
15:15 15:45 16:15 フォー シンポ フォー 3/15(9:00	招 1:	.8p-A307-5 .8p-A307-6 .トセッシ のプログラム セッション「. 9:00 - 11:30 .5a-B414-1	高周波駆動薄膜磁界センサの開発とバイオ応用神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用 コン「Alエレクトロニクス」/ Focused Ses はプログラム冒頭にございます。 Alエレクトロニクス」/ Focused Session "Al Electronics" 口頭講演 (Oral Presentation) B414 会場(Room B414) 深層スパイキングニューラルネットワークのための新しい脳型学習アルゴリズム 脳型ウェットウェア創製に向けた3次元導電性ポリマー	○足立 善昭¹ ○伊藤 陽介¹ sion "AI Electronics" ○井上 克馬¹,張 永博¹,中島 光雅²,國吉 康夫¹,中嶋 浩平¹ ○ (DC) 萩原 成基¹,安藤 洸太¹,浅井 哲也¹,赤井 恵¹²	 金沢工大 京大院工 東大情理, 2.NTT 先デ研
15:15 15:45 16:15 フォー シンポ フォー 3/15(9:00	招 1: 招 1: 一 カス ジウムの カストセ Wed.) 9 奨 1: 型 1:	.8p-A307-5 .8p-A307-6 .トセッシ カプログラム セッション「 .9:00 - 11:30 .5a-B414-1 .5a-B414-2	高周波駆動薄膜磁界センサの開発とバイオ応用神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用コン「AIエレクトロニクス」/ Focused Sesはプログラム冒頭にございます。 AIエレクトロニクス」/ Focused Session "AI Electronics" 口頭講演 (Oral Presentation) B414 会場(Room B414)深層スパイキングニューラルネットワークのための新しい脳型学習アルゴリズム 脳型ウェットウェア創製に向けた3次元導電性ポリマーネットワークの構築及び学習 FG型ニューロンを用いた加算ネットワークにおける確率共鳴効果デジタル抵抗変化型メモリの線形書き込み手法と書き込みの非理想性を考慮したニューラルネットワークの学習	○足立 善昭 ¹ ○伊藤 陽介 ¹ sion "AI Electronics" ○井上 克馬 ¹ , 張 永博 ¹ , 中島 光雅 ² , 國吉 康夫 ¹ , 中嶋 浩平 ¹ ○(DC) 萩原 成基 ¹ , 安藤 洸太 ¹ , 浅井 哲也 ¹ , 赤井 恵 ^{1,2} ○合田 晃 ¹ , 松井 千尋 ¹ , 竹内 健 ¹ ○(M1) 山田 歩 ¹ , 三澤 奈央子 ¹ , 村岡 俊作 ² , 河合 賢 ² ,	 金沢工大 京大院工 東大情理,2.NTT 先デ研 北大院情報,2.阪大院理 東大工
15:15 15:45 16:15 フォー 3/15(9:00 9:15 9:30 9:45	招 1: 招 1: 一 カス ジウムの サスト・セ Wed.) 9 野 1: 野 1:	8p-A307-5 8p-A307-6 トセッシ カプログラム セッション「 9:00 - 11:30 5a-B414-1 5a-B414-2 5a-B414-3	高周波駆動薄膜磁界センサの開発とバイオ応用神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用コン「AIエレクトロニクス」/ Focused Sesはプログラム冒頭にございます。 AIエレクトロニクス」/ Focused Session "AI Electronics" 口頭請演 (Oral Presentation) B414 会場 (Room B414) 深層スパイキングニューラルネットワークのための新しい脳型学習アルゴリズム 脳型ウェットウェア創製に向けた3次元導電性ポリマーネットワークの構築及び学習 FG型ニューロンを用いた加算ネットワークにおける確率共鳴効果デジタル抵抗変化型メモリの線形書き込み手法と書き込みの非理想性を考慮したニューラルネットワークの学習アルゴリズム 放射光ナノ C T 法による統合失調症例の神経ネットワーク構造の解析とそのニューラルネットワークへの応用	○足立 善昭¹ ○伊藤 陽介¹ sion "AI Electronics" ○井上 克馬¹, 張 永博¹, 中島 光雅², 國吉 康夫¹, 中嶋 浩平¹ ○(DC) 萩原 成基¹, 安藤 洸太¹, 浅井 哲也¹, 赤井 恵¹² ○合田 晃¹, 松井 千尋¹, 竹内 健¹ ○(M1) 山田 歩¹, 三澤 奈央子¹, 村岡 俊作², 河合 賢², 松井 千尋¹, 竹内 健¹ ○(BC) 丸田 瑶¹, 雑賀 里乃¹, 水谷 隆太¹, 山本 義郎², 竹腰 進³, 井野元 智恵³, 中村 直哉³, 新井 誠⁴, 宮下 光 弘⁴, 大島 健一⁴, 糸川 昌成⁴, 鳥居 洋太⁵, 久鳥 周⁵, 尾	 金沢工大 京大院工 東大情理,2.NTT先デ研 北大院情報,2.阪大院理 東大工 東大工,2.NTCJ 東海大工,2.東海大理,3.東海大医,4.都医学総合研,
15:15 15:45 16:15 フォー 3/15(9:00 9:15 9:30	招 1:	8p-A307-5 8p-A307-6 トセッシ カプログラム セッション「 9:00 - 11:30 5a-B414-1 5a-B414-2 5a-B414-3	高周波駆動薄膜磁界センサの開発とバイオ応用 神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用 コン「Alエレクトロニクス」/ Focused Ses はプログラム冒頭にございます。 Alエレクトロニクス」/ Focused Session "Al Electronics" 口頭講演 (Oral Presentation) B414 会場(Room B414) 深層スパイキングニューラルネットワークのための新しい脳型学習アルゴリズム 脳型ウェットウェア創製に向けた3次元導電性ボリマーネットワークの構築及び学習 FG型ニューロンを用いた加算ネットワークにおける確率 共鳴効果 デジタル抵抗変化型メモリの線形書き込み手法と書き込みの非理想性を考慮したニューラルネットワークの学習アルゴリズム 放射光ナノCT法による統合失調症例の神経ネットワーク構造の解析とそのニューラルネットワークへの応用 体憩/Break Computation-in-Memoryのデバイスエラー補償1	○足立 善昭¹ ○伊藤陽介¹ Sion "AI Electronics" ○井上 克馬¹, 張 永博¹, 中島 光雅², 國吉 康夫¹, 中嶋 浩平¹ ○(DC) 萩原 成基¹, 安藤 洸太¹, 浅井 哲也¹, 赤井 恵¹² ○合田 晃¹, 松井 千尋¹, 竹内 健¹ ○(M1) 山田 歩¹, 三澤 奈央子¹, 村岡 俊作², 河合 賢², 松井 千尋¹, 竹内 健¹ ○(BC) 丸田 瑶¹, 雑賀 里乃¹, 水谷 隆太¹, 山本 義郎², 竹腰 進³, 井野元 智恵³, 中村 直哉³, 新井 誠⁴, 宮下 光 弘⁴, 大島 健一⁴, 糸川 昌成⁴, 鳥居 洋太⁵, 久島 周⁵, 尾 崎紀夫⁵, 入谷 修司⁰, 山下 祐一⁻, 上椙 真之², 竹内 晃 久⁵, 上杉 健太朗⁵, 寺田 靖子⁵, 鈴木 芳生², Viktor	 金沢工大 京大院工 東大情理,2.NTT先デ研 北大院情報,2.阪大院理 東大工 東大工,2.NTCJ 東海大工,2.東海大理,3.東海大医,4.都医学総合研,5.名大院医,6.桶狭間病院藤田こころケアセンター,7.国立精神・神経医療研究セ,8.高輝度光科学研究セ/SPring-8,9.高エネルギー加速器研,10.アルゴンヌ国立
15:15 15:45 16:15 フォーシンポ フォー 3/15(9:00 9:15 9:30 9:45	招 1:	8p-A307-5 8p-A307-6 トセッシ カプログラム セッション「 9:00 - 11:30 5a-B414-1 5a-B414-3 5a-B414-4	高周波駆動薄膜磁界センサの開発とバイオ応用 神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用 コン「Alエレクトロニクス」/ Focused Ses はプログラム冒頭にございます。 Alエレクトロニクス」/ Focused Session "Al Electronics" 口頭講演 (Oral Presentation) B414会場(Room B414) 深層スパイキングニューラルネットワークのための新しい脳型学習アルゴリズム 脳型ウェットウェア創製に向けた3次元導電性ポリマーネットワークの構築及び学習 FG型ニューロンを用いた加算ネットワークにおける確率 共鳴効果 デジタル抵抗変化型メモリの線形書き込み手法と書き込みの非理想性を考慮したニューラルネットワークの学習アルゴリズム 放射光ナノCT法による統合失調症例の神経ネットワーク構造の解析とそのニューラルネットワークへの応用 体憩/Break	○足立 善昭¹ ○伊藤 陽介¹ sion "AI Electronics" ○井上 克馬¹, 張 永博¹, 中島 光雅², 國吉 康夫¹, 中嶋 浩平¹ ○(DC) 萩原 成基¹, 安藤 洸太¹, 浅井 哲也¹, 赤井 恵¹² ○合田 晃¹, 松井 千尋¹, 竹內 健¹ ○(M1) 山田 歩¹, 三澤 奈央子¹, 村岡 俊作², 河合 賢², 松井 千尋¹, 竹內 健¹ ○(BC) 丸田 瑶¹, 雑賀 里乃¹, 水谷 隆太¹, 山本 義郎², 松井 千尋³, 竹內 健¹ ○(BC) 丸田 瑶¹, 雑賀 里乃¹, 水谷 隆太¹, 山本 義郎², 松井 千尋³, 介內 健¹ ○(BC) 丸田 瑶¹, 雑賀 里乃¹, 水谷 隆太¹, 山本 義郎², 松井 千尋¹, 竹內 健¹ ○(BC) 丸田 瑶¹, 維賀 里乃¹, 水谷 隆太¹, 山本 義郎², 大計 八島 健一⁴, 糸川 昌成⁴, 鳥居 洋太⁵, 久島 周⁵, 尾崎紀夫⁵, 入合修司³, 山下 祐一², 上椙 真之⁵, 竹內 晃 久⁵, 上杉 健太朗⁵, 寺田 靖子⁵, 鈴木 芳生⁵, Viktor Nikitin¹⁰, Francesco De Carlo¹⁰	 金沢工大 京大院工 東大情理,2.NTT先デ研 北大院情報,2.阪大院理 東大工 東大工,2.NTCJ 東海大工,2.東海大理,3.東海大医,4.都医学総合研,5.名大院医,6.桶狭間病院藤田こころケアセンター,7.国立精神・神経医療研究セ,8.高輝度光科学研究セ/SPring-8,9.高エネルギー加速器研,10.アルゴンヌ国立研究所
15:15 15:45 16:15 フォーシンポ フォー 3/15(9:00 9:15 9:30 9:45	招 1:	8p-A307-5 8p-A307-6 トセッシ カプログラム セッション「 9:00 - 11:30 5a-B414-1 5a-B414-3 5a-B414-4	高周波駆動薄膜磁界センサの開発とバイオ応用 神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用 コン「AIエレクトロニクス」/ Focused Ses はプログラム冒頭にございます。 AIエレクトロニクス」/ Focused Session "AI Electronics" 口頭講演 (Oral Presentation) B414 会場 (Room B414) 深層スパイキングニューラルネットワークのための新しい脳型学習アルゴリズム 脳型ウェットウェア創製に向けた3次元導電性ポリマーネットワークの構築及び学習 FG型ニューロンを用いた加算ネットワークにおける確率 共鳴効果 デジタル抵抗変化型メモリの線形書き込み手法と書き込みの非理想性を考慮したニューラルネットワークの学習アルゴリズム 放射光ナノCT法による統合失調症例の神経ネットワーク構造の解析とそのニューラルネットワークへの応用 体憩/Break Computation-in-Memoryのデバイスエラー補償1 ニューラルネットワークのアルゴリズムを考慮した層単位の再学習による不揮発性メモリの書き込みばらつき補債 Computation-in-Memoryのデバイスエラー補償2 Shortcut connectionによる層単位のエラー耐性の違いと	○足立 善昭¹ ○伊藤陽介¹ Sion "AI Electronics" ○井上 克馬¹, 張 永博¹, 中島 光雅², 國吉 康夫¹, 中嶋 浩平¹ ○(DC) 萩原 成基¹, 安藤 洸太¹, 浅井 哲也¹, 赤井 恵¹² ○合田 晃¹, 松井 千尋¹, 竹内 健¹ ○(M1) 山田 歩¹, 三澤 奈央子¹, 村岡 俊作², 河合 賢², 松井 千尋¹, 竹内 健¹ ○(BC) 丸田 瑶¹, 雑賀 里乃¹, 水谷 隆太¹, 山本 義郎², 竹腰 進³, 井野元 智恵³, 中村 直哉³, 新井 誠⁴, 宮下 光 弘⁴, 大島 健一⁴, 糸川 昌成⁴, 鳥居 洋太⁵, 久島 周⁵, 尾崎紀夫⁵, 入谷 修司°, 山下 祐一⁻, 上椙 真之², 竹内 晃 久⁵, 上杉 健太朗⁵, 寺田 靖子⁵, 鈴木 芳生°, Viktor Nikitin¹o, Francesco De Carlo¹o ○吉清 秦生¹, 三澤 奈央子¹, 松井 千尋¹, 竹内 健¹	 金沢工大 京大院工 東大情理,2.NTT先デ研 北大院情報,2.阪大院理 東大工 東大工,2.NTCJ 東海大工,2.東海大理,3.東海大医,4.都医学総合研,5.名大院医,6.桶狭間病院藤田こころケアセンター,7.国立精神・神経医療研究セ,8.高輝度光科学研究セ/SPring-8,9.高エネルギー加速器研,10.アルゴンヌ国立研究所 東大工
15:15 15:45 16:15 フォー シンポ フォー 3/15(9:00 9:15 9:30 9:45 10:00	招 1:	8p-A307-5 8p-A307-6 トセッシ カプログラム セッション 「 9:00 - 11:30 5a-B414-1 5a-B414-2 5a-B414-3 5a-B414-4 5a-B414-5	高周波駆動薄膜磁界センサの開発とバイオ応用 神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用 コン「Al エレクトロニクス」/ Focused Ses はプログラム冒頭にございます。 Al エレクトロニクス」/ Focused Session "Al Electronics" 口頭講演 (Oral Presentation) B414 会場 (Room B414) 深層スパイキングニューラルネットワークのための新しい脳型学習アルゴリズム 脳型ウェットウェア創製に向けた3次元導電性ボリマーネットワークの構築及び学習 FG型ニューロンを用いた加算ネットワークにおける確率共鳴効果 デジタル抵抗変化型メモリの線形書き込み手法と書き込みの非理想性を考慮したニューラルネットワークの学習アルゴリズム 放射光ナノCT法による統合失調症例の神経ネットワーク構造の解析とそのニューラルネットワークへの応用 体憩/Break Computation-in-Memoryのデバイスエラー補償1 ニューラルネットワークのアルゴリズムを考慮した層単位の再学習による不揮発性メモリの書き込みばらつき補償 Computation-in-Memoryのデバイスエラー補償2 Shortcut connectionによる層単位のエラー耐性の違いと入出力分布の検証 バラメータ最適化による抽出型多数決論理を用いた量子	○足立 善昭¹ ○伊藤陽介¹ Sion "AI Electronics" ○井上 克馬¹, 張 永博¹, 中島 光雅², 國吉 康夫¹, 中嶋 浩平¹ ○(DC) 萩原 成基¹, 安藤 洸太¹, 浅井 哲也¹, 赤井 恵¹² ○合田晃¹, 松井 千尋¹, 竹内 健¹ ○(M1) 山田 歩¹, 三澤 奈央子¹, 村岡 俊作², 河合 賢², 松井 千尋¹, 竹内 健¹ ○(BC) 丸田 瑶¹, 雑賀 里乃¹, 水谷 隆太¹, 山本 義郎², 竹腰 進³, 井野元 智恵³, 中村 直哉³, 新井 誠⁴, 宮下 光 弘⁴, 大島 健一⁴, 糸川 昌成⁴, 鳥居 洋太⁵, 久島 周⁵, 尾崎紀夫⁵, 入谷 修司⁴, 山下 祐一⁻, 上椙 真之⁵, 竹内 晃 久⁵, 上杉 健太朗⁵, 寺田 靖子⁵, 鈴木 芳生⁵, Viktor Nikitin¹o, Francesco De Carlo¹ ○古清 秦生¹, 三澤 奈央子¹, 松井 千尋¹, 竹内 健¹ ○古清 秦生¹, 山田 歩¹, 三澤 奈央子¹, 松井 千尋¹, 竹内 健¹	 金沢工大 京大院工 東大情理,2.NTT先デ研 北大院情報,2.阪大院理 東大工 東大工,2.NTCJ 東海大工,2.東海大理,3.東海大医,4.都医学総合研,5.名大院医,6.桶狭間病院藤田こころケアセンター,7.国立精神・神経医療研究セ,8.高輝度光科学研究セ/SPring-8,9.高エネルギー加速器研,10.アルゴンヌ国立研究所 東大工
15:15 15:45 16:15 フォー 3/15(9:00 9:15 9:30 9:45 10:00	招 1:	8p-A307-5 8p-A307-6 8p-A307-6 トセッシ カプログラム セッション「 9:00 - 11:30 5a-B414-1 5a-B414-2 5a-B414-3 5a-B414-4 5a-B414-6 5a-B414-6	高周波駆動薄膜磁界センサの開発とバイオ応用 神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用 コン「Alエレクトロニクス」/ Focused Ses はプログラム冒頭にございます。 Alエレクトロニクス」/ Focused Session "Al Electronics" 口頭講演 (Oral Presentation) B414 会場 (Room B414) 深層スパイキングニューラルネットワークのための新しい脳型学習アルゴリズム 脳型ウェットウェア創製に向けた3次元導電性ポリマーネットワークの構築及び学習 FG型ニューロンを用いた加算ネットワークにおける確率共鳴効果 デジタル抵抗変化型メモリの線形書き込み手法と書き込みの非理想性を考慮したニューラルネットワークの学習アルゴリズム 放射光ナノCT法による統合失調症例の神経ネットワーク構造の解析とそのニューラルネットワークへの応用 体盤/Break Computation-in-Memory のデバイスエラー補償1 ニューラルネットワークのアルゴリズムを考慮した層単位の再学習による不揮発性メモリの書き込みばらつき補償 Computation-in-Memory のデバイスエラー補償2 Shortcut connection による層単位のエラー耐性の違いと入出力分布の検証 バラメータ最適化による抽出型多数決論理を用いた量子インスパイアードイジングマシンの高速化 抽出型多数決論理を用いた全結合型イジングマシンの	○足立 善昭¹ ○伊藤陽介¹ Sion "AI Electronics" ○井上 克馬¹, 張 永博¹, 中島 光雅², 國吉 康夫¹, 中嶋 浩平¹ ○(DC) 萩原 成基¹, 安藤 洸太¹, 浅井 哲也¹, 赤井 恵¹² ○合田晃¹, 松井 千尋¹, 竹内 健¹ ○(M1) 山田 歩¹, 三澤 奈央子¹, 村岡 俊作², 河合 賢², 松井 千尋¹, 竹内 健¹ ○(BC) 丸田 瑶¹, 雑賀 里乃¹, 水谷 隆太¹, 山本 義郎², 竹腰 進³, 井野元 智恵³, 中村 直哉³, 新井 誠⁴, 宮下 光 弘⁴, 大島 健一⁴, 糸川 昌成⁴, 鳥居 洋太⁵, 久島 周⁵, 尾崎紀夫⁵, 入谷 修司⁴, 山下 祐一⁻, 上椙 真之⁵, 竹内 晃 久⁵, 上杉 健太朗⁵, 寺田 靖子⁵, 鈴木 芳生⁵, Viktor Nikitin¹o, Francesco De Carlo¹ ○古清 秦生¹, 三澤 奈央子¹, 松井 千尋¹, 竹内 健¹ ○古清 秦生¹, 山田 歩¹, 三澤 奈央子¹, 松井 千尋¹, 竹内 健¹	 金沢工大 京大院工 東大情理,2.NTT先デ研 北大院情報,2.阪大院理 東大工 東大工,2.東海大理,3.東海大医,4.都医学総合研,5.名大院医,6.桶狭間病院藤田こころケアセンター,7.国立精神・神経医療研究セ,8.高輝度光科学研究セ/SPring-8,9.高エネルギー加速器研,10.アルゴンヌ国立研究所 東大工 東大工
15:15 15:45 16:15 フォー シンポ フォー 3/15(9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45	招 1:	8p-A307-5 8p-A307-6 8p-A307-6 トセッシ カプログラム セッション 「 9:00 - 11:30 5a-B414-1 5a-B414-2 5a-B414-3 5a-B414-4 5a-B414-6 5a-B414-6 5a-B414-7 5a-B414-8 5a-B414-9	高周波駆動薄膜磁界センサの開発とバイオ応用 神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用 コン「Al エレクトロニクス」/ Focused Ses はプログラム冒頭にございます。 Al エレクトロニクス」/ Focused Session "Al Electronics" 口頭講演 (Oral Presentation) B414 会場 (Room B414) 深層スパイキングニューラルネットワークのための新しい脳型学習アルゴリズム 脳型ウェットウェア創製に向けた3次元導電性ポリマーネットワークの構築及び学習 FG型ニューロンを用いた加算ネットワークにおける確率共鳴効果 デジタル抵抗変化型メモリの線形書き込み手法と書き込みの非理想性を考慮したニューラルネットワークの学習アルゴリズム 放射光ナノCT法による統合失調症例の神経ネットワーク構造の解析とそのニューラルネットワークへの応用 体想/Break Computation-in-Memoryのデバイスエラー補償1 ニューラルネットワークのアルゴリズムを考慮した層単位の再学習による不揮発性メモリの書き込みばらつき補償 Computation-in-Memoryのデバイスエラー補償2 Shortcut connectionによる層単位のエラー耐性の違いと入出力分布の検証 パラメータ最適化による抽出型多数決論理を用いた量子インスパイアードイジングマシンの高速化	○足立 善昭¹ ○伊藤陽介¹ sion "AI Electronics" ○井上 克馬¹,張 永博¹,中島 光雅²,國吉 康夫¹,中嶋 浩平¹ ○(DC) 萩原 成基¹,安藤 洸太¹,浅井 哲也¹,赤井 恵¹² ○合田 晃¹,松井 千尋¹,竹內 健¹ ○(M1) 山田 歩¹,三澤 奈央子¹,村岡 俊作²,河合 賢², 松井 千尋¹,竹內 健¹ ○(BC) 丸田 瑶¹,雑賀 里乃¹,水谷 隆太¹,山本 義郎², 竹腰 進³,井野元 智恵³,中村 直哉³,新井 誠⁴,宮下 光 弘⁴,大島 健一⁴,糸川 昌成⁴,島居 洋太⁵,久島 周⁵,尾 崎紀夫⁵,入谷 修司⁴,山下 祐一⁻,上椙 真之⁵,竹內 晃 久*,上杉 健太朗*,寺田 靖子*,鈴木 芳生²,Viktor Nikitin¹0, Francesco De Carlo¹ ○吉清 秦生¹,三澤 奈央子¹,松井 千尋¹,竹內 健¹ ○吉清 秦生¹,山田 歩¹,三澤 奈央子¹,松井 千尋¹,竹內 健¹	 金沢工大 京大院工 東大情理,2.NTT先デ研 北大院情報,2.阪大院理 東大工 東大工,2.NTCJ 東海大工,2.東海大理,3.東海大医,4.都医学総合研,5.名大院医,6.桶狭間病院藤田こころケアセンター,7.国立精神・神経医療研究セ,8.高輝度光科学研究セ/SPring-8,9.高エネルギー加速器研,10.アルゴンヌ国立研究所 1.東大工 1.東大工 1.東大工 1.東大工
15:15 15:45 16:15 フォー 3/15(9:00 9:15 9:30 9:45 10:00 10:15 10:30 11:15	招 1:	8p-A307-5 8p-A307-6 トセッシ カプログラム セッション 「 9:00 - 11:30 5a-B414-1 5a-B414-2 5a-B414-3 5a-B414-4 5a-B414-5 5a-B414-6 5a-B414-7 5a-B414-8 5a-B414-9 3:00 - 16:00	高周波駆動薄膜磁界センサの開発とバイオ応用 神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用 ヨン「Alエレクトロニクス」/ Focused Ses はプログラム冒頭にございます。 Alエレクトロニクス」/ Focused Session "Al Electronics" 口頭講演 (Oral Presentation) B414 会場 (Room B414) 深層スパイキングニューラルネットワークのための新しい脳型学習アルゴリズム 脳型ウェットウェア創製に向けた3次元導電性ポリマーネットワークの構築及び学習 FG型ニューロンを用いた加算ネットワークにおける確率 共鳴効果 デジタル抵抗変化型メモリの線形書き込み手法と書き込みの非理想性を考慮したニューラルネットワークの学習 アルゴリズム 放射光ナノCT法による統合失調症例の神経ネットワーク構造の解析とそのニューラルネットワークへの応用 体憩/Break Computation-in-Memoryのデバイスエラー補償 1 ニューラルネットワークのアルゴリズムを考慮した層単位の再学習による不揮発性メモリの書き込みばらつき補償 Computation-in-Memoryのデバイスエラー補償 2 Shortcut connectionによる層単位のエラー耐性の違いと人出力分布の検証 ボラメータ最適化による抽出型多数決論理を用いた量子インスパイアードイジングマシンの高速化 抽出型多数決論理を用いた全結合型イジングマシンのFPGA実装	○足立 善昭¹ ○伊藤陽介¹ Sion "AI Electronics" ○井上 克馬¹, 張 永博¹, 中島 光雅², 國吉 康夫¹, 中嶋 浩平¹ ○(DC) 萩原 成基¹, 安藤 洸太¹, 浅井 哲也¹, 赤井 恵¹² ○合田 晃¹, 松井 千尋¹, 竹內 健¹ ○(M1) 山田 歩¹, 三澤 奈央子¹, 村岡 俊作², 河合 賢², 松井 千尋¹, 竹內 健¹ ○(BC) 丸田 瑶¹, 雑賀 里乃¹, 水谷 隆太¹, 山本 義郎², 竹腰 進³, 井野元 智恵³, 中村 直哉³, 新井 誠⁴, 宮下 光 弘⁴, 大島 健一⁴, 糸川 昌成⁴, 鳥居 洋太⁵, 久島 周⁵, 尾崎紀夫⁵, 入谷 修司°, 山下 祐一⁻, 上椙 真之², 竹內 晃 久², 上杉 健太朗², 寺田 靖子², 鈴木 芳生², Viktor Nikitin¹º, Francesco De Carlo¹⁰ ○吉清 秦生¹, 三澤 奈央子¹, 松井 千尋¹, 竹內 健¹ ○吉南 秦生¹, 山田 歩¹, 三澤 奈央子¹, 松井 千尋¹, 竹内 健¹ ○吉田 朝輝¹, 島田 萌絵¹, 米本 亮哉¹, 白樫 淳一¹ ○米本 亮哉¹, 吉田 朝輝¹, 島田 萌絵¹, 白樫 淳一¹	 金沢工大 京大院工 東大院工 東大情理, 2.NTT先デ研 北大院情報, 2.阪大院理 東大工、2.取大門で 東京大工、2.東海大理、3.東海大医、4.都医学総合研、5.名大院医、6.桶狭間病院藤田こころケアセンター、7.国立精神・神経医療研究セ、8.高輝度光科学研究セ/SPring-8, 9.高エネルギー加速器研、10.アルゴンヌ国立研究所 東大工 東大工 東大工 東京農工大院工 東京農工大院工 東京農工大院工
15:15 15:45 16:15 フォー 3/15(9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 3/15((招 1:	8p-A307-5 8p-A307-6 8p-A3	高周波駆動薄膜磁界センサの開発とバイオ応用 神経磁場計測システム 光ポンピング磁気センサの生体磁場計測への応用 コン「Alエレクトロニクス」/ Focused Ses はプログラム冒頭にございます。 Alエレクトロニクス」/ Focused Session "Al Electronics" 口頭講演 (Oral Presentation) B414会場 (Room B414) 深層スパイキングニューラルネットワークのための新しい脳型学習アルゴリズム 脳型ウェットウェア創製に向けた3次元導電性ポリマーネットワークの構築及び学習 FG型ニューロンを用いた加算ネットワークにおける確率共鳴効果 デジタル抵抗変化型メモリの線形書き込み手法と書き込みの非理想性を考慮したニューラルネットワークの学習アルゴリズム 放射光ナノCT法による統合失調症例の神経ネットワーク構造の解析とそのニューラルネットワークへの応用 体憩/Break Computation-in-Memoryのデバイスエラー補償1 ニューラルネットワークのアルゴリズムを考慮した層単位の再学習による不揮発性メモリの書き込みばらつき補償 Computation-in-Memoryのデバイスエラー補償2 Shortcut connectionによる層単位のエラー耐性の違いと人出力分布の検証 バラメータ最適化による抽出型多数決論理を用いた量子インスパイアードイジングマシンの高速化 抽出型多数決論理を用いた全結合型イジングマシンのFPGA実装 口頭講演(Oral Presentation)B414会場(Room B414)「第53回講演員の賞受賞記念講演」 量子状態フィルターによる変分量子アルゴリズムの加速	○足立 善昭¹ ○伊藤 陽介¹ Sion "AI Electronics" ○井上 克馬¹, 張 永博¹, 中島 光雅², 國吉 康夫¹, 中嶋 浩平¹ ○(DC) 萩原 成基¹, 安藤 洸太¹, 浅井 哲也¹, 赤井 恵¹² ○合田 晃¹, 松井 千尋¹, 竹內 健¹ ○(M1) 山田 歩¹, 三澤 奈央子¹, 村岡 俊作², 河合 賢², 松井 千尋¹, 竹內 健¹ ○(BC) 丸田 瑶¹, 雜賀 里乃¹, 水谷 隆太¹, 山本 義郎², 竹腰 進³, 井野元 智恵³, 中村 直哉³, 新井 誠⁴, 宮下 光弘⁴, 大島 健一⁴, 糸川 昌成⁴, 鳥居 洋太⁵, 久島 周⁵, 尾崎紀夫⁵, 入合 修司⁴, 山下 祐一⁻, 上椙 真之⁵, 竹內 晃入⁵, 上杉 健太朗⁵, 寺田 靖子⁵, 鈴木 芳生², Viktor Nikitin¹o, Francesco De Carlo¹ ○吉清 秦生¹, 三澤 奈央子¹, 松井 千尋¹, 竹內 健¹ ○吉南 秦生¹, 山田 歩¹, 三澤 奈央子¹, 松井 千尋¹, 竹內 健¹ ○古市 秦生¹, 山田 歩¹, 三澤 奈央子¹, 松井 千尋¹, 竹內 健¹ ○古市 秦生¹, 山田 歩¹, 三澤 奈央子¹, 松井 千尋¹, 竹內 健¹ ○古市 秦生¹, 山田 歩¹, 三澤 奈央子¹, 松井 千尋¹, 竹內 健¹	 金沢工大 京大院工 東大院工 東大情理,2.NTT先デ研 北大院情報,2.阪大院理 東大工、2.取大に見 東海大工,2.東海大理,3.東海大医,4.都医学総合研,5.名大院医,6.桶狭間病院藤田こころケアセンター,7.国立精神・神経医療研究セ,8.高輝度光科学研究セ/SPring-8,9.高エネルギー加速器研,10.アルゴンヌ国立研究所 1.東大工 1.東大工 1.東京農工大院工 1.東京農工大院工 1.東京農工大院工 1.東京農工大院工 1.東京農工大院工 1.東京農工大院工

14:00	E 15p-B414-5	Increasing the Noise Margin of Ising Machine by Short-term Memory in Neuron-inspired Unit	○Zhiqiang Liao¹, Kaijie Ma¹, Hiroyasu Yamahara¹, Munetoshi Seki¹, Hitoshi Tabata¹	1.Univ. of Tokyo
14:15		休憩/Break		
14:30	E 15p-B414-6	2-opt ReRAM CiM: Travelling Salesman Problem Targeted ReRAM CiM based Simulated Annealing Using 2-opt Local Search	○ (M2)Zhongzhong Fan¹, Naoko Misawa¹, Chihiro Matsui¹, Ken Takeuchi¹	1.Univ. Tokyo
14:45	15p-B414-7	FeFET CiMのエラーを許容する Hyperdimensional Computingの学習アルゴリズム	○松井 千尋¹, 小林 英太郎¹, 三澤 奈央子¹, 竹内 健¹	1.東大工
15:00	15p-B414-8	ReRAM Computation-in-Memory を用いた イベントベースビジョンセンサ向け畳み込み LSTM	〇樋口 和英 1 , 小林 知幾 1 , 三澤 奈央子 1 , 松井 千尋 1 , 竹内 健 1	1. 東大工
15:15	15p-B414-9	スパイキングニューラルネットワークによるイベント データおよびフレーム画像の未来予測	○越能 俊介¹, 三澤 奈央子¹, 松井 千尋¹, 竹内 健¹	1.東大工
15:30	15p-B414-10	擬渦度行列を用いた部分同期する振動子の判別方法	○山田 康博¹,稲葉 謙介¹	1.NTT物性研
15:45	15p-B414-11	Time-Series Generative Adversarial Networks (TimeGAN)による時系列データ生成とAu原子接合での量子化コンダクタンス予測	○深沢 陽平¹,島田 有希¹,白樫 淳一¹	1. 東京農工大院工
3/16(Thu.) 9:00 - 11:30	口頭講演 (Oral Presentation) A410会場 (Room A410)		
9:00	招 16a-A410-1	「分科内招待講演」 物理リザバーとしてのゴムの可能性	○櫻井 良¹	1.ブリヂストン
9:30	16a-A410-2	並列処理FeFETリザバーコンピューティングにおける入 力データの特性を考慮した音声認識率の向上	〇名幸 瑛心 1 , トープラサートポン カシディット 1 , 中根 了昌 1 , 竹中 充 1 , 高木 信一 1	1.東大工
9:45	16a-A410-3	量子アニーラを用いた物理リザバーコンピューティング の実装	○牛坂 紀英¹, 萩原 大貴¹, 吉田 朝輝¹, 米田 優里¹, 白樫 淳一¹	1. 東京農工大院工
10:00	16a-A410-4	Auナノギャップを用いた物理リザバーコンピューティングにおける動作バラメータ	○加藤 芳信¹,島田 萌絵¹,坂井 奎太¹,八木 麻美子², 伊藤 光樹³,白樫 淳一¹	1. 東京農工大院工, 2. 一関高専, 3. 釧路高専
10:15 10:30	16a-A410-5	休憩/Break カーボンナノチューブ電極を用いた電気化学リザバー:		1.名大工, 2.名大未来研
10:45	16a-A410-6	表面修飾による高次元化 銅の電解析出/溶解反応を利用した物理リザバー素子の	高 1,2 ○福岡 拓海 1 , 渡邉 柊人 1 , 山田 亮 1 , 夛田 博 $^{-1}$	1. 阪大基礎工
11:00	16a-A410-7	開発 圧電MEMS振動子によるリザバーコンピューティング	○吉村 武¹, 芳賀 大樹¹, 藤村 紀文¹, 神田 健介², 神野	1. 阪公大院工, 2. 兵庫県大院工, 3. 神戸大院工
11:15	E 16a-A410-8	Boosting learning ability of overdamped bistable	伊策 ³ ○ (M2)Zhuozheng Shi ¹ , Zhiqiang Liao ¹ , Hitoshi	1.Univ. of Tokyo
		stochastic resonance system based physical reservoir computing model by time-delayed feedback	Tabata ¹	,
3/16(1		ポスター講演 (Poster Presentation) PA会場(Room PA) 硫化銅を用いた分子膜ギャップ型原子スイッチのアナロ		1.早大先進理工
	16p-PA07-2	グ抵抗変化特性 量子化コンダクタンス観測を目指したNiO抵抗変化型メ	○(M1)高木陸¹,長谷川剛¹	1.早大先進理工
	16p-PA07-3	モリのスイッチング面積制限 Ag ₂ S 膜を用いた分子膜ギャップ型原子スイッチの素子面	〇松尾 理沙¹, 長谷川 剛¹	1.早大先進理工
	16p-PA07-4	積縮小化とその 深層学習応用 2次元硫化銀薄膜を用いたリザバー動作の実証	○大野 悠生¹, 長谷川 剛¹	1.早稲田大学
		硫化銀アイランドネットワークリザバーの伝導特性評価		1. 早大先進理工
	16p-PA07-6	圧力センサーと硫化銀アイランドリザバーを用いた触診 による物体認識	○(B)吉村海輝¹,長谷川剛¹	1.早大先進理工
		口頭講演 (Oral Presentation) A410 会場 (Room A410)		1 末上工学系 2 末上。 上機構 2 末上៨却四工
9:00	18a-A410-1	【注目講演】スピン波リザバーコンピューティング: 実用的な計算性能向上の手法	○中恨 】昌,廣瀬 明,田中 剛平"""	1.東大工学系, 2.東大ニューロ機構, 3.東大情報理工
9:15	奨 18a-A410-2	磁性体を用いたリザバーコンピューティングの熱的堅牢 性と並列化	○小林 海翔 ', 求 幸年 '	1.東大工
9:30	奨 18a-A410-3	モジュール構造型培養神経回路のリザバー計算特性の解 析	○住 拓磨 ^{1,2} , 山本 英明 ² , 伊藤 亘輝 ^{2,3} , 香取 勇一 ⁴ , 佐藤 茂雄 ² , 平野 愛弓 ^{1,2,5}	1.東北大院医工, 2.東北大通研, 3.東北大工, 4.公立はこだて未来大, 5.東北大 AIMR
9:45	奨 18a-A410-4	イオン液体リザバー素子における動作電力及び学習精度 の金属イオン濃度依存性	○ 久保 祐樹 ^{1,2} , 松尾 拓真 ^{1,2} , 米澤 雅陽 ^{1,2} , 鳥 久 ² , 内 藤 秦久 ² , 秋永 広幸 ² , 伊藤 敏幸 ³ , 野上 敏材 ⁴ , 小林 正 和 ^{1,5} , 木下 健太郎 ¹	1. 東理大理, 2. 産総研, 3. 豊田理研, 4. 鳥取大工, 5. 長瀬
10:00	18a-A410-5	イオン液体リザバーの学習性能に及ぼすアニオン種の影 響		1. 東理大理
10:15		休憩/Break		
10:30	奨 18a-A410-6	(104) 配向 ${\rm LiCoO_2}$ 薄膜の ${\rm Li^+}$ イオン挿入・脱離を利用するイオンゲーティングリザバー	〇柴田 馨 1,2 , 西岡 大貴 1,2 , 和田 友紀 1,2 , 並木 航 1 , 土屋 敬志 1,2 , 樋口 透 2 , 寺部 $ \% ^{1}$	1.物材機構, 2. 東理大理
10:45	奨 18a-A410-7	CNT-PDMSナノ複合体を用いたリザバー素子によるインセンサコンピューティング	○ (M2) 君塚 紘喜¹, Saman Azhari¹¹², 池本 周平¹゚², 宇佐美 雄生¹¹², 田中 啓文¹.²	1. 九工大院生命体, 2. 九工大 Neumorph センター
11:00	奨 18a-A410-8	リザバーコンピューティングによる触覚情報に基づく紙 めくり判別	○(M1)坪倉 奏太¹,安藤 潤人¹,北野 勝則¹,野間 春生¹	1. 立命館大情報理工
11:15	奨 18a-A410-9	人工筋肉による計算: 長さ推定と分岐の埋め込みの実装	○明石 望洋¹, 國吉 康夫², 城 健智³, 西田 三博³, 櫻井 良³, 若尾 康通³, 中嶋 浩平²	1.京大, 2.東大, 3.ブリヂストン
3/18(5	Sat.) 13:00 - 15:30	口頭講演 (Oral Presentation) A410 会場 (Room A410)	,	
13:00	招 18p-A410-1	「分科内招待講演」 リザバーコンピューティングの数理的側面とカオス力学 系の時系列予測	○犬伏 正信1	1.東京理科大
13:30	奨 18p-A410-2	エコーステート性のない非線形力学系の情報処理	○窪田 智之¹, 中嶋 浩平¹	1.東大情理
13:45	18p-A410-3	動的システムの最適制御に基づく物理コンピューティン グ	新山 友暁¹, ○砂田 哲¹², レーム アンドレ³, 菅野 円 隆⁴, 内田 淳史⁴	1. 金沢大理工, 2.JST さきがけ, 3. 東大情理, 4. 埼玉大
14:00	18p-A410-4	リザバー計算系におけるネットワークの複雑性と計算能 力		1.北大量集センター
14:15		休憩/Break		
14:30	奨 18p-A410-5	量子干渉システムによる相関均衡の実現	○白鳥 帆香¹, 新川 浩彬¹, Röhm André¹, Bachelier Guillaume², Laurent Jonathan², 巳鼻 孝朋¹, 堀崎 遼 一¹, 成瀬 誠¹	1.東京大情報理工, 2. グルノーブルアルプス大
14:45	奨 18p-A410-6	レーザネットワークのゼロ遅延同期を用いた協力的意思 決定実験	○伊藤 向子¹, 巳鼻 孝朋¹, レーム アンドレ¹, 堀崎 遼 一¹, 成瀬 誠¹	1.東大情理
15:00	18p-A410-7	磁気光学回折型ディープニューラルネットワークの作製	○坂口 穂貴¹, 藤田 拓実¹, 張 健¹, 鷲見 聡², 粟野 博	1. 長岡技科大, 2. 豊田工大, 3. 愛知工大
15:15	奨 18p-A410-8	技術の開発 Time-Delayed Reservoir Computation with Ag-Ag2S Core-Shell Network Device	之 ² , 野中 尋史 ³ , 石橋 隆幸 ¹ ○ (M1)KARACALI Ahmet ¹ , Srikimkaew Oradee ¹ , Usami Yuki ^{1,2} , Tanaka Hirofumi ^{1,2}	1. 九工大生命体工, 2. 九工大 Neuromorphic センター
		COLC OHOH INCLINOIS DEVICE	Counti tuki , tanaka Hillolullii	

.1 応用物理 3/15(Wed.) 3:30 E 3:45 E 4:00 4:15 4:30 4:45 獎 5:50 E 5:15 獎 5:45 3/15(Wed.)	里一般・学際領地 13:30 - 16:00 E 15p-D405-1 E 15p-D405-2 15p-D405-4	はプログラム冒頭にございます。	 洋⁵, ○望月 祐志^{6,7}, Sahoo B. K.⁸, Das B. P.^{3,9} ○伊知地 直樹¹, 川野 将太郎², 小林 研仁¹, 鈴木 琢 矢¹ ○趙子豪¹, 清水 智弘¹, 新宮原 正三¹, 伊藤 健¹ ○(D) Jeffrey Tanudji¹, Hideaki Kasai^{1,2,3} ○(B) 中野 美玖¹, 面谷 信¹ ○(B) 稲田 真初乃¹, 室谷 裕志¹ ○柴 弘太^{1,2}, Zhuang Chao^{1,3}, 南 皓輔¹, 今村 岳^{4,5}, 	1.Saleh Research Centre 1.Saleh Research Centre 1.大阪公大理, 2.JST さきがけ, 3.CQuERE(印), 4.九元情基研開せ, 5.名大情基せ, 6.立教大理, 7.東大生研, 8.物理研(印), 9.東工大理 1.筑波大院, 2.東大院理 1.関大 1.Osaka Univ, 2.NIT Akashi College, 3.Inst. for Radiation Sciences 1.東京電機大
3.30 E 3.345 F 4:00 4:15	Discrete (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	口頭講演 (Oral Presentation) D405 会場(Room D405) Gravitaional turbines Design and Manufacture of Anti-Gravity Plates 量子コンピュータによる微細構造分裂の直接計算法と GPUによる数値シミュレーションの高速化 弦楽器のサブハーモニクス奏法による低次低調波 体憩/Break 蝉の翅およびそれを模倣したナノ構造の粘土に対する防汚性評価 Effect of Surface Facet on Iodine and Astatine Adsorption on Gold Nanoparticle 地平の月が巨大に見える錯視現象に対する前景の遠近感の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検討 流れ誘起ひずみの構造色による可視化を利用した気体識別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	 ○Gh. Saleh¹ 杉崎 研司¹¹²³, Prasannaa V. S³, 大島 聡史⁴, 片桐 孝洋⁵, ○望月 祐志⁴², Sahoo B. K.⁵, Das B. P.³° ○伊知地 直樹¹, 川野 将太郎², 小林 研仁¹, 鈴木 琢矢¹ ○趙 子豪¹, 清水 智弘¹, 新宮原 正三¹, 伊藤 健¹ ○(D) Jeffrey Tanudji¹, Hideaki Kasai¹²²³ ○(B) 中野 美玖¹, 面谷 信¹ ○(B) 稲田 真莉乃¹, 室谷 裕志¹ ○柴 弘太¹², Zhuang Chao¹³, 南 皓輔¹, 今村 岳⁴⁴⁵, 	1.Saleh Research Centre 1. 大阪公大理, 2.JST さきがけ, 3.CQuERE(印), 4.九元情基研開せ, 5.名大情基せ, 6.立教大理, 7.東大生研, 8.物理研(印), 9.東工大理 1. 筑波大院, 2.東大院理 1. 関大 1.Osaka Univ, 2.NIT Akashi College, 3.Inst. for Radiation Sciences 1.東京電機大
4:15 4:30 4:45 獎 5:00 E 5:15 獎 5:45 8/15(Wed.)	E 15p-D405-2 15p-D405-3 15p-D405-4 £ 15p-D405-5 E 15p-D405-6 £ 15p-D405-7 £ 15p-D405-8 15p-D405-9 D 16:00 - 18:00 E 15p-PB04-1	Design and Manufacture of Anti-Gravity Plates 量子コンピュータによる微細構造分裂の直接計算法と GPUによる数値シミュレーションの高速化 弦楽器のサブハーモニクス奏法による低次低調波 体憩/Break 蝉の翅およびそれを模倣したナノ構造の粘土に対する防汚性評価 Effect of Surface Facet on Iodine and Astatine Adsorption on Gold Nanoparticle 地平の月が巨大に見える錯視現象に対する前景の遠近感の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検討 流れ誘起ひずみの構造色による可視化を利用した気体識別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	 ○Gh. Saleh¹ 杉崎 研司¹¹²³, Prasannaa V. S³, 大島 聡史⁴, 片桐 孝洋⁵, ○望月 祐志⁴², Sahoo B. K.⁵, Das B. P.³° ○伊知地 直樹¹, 川野 将太郎², 小林 研仁¹, 鈴木 琢矢¹ ○趙 子豪¹, 清水 智弘¹, 新宮原 正三¹, 伊藤 健¹ ○(D) Jeffrey Tanudji¹, Hideaki Kasai¹²²³ ○(B) 中野 美玖¹, 面谷 信¹ ○(B) 稲田 真莉乃¹, 室谷 裕志¹ ○柴 弘太¹², Zhuang Chao¹³, 南 皓輔¹, 今村 岳⁴⁴⁵, 	1.Saleh Research Centre 1. 大阪公大理, 2.JST さきがけ, 3.CQuERE(印), 4.九元情基研開せ, 5.名大情基せ, 6.立教大理, 7.東大生研, 8.物理研(印), 9.東工大理 1. 筑波大院, 2.東大院理 1. 関大 1.Osaka Univ, 2.NIT Akashi College, 3.Inst. for Radiation Sciences 1.東京電機大
4:00 4:15 4:30 4:45 獎 5:00 E 5:515 獎 5:30 獎 5:45	15p-D405-3 15p-D405-4 £ 15p-D405-5 £ 15p-D405-6 £ 15p-D405-7 £ 15p-D405-9 D 16:00 - 18:00 £ 15p-PB04-1 Education 13:30 - 15:30	量子コンピュータによる微細構造分裂の直接計算法とGPUによる数値シミュレーションの高速化 弦楽器のサブハーモニクス奏法による低次低調波 休憩/Break 蝉の翅およびそれを模倣したナノ構造の粘土に対する防汚性評価 Effect of Surface Facet on Iodine and Astatine Adsorption on Gold Nanoparticle 地平の月が巨大に見える錯視現象に対する前景の遠近感の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検討 流れ誘起ひずみの構造色による可視化を利用した気体識別デバイス ボスター講演 (Poster Presentation) PB 会場(Room PB)	杉崎 研司 ^{1,2,3} , Prasannaa V. S. ³ , 大島 聡史 ⁴ , 片桐 孝 洋 ⁵ , ○望月 祐志 ^{6,7} , Sahoo B. K. ⁸ , Das B. P. ^{3,9} ○伊知地 直樹 ¹ , 川野 将太郎 ² , 小林 研仁 ¹ , 鈴木 琢 矢 ¹ ○趙 子豪 ¹ , 清水 智弘 ¹ , 新宮原 正三 ¹ , 伊藤 健 ¹ ○(D) Jeffrey Tanudji ¹ , Hideaki Kasai ^{1,2,3} ○(B) 中野 美玖 ¹ , 面谷 信 ¹ ○(B) 稲田 真莉乃 ¹ , 室谷 裕志 ¹ ○柴 弘太 ^{1,2} , Zhuang Chao ^{1,3} , 南 皓輔 ¹ , 今村 岳 ^{4,5} ,	1.大阪公大理, 2.JST さきがけ, 3.CQuERE(印), 4.九 情基研開せ, 5.名大情基せ, 6.立教大理, 7.東大生研, 8.物理研(印), 9.東工大理 1.筑波大院, 2.東大院理 1.関大 1.Osaka Univ, 2.NIT Akashi College, 3.Inst. for Radiation Sciences 1.東京電機大
4:15 4:30 5:00 E 5:15 獎 5:30 獎 5:45 4/15(Wed.)	15p-D405-4 £ 15p-D405-5 £ 15p-D405-6 £ 15p-D405-7 £ 15p-D405-8 15p-D405-9 .) 16:00 - 18:00 £ 15p-PB04-1 Education 13:30 - 15:30	GPUによる数値シミュレーションの高速化 弦楽器のサブハーモニクス奏法による低次低調波 体憩/Break 蝉の翅およびそれを模倣したナノ構造の粘土に対する防汚性評価 Effect of Surface Facet on Iodine and Astatine Adsorption on Gold Nanoparticle 地平の月が巨大に見える錯視現象に対する前景の遠近感の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検討 流れ誘起ひずみの構造色による可視化を利用した気体識別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	 洋⁵, ○望月 祐志^{6,7}, Sahoo B. K.⁸, Das B. P.^{3,9} ○伊知地 直樹¹, 川野 将太郎², 小林 研仁¹, 鈴木 琢 矢¹ ○趙 子豪¹, 清水 智弘¹, 新宮原 正三¹, 伊藤 健¹ ○(D) Jeffrey Tanudji¹, Hideaki Kasai^{1,2,3} ○(B) 中野 美玖¹, 面谷 信¹ ○(B) 稲田 真莉乃¹, 室谷 裕志¹ ○柴 弘太^{1,2}, Zhuang Chao^{1,3}, 南 皓輔¹, 今村 岳^{4,5}, 	情基研開せ, 5.名大情基せ, 6.立教大理, 7.東大生研, 8.物理研(印), 9.東工大理 1.筑波大院, 2.東大院理 1. 関大 1.Osaka Univ, 2.NIT Akashi College, 3.Inst. for Radiation Sciences 1.東京電機大
4:30 4:45 獎 5:5:00 E 5:15 獎 5:45 5:45	£ 15p-D405-5 E 15p-D405-6 £ 15p-D405-7 £ 15p-D405-8 15p-D405-9 .) 16:00 - 18:00 E 15p-PB04-1 Education 13:30 - 15:30	弦楽器のサブハーモニクス奏法による低次低調波 体憩/Break 蝉の翅およびそれを模倣したナノ構造の粘土に対する防 汚性評価 Effect of Surface Facet on Iodine and Astatine Adsorption on Gold Nanoparticle 地平の月が巨大に見える錯視現象に対する前景の遠近感 の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検 討 流れ誘起ひずみの構造色による可視化を利用した気体識 別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	 ○伊知地 直樹¹,川野 将太郎²,小林 研仁¹,鈴木 琢 矢¹ ○趙子豪¹,清水 智弘¹,新宮原 正三¹,伊藤 健¹ ○(D)Jeffrey Tanudji¹, Hideaki Kasai¹.².²³ ○(B)中野美玖¹,面谷信¹ ○(B)稲田 真莉乃¹,室谷 裕志¹ ○柴 弘太¹.², Zhuang Chao¹.³,南 皓輔¹, 今村 岳⁴.⁵, 	8. 物理研 (印), 9. 東工大理 1. 筑波大院, 2. 東大院理 1. 関大 1. Osaka Univ, 2.NIT Akashi College, 3.Inst. for Radiation Sciences 1. 東京電機大
4:30 4:45 獎 5:5:00 E 5:15 獎 5:45 5:45	£ 15p-D405-5 E 15p-D405-6 £ 15p-D405-7 £ 15p-D405-8 15p-D405-9 .) 16:00 - 18:00 E 15p-PB04-1 Education 13:30 - 15:30	休憩/Break 蝉の翅およびそれを模倣したナノ構造の粘土に対する防 汚性評価 Effect of Surface Facet on Iodine and Astatine Adsorption on Gold Nanoparticle 地平の月が巨大に見える錯視現象に対する前景の遠近感 の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検 討 流れ誘起ひずみの構造色による可視化を利用した気体識 別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	 矢¹ ○趙子豪¹, 清水智弘¹, 新宮原正三¹, 伊藤健¹ ○(D)Jeffrey Tanudji¹, Hideaki Kasai¹, ².² ○(B) 中野美玖¹, 面谷信¹ ○(B) 稲田 真莉乃¹, 室谷 裕志¹ ○柴 弘太¹.², Zhuang Chao¹³, 南 皓輔¹, 今村 岳⁴.⁵, 	1. 筑波大院, 2. 東大院理 1. 関大 1. Osaka Univ, 2.NIT Akashi College, 3.Inst. for Radiation Sciences 1. 東京電機大
4:30 4:45 獎 5:5:00 E 5:15 獎 5:45 5:45	£ 15p-D405-5 E 15p-D405-6 £ 15p-D405-7 £ 15p-D405-8 15p-D405-9 .) 16:00 - 18:00 E 15p-PB04-1 Education 13:30 - 15:30	休憩/Break 蝉の翅およびそれを模倣したナノ構造の粘土に対する防 汚性評価 Effect of Surface Facet on Iodine and Astatine Adsorption on Gold Nanoparticle 地平の月が巨大に見える錯視現象に対する前景の遠近感 の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検 討 流れ誘起ひずみの構造色による可視化を利用した気体識 別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	 矢¹ ○趙子豪¹, 清水智弘¹, 新宮原正三¹, 伊藤健¹ ○(D)Jeffrey Tanudji¹, Hideaki Kasai¹, ².² ○(B) 中野美玖¹, 面谷信¹ ○(B) 稲田 真莉乃¹, 室谷 裕志¹ ○柴 弘太¹.², Zhuang Chao¹³, 南 皓輔¹, 今村 岳⁴.⁵, 	1. 関大 1.Osaka Univ, 2.NIT Akashi College, 3.Inst. for Radiation Sciences 1. 東京電機大
4:45 奨 5:00 E 5:15 奨 5:30 奨 5:45 8/15(Wed.) E	E 15p-D405-6 E 15p-D405-7 E 15p-D405-8 15p-D405-9 D 16:00 - 18:00 E 15p-PB04-1 Education 13:30 - 15:30	蝉の翅およびそれを模倣したナノ構造の粘土に対する防汚性評価 Effect of Surface Facet on Iodine and Astatine Adsorption on Gold Nanoparticle 地平の月が巨大に見える錯視現象に対する前景の遠近感の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検討 流れ誘起ひずみの構造色による可視化を利用した気体識別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	 ○趙子豪¹, 清水智弘¹, 新宮原正三¹, 伊藤健¹ ○(D)Jeffrey Tanudji¹, Hideaki Kasai¹.².³ ○(B)中野美玖¹, 面谷信¹ ○(B)稲田 真莉乃¹, 室谷 裕志¹ ○柴 弘太¹.², Zhuang Chao¹.³, 南 皓輔¹, 今村 岳⁴.⁵, 	1.Osaka Univ, 2.NIT Akashi College, 3.Inst. for Radiation Sciences 1.東京電機大
4:45 奨 5:00 E 5:15 奨 5:30 奨 5:45 8/15(Wed.) E	E 15p-D405-6 E 15p-D405-7 E 15p-D405-8 15p-D405-9 D 16:00 - 18:00 E 15p-PB04-1 Education 13:30 - 15:30	蝉の翅およびそれを模倣したナノ構造の粘土に対する防汚性評価 Effect of Surface Facet on Iodine and Astatine Adsorption on Gold Nanoparticle 地平の月が巨大に見える錯視現象に対する前景の遠近感の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検討 流れ誘起ひずみの構造色による可視化を利用した気体識別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	 ○ (D) Jeffrey Tanudji¹, Hideaki Kasai¹.².³ ○ (B) 中野 美玖¹, 面谷 信¹ ○ (B) 稲田 真莉乃¹, 室谷 裕志¹ ○ 柴 弘太¹.², Zhuang Chao¹.³, 南 皓輔¹, 今村 岳⁴.⁵, 	1.Osaka Univ, 2.NIT Akashi College, 3.Inst. for Radiation Sciences 1.東京電機大
5:00 E 5:15 獎 5:30 獎 5:45 B 3/15(Wed.), E	E 15p-D405-6 E 15p-D405-7 E 15p-D405-8 15p-D405-9 D 16:00 - 18:00 E 15p-PB04-1 Education 13:30 - 15:30	汚性評価 Effect of Surface Facet on Iodine and Astatine Adsorption on Gold Nanoparticle 地平の月が巨大に見える錯視現象に対する前景の遠近感 の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検 討 流れ誘起ひずみの構造色による可視化を利用した気体識 別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	 ○ (D) Jeffrey Tanudji¹, Hideaki Kasai¹.².³ ○ (B) 中野 美玖¹, 面谷 信¹ ○ (B) 稲田 真莉乃¹, 室谷 裕志¹ ○ 柴 弘太¹.², Zhuang Chao¹.³, 南 皓輔¹, 今村 岳⁴.⁵, 	1.Osaka Univ, 2.NIT Akashi College, 3.Inst. for Radiation Sciences 1.東京電機大
5:15 獎 5:30 獎 5:45 3/15(Wed.) E	\$\frac{15p-D405-7}{2}\$\$ 15p-D405-8\$\$\$ 15p-D405-9\$\$\$\$\$ 15p-P804-1\$	Effect of Surface Facet on Iodine and Astatine Adsorption on Gold Nanoparticle 地平の月が巨大に見える錯視現象に対する前景の遠近感の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検討 流れ誘起ひずみの構造色による可視化を利用した気体識別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	 ○(B)中野美玖¹,面谷信¹ ○(B)稲田真莉乃¹,室谷裕志¹ ○柴弘太¹², Zhuang Chao¹³,南皓輔¹,今村岳⁴⁴⁵, 	Radiation Sciences 1. 東京電機大
5:15 獎 5:30 獎 5:45 3/15(Wed.) E	\$\frac{15p-D405-7}{2}\$\$ 15p-D405-8\$\$\$ 15p-D405-9\$\$\$\$\$ 15p-P804-1\$	on Gold Nanoparticle 地平の月が巨大に見える錯視現象に対する前景の遠近感 の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検 討 流れ誘起ひずみの構造色による可視化を利用した気体識 別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	 ○(B)中野美玖¹,面谷信¹ ○(B)稲田真莉乃¹,室谷裕志¹ ○柴弘太¹², Zhuang Chao¹³,南皓輔¹,今村岳⁴⁴⁵, 	Radiation Sciences 1. 東京電機大
5:30 奨 5:45 3/15(Wed.) E	15p-D405-8 15p-D405-9 1) 16:00 - 18:00 E 15p-PB04-1 Education 13:30 - 15:30	地平の月が巨大に見える錯視現象に対する前景の遠近感の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検討 流れ誘起ひずみの構造色による可視化を利用した気体識別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	○ (B) 稲田 真莉乃¹, 室谷 裕志¹ ○柴 弘太¹², Zhuang Chao¹³, 南 皓輔¹, 今村 岳⁴⁵,	1.東京電機大
5:30 奨 5:45 3/15(Wed.) E	15p-D405-8 15p-D405-9 1) 16:00 - 18:00 E 15p-PB04-1 Education 13:30 - 15:30	地平の月が巨大に見える錯視現象に対する前景の遠近感の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検討 流れ誘起ひずみの構造色による可視化を利用した気体識別デバイス ポスター講演 (Poster Presentation) PB 会場(Room PB)	○ (B) 稲田 真莉乃¹, 室谷 裕志¹ ○柴 弘太¹², Zhuang Chao¹³, 南 皓輔¹, 今村 岳⁴⁵,	1.東京電機大
5:30 奨 5:45 3/15(Wed.) E	15p-D405-8 15p-D405-9 1) 16:00 - 18:00 E 15p-PB04-1 Education 13:30 - 15:30	の影響評価 ブルーライトカットレンズを用いた時の色認識特性の検討 流れ誘起ひずみの構造色による可視化を利用した気体識別デバイス ポスター講演 (Poster Presentation) PB会場(Room PB)	○ (B) 稲田 真莉乃¹, 室谷 裕志¹ ○柴 弘太¹², Zhuang Chao¹³, 南 皓輔¹, 今村 岳⁴⁵,	1 市海上工
5:45 3/15(Wed.) E .2 教育 / E	15p-D405-9 2) 16:00 - 18:00 E 15p-PB04-1 Education 13:30 - 15:30	討 流れ誘起ひずみの構造色による可視化を利用した気体識 別デバイス ポスター講演 (Poster Presentation) PB会場(Room PB)	○柴 弘太 ^{1,2} , Zhuang Chao ^{1,3} , 南 皓輔 ¹ , 今村 岳 ^{4,5} ,	1 市海上工
3/15(Wed.) E .2 教育 / E	Education 13:30 - 15:30	流れ誘起ひずみの構造色による可視化を利用した気体識別デバイス ポスター講演 (Poster Presentation) PB会場(Room PB)	○柴 弘太 ^{1,2} , Zhuang Chao ^{1,3} , 南 皓輔 ¹ , 今村 岳 ^{4,5} , 田村 亮 ^{4,6,7} , 佐光 貞樹 ⁷ , 出井 拓己 ^{1,8} , 吉川 元起 ^{1,3} ,	1. 東海大工
3/15(Wed.) E .2 教育 / E	Education 13:30 - 15:30	別デバイス ポスター講演 (Poster Presentation) PB会場(Room PB)	○柴 弘太 ^{1,2} , Zhuang Chao ^{1,3} , 南 皓輔 ¹ , 今村 岳 ^{4,5} , 田村 亮 ^{4,6,7} , 佐光 貞樹 ⁷ , 出井 拓己 ^{1,8} , 吉川 元起 ^{1,3} ,	
.2 教育 / E	Education 13:30 - 15:30	別デバイス ポスター講演 (Poster Presentation) PB会場(Room PB)	田村 亮 ^{4,6,7} , 佐光 貞樹 ⁷ , 出井 拓己 ^{1,8} , 吉川 元起 ^{1,3} ,	1. 物材機構 CFSN, 2. ハーバード大 SEAS, 3. 筑波大, 4.
.2 教育 / E	E 15p-PB04-1 Education 13:30 - 15:30			材機構MANA, 5.大阪大, 6.東京大, 7.物材機構MaD
.2 教育 / E	E 15p-PB04-1 Education 13:30 - 15:30		Sun Luyi9, Weitz David2, 10	8. 中央大, 9. コネティカット大, 10. ハーバード大Wys
E .2 教育 / E	E 15p-PB04-1 Education 13:30 - 15:30		2 1	0.150,000,000
.2 教育 / E	Education 13:30 - 15:30		○(M2C)ZONGCHENG ZHANG¹, XIANG SONG¹,	1 IAIST
	13:30 - 15:30	UV-Visible spectroscopy and liquid chromatography-mass		y *
	13:30 - 15:30	spectrometry	And Mayabato, rako famamoto	
	13:30 - 15:30	opeca ometry		
⊌/ 17 (Ffl.)		ポフター護宮 (Poster Procentation) DA 会担(Poster DA)		
	1.b-LV01-1	ポスター講演 (Poster Presentation) PA 会場 (Room PA) 放電中ランプ陰極原子の仕事関数測定	○大向隆三¹,中砂 友希¹	1. 埼玉大教育
	17n DA01 2			
		ICT機器を活用した「電気の利用」における理科指導	○大向 隆三¹, 上敷領 静香²	1. 埼玉大教育, 2. 越谷市立蒲生小
		LED発電に関する実験とその特性	○山口 静夫¹	1.九共大
	17p-PA01-4	マルチチャンネル式光検出器を用いた簡易分光器の試作	〇松兀 健・	1.マツモト精密工業
		2	O fe per atribute.	
	17p-PA01-5		○角田 直輝 1	1.米子高専
		卓上型太陽光発電教材の試作		
	17p-PA01-6	認識機能を備えた校内走行用EVの車両開発を通したも	○井組 裕貴¹	1. サレジオ高専
		のづくり教育		
		IoTを用いたプログラミング教育支援教材の開発 II	○板東 能生¹, 水元 晶¹	1. 呉高専
	17p-PA01-8	大学初年度生対象とするノギスの測定原理の理解のため	○浜辺 誠¹, 伊藤 智幹¹, 鈴木 建司¹, 田畑 孝幸¹, 井筒	1.中部大工
		の模型製作	潤¹, 伊藤 響¹, 大嶋 晃敏¹, 岡田 信二¹, 久保 伸¹, 柴田	
			祥一¹, 中山 和也¹, 橋本 真一¹, 廣岡 慶彦¹, 山﨑 勝	
			也¹, 山本 則正¹	
	17p-PA01-9	ブレッドボードを用いた難しい合成抵抗の学習	○栗原 一嘉¹, 大河原 詩織¹	1. 福井大学
		地磁気逆転現象の展示実験その4	〇石井 義哲¹, 廣田 恵¹	1.艦磁研
		複数科目で利用可能なハンドソートパンチカードの教材	○服部 彩乃¹, 吉原 夕貴¹, 小栗 和也¹	1. 東海大教養
	•	開発		
	17p-PA01-12	電気泳動を用いた科目横断型実験教材の開発	○加藤 優典¹	1. 東海大教養
	17p-PA01-13	ストレートグラスを用いたグラスハープの振動解析	○森川 真珠理¹, 谷垣 彪¹, 小栗 和也¹	1. 東海大教養
		振動発電を利用した教材の視覚化の検討	○花輪 史彦¹, 鈴木 登偉¹, 小栗 和也¹	1. 東海大教養
		VR技術を用いたVR物理実験室の開発5	○(M2)田村 友也¹, 藤城 武彦¹	1. 東海大理
		遠隔学生実験へのメタバースの導入の試み	○平谷 雄二¹, 池上 巧¹, 加地 空知¹, 坂井 優太¹	1. 諏訪理科大工
		授業改善のためのリアルタイム感情測定システムの開発		
	F	(II)	泉修 ²	
	17n DA01 19	ハンズオン型オンラインデジタル教育による高大接続教		1 新润土創土 2 新润土工 2 加川宣南
	17p-17t01-16	育の試行	耕司3	1. 机两八剧工, 5. 机两八工, 5. 旭川同寺
3/18(Sat) 0.00 - 11.30	口頭講演 (Oral Presentation) A404 会場(Room A404)	49T HJ	
	18a-A404-1	口頭講演 (Oral Presentation) A404 会場 (Room A404) スキャニメーションを用いた理科教材の作製	○阿久津 浩之¹, 山崎 瞳¹, 小栗 和也¹	1.東海大教養
0:00			○ 中川 鈴彩¹, 田中 香津生²	
9:15 0:20 E	18a-A404-2	Webカメラ放射線検出器を用いた中高生の探究活動		1.東北大理, 2.早大理工
9:30 E	E 18a-A404-3	Design for Sustainability: Introducing Materials and the	○ Wen Zhao¹, Bridget Ogwezi¹, Nicolas Martin¹	1.Ansys Inc.
		Environmental Awareness in Undergraduate Engineering		
		Education	Own on law is a second	
9:45 E	E 18a-A404-4	Teaching the ABCs of Structural Simulation in	○ Wen Zhao¹, Madhumita Saravana Kumar¹,	1.Ansys Inc.
		Undergraduate Engineering Courses: from Meshing to	Susannah Cooke ¹	
		Live Design Practices		
0:00		休憩/Break		
0:15	18a-A404-5	相対性理論完全破綻の数学的証明	○土田 成能 ¹, 三谷 昌弘 ¹	1. ダビンチ研
0:30	18a-A404-6	長期間航走水中無人航走体の動力検索(3)小型炉心の	○廣田 惠¹	1.艦磁研
		課題		
0:45	18a-A404-7	電磁気的な視点から考えた異常気象予知装置の開発II	○川崎 仁晴¹, 須田 義昭¹	1. 佐世保高専
1:00	18a-A404-8		○荻野 俊郎¹	1.横浜国大
1:15	18a-A404-9	討論・発表を含む完全オンデマンド授業	○葛生 伸¹	1.福井大工
		lovel technologies and interdisciplinary engineering		
		ポスター講演 (Poster Presentation) PA会場(Room PA)		
. ()		ポーラスセラミックAD膜へのクロルヘキシジン担持を		1. 産総研, 2. 就実大
	x	もちいた抗ウイルスコーティングの開発	純 ¹	
	17n-PA02-2	水素 - 窒素混合ガス雰囲気下でのFe/V多層膜の磁気抵抗		1.富山大理, 2.富山大水素研セ
		スパッタ法によりAuナノ粒子を堆積したBSCCO薄膜の		
			○山山 宥羊,珰田 相倒,九川 罗翔	1.小山高専
		光学特性	O(B) 1 III + 2 - 1 III - + 1 - I - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1 = 7 1.46.65
	17p-PA02-3		○(B)小川 奈々子¹, 平林 遼太郎¹, 永松 楓¹, 望月 泰	1. 果工大物質
	17p-PA02-3		and a material and the second of	
	17p-PA02-3 17p-PA02-4	造変化	英1, 磯部 敏宏1, 中島章1, 松下 祥子1	
	17p-PA02-3 17p-PA02-4	造変化 固体ソース H_2O プラズマ処理したポリイミド樹脂の表面		1. 東工大 OFC, 2. 横国大院工, 3. 東工大物質理工
	17p-PA02-3 17p-PA02-4 17p-PA02-5	造変化 固体ソース H ₂ O プラズマ処理したポリイミド樹脂の表面 の XPS分析	○遠西 美重¹, 松谷 晃宏¹, 生方 俊², 松下 祥子³	1. 東工大 OFC, 2. 横国大院工, 3. 東工大物質理工
	17p-PA02-3 17p-PA02-4 17p-PA02-5	造変化 固体ソースH ₂ Oプラズマ処理したポリイミド樹脂の表面のXPS分析 Ar*ビーム照射により作製したKOHエッチング用Siマス	○遠西 美重¹, 松谷 晃宏¹, 生方 俊², 松下 祥子³	
	17p-PA02-3 17p-PA02-4 17p-PA02-5 17p-PA02-6	造変化 固体ソース H ₂ O プラズマ処理したポリイミド樹脂の表面 の XPS分析	 ○遠西美重¹, 松谷 晃宏¹, 生方 俊², 松下 祥子³ ○佐藤美那¹, 遠西美重¹, 松谷 晃宏¹ 	1.東工大OFC, 2. 横国大院工, 3.東工大物質理工

	17p-PA02-8	ヴァイオリンの周波数応答の測定におけるタッピング位	○松谷 晃宏¹	1.東工大
3/18(9		置依存性 口頭講演 (Oral Presentation) D215会場 (Room D215)		
9:30	18a-D215-1	マテリアルキュレーション®支援システムの概要	○吉武 道子¹, 河野 洋行²	1.物材機構, 2.Ridgelinez
9:45	18a-D215-2	導電性繊維電極を用いた骨盤状態の評価	○鳥光 慶一¹, 三浦 健¹	1.東北大災害研
10:00	18a-D215-3	0.18 μm BCD プロセスを用いたウェアラブル発汗量計の		1.信州大, 2. 広島大, 3. 株式会社スキノス
10:15	奨 18a-D215-4	開発 弾性波散乱場断層映像化技術の開発	瀬 英哉³,上口 光¹ ○薮本 海¹,弓井 孝佳³,木村 憲明³.⁴,木村 建次	1. 神戸大院理, 2. 神戸大数理データ, 3.Integral
10:30	19- D215 F	休憩/Break ALD法によるAl ₂ O ₃ ナノ構造を利用した放熱構造の試作	郎1.2.3.4,上野宗孝5	Geometry Science, 4.JAXA 広域未峰型探查技術, 5.JAX.
10:45		と評価	大 ¹ , 前田 讓治 ¹ , 板谷 太郎 ² , 天野 建 ²	1. 東京理科大学, 2. 産業技術総合研究所 1. 東理大理工, 2. 産総研
11:00		結合多重量子ドット構造の蛍光評価	\pm^1 , 板谷 太郎 2 , 菅谷 武芳 2 , 前田 讓治 1 , 天野 建 2	
11:15		ナノインプリント法を用いたボリマー光導波路の試作	\pm^1 , 板谷 太郎 2 , 中村 文 2 , 前田 讓治 1 , 天野 建 2	1. 東理大, 2. 産総研
11:30		ナノインプリント製フォトニック結晶を用いたメチル化シトシン検出	藤 達郎 1	1. 败公入阮工
		・資源・環境 / Energy conversion, storage, resources and	environment	
9:30		口頭講演 (Oral Presentation) D505 会場 (Room D505) 第一原理計算による Cobalt Carbonate Hydroxide (CCH) の電気化学反応に対する洞察	\bigcirc (DC) 奥村 健司 1 , 東間 崇洋 1 , 前園 涼 1 , 本郷 研太 2	1.北陸先端大情報, 2.北陸先端大情報基盤
9:45	E 15a-D505-2	の电域に子及心に対する側索 Near-infrared-to-visible photon upconversion in solid state using PbS QD sensitized triplet-triplet annihilation	○ Neeti Tripathi¹, Masanori Ando², Tomoko Akai¹, Kenii Kamada¹	1.NMRI, AIST, 2.BMRI, AIST
10:00	E 15a-D505-3	system by 980-nm excitation Surface Capacitive and Ion-Diffusion-Limited Capacitive	,	1.RIKEN, 2.Inst. Tech. Bandung, 3.Tokyo Inst. Tech.,
10.00		Effects in High Energy Density Quantum Dot Nanopores Supercapacitors	Retno Dwi Wulandari ^{1, 3} , Yutaka Majima ³ , Ferry Iskandar ² , Yoshihiro Iwasa ^{1, 4} , ○ Satria Zulkarnaen Bisri ^{1, 5}	4.Univ. Tokyo, 5.Tokyo Univ. Agri.&Tech.
10:15 10:30	15a-D505-4 15a-D505-5	リチウムイオンキャパシタの充放電シミュレーション リチウムイオン電池用Si負極のLiF被覆による寿命特性	○トンリチュ¹, 永山達彦¹小倉一真¹, 上嶋 凌大¹, ○春田正和¹	1.計測エンジニアリング 1.近大産業理工
40	45	改善		a he I resulte errors
10:45 11:00	15a-D505-6 奨 15a-D505-7		口町 光希¹,河口 稜太¹, ○春田 正和¹ ○高橋 鐘瑛¹, 陳 逸楓¹, 鈴木 弘朗¹, 西川 亘¹, 林 靖 彦¹	1. 近大産業理工 1. 岡大院自然
2/15/14	Ind) 12:20 17:20	池の作製と電気化学測定評価	13/	
3/15(W 13:30		口頭講演 (Oral Presentation) D505会場(Room D505) 「第44回解説論文賞受賞記念講演」	○菅野 了次 ¹	1.東京工業大学
4400	D 45 DECE O	イオン導電体創出から固体電池構築へ	11 mm 12 c 1 m 3452 p 110	
14:00	E 15p-D505-2	Suppressing the Chlorine Evolution Reaction and Increasing Hydrogen Production During Seawater Electrolysis by Controlling Electrical Current Density	John W. Koster ¹¹ , Soren A. Tornoe ² , Donald C. Potts ^{1, 2} , ○ Nobuhiko P Kobayashi ^{3, 4, 5, 2}	1.Ocean Science Department, 2.University of California Santa Cruz, 3.Nanostructured Energy Conversion Technology and Research (NECTAR), 4.Electrical and Computer Engineering Department, 5.Baskin School of Engineering
14:15	E 15p-D505-3	Efficient Solar-to-hydrogen Conversion System by Using	○ Min Jiang¹, Shingi Yamaguchi¹, Kentaroh	1.The Univ. of Tokyo
		5-junction Concentrator Photovoltaic Module	Watanabe ¹ , Tsutomu Minegishi ¹ , Masakazu Sugiyama ¹	
14:30	15p-D505-4	ナノボーラスカーボンの表面官能基と水素放出量	〇焦 育森 1 , 和田 一真 1 , 前田 光 1 , 津田 欣範 2 , 小松 啓 志 1 , 齋藤 秀俊 1	1.長岡技科大,2.ヒューズ・テクノネット
14:45	15p-D505-5	小型冷凍機を用いた水素液化に関する基礎研究	○山根 直人¹, 武田 実¹, 前川 一真¹	1.神戸大海事
15:00	15p-D505-6	液体水素容器内部の蓄圧状態に関する数値シミュレー ション	○ (M2) 松田 竜之介¹, 前川 一真¹, 武田 実¹	1. 神戸大海事
15:15		休憩/Break		
15:30	奨 15p-D505-7	2.45 GHz マイクロ波加熱を用いた様々なプラスチック材	· · · · · · · · · · · · · · · · · · ·	1.福井大遠赤セ, 2.福井大工, 3.福井大産学官
15:45	15p-D505-8		野 貴行², 西海 豊彦², 西村 文宏³, 光藤 誠太郎² ○秋山 賢輔¹, 奥田 徹也¹, 入江 寛²	1.神奈川産技総研, 2.山梨大
16:00	15p-D505-9	合粒子合成 固体高分子型水電解セルに用いるイリジウム酸化物酸素 生成触媒の材料物性と電気化学的特性	○秋田 いつか ¹ , 奈良 美幸 ² , 松井 大知 ^{1,2} , 小池 一 輝 ^{1,2} , 和田 智之 ² , 小椋 厚志 ^{1,3} , 藤井 克司 ²	1. 明治理工, 2. 理研RAP, 3. 明大MREL
16:15	奨 15p-D505-10		□吉嶋 大貴¹, 牛尾 進太郎¹, 杉岡 秀行¹	1.信州大工
16:30	奨 15p-D505-11	熱界面型振り子の集団励起に関する基礎的検討と波状運動への応用	○冨田 航1, 杉岡 秀行1	1.信州大工
16:45	15p-D505-12	溶融塩処理による風化黒雲母からの熱電変換材料創製	〇本田 充紀 ¹, 金田 結依 ¹, 村口 正和 ², 早川 虹雪 ², 小田 捋人 ³, 飯野 千秋 ⁴, 石井 宏幸 ⁴, 後藤 琢也 5 , 矢板 毅 1	1. 原子力機構・物質科学, 2. 北海道科学大学・工, 3. 和 歌山大学・シスエ, 4. 筑波大学・物エ, 5. 同志社大学・ 理工
17:00	15p-D505-13	"インフライト・メルティング・マテリアル法"を利用 した機能性物質の開発 〜環境配慮・省エネルギー〜	〇岡田 京 $^{-1}$,梶並 昭彦 2 ,玉井 博康 3 ,藤井 康裕 4 ,是 枝 聡肇 4 ,梅咲 則正 5 ,根本 源太郎 6 ,佐藤 敬藏 $^{7.8}$	1.高輝度光科学研究センター, 2.神戸大, 3.鳥取県産業技術センター 機械素材研究所, 4.立命館大, 5.大阪大, 6.大川原化工機(株), 7.ニューガラスフォーラム, 8. (株) ジェイテック
17:15 3/16(T		環状官能基による水溶液溶存リチウム吸着 ポスター講演 (Poster Presentation) PA 会場(Room PA)	○梅田 旭太朗¹, 原 一広¹, 岡部 弘高¹	1. 九大院工
		Investigation on Microwave Irradiation Condition for Hydrogen and Carbon Nanotubes Production from HDPE Plastic Waste	○ IPutu Abdi Karya¹, Kohei Nakagawa¹, Shotaro	1.FIR, Univ. of Fukui, 2.Univ. of Fukui, 3.HISAC, Univ. of Fukui
	E 16p-PA01-2	Effect of Microwave Power On Extraction of Nickel-Iron Alloy From Laterite Ore Assisted By 5.8 GHz Microwave Irradiation	○ MUHAMMAD ALJALALI¹, I Putu Abdi Karya¹, Aslan Ndita⁴, Kohei Nakagawa¹, I Nyoman Sudiana⁴, La Agusu⁴, Takayuki Asano², Fumihiro Nishimura³, Toyohiko Nishiumi², Seitaro Mitsudo²	1.Research Center For Development of Far Infrared Region, University of Fukui, 2.Departement of Applied Physic, University of Fukui, 3.Headquarters for Invovative Society-Academica Coperation, University of Fukui, 4.Departemen of Physics, Halu Oleo University
	16p-PA01-3	太陽熱を用いた発電方式の可能性検証	○吉川隆¹	1.近畿大学高専
	16p-PA01-4 16p-PA01-5	車載用メカニカル充電方式マグネシウム空気電池 水質モニタリングに向けた自立型アンモニアセンサの開 発	 ○斉藤純¹, 小原宏之² ○硲大二朗¹, 加美山陸¹, 中野善之², 三輪哲也², 柳田保子¹ 	1. 玉川大工, 2. 玉川大学 TSCP 1. 東工大未来研, 2. JAMSTEC
	16p-PA01-6	_死 La/Nbドープn型SrTiO ₃ のギャップ内電子構造	○ (DC) 赤瀬川 怜¹, 蜂谷 寛¹, 佐川 尚¹	1.京大院エネ科

		nstrumentation, measurement and Metrology		
3/17(ポスター講演 (Poster Presentation) PA 会場(Room PA) UVC センサ用蛍光体の表面加工による検出感度の改善	○(M1)人見 杏実¹, 勝亦 徹¹², 相沢 宏明¹	1.東洋大院理工, 2.東洋大工技研
	E 17p-PA03-2	Data Acquisition System of TPS 23A for On-the-fly Scanning Multi-Channel Data Reconstruction	○ (B)Chienyu Lee ¹ , Bi-Hsuan Lin ¹ , Boy-Yi Chen ¹ , Gung-Chian Yin ¹ , Mau-Tsu Tang ¹	1.NSRRC
- (1)		MEMS赤外線センサを用いた高精度温度測定の検討	○阪口 萌生¹, 藤村 紀文¹, 吉村 武¹	1. 阪公大工
3/18(9:00		口頭講演 (Oral Presentation) D209会場(Room D209)接着長期安定化に向けたレーザー表面処理の評価	○寺崎 正¹, 藤尾 侑輝¹, 坂田 義太朗¹, 北條 恵司², 島 本一正², 秋山 陽久², 八瀬 清志², 川崎 一則³, 堀内	1. 産総研センシング SRC, 2. 産総研ナノ材, 3. 産総研バイオ MRI
9:15	18a-D209-2	自動補正式 IoT 用デジタル回路、橋梁等のモニタリング	伸 ² ○山内 常生 ¹	1.(株) B S R
9:30	18a-D209-3	への適用 レンズアレイを用いた散乱光角度依存解析	○執行 航希¹, 伊藤 優佑¹, 今城 勝治¹	1.三菱電機
9:45		半導体カーボンナノチューブを用いた選択的ガス検知の 研究		
10:00		小型 CRDS 微量水分計を用いた He ガス中の微量水分計 測	ν^2 ,本田 真 $-^3$, 三宅 伴 Φ^3	1.産総研, 2. コペルニクス大, 3. 神栄テクノロジー(株)
10:15	18a-D209-6	多種ガス用微量水分発生装置を用いた高速スキャン CRDS微量水分計の性能評価	○天野 みなみ¹, 阿部 恒¹, 西澤 典彦², 富田 英生²	1. 産総研, 2. 名大
10:30	18a-D209-7	周波数比較のための $Yb^{+2}S_{1/2}^{-2}D_{5/2}$ 時計遷移単一イオン分 光系の開発	○片桐 光陽¹,吉田 圭祐¹,今井 康貴²,杉山 和彦¹	1.京大院工, 2. 岡山大基礎研
10:45	18a-D209-8		○ウィディアトモ ビンセンティウス ジャヌアリウス ¹ , 三澤 哲郎 ¹ , 斉藤 郁彦 ¹ , 中野 享 ¹ , 小倉 秀樹 ¹	1. 産総研
11:00	18a-D209-9	高温用音響気体温度計の開発	○ウィディアトモ ビンセンティウス ジャヌアリウ	1. 産総研
11:15	18a-D209-10	ルチル二酸化チタン(110)表面で得られる走査プロー		1. 立命大, 2. 九工大, 3. 京大, 4. 分子研
11:30		ブ顕微鏡像の画像解析による欠陥の相互作用の解明	丈俊 ⁴ ○若家 冨士男 ¹ , 西出 昂雅 ¹ , 阿保 智 ¹ , 岩渕 修一 ² , 金	
		振動位相の解析解	井 友希美 ² , 村上 勝久 ³ , 長尾 昌善 ³	
11:45	奨 18a-D209-12	磁場逆解析に基づく非破壊鉄筋腐食検査技術の開発	○(D)岡田 英朗¹, 松田 聖樹²³, 鈴木 章吾³⁴, 弓井 孝 佳³⁴, 木村 憲明³⁴, 木村 建次郎¹.².³.⁴	1. 神戸大院理, 2. 神戸大数理データ, 3.IGS, 4. 国土交通 省建設技術研究開発事業
12:00	奨 18a-D209-13	非一様建築部材のヘルスモニタリングに向けた機械学習 援用高分解能電気インピーダンストモグラフィの開発	〇皆川 敬哉 1 , 太田 慧吾 1 , 小松 裕明 1 , 池田 彪雅 2 , 金 侖美 2 , 福山 智子 2 , 生野 孝 1	
12:15	18a-D209-14	振用高が解能電気インピーダンストモクラフィの開発 高感度ベクトル磁気センサとドローンを用いた磁気計測・ 信号源推定システムの開発		1.近畿大工
	音波 / Ultrasonics			
3/16(1		ポスター講演 (Poster Presentation) PA会場 (Room PA) ScAIN薄膜トランスデューサを用いた Brillouin 散乱光の 増強		1. 同志社大理工
		NaCl水溶液のソノルミネッセンスと音響スペクトル 超音波キャビテーションによる Ga/In合金の分散	○増田 太郎¹, 中村 悠人¹, 山本 健¹ ○鬼鳥 聖¹, 杉野 史弥¹, 大槻 朋子², 川崎 英也³, 山本 健¹	1.関西大システム理工 1.関西大システム理工, 2.関西大院理工, 3.関西大化学 生命工
	16p-PA02-4	RF およびBモードデータを用いた超音波速度変化イメージングの比較	〇中田 航貴 1 , 中島 弘貴 1 , 伊藤 裕輝 1 , 和田 健司 1 , 松 山 哲也 1 , 岡本 晃 $^{-1}$	1. 阪公大工
	16p-PA02-5	インピーダンス負荷弾性表面波センサの有限要素法と回 路シミュレータによる解析		1. 静岡大総合, 2. 静岡大創造
3/17 9:00		口頭講演 (Oral Presentation) D505会場(Room D505) 非キャビテーション超音波支援合成法における振動の評 価	○ (M2) 福田 実紀¹, 滝沢 辰洋¹	1.信大繊維
9:15		音響誘起電気分極の新たな検出方法の検討	○(B)榎本 淑乃¹, 生嶋 健司¹	1.農工大院工
9:30	17a-D505-3	レーザ超音波法とレーザ誘起プレークダウン分光法によ る物質推定技術の検討	○季 英根', 北澤 聡'	1.日立研開
9:45 10:00		超音波振動がC2C12細胞の配向に与える影響 組織エコー抑圧におけるバルス送信間隔の影響	 ○橋口 椋平¹, 大谷 昂弘¹, 小山 大介¹ ○長谷川 英之¹, 大村 眞朗¹, 長岡 亮¹, 斎藤 こずえ² 	1.同志社大理工
10:15		休憩/Break		
10:30	奨 17a-D505-6	カゴメ格子積層型の3次元フォノニック結晶における高次トポロジカルヒンジモード	○(D)秦 佑介¹,三澤 賢明¹,鶴田 健二¹	1.岡山大院自然
10:45	奨 17a-D505-7	周期的空隙を有する圧電基板上の弾性表面波伝搬特性の 解析	○(M1)鈴木 涉志¹,鈴木 雅視¹,垣尾 省司¹	1.山梨大
11:00	奨 17a-D505-8		○(B)福永 慶¹, 鈴木 雅視¹, 垣尾 省司¹	1.山梨大学
11:15 11:30		板波における圧電薄板分割によるスプリアス応答の抑圧 LiTaO ₃ /水晶接合構造上のリーキーSAW三次高調波の共		
3/17/	Fri) 13:30 - 16:30	振特性- 1GHz帯における評価 - 口頭講演 (Oral Presentation) D505会場(Room D505)		
13:30		「第53回講演奨励賞受賞記念講演」 Ca ₃ TaGa ₃ Si ₂ O ₁₄ ラブ波型SH波の高温下における共振特	〇鈴木 涼人 1 , 鈴木 雅視 1 , 垣尾 省司 1 , 木村 悟利 2	1. 山梨大学,2. Piezo Studio
13:45	17p-D505-2	性 LiTaO3/SiC/Si 構造上のリーキーSAW の温度特性と熱伝	○渡邉 紀之¹, 垣尾 省司¹	1.山梨大学大学院
14:00	17p-D505-3	導過渡特性の解析 LiNbO ₃ /SiC構造上の縦型漏洩弾性表面波共振特性の解	○(B)武居 諒¹,鈴木 雅視¹,垣尾 省司¹,山本 泰司²	1.山梨大, 2.山本エイデック
14:15	奨 17p-D505-4	析 スパッタ成膜時の粒子照射制限によるc軸平行配向ZnO	○冨山 直樹¹, 佐藤 大樹¹, 高柳 真司¹, 柳谷 隆彦²	1. 同志社大, 2. 早稲田大
14:30	奨 17p-D505-5	膜の大面積成膜 基板付き薄膜共振子における共振反共振法を用いた電極	○島野 耀康 ^{1,2} , 矢田部 浩平 ³ , 柳谷 隆彦 ^{1,2,4,5,6}	1.早大先進理工, 2.材研, 3.東京農工大工, 4.JST-
14:45		を含む電気機械結合係数 $k_{ m eff}^2$ の直接評価 基板付き薄膜構造の $k_{ m e}^2$ 評価における電極面積依存性の実 験データとFEM解析データの比較		CREST, 5.JST-FOREST, 6.JST-START 1. 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START
15:00	45 55	休憩/Break		·
15:15	17p-D505-7	接合境界での反射波を考慮した水晶二層構造厚みすべり 振動子の設計方法	○大橋 雄二¹,野口 太生²,面 政也³,横田 有為²,村上 力輝斗²,黒澤 俊介¹,佐藤 浩樹¹,豊田 智史¹,堀合 毅 彦¹,山路 晃広¹,吉野 将生¹,花田 貴²,吉川 彰¹²	1. 東北大NICHe, 2. 東北大金研, 3.XMAT
15:30	17 _p -D505-8	ボール SAW ガスクロマトグラフによる極性化合物の現場 分析方法の検討		1. ボールウェーブ , 2. 東北大学

15:45	17p-D505-9	【注目講演】ドローンに搭載したガスクロマトグラフによるブラントの管理	〇山中一司¹, 岩谷隆光¹, 赤尾慎吾¹, 岡野達広¹, 竹田宣生¹, 草間貴博², 山梨寬治², 平山弘克², 菊地康仙³, 伊藤日出男³	
16:00	17p-D505-10	オンライン測定のための横波型弾性表面波センサシステ ムの開発	○青山 貴樹」, 近藤 淳「	1. 静岡大学
16:15	17p-D505-11	弾性表面波デバイスへの局在表面プラズモン共鳴センサ	○(M1)喜田 敦也¹, 近藤 淳¹	1.静岡大

20mm 10mm 10mm	16:15	17p-D505-11	ムの開発 弾性表面波デバイスへの局在表面プラズモン共鳴センサ	○(M1) 喜田 敦也¹, 近藤 淳¹	1.静岡大
37977917981-12 179779 2 18987-12 179779 2 18987-12 179779 2 1	O +6446	. /			
1分2/00-12					
中国					
### 179-1000 1 実施制度を設定的である時間 材料の能				明¹,柳田健之¹	
「P-1000 15 部別 Ca1100 (2 内で成立とグラグオフェトルでもマン (7 単元人 Cymm 家 河戸 奉仁				靖弘², 黒堀 利夫5	5. 金沢大
19-PMの-19				秀仁1.4	
17-PMM+2 1.4次以大の変も応信は5人(1)に対ける場所を設定ときませた。			ス特性		
19-PAMP 2		•	ンス特性		
1万-1940/99 10-1940			の調査		
Tip-Nation 1.			解析		
17p-PAMP-12 日に新師によたり、サンテンタスの部級共替性の政権					
17p-PAD9-11					
17p-PA09-12 DCNO の参照を終わらぬ流位。			究		
1万-PA99-13 から患光でAGGはよびTNGG」と位在テンソ・レータの間 ○製剤 ○製剤 (産人・食養 後生・金)・基本 た 上海 大工 大陸工			チレーション特性の比較		
正称 正称		1/p-PA09-13		○伽倘 和基 ,膝本 俗 , 浅开 主介 ", 越水 止興 '	1.
17p-PA09-16		•		正典1	1.静岡大, 2.東北大院工
17p-PA09-15 9人能料率係をシックレータの赤色発光における温度依		17p-PA09-15		○林 南瑠¹, 藤本 裕², 浅井 圭介², 越水 正典¹	1.静岡大, 2.東北大院工
大学性変化 17p-PA09-19 ソグゲル放上より作製した有機変光体合有シリカゲルシ 2位態 敦史 歳本 北 山 2 (M2) 田中 年刊 3 (株 北 山 2 (存性		
ファ-PA09-20 フェルナ・セインおよび出版を生材を共添加したボリッー			光特性変化		
### 14p-0240			ンチレータの開発		
			材料の放射線応答を利用した有機線量計の材料開発		
### 17p-PA09-23 X線・ガンマ線計測を企図したTIH_PO,結晶シンチレー 28日 大書・佐藤 敦史・川本 弘樹・藤本 裕・浅井 1.東北大工 生介 20開発 17p-PA09-24 Tb添加 8al 浅明セラミックスのドシメータ特性 25元 17p-PA09-25 Tb 添加 8al 浅明セラミックスのドシメータ特性 第2元 17p-PA09-26 Tillが加 KCI透光性セラミックスの脚び性蛍光特性 第2元 17p-PA09-27 StY₂O, 単結晶の放射線応答特性におけるTb 透度依存性 (元・中内 大介・海田 健之・			の熱蛍光	若林 源一郎 ³ , 浅井 圭介 ¹	
### 17p-PA09-24 Tb添加 BaF ₂ 透明セクミックスのドシメータ特性		•		圭介¹	
			タの開発	圭介 ¹	
性		17p-PA09-24	Tb添加BaF₂透明セラミックスのドシメータ特性		1.秋田大院理工, 2.奈良先端大, 3.クレムゾン大
近?。中内 大介,河口 範明?,柳田 健之? 17p-PA09-27 SrY₂O,単結晶の放射線応答特性における Tb 濃度依存性		17p-PA09-25		藤匠3,中内大介3,柳田健之3	
真人',加藤匠*,中内大介*,河口範明*,柳田健之* 17p-PA09-28 光検出器から離れた位置に設置したシンチレータのための業光光学系の検討 0渡辺賢一** 1.九大工 17p-PA09-29 SiO₂-B₂O₂-BaO-ZnO:Eu³・ガラスのシンチレーション特性		•		匠², 中内 大介², 河口 範明², 柳田 健之²	
(利用 健之', 渡辺 賢一', 加藤 匠', 中内 大介', 河口 1. 奈良先端大, 2. 九大工 徳明'		17p-PA09-27	$\mathrm{SrY}_2\mathrm{O}_4$ 単結晶の放射線応答特性における Tb 濃度依存性		1. 産総研, 2. 奈良先端大, 3. 九大工
性		17p-PA09-28		○渡辺 賢一1	1.九大工
 範明¹ 17p-PA09-31 大気中で作製した Ce添加 Li₂O-B₂O₃ ガラスのシンチレーション特性 17p-PA09-32 Li Ca₃Mg V₃O₁₂結晶のシンチレーション特性 17p-PA09-33 希土類フリーLi Ca₃Zn V₃O₁₂ ガーネット結晶のシンチレーション特性 17p-PA09-34 Eu添加 SrO-Al₂O₃ ガラスの蛍光および放射線誘起発光特 (中内大介¹, 神野 敦信², 加藤 匠¹, 中内大介¹, 柳田 健 1.奈良先端大シ¹ 17p-PA09-35 Nd 添加 LaMg Al₁₁O₁₉ 単結晶の蛍光およびシンチレーショ (中内大介¹, 加藤 匠¹, 河口 範明¹, 柳田 健之¹) 17p-PA09-36 Ce添加 SrAl₂O₄透光性セラミックおよび単結晶の放射線 (中内大介¹, 加藤 匠¹, 河口 範明¹, 柳田 健之¹) 17p-PA09-37 Al添加による CaF₂の TSL および RPL 特性への影響 (加藤 匠¹, 中内大介¹, 加藤 匠¹, 河口 範明¹, 柳田 健之¹) 17p-PA09-38 RbBr:In 透明セラミックスの輝尽蛍光特性 (加藤 匠¹, 中内大介¹, 河口 範明¹, 柳田 健之¹) 17p-PA09-39 CsPbBr₂ペロブスカイト量子ドットを含有した SiO₂ ガラ (加藤 匠¹, 中内大介¹, 河口 範明¹, 柳田 健之¹) 17p-PA09-40 無容器浮遊法を用いて作製した Ce:Gd₂O₃-Al₂O₃ ガラス (白島大穀¹, 西川 発弘¹, 加藤 匠¹, 河口 1.奈良先端大 (九字良先端大 (九字尺)) 17p-PA09-40 無容器浮遊法を用いて作製した Ce:Gd₂O₃-Al₂O₃ ガラス (白島大穀¹, 世野 敦信², 中内大介¹, 加藤 匠¹, 河口 1.奈良先端大 (2.弘前大院理工 		17p-PA09-29			1. 奈良先端大, 2. 九大工
ション特性		17p-PA09-30	シンチレーション減衰時定数のエネルギー依存性		1. 奈良先端大, 2. 九大工
2 17p-PA09-33 希土類フリーLiCa₃ZnV₃O₁₂ガーネット結晶のシンチレー ○河口範明¹, 岡崎魁¹, 加藤 匠¹, 中内 大介¹, 柳田 健 1. 奈良先端大 ション特性 2 2 2 2 2 2 2 2 2		17p-PA09-31		○河口 範明¹, 加藤 匠¹, 中内 大介¹, 柳田 健之¹	1. 奈良先端大
ション特性 之¹ 17p-PA09-34 Eu添加SrO-Al₂O₃ガラスの蛍光および放射線誘起発光特 (中内 大介¹, 増野 敦信², 加藤 匠¹, 河口 範明¹, 柳田 佳之¹ 1.奈良先端大, 2.弘前大 健之¹ 17p-PA09-35 Nd添加 LaMgAl₁₁O₁₂単結晶の蛍光およびシンチレーショ ○中内 大介¹, 加藤 匠¹, 河口 範明¹, 柳田 健之¹ 1.奈良先端大 17p-PA09-36 Ce添加 SrAl₂O₄透光性セラミックおよび単結晶の放射線 発光特性比較 ○中内 大介¹, 加藤 匠¹, 河口 範明¹, 柳田 健之¹ 1.奈良先端大 17p-PA09-37 Al添加による CaF₂の TSL および RPL 特性への影響 ○加藤 匠¹, 中内 大介¹, 河口 範明¹, 柳田 健之¹ 1.奈良先端大 17p-PA09-38 BBr:In透明セラミックスの輝尽蛍光特性 ○加藤 匠¹, 中内 大介¹, 河口 範明¹, 柳田 健之¹ 1.奈良先端大, 2.産総研明¹, 柳田 健之¹ 17p-PA09-39 CsPbBr₃ベロブスカイト量子ドットを含有した SiO₂ガラ ○加藤 匠¹, 白鳥 大穀¹, 西川 晃弘¹, 岡崎 魁¹, 中内 大 1.奈良先端大		17p-PA09-32	$LiCa_3MgV_3O_{12}$ 結晶のシンチレーション特性		1. 奈良先端大
17p-PA09-34 Eu添加SrO-Al₂O₃ガラスの蛍光および放射線誘起発光特 ○中内 大介¹, 増野 敦信², 加藤 匠¹, 河口 範明¹, 柳田 1. 奈良先端大, 2. 弘前大性 健之¹ 17p-PA09-35 Nd添加LaMgAl₁₁O₁₃単結晶の蛍光およびシンチレーショ ○中内 大介¹, 加藤 匠¹, 河口 範明¹, 柳田 健之¹ 1. 奈良先端大 ン特性 17p-PA09-36 Ce添加SrAl₂O₄透光性セラミックおよび単結晶の放射線		17p-PA09-33		○河口 範明 1 ,岡崎 魁 1 ,加藤 匠 1 ,中内 大介 1 ,柳田 健	1. 奈良先端大
17p-PA09-35 Nd添加 LaMgAl ₁₁ O ₁₉ 単結晶の蛍光およびシンチレーショ ○中内 大介¹, 加藤 匠¹, 河口 範明¹, 柳田 健之¹ 1. 奈良先端大 ン特性 17p-PA09-36 Ce添加SrAl ₂ O ₄ 透光性セラミックおよび単結晶の放射線 ○中内 大介¹, 加藤 匠¹, 河口 範明¹, 柳田 健之¹ 1. 奈良先端大 発光特性比較 17p-PA09-37 Al添加による CaF₂の TSLおよびRPL特性への影響 ○加藤 匠¹, 中内 大介¹, 河口 範明¹, 柳田 健之¹ 1. 奈良先端大 ○加藤 匠¹, 中内 大介¹, 河口 範明¹, 柳田 健之¹ 1. 奈良先端大 17p-PA09-38 RbBr:In透明セラミックスの輝尽蛍光特性 ○加藤 匠¹, 木村 大海², 岡崎 魁¹, 中内 大介¹, 河口 範 1. 奈良先端大 2. 産総研 明¹, 柳田 健之¹ 1. 奈良先端大 ○加藤 匠¹, 木村 大海², 岡崎 魁¹, 中内 大介¹, 河口 範 1. 奈良先端大 7. 京良先端大 17p-PA09-39 CsPbBr₃ペロブスカイト量子ドットを含有した SiO₂ガラ ○加藤 匠¹, 白鳥 大穀¹, 西川 晃弘¹, 岡崎 魁¹, 中内 大 1. 奈良先端大 介¹, 河口 範明¹, 柳田 健之¹ 1. 奈良先端大 7゚, 河口 範明¹, 柳田 健之¹ 1. 奈良先端大 1. 千良子 1. 奈良先端大 1. 元 1. 奈良先端大 1. 元 1.		17p-PA09-34	$\operatorname{Eu}添加 \operatorname{SrO-Al_2O_3} $ ガラスの蛍光および放射線誘起発光特	\bigcirc 中内 大介 1 ,增野 敦信 2 ,加藤 \mathbb{C}^1 ,河口 範明 1 ,柳田	1. 奈良先端大, 2. 弘前大
17p-PA09-36 Ce添加SrAl ₂ O ₄ 透光性セラミックおよび単結晶の放射線 ○中内 大介¹, 加藤 匠¹, 河口 範明¹, 柳田 健之¹ 1. 奈良先端大 発光特性比較 17p-PA09-37 Al添加による CaF₂の TSLおよび RPL 特性への影響 ○加藤 匠¹, 中内 大介¹, 河口 範明¹, 柳田 健之¹ 1. 奈良先端大 17p-PA09-38 RbBr:In透明セラミックスの輝尽蛍光特性 ○加藤 匠¹, 木村 大海², 岡崎 魁¹, 中内 大介¹, 河口 範 1. 奈良先端大, 2. 産総研明¹, 柳田 健之¹ 1. 奈良先端大, 2. 産総研明¹, 柳田 健之¹ 1. 奈良先端大, 2. 産総研明¹, 柳田 健之¹ 17p-PA09-39 CsPbBr₃ベロブスカイト量子ドットを含有した SiO₂ガラ ○加藤 匠¹, 白鳥 大穀¹, 西川 晃弘¹, 岡崎 魁¹, 中内 大 1. 奈良先端大		17p-PA09-35	$ m Nd$ 添加 $ m LaMgAl_{11}O_{19}$ 単結晶の蛍光およびシンチレーショ		1. 奈良先端大
17p-PA09-37 Al添加によるCaF₂のTSLおよびRPL特性への影響		17p-PA09-36	$Ce添加SrAl_2O_4$ 透光性セラミックおよび単結晶の放射線	○中内 大介¹, 加藤 匠¹, 河口 範明¹, 柳田 健之¹	1. 奈良先端大
明¹,柳田健之¹ 17p-PA09-39 CsPbBr₃ペロブスカイト量子ドットを含有したSiO₂ガラ		17p-PA09-37		○加藤 匠¹, 中内 大介¹, 河口 範明¹, 柳田 健之¹	1. 奈良先端大
スシンチレータの開発		17p-PA09-38	RbBr:In透明セラミックスの輝尽蛍光特性		1. 奈良先端大, 2. 産総研
		17p-PA09-39	-		1.奈良先端大
のシンテレーション特性 範明・,柳田 健之・		17p-PA09-40	無容器浮遊法を用いて作製した $Ce: Gd_2O_3-Al_2O_3$ ガラスのシンチレーション特性	〇白鳥 大毅 ¹,增野 敦信 ²,中内 大介 ¹,加藤 匠 ¹,河口 範明 ¹,柳田 健之 ¹	1.奈良先端大, 2.弘前大院理工

17p-PA09-41	レビテーション法により作製したCe:La ₂ O ₃ -Al ₂ O ₃ ガラス		1. 奈良先端大, 2. 弘前大院理工
17p-PA09-42	の放射線照射下における発光特性 Ce 添加 $(Ca_{1x}Sr_x)HfO_3$ 単結晶のシンチレーション特性評		1. 奈良先端大
17p-PA09-43	価 $Ce添加Lu_2O_3\text{-}SiO_2$ ガラスのシンチレーション特性評価	健之¹ ○福嶋 宏之¹,中内 大介¹,加藤 匠¹,河口 範明¹,增野	1. 奈良先端大, 2. 弘前大
E 17p-PA09-44	Optical and Scintillation Properties of Tb-doped ${\rm La_2Si_2O_7}$ Crystal	敦信², 柳田 健之¹ ○ (DC)Prom Kantuptim¹, Takumi Kato¹, Daisuke Nakauchi¹, Noriaki Kawaguchi¹, Kenichi Watanabe²,	1.NAIST, 2.Kyushu Univ.
		Takayuki Yanagida ¹	
E 17p-PA09-45	Scintillation Characteristics of Ce-doped Yttrium- Gadolinium Pyrosilicate Crystal	Lennart Moritz ¹ , ○ (DC)Prom Kantuptim ² , Takumi Kato ² , Daisuke Nakauchi ² , Noriaki Kawaguchi ² , Takavuki Yanagida ²	1.Regensburg Univ., 2.NAIST
17p-PA09-46	内在型発光を有する $Ba_3RE(PO_4)_3$ ($RE=Y$ 、La、Lu) の	○竹渕 優馬¹,加藤 匠¹,中内 大介¹,河口 範明¹,柳田	1.奈良先端大
17p-PA09-47	放射線誘起蛍光特性評価 ${\rm Tb_4O_7\text{-}Al_2O_3}$ ガラスのシンチレーション特性	健之 1 〇竹渕 優馬 1 ,增野 敦信 2 ,加藤 匠 1 ,中内 大介 1 ,河口	1. 奈良先端大, 2. 弘前大
17p-PA09-48	高線量場計測用 Er 添加 Bi ₄ Si ₃ O ₁₂ 単結晶シンチレータの開	範明¹, 柳田 健之¹ ○市場 賢政¹, 岡崎 魁¹, 竹渕 優馬¹, 加藤 匠¹, 中内 大	1.奈良先端大
17 DAOO 40	発と近赤外シンチレーション特性評価 (Ce, Tb) 共添加 Mg ₂ SiO ₄ 単結晶の放射線誘起蛍光特性	介1,河口範明1,柳田健之1	1大白火架上,9 车级邢
		大介¹,河口範明¹,柳田健之¹	
·	近赤外発光を示す希土類添加 $\mathrm{Bi_4Ge_3O_{12}}$ 単結晶の X 線誘起 蛍光特性	明¹,柳田健之¹	
17p-PA09-51	Tm添加Y ₃ Al ₅ O ₁₂ 単結晶のフォトルミネッセンス及びシンチレーション特性の評価	○ (M2) 國方 俊彰 ¹ , Prom Kantuptim ¹ , 白鳥 大毅 ¹ , 加藤 匠 ¹ , 中内 大介 ¹ , 河口 範明 ¹ , 柳田 健之 ¹	1. 奈良先端科学技術大学院大学
17p-PA09-52	β -Ga ₂ O ₃ 透光性セラミックスのシンチレーション特性におけるアニール効果の温度依存性		1. 奈良先端科学技術大学院大学
17p-PA09-53	Floating Zone 法による Dy添加 CaYAlO ₄ 単結晶の育成及	〇青木 瑞晃¹, 竹渕 優馬¹, 中内 大介¹, 加藤 ៤², 河口	1. 奈良先端大先端
17p-PA09-54	びドシメータ特性評価 Tbを賦活した CaGdAlO4単結晶の放射線応答特性評価	範明 1 , 柳田 健之 1 〇青木 瑞晃 1 , 竹渕 優馬 1 , 中内 大介 1 , 加藤 匠 1 , 河口	1. 奈良先端大先端
17p-PA09-55	Tm添加 Na ₃ AlF ₆ セラミックスドシメータの開発	範明 1 , 柳田 健之 1 ○坂口 大貴 1 , 福嶋 宏之 1 , 加藤 匠 1 , 中内 大介 1 , 河口	1 奈良先端大
•		範明¹,柳田健之¹	
•	Ag 添加 Cs_2O - MgO - Al_2O_3 - P_2O_5 ガラスのラジオフォトルミネッセンス特性	範明¹,柳田健之¹	
17p-PA09-57	銀添加リン酸塩ガラスのラジオフォトルミネッセンス特性におけるアルカリ土類金属依存性	○西川 晃弘¹, 白鳥 大毅¹, 加藤 匠¹, 中内 大介¹, 河口 範明¹, 柳田 健之¹	1.奈良先端大
17p-PA09-58	近赤外発光を呈する Er添加 Mg4Ta2O9 単結晶シンチレータの開発	○林 泰世¹, 市場 賢政¹, 岡崎 魁¹, 中内 大介¹, 加藤 匠¹, 河口 範明¹, 柳田 健之¹	1.奈良先端大
17p-PA09-59	FZ 法で作製した Nd 添加 $Mg_4Ta_2O_9$ 単結晶のシンチレー	○林 泰世 1 , 市場 賢政 1 , 岡崎 魁 1 , 中内 大介 1 , 加藤	1. 奈良先端大
17p-PA09-60	ション特性 量子閉じ込め効果を利用した $(n-BrC_6H_4C_2H_4NH_3)_2PbCl_4$		1.奈良先端大, 2.秋田大
17p-PA09-61	結晶のシンチレーション特性 有機無機ペロブスカイト型化合物 $(C_6H_5C_2H_4NH_3)_2Pb_1$.	(健², 加藤 匠¹, 河口 範明¹, 柳田 健之¹ ○松澤 隼¹, 岡崎 魁¹, 中内 大介¹, 河野 直樹², 加藤	1. 奈良先端大, 2. 秋田大
17p-PA09-62	_x K _x Br ₄ の放射線応答特性 共添加によるTl添加RbI単結晶シンチレータの残光抑制	匠¹,河口範明¹,柳田健之¹ ○宮崎彗一郎¹ 由内大介¹ 加藤匠¹ 河口範明¹ 柳	1 态自失體士
	Eu添加RbI単結晶の蛍光とシンチレーション特性	田健之 ¹ 〇宮崎慧一郎 ¹ ,中内大介 ¹ ,加藤匠 ¹ ,河口範明 ¹ ,柳	
		田 健之 ¹	
17p-PA09-64	In添加NaI透明セラミックスの放射線誘起蛍光特性	〇吉川 裕太 1 , 加藤 匠 1 , 宮崎 慧一郎 1 , 中内 大介 1 , 河口 範明 1 , 柳田 健之 1	
17p-PA09-65	Tl添加 RbI 透明セラミックスのシンチレーション特性	〇吉川 裕太 1 , 加藤 匠 1 , 宮崎 慧一郎 1 , 中内 大 Ω 1 , 河口 範明 1 , 柳田 健 Ω 1	1.奈良先端大
17p-PA09-66	BeOセラミックスのOSL特性を用いた陽子線の2次元線 量分布測定の検討	○(M1)近江 和希¹, 岡田豪², 張維珊¹, 古場 祐介³, 佐々木 瑛麻¹, 平井 悠大¹, 川根 充貴¹, 藤原 日菜多¹, 山崎 綾香¹, 渡辺 賢一⁴, 眞正 浄光¹	1. 都立大院人, 2. 金沢工大, 3. 量研機構放医研, 4. 九州大
17p-PA09-67	$Cr添加 Al_2O_3$ セラミックス板と Cd コンバータを用いた熱中性子束分布測定における大面積化の検討	○ (M1) 佐々木 瑛麻¹, 杉岡 菜津美¹, 松本 真之介¹, 田中 浩基², 高田 卓志², 渡辺 賢一³, 大島 裕也³, 若林 源一郎⁴, 真正 浄光¹	1. 都立大, 2. 京大複合原研, 3. 九大院工, 4. 近大原研
17p-PA09-68	大面積 Cr 添加 Al_2O_3 セラミック板の 2 次元線量応答特性	○(M1)中村 祥希¹,村石 浩¹,渡邉 祐介¹,石塚 彩奈²,	
17p-PA09-69	高エネルギーX線サブミクロン集光のためのSi製屈折レ	江口 昂 3 ,稲田 龍司 3 ,中野 正寛 $^{1.3}$,石山 博篠 $^{1.3}$ \bigcirc 隅谷 和嗣 1 ,今井 康彦 1 ,木村 滋 1	学病院 1.JASRI
17p-PA09-70	ンズの開発 Ge半導体検出器を用いた山形県内の土壌および河川・湖	○(M1)浅野 紘輝¹,川畑 琉²,乾 恵美子²,武山 美麗³,	1. 山形大院理工, 2. 山形大理, 3. 山形大総研, 4. 山形県環
•	沼等底質中の放射能測定 粒子線がん治療時のシンチレーター型リアルタイム線モ	森谷透3, 伊藤健4, 櫻井敬久2, 門叶冬樹2,3	エネ部水大気環課
•	ニタの開発IV	黒澤 俊介 ^{4,5} , 門叶 冬樹 ⁶	NICHe/金研, 5. 阪大レーザー研, 6. 山形大理
•	ペンタセン/CNT電極を用いた放射線検出器アレイの作製とX線測定	濱野 毅 ² , 石井 聡 ¹	
17p-PA09-73	PEAI を含む溶液からの高抵抗 ($\mathrm{CH_3NH_3}$) $_3\mathrm{Bi_2I}$, 膜の成膜	\bigcirc (M2)川上 未央子 ¹ , 春田 優貴 ² , 池之上 卓己 ¹ , 三 宅 正男 ¹ , 平藤 哲司 ¹	1.京大院エネ科, 2. ビクトリア大学
	プレス成型による TlBr 結晶の作製(4) 界面直接レーザードーピング法により作製された CdTe	○小野寺 敏幸 ¹, 人見 啓太朗 ²	1.東北工大, 2.東北大 1. 華岡大陸総合 2. 華岡大陸米医工 3.4 N See N. 4. 華岡
	pnダイオードに対するアニール効果の検討	健人 ⁴ , 伊藤 哲 ⁴ , 青木 徹 ^{1, 2, 3, 4}	大電子研
•	真空蒸着法による TIBr 薄膜の作製及び結晶性・検出特性 評価	〇長冶 皓大', 田端 健人', 肥田 康佑", 大野 周", 都木 克之 ^{2,4} , 西澤 潤一 ^{4,5} , 加瀬 裕貴 ^{2,5} , 青木 徹 ^{1,2,3,4,5}	1. 静岡大情, 2. 静岡大電子研, 3. 静岡大院総合, 4. ANSeeN, 5. 静岡大院光医工
検出器デバイス開発 / [/16(Thu.) 9:00 - 12:00	Detection Devices 口頭講演 (Oral Presentation) D311会場(Room D311)		
	原子核乳剤による暗黒物質検出:再結合過程の分析	○谷 忠昭¹, 浅田 貴志², 内田 孝幸³, 中 竜大⁴.5	1.日本写真学会, 2.ナポリ大, 3.東京工芸大, 4.東邦大, 5.名古屋大
15 16a-D311-2	月探査機搭載用チェレンコフ検出器 Lunar-RICheS(Ring		1.宇宙航空研究開発機構,2.理化学研究所,3.東京理科
	Image Cherenkov Spectrometer)の開発	田尚享 ^{2,3} ,武田朋志 ^{2,3} ,内田悠介 ³ ,藤澤海斗 ³ ,伊藤尚輝 ³ ,萩野浩一 ^{4,5} ,行松和輝 ¹	大, 4. 東大院理, 5. 関東学院大学 (研推機構)
		同声,秋到 伯 ,11亿 和冲	

9:45	16a-D311-4	OMOTENASHI搭載用 超小型能動型宇宙放射線線量計 D-Space による宇宙放射線計測		1.宇宙航空研究開発機構, 2.産業技術総合研究所, 3. 慶 應義塾大学・医学部, 4.日本ナショナルインスツルメン
10.00	16 D011 F	C	橋本樹明1	ツ株式会社, 5. ㈱エイ・イー・エス, 6. 日本原子力研究 開発機構
10:00		Gateway 搭載用超小型能動型宇宙放射線線量計 D-Space の開発状況	鈴木 良一 ⁴ , 小平 聡 ⁵	1.JAXA, 2. 慶大医, 3. 日本NI, 4.AIST, 5.QST
10:15	16a-D311-6	位置有感生体組織等価比例計数箱PS-TEPCの小型軽量モデルの開発	〇窪田 雅弓¹, 岸本 祐二²¹, 齋藤 究²¹, 高橋 一智¹, 佐々木 慎一²¹, 寺沢 和洋³, 身内 賢太朗⁴, 永松 愛子⁵, 勝田 真登⁵, 桝田 大輔⁵, 松本 晴久⁵, 谷森 達⁶, 窪 秀利 6 , 内堀 幸夫 7 , 小平 8	1.総研大, 2.KEK, 3.慶應大, 4.神戸大, 5.JAXA, 6.京都大, 7.QST
10:30 10:45	16a-D311-7	休憩/Break キャピラリープレートを用いた中性子イメージングの開 発-IV	○森谷透¹,門叶冬樹¹,日野正裕²,住吉孝行³	1. 山形大, 2. 京都大, 3. 東京都立大
11:00	16a-D311-8	ヘテロエビタキシャルダイヤモンド両面ストリップ検出 器の製作	〇人見 啓太朗 1 , 小山 浩司 2 , 小野寺 敏幸 3 , 野上 光 博 1 , 金 聖祐 2	1. 東北大, 2.Orbray(株), 3. 東北工大
11:15	16a-D311-9	【注目講演】半導体ピクセル検出器:SiからCdTeそしてTlBrへ	〇豊川 秀訓 1 , 人見 啓太朗 2 , 野上 光博 2 , 久保 信 $^{2.3}$, 末永 敦士 4	1. 高輝度光科学研究センター, 2. 東北大, 3. クリアパルス, 4. 豊和産業
11:30	奨 16a-D311-10	ヘテロエピタキシャルダイヤモンド放射線検出器の α 線特性	○(M1) 入江 優雅 ¹ , 人見 啓太朗 ² , 野上 光博 ² , 金 聖 祐 ³ , 小山 浩司 ³ , ニロイチャンドラ サハ ¹ , 嘉数 誠 ¹	1. 佐賀大院工, 2. 東北大院工, 3. Orbray(株)
11:45	16a-D311-11	GaN 一次元検出器を用いた α線および重粒子線の検出	○奧村 宏典 ¹ , 藤井 翔也 ² , 板橋 浩介 ^{3,4} , 外川 学 ^{3,4} , 宮原 正也 ^{3,4} , 磯部 忠昭 ⁵ , 西永 慈郎 ⁶	1. 筑波大数理, 2. 総研大, 3. 高エネ研, 4. QUP, 5. 理研, 6. 産総研
3/16(TH		口頭講演 (Oral Presentation) D311会場(Room D311) 重元素ナノ粒子充填プラスチックシンチレータ・ピクセ	○岸本 俊二¹	1.KEK物構研
13:45	•	ル化のためのレーザー照射テスト ガンマ線三次元影を用いたイメージング手法の実験によ		1.JAEA, 2.東北大工
14:00	*	る実現可能性検討 赤色発光を示すヨウ化物中性子シンチレータの発光特性		
14:00	英 10b-D311-3	亦已光元を小すコソル物中はTVファレースの光元付注	○ № 所 下 早 · ,	大レーザー研, 5. 京都大複合原子力科学研, 6. 株式会社
14:15	•	Tb³+,Ce³+共添加 (Gd,La) $_2$ Si $_2$ O $_7$ の発光特性および α 線イメージング	\mathcal{E}^3 , 鎌田 $\pm^{3,2}$, 山路 晃広 3 , 庄子 育宏 2 , 大橋 雄二 3 , 横田 有為 1 , 吉川 彰 1,2,3	1. 東北大金研, 2. ㈱ C&A, 3. 東北大 NICHe
14:30	16p-D311-5	廃炉作業用放射線モニタリングシステムに用いる酸化物 長波長発光シンチレータの開発	○(M1)松倉大佑 ^{1,2} , 黒澤俊介 ^{2,3,4} , 藤原 千隼 ^{1,2} , 山路 晃広 ^{2,3} , 大橋 雄二 ^{2,3} , 横田 有為 ² , 鎌田 圭 ^{2,3} , 在藤浩樹 ^{2,3} , 豊田 智史 ^{2,3} , 吉野 将生 ^{2,3} , 花田 貴 ² , 村上 カ 瀬斗 ² , 堀合 毅彦 ^{2,3} , 吉川 彰 ^{2,3,5} , 田中 浩基 ⁶ , 高田 卓 志 ⁶	1.東北大工学研究科, 2.東北大金研, 3.東北大 NICHe, 4.大阪大レーザー研, 5.C&A, 6.京都大複合研
14:45	16p-D311-6	Li 含有 Cal_2 :Eu シンチレータの作製とシンチレーション 評価及び n/ γ 波形弁別能	○吉野 将生 ^{1,3} , 飯田 崇史 ⁴ , 鎌田 圭 ^{1,3} , 矢島 隆雅 ² , 佐々木 玲 ² , 堀合 毅彦 ^{1,3} , 吉川 彰 ^{1,2,3}	1. 東北大NICHe, 2. 東北大金研, 3. ㈱ C&A, 4. 筑波大理
15:00	16p-D311-7	Liガラス透明コンポジットシンチレータを用いた光ファ イバベース中性子検出器のガンマ線特性評価		1. 九大工
15:15 15:30	16p-D311-8	休憩/Break 印刷法によるコンバータ膜を用いた太陽電池型中性子線		1.木更津高専, 2. 京大, 3. 宇宙機構, 4. 理研
15:45	奨 16p-D311-9	量計の開発 X線検出器応用を目指したペロブスカイト単結晶の	泰希 ² , 今泉 充 ³ , 小林 知洋 ⁴ ○春田 優貴 ¹ , Ye Hanyang ¹ , Huber Paul ¹ ,	1. ビクトリア大学
16:00	16p-D311-10	フィードバック制御成長 重粒子がん治療場の線エネルギー付与分布測定を目的と した薄膜型ダイヤモンド検出器の開発	Saidaminov Makhsud ¹ 松本 卓己 ¹ , 新井 優大 ^{1,2} , 清水 省后 ¹ , 窪寺 敬 ¹ , 青木 勝海 ² , 武居 秀行 ² , 牧野 高紘 ² , 米内 俊祐 ² , 大鳥 武 ² ,	1. 群馬大, 2. 量研, 3. 群馬大重粒子
16:15	16p-D311-11	薄膜型SiC検出器による重粒子線がん治療場の線エネル ギー付与測定	酒井 真理³, 松村 彰彦³, ○加田涉¹ ○(M1) 松本 卓己¹, 新井 優大¹.², 窪寺 敬¹, 山口 阜平¹, 横田 凌¹, 大島 武², 牧野 高紘², 酒井 真理³, 松村 彰彦³, 星野 紀博⁴, 土田 秀一⁴, 加田 涉¹	1.群馬大理工, 2.量研, 3.群馬大重粒子, 4.電中研
		線応用・発生装置・新技術 / Radiation physics fundament		ology
3/17(F 13:00		口頭講演 (Oral Presentation) D411会場 (Room D411) 「分科内招待講演」 【注目講演】放射線理工学の将来ビジョン	〇井口 哲夫1.2	1. (元) 名大, 2.名産研
13:30	招 17p-D411-2	「分科内招待講演」 半導体検出器デバイスの開発とイメージング応用	〇青木 徽 $^{1.2}$, 西澤 潤 $^{-1.2}$, 田端 健人 1 , 都木 克之 $^{1.2}$, 加瀬 裕貴 1 , 小池 昭史 2 , 森井 久史 2 , 三村 秀典 $^{1.2}$, 畑 中 義式 1	1. 静岡大電子研 , 2.ANSeeN
14:00	招 17p-D411-3	「分科内招待講演」 量子もつれ光子対に基づく医用多分子間相互作用イメー ジングの研究	○島添 健欠 1	1.東京大
3/18(S		口頭講演 (Oral Presentation) D411会場(Room D411) 単一イオンビーム注入装置用二段加速レンズの設計	○石井保行¹,宮脇信正¹,百合庸介¹,小野田忍¹,鳴	1. 量研高崎
9:15	E 18a-D411-2	一第2加速レンズの設計— Neutron Capture Cross-Section Measurement and Resonance Parameter Analysis of ¹⁹¹ Ir	海一雅 ¹ , 齋藤 勇一 ¹ ○ (P)MdKawcharAhmed Patwary ¹ , Mariko Segawa ¹ , Makoto Maeda ¹ , Shunsuke Endo ¹ , Atsushi Kimura ¹ ,	1.JAEA
9:30	E 18a-D411-3	Using hard X-ray nanoprobe to study the emission properties of $\text{Ga}_2\text{O}_3\text{films}$	Shoji Nakamura¹, Yosuke Toh¹ ○ (M2) ChaoHsun Chang¹.⁴, TzuChi Huang².⁴, YuHao Wu³.⁴, ChunYen Lin⁴, Song Yang⁴, ShangWei Ke⁴, EnRui Wang⁴, ChienYu Lee⁴, BoYi Chen⁴, GungChian Yin⁴, ChiaHung Hsu⁴, MauTsu Tang⁴,	1.Taipei Tech, 2.United Univ., 3.NYCU, 4.NSRRC
9:45	18a-D411-4	高ゲートバイアス印加による SiC バワーMOSFET のトー	JaHon Lin ¹ , BiHsuan Lin ⁴	1.京都工繊大
10:00	奨 18a-D411-5	タルドーズ回復現象の測定 シミュレーションによる Whole Gamma Imaging 4号機の 性能予測	〇菊地 智也 1 , 田久 創大 2 , 菅 幹生 1 , 田島 英朗 2 , 錦戸 文彦 2 , 山谷 泰賀 2	1.千葉大, 2.量研機構
10:15	10. D.	休憩/Break		1. 女士只去 9. 热网上
10:30		線源探知のためのモンテカルロ計算における構造物モデ ル化法の開発	裕貴²,青木 徹²	
10:45	18a-D411-7	PHITSによる任意の物質に対する電子線飛跡構造計算に 向けた基礎検討	〇平田 悠 \mathfrak{b}^1 , 甲斐 健師 1 , 小川 達 \mathfrak{g}^1 , 松谷 悠佑 2 , 佐 藤 達 \mathfrak{g}^1	1.原子力機構, 2.北大
11:00	18a-D411-8	赤方偏移に基づく放射線位置検出器の同時計測しきい値	○森本 翔貴¹, 山口 憲司¹, 堤 康宏¹	1.近畿大学

11:15	18a-D411-9	工学応用に向けた環境中宇宙線ミュオンのエネルギース	○ (PC) 佐藤 光流¹, 金 政浩²	1. 九大工学研究院, 2. 九大総理工
1:30	奨 E 18a-D411-10	ペクトル計測システム Magnetic field imaging by cosmic-ray muons (Magic- μ)		1.Kyushu University, 2.UCLouvain
1:45	18a-D411-11	- Simulation of magnetic fields in scattering muography - 宇宙線ミュオンを用いた磁場イメージング (Magic-μ) - 透過法による巨大磁場のシミュレーションー		1. 九大総理工, 2.UCLouvain
3/18(Sat.) 13:30 - 15:15	口頭講演 (Oral Presentation) D411会場 (Room D411)	Glammanco Andrea	
3:30		焦電性結晶表面における発生電圧の算出方法		1. 岡山大院保
3:45	Î	光導波型シンチレータ結晶における様々な無機シンチ レータ結晶コアの検討	〇鎌田 $\pm^{1.2}$, 矢島 隆雅 ³ , 沓澤 直子 ² , 吉野 将生 ^{1.2} , 堀 合 毅彦 ^{1.2} , 村上 力輝斗 ³ , 吉川 彰 ^{1.2,3}	
4:00	18p-D411-3	X線減弱係数スペクトル測定による実効原子番号・電子 密度の測定	○(M2)白戸陽大¹,石崎賢弥¹,長谷部有希¹,森本一成¹,星和志¹,鈴木宏輔¹,大野由美子³,取越正己²,櫻井浩¹	1. 群大理工, 2. 量研, 3. 群馬健科大
4:15	18p-D411-4	三次元X線CT表示の複合現実化のための断面表現に関する提案	○加瀬 裕貴 1,2 , 西澤 潤 $^{-1}$, 田端 健人 2 , 都木 克之 2 , 青木 徽 1,2	1. 静岡大院光医工, 2. 静岡大電研
4:30 4:45		拡張現実 (AR) 技術を用いた X線ビームの可視化 Study on a high-energy X-ray CT using GOS FPD for fuel debris screening		1.静大情, 2.静大電研, 3.静大光医工 1.Sch. of Eng. The Univ. of Tokyo
15:00	18p-D411-7	宇宙X線観測用SOIビクセル検出器の放射線耐性の評価	(○幸村孝由¹,内田悠介¹,北島正隼¹,角町駿¹,土居俊輝¹,武居悠貴¹,伊藤尚輝¹,清水真¹,萩野浩一²,鶴剛³,内田裕之³,上ノ町水紀³,天野雄輝³,佳山一帆³,松田真宗³,森浩二⁴,武田彩希⁴,西岡祐介⁴,行元雅貴⁴,石田辰德⁴,岩切卯月⁴,泉大輔⁴,川島陸斗⁴,眞方恒陽⁴,田中孝明⁵,鈴木寛大⁵,信川久実子⁵,新井康夫₹,倉知郁生8	
		・加速器ビーム分析、7.4 量子ビーム界面構造計測、7.5 イ	イオンビーム一般のコードシェアセッション / Code-s	haring Session of 2.3 & 7.4 &7.5
3/160 9:00		口頭講演 (Oral Presentation) D519会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件		1. 京大院工, 2.量研, 3. 名大VBL, 4. 名大IMaSS
9:15	奨 16a-D519-2	の検討 Au -Si lam Au -Si lam Au -Si lam Au -Si lam Au -		1. 滋賀県立大院工, 2. 滋賀県立大工
9:30	16a-D519-3	用したAUデノ粒子の形成 イオン照射による銀ナノ粒子凝集体のプラズモン吸収帯 の尖鋭化とVOC蒸気応答性の向上	○(M1)渡邉 謙吾¹, 小谷 祐太¹, 高廣 克己¹	1. 京工繊大
9:45	奨 16a-D519-4	低速Ar照射Si基板上Au蒸着によるAuナノワイヤ成長モデルの構築	\bigcirc (DC) 水谷 仁美 1 , 山本 春也 2 , 高廣 克己 1	1. 京工繊大, 2. 量研機構高崎
0:00	16a-D519-5	Siのイオンビームスパッタと Au 蒸着による Au ナノワイヤの低温成長	○(B) 西畠 佳汰¹, 水谷 仁美¹, 高廣 克己¹	1.京工繊大
0:15		イオンビーム分析法を用いた電極/固体電解質界面のリ チウム濃度分布その場測定		1. 名城大理工, 2. 若狭湾エネ研, 3. 東北大金研
10:30	奨 16a-D519-7	ガラス円筒面チャネルによりガイドされた Ar ⁶⁺ イオン ビームの運動エネルギー分布	〇高橋 遼平 1 , 風祭 佑弥 1 , 關 誠晃 1 , 高山 祐仁 2 , 杉本 奈々 2 , 本橋 健次 $^{1.2}$	1.東洋大院理工, 2.東洋大理工
10:45 11:00	16a-D519-8	休憩/Break サイズと価数が異なる液滴イオンによるスパッタ特性	○二宮 啓¹, 常木 誠之助¹, チェン リーチュイン¹, 平 岡 賢三¹	1.山梨大工
1:15	16a-D519-9	Arクラスターによりスパッタされたベンジルピリジニウム分子の内部エネルギーの評価		1.兵庫県立大工
1:30		Ar-GCIB スパッタリングによる有機高分子損傷の分子量 依存性		1.京大工, 2.京大院工
1:45		反応性ガス吸着と O_2 -GCIBを用いた N iバターンエッチング		1. 兵庫県立大工
2:00		ALE		1.兵庫県大工
2:15		O_2 -GCIBとアセチルアセトンによる SiNx 膜原子層エッチングプロセスの反応機構の検討 斜入射中性子を照射した InP 基板から放出される ^{115}In ガ		1.兵庫県立大工
2:30		解入射中性子を照射したInが基板から放出される Inガンマ線の入射角度依存性 口頭講演 (Oral Presentation) D519 会場 (Room D519)	□山崎 人,水沢 より,盛合 敦,武田 至康,松江 秀 明 ¹ ,桜井 健次 ³	1.原士刀候傳, 2. 総合料子研充候傳, 3. 物朴候傳
4:30		高速クラスターイオンビーム照射による自立グラフェン 膜からの二次電子放出	\bigcirc (M1) 宇野 鳴記 1 , 間嶋 拓也 1 , 斉藤 学 1 , 土田 秀次 1	1. 京都大院工
4:45	16p-D519-2	イオンビームによる液相水中で起こるヌクレオチド分子 の損傷過程	〇土田 秀次 1 ,手塚 智哉 1 ,大田 哲郎 1 ,秀嶋 雄登 1 ,間 嶋 拓也 1 ,斉藤 学 1	1. 京大院工
5:00	•	イオンビーム誘起発光分析・イメージングを用いた粒子 線微細加工 (PBW) 微細加工領域のその場観察技術	花泉修1,山田尚人2,佐藤隆博2,石井保行2	
5:15	奨 16p-D519-4	ラジオクロミックフィルムを用いたマイクロメートル空 間分解能の線量計測手法の開発	○ (DC) 宮武 立彦 ^{1,2} , 小島 完興 ² , 榊 泰直 ^{1,2} , 竹本 伊 吹 ^{1,2} , ヂン タンフン ² , 畑 昌育 ² , 錦野 将元 ² , 近藤 康 太郎 ² , 西内 満美子 ² , 渡辺 幸信 ¹ , 岩田 佳之 ³ , 白井 敏 之 ³ , 神門 正城 ² , 近藤 公伯 ²	1. 九大院総理工, 2. 量研 関西研, 3. 量研 放医研
5:30	奨 16p-D519-5	半導体レーザを用いた有機物のためのレーザーアブレーション -AMS ¹⁴ C 測定システムの開発		1. 東大新領域, 2. 東大博物館
5:45 6:00	16p-D519-6	休憩/Break 加速器質量分析法による長半減期放射性セシウム135の		1. 筑波大加速器, 2. 筑波大数物
6:15	16n DE10 7	高感度検出試験 超小型 AMS 開発の現状	□ 綾 ² ○神野 智史¹, 松原 章浩², 藤田 奈津子¹, 木村 健二¹	1 陌子力機構 り ペフコ
6:15		超小型AMS 開発の現状 中赤外光周波数コムと光フィードバック量子カスケード レーザーを用いたキャビティリングダウン分光に基づく 放射性炭素分析法の開発	○齊藤 圭亮¹, 寺林 稜平¹.², Volker Sonnenschein¹, 岩	
16:45	奨 E 16p-D519-9	Speciation distribution of iodine isotopes (¹²⁷ I and ¹²⁹ I) in	○ (P)Yuanzhi Qi¹, Qiuyu Yang¹, Takeyasu	1.The Univ. of Tokyo, 2.Nihon Univ., 3.JAMSTEC
7:00	Ŷ	the Beaufort, Chukchi, and Bering Seas 樹木年輪の ¹⁴ C分析による19世紀の太陽活動の調査	Yamagata¹, Hisao Nagai¹.², Yuichiro Kumamoto³ ○三宅 芙沙¹, 箱崎 真隆², 早川 尚志¹, Lukas Wacker³	· · ·
17:15 17:30		休憩/Break 共振器強化型高感度レーザー吸収分光に基づく ⁹⁰ Sr分析	〇寺林 稜平 1 ,宮部 昌文 2 ,長谷川 秀一 1	1.東大院工, 2.JAEA
17:45	16p-D519-12	のためのSrO分子近赤外域振動 - 回転遷移観測 共鳴イオン化二次中性粒子質量分析による多元素・同位		1. 名古屋大, 2. 工学院大
18:00	16p-D519-13	体分析のための 波長可変レーザーシステムの開発 東京大学 MALT の現状 – 2023 年春 -	真人², 坂本 哲夫², 富田 英生¹ ○山形 武靖¹, 徳山 裕憲¹, 土屋 陽子¹, 戸谷 美和子¹,	1. 東大MAIT

18:15	16p-D519-14	山形大学に導入した高感度加速器質量分析装置の現状 VI	 ○武山美麗¹,森谷透¹,櫻井敬久²,宮原ひろ子³,大山幹成⁴,斉藤久子⁵,門叶冬樹¹.² 	1.山形大AMSセンター, 2.山形大理, 3.武蔵美, 4.東北 大植物園, 5.千葉大法医
18:30 2.4 医用	16p-D519-15 応用 / Medical app	都市大タンデムの現状(2022年度) blication		1.都市大, 2.原子力機構, 3.量研
		口頭講演 (Oral Presentation) D311会場 (Room D311)		A Health I Till on the I Blacker
13:30	•	transXend検出器の実用化に向けた低被ばくフィルタ X線 照射法の検討		1. 京教大理, 2. 京大院工
13:45	15p-D311-2	エネルギー分解X線コンピュータ断層撮影を用いた金属 容器中の物質識別	○森明 亮我¹, 神野 郁夫¹	1.京都大工
14:00	15p-D311-3	エネルギー分解X線コンピュータ断層撮影による尿路結 石成分同定に関する研究	○笠原 悠暉¹, 神野 郁夫¹	1.京大院工
14:15	奨 15p-D311-4		○西川 潤一郎¹, 神野 郁夫¹, 霜村 康平²	1. 京大工, 2. 京都医療科学大学
14:30	奨 15p-D311-5	BNCT のガンマ線量測定に向けた Mg ₂ SiO ₄ : Tb (TLD-MSO-S) の特性評価	〇鈴木 後介 \(^2\), 八木橋 貴之 \(^3\), 新田 和範 \(^1\), 佐藤 直 紀 \(^1\), 下 貴裕 \(^1\), 後藤 紳一 \(^1\), 永田 弘典 \(^1\), 杉本 聡 \(^4\), 橋本 睛満 \(^5\), 田中 浩基 \(^2\)	1.湘南鎌倉総合病院, 2.京都大学, 3.東京都立大学, 4.順 天堂大学, 5.湘南藤沢徳洲会病院
14:45 15:00	E 15p-D311-6	休憩/Break Ultrahigh resolution small animal positron emission tomography for mouse brain imaging	○ (PC)HanGyu Kang¹, Hideaki Tashima¹, Fumihiko Nishikido¹, Makoto Higuchi¹, Miwako Takahashi¹, Taiga Yamaya¹	1.QST
15:15	15p-D311-7	量子PET 研究: ¹²⁴ I による陽電子寿命測定	○田久創大',池田隼人 ^{2.3} ,脇坂秀克 ¹ ,松本謙一郎 ¹ ,錦戸文彦 ¹ ,田島英朗 ¹ ,高橋美和子 ¹ ,渡部浩司 ² ,山谷泰賀 ¹	1.量研機構, 2.東北大CYRIC, 3.東北大ELPH
15:30	奨 15p-D311-8	TOF-PET用 Fast-LGSO シンチレータの表面状態の最適		1. 千葉大工, 2. 量研機構
15:45	奨 15p-D311-9	化 鉗子型ミニPET検出器の定量性改善に向けたシミュレー		1.量研, 2.千葉大, 3.未来イメ (株)
16:00	15n-D311-10	ション ¹⁷⁷ Lu放射能汚染イメージング用高感度コンプトンカメラ	美和子 ¹ ,山谷 泰賀 ¹ ○(M1)塚本 ひかり ^{1.6} 村石 浩 ¹ 榎本 良治 ² 片桐 秀	1 北里大学医療系研究科 2 東大宇宙線研 3 茨城大理
16:15	10p 2011 10	の開発 体憩/Break	- 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	4.仙台高専,5.国立がん研究センター東病院,6.東海大学医学部付属病院
16:30	15p-D311-11	White:/ Diedak	〇山本 誠一¹, 山下 智弘², 小橋 佑介², 矢部 卓也³, 山 口 充孝³, 河地 有木³, 鎌田 圭⁴, 吉川 彰⁴, 赤城 卓², 片 岡 淳¹	1.早稲田大 理工, 2. 神戸陽子線, 3.QST高崎, 4. 東北 大, 5. 兵庫粒子線
16:45	奨 15p-D311-12	散乱陽子線計測に基づく「その場」陽子線治療モニタリ ングシステムの初期検証	○佐藤 将吾¹, 横川 広歩¹, 田中 香津生¹, 山本 誠一¹, 片岡 淳¹	1.早大理工
17:00	15p-D311-13	セテ線治療への応用を目指したフォトンカウンティング CTによる電子数密度推定		
17:15	奨 15p-D311-14	粒子線治療に用いる拡大ブラッグビークビームの二次電 子制動放射測定による飛程変化の検出		
2.5 放射		diation-induced phosphors		
2/1C/T	L \ 12.20 10.20			
3/16(T 13:30		口頭講演 (Oral Presentation) D405 会場(Room D405) 「第53回講演奨励賞受賞記念講演」	○渡邊 晶斗¹, 越水 正典², 渡辺 賢一³, 佐藤 敦史¹, 藤	1.東北大院工, 2. 静岡大電子研, 3. 九大院工
13:30	招 16p-D405-1	「第53回講演奨励賞受賞記念講演」 中性子検出用 ⁶ Li装荷液体シンチレータの開発	本裕1,浅井圭介1	
	招 16p-D405-1 16p-D405-2	「第53回講演奨励賞受賞記念講演」	本 裕¹, 浅井 圭介¹ ○渡邊 晶斗¹, 越水 正典², 横 哲³, 成 基明⁴, 笘居 高 明⁵, 阿尻 雅文³, 林 大和¹, 藤本 裕¹, 浅井 圭介¹	1. 東北大院工, 2. 静岡大電子研, 3. 九大院工 1. 東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大
13:30 13:45 14:00	招 16p-D405-1 16p-D405-2 16p-D405-3	「第53回講演奨励賞受賞記念講演」 中性子検出用⁵Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けたZrO₂ナノ 粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線 感受性比較	本 裕¹, 浅井 圭介¹ ○渡邊 晶斗¹, 越水 正典², 横 哲³, 成 基明⁴, 笘居 高明⁵, 阿尻 雅文³, 林 大和¹, 藤本 裕¹, 浅井 圭介¹ ○遠藤 寿弥¹, 越水 正典², 藤本 裕¹, 浅井 圭介¹	1. 東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大
13:30 13:45 14:00 14:15	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4	「第53回講演奨励賞受賞記念講演」 中性子検出用⁵Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けたZrO₂ナノ 粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線 感受性比較 PADC検出器中に形成されるイオントラックの損傷構造	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明⁵,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遠藤寿弥¹,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多聞²,金崎真聡¹,小平聡²,山内知也¹	1. 東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構
13:30 13:45 14:00 14:15 14:30	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4	「第53回講演奨励賞受賞記念講演」中性子検出用 $^{\circ}$ Li装荷液体シンチレータの開発ナノ粒子装荷有機シンチレータの開発に向けた ZrO_2 ナノ粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線感受性比較PADC検出器中に形成されるイオントラックの損傷構造銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明⁵,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遠藤寿弥¹,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多聞²,金崎真聡¹,小平聡²,山内知也¹	1. 東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大
13:30 13:45 14:00 14:15	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4 16p-D405-5	「第53回講演奨励賞受賞記念講演」中性子検出用 6 Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けた ZrO_2 ナノ粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線 感受性比較 PADC検出器中に形成されるイオントラックの損傷構造 銀添加リン酸塩ガラスにおけるラジオフォトルミネッセ	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明⁵,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遠藤寿弥¹,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多聞²,金崎真聡¹,小平聡²,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕¹,浅井圭介¹ ○西川晃弘¹,白鳥大毅¹,加藤匠¹,中内大介¹,河口	1. 東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構 1. 東北大院工, 2. 静岡大
13:30 13:45 14:00 14:15 14:30	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4 16p-D405-5	「第53回講演奨励賞受賞記念講演」中性子検出用 ⁶ Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けたZrO₂ナノ 粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線 感受性比較 PADC検出器中に形成されるイオントラックの損傷構造 銀添加リン酸塩ガラスにおけるラジオフォトルミネッセ ンス中心形成量の銀濃度依存性 休憩/Break	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明⁵,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遠藤寿弥¹,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多聞²,金崎真聡¹,小平聡²,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕¹,浅井圭介¹ ○西川晃弘¹,白鳥大毅¹,加藤匠¹,中内大介¹,河口範明¹,柳田健之¹	1. 東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構 1. 東北大院工, 2. 静岡大
13:30 13:45 14:00 14:15 14:30 14:45 15:00	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4 16p-D405-5 16p-D405-6 16p-D405-7	「第53回講演奨励賞受賞記念講演」中性子検出用 $^{\circ}$ Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けた ZrO_2 ナノ粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線 感受性比較 PADC検出器中に形成されるイオントラックの損傷構造 銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性 休憩/Break Ag添加Cs $_2$ O-CaO-Al $_2$ O $_3$ -P $_2$ O $_3$ がラスのラジオフォトルミネッセンス特性評価 リン酸塩ガラスシンチレータにおけるアルカリ金属の相違によるエネルギー移動効率の差異	本裕¹,浅井 圭介¹ ○渡邊 晶斗¹,越水 正典²,横哲³,成 基明⁴,笘居高明⁵,阿尻 雅文³,林 大和¹,藤本 裕¹,浅井 圭介¹ ○遠藤 寿弥¹,越水 正典²,藤本 裕¹,浅井 圭介¹ ○(M1)保田 賢¹,伊藤 大洋¹,宗 晃汰¹,石原 文太¹,楠本 多聞²,金崎 真聡¹,小平 聡²,山内 知也¹ ○川本 弘樹¹,越水 正典¹²,藤本 裕¹,浅井 圭介¹ ○西川 晃弘¹,白鳥 大穀¹,加藤 匠¹,中内 大介¹,河口範明¹,柳田 健之¹ ○中林 優輔¹,藤本 裕¹,越水 正典²,浅井 圭介¹	1. 東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構 1. 東北大院工, 2. 静岡大 1. 奈良先端大 1. 東北大院工, 2. 静岡大
13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4 16p-D405-5 16p-D405-6 16p-D405-7	「第53回講演奨励賞受賞記念講演」中性子検出用 6 Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けた ZrO_2 ナノ粒子支荷有機シンチレータの開発に向けた ZrO_2 ナノ粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線感受性比較 PADC検出器中に形成されるイオントラックの損傷構造 銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性 休憩/Break Ag添加 Cs_2O - CaO - Al_2O_3 - P_2O_5 ガラスのラジオフォトルミネッセンス特性評価 リン酸塩ガラスシンチレータにおけるアルカリ金属の相違によるエネルギー移動効率の差異 中性子検出用 Ce 添加 $LiPO_3$ - $Al(PO_3)_3$ - $NaPO_3$ ガラスの開発	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明³,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遠藤寿弥¹,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多問²,金崎真聡¹,小平聡²,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕¹,浅井圭介¹ ○西川晃弘¹,白鳥大穀¹,加藤匠¹,中内大介¹,河口範明¹,柳田健之¹ ○中林優輔¹,藤本裕²,越水正典²,浅井圭介¹ ○(B)長谷川洗¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹	1. 東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大 NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構 1. 東北大院工, 2. 静岡大 1. 奈良先端大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大
13:30 13:45 14:00 14:15 14:30 14:45 15:00	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4 16p-D405-5 16p-D405-6 16p-D405-7	「第53回講演奨励賞受賞記念講演」中性子検出用 6 Li装荷液体シンチレータの開発ナノ粒子装荷有機シンチレータの開発に向けた 2 CrO $_2$ ナノ粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線感受性比較 PADC検出器中に形成されるイオントラックの損傷構造銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性体憩/Break Ag添加 2 Cra $_2$ Cra $_3$ Cra $_4$ Cra $_4$ Cra $_5$ Cr	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明⁵,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遮藤寿弥¹,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多聞²,金崎真聡¹,小平聡²,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕¹,浅井圭介¹ ○西川晃弘¹,白鳥大穀¹,加藤匠¹,中内大介¹,河口範明¹,柳田健之¹ ○中林優輔¹,藤本裕¹,越水正典²,浅井圭介¹ ○(B)長谷川洸¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹	1. 東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大 NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構 1. 東北大院工, 2. 静岡大 1. 奈良先端大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大
13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4 16p-D405-5 16p-D405-6 16p-D405-7 16p-D405-8 16p-D405-9	「第53回講演奨励賞受賞記念講演」中性子検出用 *Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けたZrO₂ナノ粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線感受性比較 PADC検出器中に形成されるイオントラックの損傷構造 銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性 体憩/Break Ag添加Cs₂O-CaO-Al₂O₃-P₂O₅ガラスのラジオフォトルミネッセンス特性評価 リン酸塩ガラスシンチレータにおけるアルカリ金属の相違によるエネルギー移動効率の差異中性子検出用Ce添加LiPO₃-Al(PO₃)₃-NaPO₃ガラスの開発フローティングゾーン溶融急冷法により作製した	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明⁵,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遮藤寿弥³,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多聞²,金崎真聡¹,小平聡²,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕³,浅井圭介¹ ○西川晃弘¹,白鳥大穀¹,加藤匠¹,中内大介¹,河口範明¹,柳田健之¹ ○中林優輔¹,藤本裕¹,越水正典²,浅井圭介¹ ○(B)長谷川洸¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹ ○白鳥大穀¹,福嶋宏之¹,中内大介¹,加藤匠¹,河口範明¹,柳田健之¹	1. 東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構 1. 東北大院工, 2. 静岡大 1. 奈良先端大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大
13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4 16p-D405-5 16p-D405-6 16p-D405-7 16p-D405-8 16p-D405-9 16p-D405-10	「第53回講演奨励賞受賞記念講演」中性子検出用 6 Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けた 2 CrO $_{2}$ ナノ粒子装荷有機シンチレータの開発に向けた 2 CrO $_{2}$ ナノ粒子装荷有機シンチレータの開発に向けた 2 CrO $_{3}$ ナルシークを素含有ラジオクロミック材料の放射線感受性比較 PADC 検出器中に形成されるイオントラックの損傷構造銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性体想 2 Rraw とスキセンス特性評価リン酸塩ガラスシンチレータにおけるアルカリ金属の相違によるエネルギー移動効率の差異中性子検出用 2 Ce添加 2 LiPO $_{3}$ -Al 2 CPO $_{3}$ 3-NaPO $_{3}$ ガラスの開発フローティングゾーン溶融急冷法により作製した 2 Lu $_{2}$ O3-Al 2 O3-SiO $_{2}$ ガラスの放射線計測用蛍光体としての応用検討多孔質ガラスに有機無機ペロブスカイト型化合物を導入した複合材料の発光特性	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明⁵,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遠藤寿弥¹,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多聞²,金崎真聡¹,小平聡²,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕¹,浅井圭介¹ ○西川晃弘¹,白鳥大毅¹,加藤匠¹,中内大介¹,河口範明¹,柳田健之¹ ○中林優輔¹,藤本裕¹,越水正典²,浅井圭介¹ ○(B)長谷川洸¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹ ○(B)長谷川洸¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹ ○(南上、報²,福嶋宏之¹,中内大介¹,加藤匠¹,河口範明¹,柳田健之¹	1.東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構 1. 東北大院工, 2. 静岡大 1. 奈良先端大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大
13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45	招 16p-D405-1 16p-D405-3 16p-D405-4 16p-D405-5 16p-D405-6 16p-D405-7 16p-D405-8 16p-D405-9 16p-D405-10 16p-D405-11 Sat.) 9:00 - 12:00	「第53回講演奨励賞受賞記念講演」中性子検出用 *Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けたZrO₂ナノ粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線感受性比較 PADC検出器中に形成されるイオントラックの損傷構造 銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性 体憩/Break Ag添加Cs₂O-CaO-Al₂O₃-P₂O₅ガラスのラジオフォトルミネッセンス特性評価 リン酸塩ガラスシチレータにおけるアルカリ金属の相違によるエネルギー移動効率の差異中性子検出用Ce添加LiPO₃-Al(PO₃)₃-NaPO₃ガラスの開発フローティングゾーン溶融急冷法により作製した Lu₂O₃-Al₂O₃-SiO₂がラスの放射線計測用蛍光体としての応用検討 多孔質ガラスに有機無機ペロブスカイト型化合物を導入した複合材料の発光特性 Eu₂O₃-K₂O-Nb₂O₅-TeO₂結晶化ガラスのシンチレーション特性 口頭講演 (Oral Presentation) D419 会場(Room D419)「第2回極限的励起状態の形成と量子エネルギー変換研究グループ論文賞受賞記念講演」	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明³,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遮藤寿弥¹,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多問²,金崎真聡¹,小平聡³,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕¹,浅井圭介¹ ○西川晃弘¹,白鳥大穀¹,加藤匠¹,中内大介¹,河口範明¹,柳田健之¹ ○中林優輔¹,藤本裕²,越水正典²,浅井圭介¹ ○(B)長谷川洗¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹ ○自鳥大穀¹,福嶋宏之¹,中内大介¹,加藤匠¹,河口範明¹,柳田健之¹ ○河野直樹¹,篠崎健二²,中内大介³,加藤匠³,竹渕優馬³,柳田健之³ ○宗田駿太朗¹,中森亮吾¹,河野直樹¹,中内大介²,加藤匠²,竹渕優馬³,篠崎健二³,柳田健之²	1.東北大院工, 2. 静岡大電子研, 3.東北大WPI-AIMR, 4.東北大NICHe, 5. 東北大多元研 1.東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構 1. 東北大院工, 2. 静岡大 1. 奈良先端大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大 1. 東北大学 1. 奈良先端大 1. 秋田大院理工, 2. 産総研, 3. 奈良先端大 1. 秋田大院理工, 2. 産総研, 3. 奈良先端大
13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4 16p-D405-5 16p-D405-6 16p-D405-7 16p-D405-8 16p-D405-9 16p-D405-10 16p-D405-11 Sat.) 9:00 - 12:00 招 18a-D419-1	「第53回講演奨励賞受賞記念講演」中性子検出用 6 Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けた 2 CrO $_{2}$ ナノ粒子装荷有機シンチレータの開発に向けた 2 CrO $_{2}$ ナノ粒子支荷有機シンチレータの開発に向けた 2 CrO $_{3}$ 力を素含有ラジオクロミック材料の放射線感受性比較PADC検出器中に形成されるイオントラックの損傷構造銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性体態 2 Break 2 Ag添加 2 Cs $_{3}$ Cr $_{2}$ Cr $_{3}$ Cr $_{3}$ Cr $_{3}$ Cr $_{3}$ Cr $_{3}$ Cr $_{4}$ Cr $_{5}$ Cr	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明³,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遮藤寿弥³,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多聞²,金崎真聡¹,小平聡²,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕³,浅井圭介¹ ○西川晃弘¹,白鳥大穀¹,加藤匠¹,中内大介¹,河口範明¹,柳田健之¹ ○中林優輔¹,藤本裕¹,越水正典²,浅井圭介¹ ○(B)長谷川洸¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹ ○(B)長谷川洸¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹ ○(国)長谷川洸¹,中林優輔¹,渡邊晶斗¹,藤本俗¹,浅井圭介¹ ○(国)長谷川洸¹,中村優輔²,渡邊晶斗¹,藤本俗¹,浅井圭介¹ ○百鳥大穀¹,福嶋宏之¹,中内大介¹,加藤匠¹,河口範明¹,柳田健之¹ ○河野直樹¹,篠崎健二²,中内大介³,加藤匠³,竹渕優馬³,柳田健之³ ○宗田駿太朗¹,中森亮吾¹,河野直樹¹,中内大介²,加藤匠²,竹渕優馬²,篠崎健二³,柳田健之²	1.東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構 1. 東北大院工, 2. 静岡大 1. 奈良先端大 1. 東北大院工, 2. 静岡大 1. 東北大学 1. 奈良先端大 1. 秋田大院理工, 2. 産総研, 3. 奈良先端大 1. 秋田大, 2. 奈良先端大, 3. 産総研 1. 産総研, 2. 金沢工大, 3. 奈良先端大
13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 3/18(99:00	招 16p-D405-1 16p-D405-3 16p-D405-4 16p-D405-5 16p-D405-6 16p-D405-7 16p-D405-7 16p-D405-9 16p-D405-10 16p-D405-11 Sat.) 9:00 - 12:00 招 18a-D419-1 招 18a-D419-2	「第53回講演奨励賞受賞記念講演」中性子検出用 *Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けたZrO₂ナノ粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線感受性比較 PADC 検出器中に形成されるイオントラックの損傷構造銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性体憩/Break Ag添加Cs₂O・CaO・Al₂O₂・P₂O₅ガラスのラジオフォトルミネッセンス特性評価リン酸塩ガラスシンチレータにおけるアルカリ金属の相違によるエネルギー移動効率の差異中性子検出用Ce添加LiPO₃ーAl(PO₃)₃ーNaPO₃ガラスの開発フローティングゾーン溶融急冷法により作製したLu₂O₃・Al₂O₃・F₂O₂ガラスの放射線計測用蛍光体としての応用検討多孔質ガラスに有機無機ペロブスカイト型化合物を導入した複合材料の発光特性 Eu₂O₃・K₂O・Nb₂O₅・TeO₂結晶化ガラスのシンチレーション特性 □頭講演(Oral Presentation) D419 会場(Room D419)「第2回極限的励起状態の形成と量子エネルギー変換研究グループ論文賞受賞記念講演」 医・ドープSrO・B₂O₃ ガラスにおける放射線誘起発光特性「第2回極限的励起状態の形成と量子エネルギー変換研究グループ論文賞受賞記念講演」	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明³,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遮藤寿弥¹,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多問²,金崎真聡¹,小平聡⁴,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕¹,浅井圭介¹ ○西川晃弘¹,白鳥大穀¹,加藤匠¹,中内大介¹,河口範明¹,柳田健之¹ ○中林優輔¹,藤本裕¹,越水正典²,浅井圭介¹ ○(B)長谷川洗¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹ ○自鳥大穀¹,福嶋宏之¹,中内大介¹,加藤匠¹,河口範明¹,柳田健之¹ ○河野直樹¹,篠崎健二²,中内大介³,加藤匠³,竹渕優馬³,柳田健之³ ○宗田駛太朗¹,中森亮吾¹,河野直樹¹,中内大介²,加藤匠²,竹渕優馬²,篠崎健二³,柳田健之² ○正井博和¹,岡田豪²,赤塚雅紀³,河口範明³,柳田健之³ ○正井博和¹,岡田豪²,赤塚雅紀³,河口範明³,柳田健之³	1.東北大院工, 2. 静岡大電子研, 3. 東北大WPI-AIMR, 4. 東北大NICHe, 5. 東北大多元研 1. 東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構 1. 東北大院工, 2. 静岡大 1. 奈良先端大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大 1. 秋田大院理工, 2. 産総研, 3. 奈良先端大 1. 秋田大, 2. 奈良先端大, 3. 産総研 1. 産総研, 2. 金沢工大, 3. 奈良先端大
13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 3/18(3) 9:00	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4 16p-D405-5 16p-D405-6 16p-D405-7 16p-D405-7 16p-D405-9 16p-D405-10 16p-D405-11 Sat.) 9:00 - 12:00 招 18a-D419-1 招 18a-D419-2	「第53回講演奨励賞受賞記念講演」中性子検出用 $^{\circ}$ Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けた $^{\circ}$ CrO $_{2}$ ナノ粒子装荷有機シンチレータの開発に向けた $^{\circ}$ CrO $_{2}$ ナノ粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線感受性比較 PADC検出器中に形成されるイオントラックの損傷構造銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性 休憩/Break 風添加 $^{\circ}$ Cs $_{2}$ O-CaO-Al $_{2}$ O $_{3}$ P $_{2}$ O $_{5}$ ガラスのラジオフォトルミネッセンス特性評価リン酸塩ガラスシンチレータにおけるアルカリ金属の相違によるエネルギー移動効率の差異中性子検出用 $^{\circ}$ Ce $_{3}$ Ca $_{2}$ Cd $_{3}$ Cd $_{4}$ Cd $_{5}$ C	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明⁵,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多聞²,金崎真聡¹,小平聡⁵,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕¹,浅井圭介¹ ○西川晃弘¹,白鳥大穀¹,加藤匠¹,中内大介¹,河口範明¹,柳田健之¹ ○中林優輔¹,藤本裕¹,越水正典²,浅井圭介¹ ○(B)長谷川洸¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹ ○(B)長谷川洸¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹ ○(B)長谷川洸¹,中林優輔¹,渡邊晶斗¹,藤本俗¹,浅明重介¹。 ○(田)表報¹,福嶋宏之¹,中内大介¹,加藤匠¹,河口範明¹,柳田健之¹ ○河野直樹¹,篠崎健二²,中内大介³,加藤匠³,竹渕優馬³,柳田健之¹ ○河野直樹¹,徐崎健二²,中内大介³,加藤匠³,竹渕優馬³,柳田健之² ○定井博和¹,岡田豪²,赤塚雅紀³,河口範明³,柳田健之³ ○正井博和¹,岡田豪²,赤塚雅紀³,河口範明³,柳田健之³ ○正井博和¹,岡田豪²,赤塚雅紀³,河口範明³,柳田健之³	1.東北大院工, 2. 静岡大電子研, 3.東北大WPI-AIMR, 4.東北大NICHe, 5. 東北大多元研 1.東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構 1. 東北大院工, 2. 静岡大 1. 奈良先端大 1. 東北大院工, 2. 静岡大 1. 東北大学 1. 奈良先端大 1. 秋田大院理工, 2. 産総研, 3. 奈良先端大 1. 秋田大院理工, 2. 産総研 1. 産総研, 2. 金沢工大, 3. 産総研 1. 産総研, 2. 金沢工大, 3. 奈良先端大 1. 東北大院工, 2. 奈良先端大, 3. 静岡大電子研, 4. 金沢工大
13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 3/18(9:00 9:15	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4 16p-D405-5 16p-D405-6 16p-D405-7 16p-D405-9 16p-D405-10 16p-D405-11 Sat.) 9:00 - 12:00 招 18a-D419-1 招 18a-D419-2	「第53回講演奨励賞受賞記念講演」中性子検出用 *Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けたZrO₂ナノ粒子支荷有機シンチレータの開発に向けたZrO₂ナノ粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線感受性比較 PADC検出器中に形成されるイオントラックの損傷構造銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性体憩/Break Ag添加Cs₂O-CaO-Al₂O₂-P₂O₅ガラスのラジオフォトルミネッセンス特性評価リン酸塩ガラスシチレータにおけるアルカリ金属の相違によるエネルギー移動効率の差異中性子検出用Ce添加LiPO₃-Al(PO₃)₃-NaPO₃ガラスの開発フローティングゾーン溶融急冷法により作製したLu₂O₃-Al₂O₃-SiO₂がラスの放射線計測用蛍光体としての応用検討多孔質ガラスに有機無機ペロプスカイト型化合物を導入した複合材料の発光特性 Eu₂O₃-K₂O-Nb₂O₅-TeO₂結晶化ガラスのシンチレーション特性 口頭講演 (Oral Presentation) D419 会場(Room D419)「第2回極限的励起状態の形成と量子エネルギー変換研究グループ論文賞受賞記念講演」 Ce ドーブSrO-B₂O₃ ガラスにおける放射線誘起発光特性「第2回極限的励起状態の形成と量子エネルギー変換研究グループ論文賞受賞記念講演」 ときでアンロージョンは変換の影響を発光を表別係の関係	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明³,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰',石原文太¹,楠本多閒²,金崎真聡¹,小平聡²,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕¹,浅井圭介¹ ○西川晃弘¹,白鳥大毅¹,加藤匠¹,中内大介¹,河口範明¹,柳田健之¹ ○中林優輔¹,藤本裕¹,越水正典²,浅井圭介¹ ○(B)長谷川洗¹,中林優輔¹,渡邊晶斗¹,藤本裕²,浅井圭介¹ ○(国)長谷川洗¹,中林優輔¹,渡邊晶斗¹,藤本裕²,浅井圭介¹ ○(四月鬼弘¹,中,中,大分²,加藤匠²,河口範明¹,柳田健之² ○河野直樹¹,篠崎健二²,中内大介³,加藤匠³,竹渕優馬³,柳田健之³ ○宗田駿太朗¹,中森亮吾¹,河野直樹¹,中内大介²,加藤匠²,竹渕優馬²,篠崎健二³,柳田健之² ○正井博和¹,岡田豪²,赤塚雅紀³,河口範明³,柳田健之³ ○正井博和¹,同田豪²,赤塚雅紀³,河口範明³,柳田健之³ ○正井博和¹,同田豪²,赤塚雅紀³,河口範明³,柳田健之³	1.東北大院工, 2.静岡大電子研, 3.東北大WPI-AIMR, 4.東北大NICHe, 5.東北大多元研 1.東北大院工, 2.静岡大 1.神大院海事, 2.量研機構 1.東北大院工, 2.静岡大 1.奈良先端大 1.東北大院工, 2.静岡大 1.東北大院工, 2.静岡大 1.東北大学 1.奈良先端大 1.秋田大院理工, 2.産総研, 3.奈良先端大 1.秋田大, 2.奈良先端大, 3.産総研 1.産総研, 2.金沢工大, 3.奈良先端大 1.東北大院工, 2.奈良先端大 1.東北大院工, 2.奈良先端大 1.東北大院工, 2.奈良先端大 1.東北大院工, 2.奈良先端大 1.東北大院工, 2.奈良先端大 1.奈良先端大
13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 3/18(: 9:00 9:15	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4 16p-D405-5 16p-D405-6 16p-D405-7 16p-D405-7 16p-D405-9 16p-D405-10 16p-D405-11 Sat.) 9:00 - 12:00 招 18a-D419-1 招 18a-D419-1 提 18a-D419-2	「第53回講演奨励賞受賞記念講演」中性子検出用 $^{\circ}$ Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けた $^{\circ}$ CrO $_{2}$ ナノ粒子表荷有機シンチレータの開発に向けた $^{\circ}$ CrO $_{2}$ ナノ粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線 感受性比較 PADC検出器中に形成されるイオントラックの損傷構造 銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性 休憩/Break Ag添加Cs $_{2}$ O-CaO-Al $_{2}$ O $_{3}$ P $_{2}$ O $_{3}$ ガラスのラジオフォトルミネッセンス中心形成量の銀濃度依存性 リン酸塩ガラスシンチレータにおけるアルカリ金属の相違によるエネルギー移動効率の差異中性子検出用 $^{\circ}$ Ces添加LiPO $_{3}$ -Al $^{\circ}$ O $_{3}$ ガラスの開発 フローティングゾーン溶融急冷法により作製した Lu $_{2}$ O $_{3}$ -Al $_{2}$ O $_{3}$ -SiO $_{2}$ ガラスの放射線計測用蛍光体としての応用検討 多孔質ガラスに有機無機ペロブスカイト型化合物を導入した複合材料の発光特性 Eu $_{2}$ O $_{3}$ -K $_{2}$ O-Nb $_{2}$ O $_{3}$ -TeO $_{2}$ 結晶化ガラスのシンチレーション特性 口頭講演 (Oral Presentation) D419 会場(Room D419)「第2回極限的励起状態の形成と量子エネルギー変換研究グループ論文賞受賞記念講演」 Ce ドーブSrO-B $_{2}$ O $_{3}$ ガラスにおける放射線誘起発光特性 「第2回極限的励起状態の形成と量子エネルギー変換研究グループ論文賞受賞記念講演」 蛍光体材料の無輻射失活評価を企図した深紫外-可視光音野光システムの開発 同一励起状態からのシンチレーション減衰時定数と発光波長の関係 Ce添加LuAGエビタキシャル膜のシンチレーション特性および熱ルミネッセンス特性評価	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明³,阿尻雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遮藤寿弥¹,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多閒²,金崎真聡³,小平聡³,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕¹,浅井圭介¹ ○西川晃弘¹,白鳥大穀¹,加藤匠¹,中内大介¹,河口範明¹,柳田健之¹ ○中林優輔¹,藤本裕¹,越水正典²,浅井圭介¹ ○(B)長谷川洗¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹ ○自鳥大穀¹,福嶋宏之¹,中内大介¹,加藤匠¹,河口範明¹,柳田健之¹ ○河野直樹¹,篠崎健二²,中内大介³,加藤匠³,竹渕優馬³,柳田健之¹ ○河野直樹¹,篠崎健二²,中内大介³,加藤匠³,竹渕優馬²,徐崎健二³,柳田健之² ○正井博和¹,岡田豪²,赤塚雅紀³,河口範明³,柳田健之³ ○正井博和¹,岡田豪²,赤塚雅紀³,河口範明³,柳田健之³ ○正井博和¹,阳田豪²,赤塚雅紀³,河口範明³,柳田健之³ ○正井博和¹,田田豪²,赤塚雅紀³,河口範明³,柳田健之³	1.東北大院工, 2.静岡大電子研, 3.東北大WPI-AIMR, 4.東北大NICHe, 5.東北大多元研 1.東北大院工, 2.静岡大 1.神大院海事, 2.量研機構 1.東北大院工, 2.静岡大 1.奈良先端大 1.東北大院工, 2.静岡大 1.東北大院工, 2.静岡大 1.東北大院工, 2.静岡大 1.秋田大院理工, 2.産総研, 3.奈良先端大 1.秋田大, 2.奈良先端大, 3.産総研 1.産総研, 2.金沢工大, 3.奈良先端大 1.東北大院工, 2.奈良先端大, 3.静岡大電子研, 4.金沢工大 1.奈良先端大 1.奈良先端大 1.東北大院工, 2.奈良先端大, 3.静岡大電子研, 4.金沢工大
13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 3/18(4) 9:00 9:15	招 16p-D405-1 16p-D405-2 16p-D405-3 16p-D405-4 16p-D405-5 16p-D405-6 16p-D405-7 16p-D405-8 16p-D405-9 16p-D405-10 16p-D405-11 Sat.) 9:00 - 12:00 招 18a-D419-1 招 18a-D419-2 18a-D419-3 獎 18a-D419-4 18a-D419-5 18a-D419-6	「第53回講演奨励賞受賞記念講演」中性子検出用 *Li装荷液体シンチレータの開発 ナノ粒子装荷有機シンチレータの開発に向けたZrO₂ナノ粒子の表面修飾の研究 黒色フルオラン色素含有ラジオクロミック材料の放射線感受性比較 PADC 検出器中に形成されるイオントラックの損傷構造銀添加リン酸塩ガラスにおけるラジオフォトルミネッセンス中心形成量の銀濃度依存性体憩/Break Ag添加Cs₂O・CaO・Al₂O₂・P₂O₅ガラスのラジオフォトルミネッセンス特性評価 リン酸塩ガラスシンチレータにおけるアルカリ金属の相違によるエネルギー移動効率の差異中性子検出用Ce添加LiPO₃ーAl(PO₃)₃ーNaPO₃ガラスの開発フローティングゾーン溶融急冷法により作製したLu₂O₃・Al₂O₃・SiO₂ガラスの放射線計測用蛍光体としての応用検討多孔質ガラスに有機無機ペロブスカイト型化合物を導入した複合材料の発光特性 Eu₂O₃・K₂O・Nb₂O₅・TeO₂結晶化ガラスのシンチレーション特性 コ頭講演(Oral Presentation) D419 会場(Room D419)「第2回極限的励起状態の形成と量子エネルギー変換研究グループ論文賞受賞記念講演」Ceドープ\$rO・B₂O₃がラスにおける放射線誘起発光特性「第2回極限的励起状態の形成と量子エネルギー変換研究グループ論文賞受賞記念講演」 Ceドープ\$rO・B₂O₃がラスにおける放射線誘起発光特性「第2回極限的励起状態の形成と量子エネルギー変換研究グループ論文賞受賞記念講演」 強光体材料の無輻射失活評価を企図した深紫外・可視光音響分光システムの開発同一励起状態からのシンチレーション減衰時定数と発光波長の関係 Ce添加LuAGエピタキシャル膜のシンチレーション特性溶媒素発法により生成したTl₄K(1-20 H₂PO₄結晶のシンチ	本裕¹,浅井圭介¹ ○渡邊晶斗¹,越水正典²,横哲³,成基明⁴,笘居高明³,阿屈雅文³,林大和¹,藤本裕¹,浅井圭介¹ ○遮藤寿弥¹,越水正典²,藤本裕¹,浅井圭介¹ ○(M1)保田賢¹,伊藤大洋¹,宗晃汰¹,石原文太¹,楠本多閒²,金崎真聡³,小平聡³,山内知也¹ ○川本弘樹¹,越水正典¹²,藤本裕¹,浅井圭介¹ ○西川晃弘¹,白鳥大穀¹,加藤匠¹,中内大介¹,河口範明¹,柳田健之¹ ○中林優輔¹,藤本裕¹,越水正典²,浅井圭介¹ ○(B)長谷川洗¹,中林優輔¹,渡邊晶斗¹,藤本裕¹,浅井圭介¹ ○自鳥大穀¹,福嶋宏之¹,中内大介¹,加藤匠¹,河口範明¹,柳田健之¹ ○河野直樹¹,篠崎健二²,中内大介³,加藤匠³,竹渕優馬³,柳田健之¹ ○河野直樹¹,徐崎健二²,中内大介³,加藤匠³,竹渕優馬²,徐崎健二³,柳田健之² ○宗田數太朗¹,中森亮吾¹,河野直樹¹,中内大介²,加藤匠²,竹渕優馬²,徐崎健二³,柳田健之² ○正井博和¹,岡田豪²,赤塚雅紀³,河口範明³,柳田健之³ ○正井博和¹,岡田豪²,赤塚雅紀³,河口範明³,柳田健之³ ○藤本裕¹,中内大介²,柳田健之²,越水正典³,深田晴己⁴,林大和¹,浅井圭介¹ ○柳田健之¹,加藤匠¹,中内大介¹,河口範明¹ ○松本昭源¹,黒澤俊介²¾,伊藤晓彦¹ ○木村大海¹,岩佐祐希¹,荻野拓¹,北川裕貴¹,藤原健¹,田中真人¹,加藤匠²,柳田健之²	1.東北大院工, 2. 静岡大電子研, 3.東北大WPI-AIMR, 4.東北大NICHe, 5. 東北大多元研 1.東北大院工, 2. 静岡大 1. 神大院海事, 2. 量研機構 1. 東北大院工, 2. 静岡大 1. 奈良先端大 1. 東北大院工, 2. 静岡大 1. 東北大院工, 2. 静岡大 1. 東北大学 1. 奈良先端大 1. 秋田大院理工, 2. 産総研, 3. 奈良先端大 1. 秋田大院理工, 2. 産総研 1. 産総研, 2. 金沢工大, 3. 奈良先端大 1. 東北大院工, 2. 奈良先端大 1. 東北大院工, 2. 奈良先端大 1. 東北大院工, 2. 奈良先端大 1. 東北大院工, 2. 奈良先端大 1. 奈良先端大 1. 奈良先端大 1. 奈良先端大 1. 積国大院環情, 2. 東北大金研, 3. 東北大NICHe, 4. 阪大レーザー研 1. 産総研, 2. 奈良先端大 1. 東北大工

17:00

1:00	18a-D419-8	TI添加 KI 単結晶シンチレータの開発	○宮崎 慧一郎¹,中内 大介¹,加藤 匠¹,河口 範明¹,柳田 健之¹	1. 奈良先端大
1:15	18a-D419-9	熱処理による Ce 添加 BaHfO $_3$ のシンチレーション特性の変化	○福嶋 宏之 1 ,中内 大介 1 ,加藤 匠 1 ,河口 範明 1 ,柳田 健之 1	1. 奈良先端大
1:30	18a-D419-10	Ca(Nb,Ta) ₂ O ₆ 単結晶のシンチレーション特性	○林 泰世¹, 市場 賢政¹, 中内 大介¹, 渡辺 賢一², 加藤 匠¹. 河口 範明¹. 柳田 健之¹	1. 奈良先端大, 2. 九州大
1:45	18a-D419-11	Nd添加 Ca ₃ Nb _{1.6875} Ga _{3.1875} O ₁₂ 単結晶の近赤外シンチレーション特性	〇岡崎魁 ¹ ,中内大介 ¹ ,福嶋宏之 ¹ ,加藤匠 ¹ ,河口範明 ¹ ,柳田健之 ¹	1. 奈良先端大
3/18(Sa	at) 13:30 - 16:00	口頭講演 (Oral Presentation) D419会場(Room D419)	切,柳山 健心	
3:30		$Dy添加Na_3AlF_6$ セラミックスドシメータの開発	〇坂口 大貴 1 ,福嶋 宏之 1 ,加藤 匠 1 ,中内 大介 1 ,河口 範明 1 ,柳田 健之 1	1. 奈良先端大
3:45	18p-D419-2	Tm添加 Ca ₂ BO ₃ Clのドシメータ特性	○ (M1) 和宇慶 朝陽¹,河野 直樹¹,加藤 匠²,中内 大介²,福嶋 宏之²,竹渕 優馬²,柳田 健之²	1. 秋田大学, 2. 奈良先端大
4:00	18p-D419-3	Tb 添加 MgGa ₂ O ₄ 単結晶のドシメータ特性	〇竹渕 優馬 1 , 本條 悟史 2 , 直江 一光 2 , 加藤 匠 1 , 中内	1. 奈良先端大, 2. 奈良高専
4:15	18p-D419-4	Tb添加 CaYAIO4単結晶の放射線誘起蛍光特性における	大介¹,河口範明¹,柳田健之¹ ○青木瑞晃¹,竹渕 優馬¹,中内大介¹,加藤匠¹,河口	1. 奈良先端大先端
4:30	18p-D419-5	還元アニール処理の影響 Eu添加Al ₄ SiO ₈ 単結晶のドシメータ特性評価	範明 1 , 柳田 健之 1 ○市場 賢政 1 , 竹渕 優馬 1 , 加藤 匠 1 , 中内 大介 1 , 河口	1. 奈良先端大
4.45		H-fd /D 1	範明1,柳田健之1	
4:45	F 10 D410 (休憩/Break Scintillation Properties of Tb-doped Gadolinium	O(DC)D	1 MAIOT O V 1 III.
5:00	E 18p-D419-6	Pyrosilicate Crystal	○ (DC)Prom Kantuptim¹, Takumi Kato¹, Daisuke Nakauchi¹, Noriaki Kawaguchi¹, Kenichi Watanabe², Takayuki Yanagida¹	1.NAIST, 2.Kyushu Univ.
5:15	18p-D419-7	Eu:Gd₃Al₂Ga₃O₁₂単結晶の放射線誘起蛍光特性の評価	○ (M2) 國方 俊彰 ¹, 渡辺 賢一 ², Prom Kantuptim¹,	1. 奈良先端科学技術大学院大学, 2. 九州大学
	•	3 2 3 12	白鳥 大毅¹, 加藤 匠¹, 中内 大介¹, 河口 範明¹, 柳田 健之¹	
5:30	18p-D419-8	量子井戸構造を有する (n-ClC ₆ H ₄ C ₂ H ₄ NH ₃) ₂ PbCl ₄ 結晶シ ンチレータの開発		1. 奈良先端大, 2. 秋田大
5:45	18p-D419-9	$(NH_3C_nH_{2n}NH_3)PbCl_4$ $(n = 9-11)$ のシンチレーション特性		1. 秋田大, 2. 奈良先端大
* * •	フォトニクス	/ Optics and Photonics	加滕世,中的人并,柳山健之	
		はプログラム冒頭にございます。		
		(旧 3.2「材料・機器光学」と統合)/ Basic optics and fro	ntier of optics (merged with formerly 3.2 Equipment	optics and materials)
		ポスター講演 (Poster Presentation) PA 会場(Room PA)		
	16a-PA01-1	液晶・高分子材料への波長多重記録によるホログラフィッ クメモリ作製		1.神戸高専, 2.岡山大
	16a-PA01-2	GANを利用した1次元マルチレベル光学異方性回折格子 構造の設計	○岡本 浩行 ^{1,3} , 野田 浩平 ^{2,3} , 坂本 盛嗣 ^{2,3} , 佐々木 友之 ^{2,3} , 小野 浩司 ^{2,3}	1.阿南高専, 2. 長岡技科大学, 3.CREST, JST
	16a-PA01-3	金ナノ粒子を用いて作製したプラズモン光ファイバによ るナノ粒子の光捕捉の検討	○浅瀬 有希¹, 檜垣 寧々², 東海林 竜也¹.²	1. 神奈川大院理, 2. 神奈川大理
	16a-PA01-4	ナノリンクル構造を用いた高分子ナノ粒子の光捕集	○吉田 匡志¹, 森本 雅夕², 東海林 竜也¹.2	1. 神奈川大院理, 2. 神奈川大理
	E 16a-PA01-5	Optical Trapping, Binding, and Swarming of Silica-coated Gold Nanoparticles at Glass/solution Interface	○ (D)Chih-Hao Huang¹, Roger Bresoli-Obach², Ana Sanchez-Iglesias³, Teruki Sugiyama¹, Luis Liz- Marzan³, Johan Hofkens², Hiroshi Masuhara¹	1.Nat'l Yang Ming Chiao Tung Univ., Taiwan, 2. Ktholieke Univ. Leuven, Belgium, 3.CIC biomaGUNE, Spain
	E 16a-PA01-6	Cooperative Optical Trapping Dynamics of Protein and	○ (M2)Ching-Yang Lin¹, Wei-Hsiang Chiu¹, Hiroshi	•
		Polyethylene Glycol Studied by Fluorescence Imaging and Raman Scattering Micro-spectroscopy		
	E 16a-PA01-7	Polarization Dependent Optical Trapping Dynamics of	○ (M1)Mu-En Li¹, Chih-Hao Huang¹, Xu Shi²,	1.Nat'l Yang Ming Chiao Tung Univ.,Taiwan, 2.
		Mutual Scattering Gold Nanoparticles and Nanodisks at Glass/solution Interface	Kosei Ueno ² , Hiroaki Misawa ^{1, 2} , Hiroshi Masuhara ¹	Hokkaido Univ., Japan
	E 16a-PA01-8	Multilayer Assembly Formation of Lysozyme at Solution	○(B)Ke-An Kuo¹, Chih-Hao Huang¹, Wei-Hsiang	1.Nat'l Yang Ming Chiao Tung Univ., Taiwan
	46 7404 0	Surface by Optical Trapping of Gold Nanoparticle	Chiu ¹ , Hiroshi Masuhara ¹	a bite I amount
	16a-PA01-9	相変化によるヤヌス粒子自己推進の動的制御とその機構 の考察		1. 慶大理工
	16a-PA01-10	炭化電界紡糸ナノファイバーによる表面増強ラマン分光 法	○(M1) 丸見 真智子¹, 合田 圭介¹.².³.⁴.⁵, 北濱 康孝¹.², Xiao Ting-Hui¹.²	1. 東大理化 合田研, 2. Lucas Land, 3. 量研機構, 4. 武漢 大, 5. カリフォルニア大
		口頭講演 (Oral Presentation) A201会場 (Room A201)		
3:00	-	非冗長配列スリットと時間光変調を利用した高速かつ信 頼性の高い空間的コヒーレンス測定法		1.産総研, 2.東フィンランド大
3:15	17p-A201-2	ナミハンミョウの特異な構造色の発色原理について	〇伊藤 和真 1 , 山下 和真 1 , 桑原 裕司 1 , 服部 卓磨 1 , 齋 藤 彰 1	1. 阪大工
3:30		ナノ格子光リング共振器用バス導波路構造の提案と解析		1.東北大工
3:45	•	レーザーバイオスペックル法による植物年齢と遠赤色光 への応答性の関係評価	${\mathbb U}^1$, 河野 貴裕 1 , 門野 博史 2 , 山田 純 1	1. 芝浦工業大学, 2. 埼玉大学
4:00	17p-A201-5	レーザースペックルを用いたマイクロプラスチックの深 海用測定装置の提案	○(B)木下 隼¹, ラジャゴバラン ウママへスワリ¹, 小池 義和¹, 河野 貴裕¹, 山田 純¹	1. 芝浦工大工
4:15		歪フォトニック結晶の有効場理論:中心重力	○北川 均1.2,大西 綾乃1,北村 恭子1	1. 京都工繊大, 2.Geometrize
4:30	17p-A201-7	フォトニック構造を用いた中心力場中の光軌道の数値計 算に関する研究	\bigcirc (B) 大西 綾乃 1 , 河本 悠暉 1 , 橋詰 仁人 1 , 北川 均 1 , 北村 恭子 1	1.京都工繊大
4:45 5:00	17p-A201-8	3D プリンタを用いた磁気光学カー顕微鏡の開発 休憩/Break	上坊 光輝¹, 高橋 龍之介¹, 中田 勝¹, ○和達 大樹¹	1. 兵県大理
5:15	招 17p-A201-9	「第6回光工学功績賞(高野榮一賞)受賞記念講演」 フォトリフラクティブ効果と材料	○黒田 和男1.2	1. 東大, 2. 宇都宮大
5:45	17p-A201-10	高分子ネットワーク液晶で作製した光拡散編光子 - 形成 機構の解明と光学性能の向上 -	○垣内田 洋¹, 荻原 昭文²	1. 産総研, 2. 神戸高専
16:00	17p-A201-11	大面積偏光フレネルレンズの形成	○野田 浩平 ^{1.3} , 深澤 竜樹 ¹ , 坂本 盛嗣 ^{1.3} , 佐々木 友之 ^{1.3} , 川月 喜弘 ^{2.3} , 小野 浩司 ^{1.3}	1. 長岡技科大, 2. 兵庫県立大, 3. CREST, JST
16:15	17p-A201-12	フレネルレンズ特性を有する液晶レンズの配向欠陥	○河村 希典¹, 伝法谷 莉南¹, 檜山 日和¹	1.秋田大理工
6:30			○(D)塚本脩仁¹,尾崎雅則¹	1.阪大院工
6:45	奨 17p-A201-14		北濱 康孝 ^{1,2} , 合田 圭介 ^{1,2,4,6,7} , ○(M1) 丸見 真智子 ¹ ,	1. 東大理化 合田研, 2. Lucas Land, 3. 科警研, 4. 量研機
		便SERS	Pancorbo Pablo ¹ , 瀬川 尋貴 ³ , Xiao Ting-Hui ^{1, 2, 4} , 平 松 光太郎 ¹ , Yang William ⁵	構, 5.BaySpec, 6. 武漢大, 7. カリフォルニア大

松 光太郎 ¹, Yang William ⁵

17p-A201-15 嗅覚および視覚刺激に対する脳活動計測と拡張現実への ○(B)長谷川 怜音', ラジャゴバラン ウママへスワ 1. 芝浦工大 応用検討 リ', 河野 貴裕', 山田 純 ¹

	at.) 9:30 - 11:30		ORIGINAL SERVICES IN THE PROPERTY IN THE SERVICES	4 MONTH Library Co. No. 1
9:30 9:45	18a-A201-1 18a-A201-2	Space-time SPP 波束に付随するスピン角運動量の伝搬 光渦誘起ポリマーファイバーの光導波特性	〇菅野 仁人 1 ,有田 佳彦 2,3 ,キシャーン ドラキア 3,4 , 宮本 克彦 1,2 , 尾松 孝茂 1,2	 1. 筑波大物理, 2. リスボン大 1. 千葉大融合理工, 2. 千葉大学分子キラリティー研, 3. セントアンドリュース大学, 4. アデレード大学
0:00	18a-A201-3	ラゲールガウスビームによるアゾポリマー銀河状表面レ リーフ	○鈴木 大翼¹, 富田 新¹, Adam Vallés¹.².³, 宮本 克 彦¹.². 尾松 孝茂¹.²	1. 千葉大学融合理工学府, 2. 千葉大分子キラリティー研究センター, 3.ICFO-Institut de Ciencies Fotoniques
0:15	18a-A201-4	空間位置変調フォトニック結晶レーザーを用いたベクト ルビームの発生-大面積化-	〇阪谷 圭亮 1 , 徳島 友樹 1 , 初田 蘭子 2 , 野田 進 2 , 北村 恭子 1,2	
0:30	奨 18a-A201-5		* *	1.千葉大融合理工、 $2.$ 北大工、 $3.$ 大阪公立大、 $4.$ 阪大基紅工、 $5.$ 千葉大分子キラリティー
0:45	奨 18a-A201-6	軌道角運動量を持つ光渦に対するナノ構造のキラル光学 応答		1. 東大生研
1:00	18a-A201-7		○内田 涼太¹, 小林 弘和¹	1. 高知工科大
1:15	奨 18a-A201-8	単一行路型自己参照干渉法による光スキルミオン生成	○田村 理人 ¹ , Praveen Kumar ³ , A. Srinivasa Rao ^{1,2} , 宮本 克彦 ^{1,2} , 尾松 孝茂 ^{1,2}	1.千葉大院融合, 2.千葉大分子キラリティー研, 3. ヒューストン大学
3/18(Sa	at.) 13:00 - 16:00	口頭講演 (Oral Presentation) A201会場 (Room A201)		
3:00	18p-A201-1		〇合田 啓真¹,太田 一輝¹,覚野 貴之¹,四竈 泰一¹,蓮	1.京大院工
3:15	18p-A201-2	開発に向けた光強度分布制御の高速化 VO_2 粒子分散 ZnO 粒子膜のランダムレーザーのスイッチ	尾 昌裕¹ ○藤原 英樹¹, 今井 悠大¹	1.北海学園大
3:30	奨 18p-A201-3	ング動作 誘電体球を用いた電子顕微鏡内レーザー照射による温度	○安達 良和¹, Izzah Machfuudzoh¹, 杉本 泰², 藤井 稔², 三宮 エ¹	1.東工大, 2.神戸大
3:45	奨 18p-A201-4	上昇の計測 アクティブコロイド間の調節可能なフェロモン相互作用	\bigcirc (DC) 中山 牧水 1 , 長瀬 暉 1 , 髙橋 廣守 1 , 齊藤 雄	1. 慶大理工, 2. 産総研
4.00	10 4001 5	V/44/60 .) h \\\\\\\\\\\\\\\\\\\\\\\\\\\\\	太², 畑山祥吾², 牧野孝太郎², 山本 詠士¹, 斎木 敏治¹	1 Mr. Littler 0 64 (A) = 10 0 15 Life 7 cm
4:00	18p-A201-5	光制御マイクロ液滴ロボットの基礎検討IV	木 敏治1	1. 慶大理工, 2. 納谷ラボ, 3. 北大電子研
4:15	E 18p-A201-6	Two-Stage Optical Trapping Mechanism of Protein at its Air/Solution Interface	Roger Bresoli-Obach ^{1, 3, 4} , Johan Hofkens ^{3, 5} , Eri	1.Nat'l Yang Ming Chiao Tung Univ., Taiwan, 2.NAIST, 3.KULeuven, Belgium, 4.Univ. Ramon Llull, Spain, 5. Max-Planck Inst., Germany, 6.Kobe Univ.
4:30 4:45	E 18p-A201-7	休憩/Break Right- and left-handed optical torques acting on vanadium	○ Pin Christophe¹, Keiji Sasaki¹	1.RIES, Hokkaido Univ.
5:00	E 18p-A201-8	oxide particles Mid-Infrared Optical Sorting of Microparticles Composed of Si-O-Si Bonds	○ Yoshua Albert Darmawan¹, Takuma Goto¹, Taiki Yanagishima², Takao Fuji¹, Tetsuhiro Kudo¹	1. Toyota Technological Inst., 2. Kyoto Univ.
5:15	18p-A201-9	光圧下における神経細胞内分子動態の顕微ラマン分光解 析	•	1. 阪公大院理
5:30 5:45		NI 光誘起力顕微鏡における変調信号の位相別解析 メンプレン型マイクロ機械振動子の発光誘起オプトメカ ニカル振動	〇山西 絢介 1 , Ahn Hyo-yong 1 , 岡本 裕巳 1 〇荒張 秀樹 1 , 小西 創太 2 , 秋田 成司 2 , 石原 $-^1$	1. 分子研 1. 阪大院基礎工, 2. 阪公大院工
3.2 情報:	フォトニクス・画作	・ スカス Mag 象工学(旧 3.3)/ Information photonics and image engine	ering (formerly 3.3)	
	red.) 9:00 - 11:00	口頭講演 (Oral Presentation) A202会場(Room A202) Computational research on diffraction imaging using	○ (P)Giang Nhan Tran¹, Katsumi Midorikawa¹, Eiji	1.RIKEN
9:15	15a-A202-2	attosecond sources 強度輸送方程式に基づく位相イメージングにおけるパラ	J. Takahashi¹ ○大西 葵¹, 仁坂 健一¹, 加藤 佳祐¹, 北村 藤和¹	1.株式会社 SCREEN ホールディングス
9:30	15a-A202-3	メータ最適化 回折格子を用いた単一撮像による勾配光干渉顕微鏡法	○仁坂 健一¹, 大西 葵¹, 加藤 佳祐¹, 北村 藤和¹	1.SCREEN ホールディングス
9:45 0:00		単一画素計測を用いた波面計測 体積的ビームのホログラフィック生成における設計パラ	木山 啓人 1 , ○仁田 功 $^-$ 1, 全 香玉 1 , 的場 修 1 ○黒尾 奈未 1 , 石田 典也 1 , 早崎 芳夫 1	1. 神戸大院システム情報 1. 宇大オプティクス教育研究センター
0.15	15 4000 6	メータの探索	O LAN ARIBEIT THE BESTELL	4 75 616 1.
0:15 0:30		修正ボルン級数に基づいた多重散乱の数値モデルの検討 縞バターンをもつ平面マーカーを用いたモーションキャ プチャリング・画角測定・		1. 近畿大 1. 宇大光工学, 2. 宇大 CORE
10:45	15a-A202-8	国際宇宙ステーション搭載実験機器による高秘匿通信実 験の地上検証	○小澤 俊介¹,藤原 幹生¹,北村 光雄¹,西澤 亮二¹,遠藤 寛之¹,名古屋 翼¹,豊嶋 守生¹,辻 宏之¹,斉藤 嘉 彦¹,小野 文枝¹,中園 純一¹,佐々木 雅英¹,岩本 匡 平³,中尾 敬²,小松 宏光²,太田 伸二²,神保 光²,久保 靖²,鎌田 俊昭²,山添 弘晃²,山口 耕司³,細貝 亜樹³,伊藤 泰男⁴,前川 和彦⁴,根本 和哉⁴,山崎 将也⁴,北窪雛⁴,青芳 龍⁴,犬山 徳晃⁴,横手 紗織⁴,内山 浩 ウチヤマ ヒロシ Hiroshi Uchiyama 4、田中 賢太郎 タナカケンタロウ Kentarou Tanaka⁴	1. 情報通研, 2.SONY CSL, 3.NeSTRA, 4. スカパーJSAT
	d) 13·00 - 17·30	口頭講演 (Oral Presentation) A202会場 (Room A202)	〇内田 龍男 ¹	1.東北大
		「第23回業績賞(研究業績)受賞記念講演」 液晶の物性解明と高性能液晶ディスプレイの研究		1.2407
3:00	招 15p-A202-1	第23回業績質(研究業績) 受賞記念請演 液晶の物性解明と高性能液晶ディスプレイの研究 RGB-Dデータを用いたレイヤーベース法に基づく3次元 ディスプレイのための計算機合成ホログラムの生成		1. 和歌山大院システムエ
3:00 3:45	招 15p-A202-1 15p-A202-2	液晶の物性解明と高性能液晶ディスプレイの研究 RGB-Dデータを用いたレイヤーベース法に基づく3次元		1. 和歌山大院システムエ
3:00 3:45 4:00	招 15p-A202-1 15p-A202-2 15p-A202-3	液晶の物性解明と高性能液晶ディスプレイの研究 RGB-Dデータを用いたレイヤーベース法に基づく3次元 ディスプレイのための計算機合成ホログラムの生成	\bigcirc (M1) 胡 曉思 1 ,最田 裕介 1 ,野村 孝徳 1 \bigcirc 流山 和晃 1 ,藤井 賢吾 1 ,八杉 公基 1 ,陶山 史朗 1 ,山 本 裕紹 1	1. 和歌山大院システムエ 1. 宇都宮大学
3:00 3:45 4:00 4:15 4:30	招 15p-A202-1 15p-A202-2 15p-A202-3 15p-A202-4 15p-A202-5	液晶の物性解明と高性能液晶ディスプレイの研究 RGB-Dデータを用いたレイヤーベース法に基づく3次元ディスプレイのための計算機合成ホログラムの生成透明物体を仮想共役位置に配置したAIRR光学系空中像を用いた Edge-Based DFD表示による3次元映像の形成マイクロ雲をボクセルとする体積的ディスプレイの検討	○ (M1) 胡 晓思¹, 最田 裕介¹, 野村 孝徳¹ ○滝山 和晃¹, 藤井 賢吾¹, 八杉 公基¹, 陶山 史朗¹, 山 本 裕紹¹ ○尾本 崇大¹, 藤井 賢吾¹, 八杉 公基¹, 陶山 史朗¹, 山 本 裕紹¹ ○沼澤 啓亮¹, 熊谷 幸汰¹, 早崎 芳夫¹	 1. 和歌山大院システムエ 1. 宇都宮大学 1. 宇都宮大 1. 宇都宮大オプティクス
3:45 4:00 4:15 4:30	招 15p-A202-1 15p-A202-2 15p-A202-3 15p-A202-4	液晶の物性解明と高性能液晶ディスプレイの研究 RGB-Dデータを用いたレイヤーベース法に基づく3次元ディスプレイのための計算機合成ホログラムの生成透明物体を仮想共役位置に配置したAIRR光学系空中像を用いたEdge-Based DFD表示による3次元映像の形成	○ (M1) 胡 晓思¹, 最田 裕介¹, 野村 孝徳¹ ○滝山 和晃¹, 藤井 賢吾¹, 八杉 公基¹, 陶山 史朗¹, 山 本 裕紹¹ ○尾本 崇大¹, 藤井 賢吾¹, 八杉 公基¹, 陶山 史朗¹, 山 本 裕紹¹ ○沼澤 啓亮¹, 熊谷 幸汰¹, 早崎 芳夫¹	 和歌山大院システムエ 宇都宮大学 宇都宮大
3/15(We 13:00 13:45 14:00 14:15 14:30 14:45 15:00 15:15	招 15p-A202-1 15p-A202-2 15p-A202-3 15p-A202-4 15p-A202-5 獎 15p-A202-6	液晶の物性解明と高性能液晶ディスプレイの研究 RGB-Dデータを用いたレイヤーベース法に基づく3次元ディスプレイのための計算機合成ホログラムの生成透明物体を仮想共役位置に配置したAIRR光学系空中像を用いた Edge-Based DFD表示による3次元映像の形成マイクロ雲をボクセルとする体積的ディスプレイの検討自由空間カラーボリュメトリックディスプレイに向けたフェムト秒レーザー励起空中ボクセルの散乱光評価休憩/Break血小板凝集塊の無標識画像ビッグデータによるCOVID-19と血栓症のリアルタイムAI分類	○(M1) 胡 暁思¹, 最田 裕介¹, 野村 孝徳¹ ○滝山 和晃¹, 藤井 賢吾¹, 八杉 公基¹, 陶山 史朗¹, 山 本 裕紹¹ ○尾本 崇大¹, 藤井 賢吾¹, 八杉 公基¹, 陶山 史朗¹, 山 本 裕紹¹ ○沼澤 啓亮¹, 熊谷 幸汰¹, 早崎 芳夫¹ ○熊谷 幸汰¹, 早崎 芳夫¹ ○(D) 張 晨祺¹, Herbig Maik¹, 周 雨奇¹, 西川 真子², Shifat-E-Rabbi Mohammad³, 菅野 寬志¹, 楊 若曦¹, 伊林 侑真¹, 肖 廷輝¹, Rohde Gustavo³, 佐藤 将敬², 小寺 聡², 大門 雅夫², 矢富 裕², 合田 圭介¹.5.4.6	 1. 和歌山大院システムエ 1. 宇都宮大学 1. 宇都宮大 1. 宇都宮大オプティクス 1. 宇都宮大オプティクス 1. 東太, 2. 東大病院, 3.UVA, 4.UCLA, 5.CYBO, 6. 武漢大学
3:00 3:45 4:00 4:15 4:30 4:45 5:00	招 15p-A202-1 15p-A202-2 15p-A202-3 15p-A202-4 15p-A202-5 獎 15p-A202-6	液晶の物性解明と高性能液晶ディスプレイの研究 RGB-Dデータを用いたレイヤーベース法に基づく3次元ディスプレイのための計算機合成ホログラムの生成透明物体を仮想共役位置に配置したAIRR光学系 空中像を用いたEdge-Based DFD表示による3次元映像の形成 マイクロ雲をボクセルとする体積的ディスプレイの検討自由空間カラーボリュメトリックディスプレイに向けたフェムト秒レーザー励起空中ボクセルの散乱光評価 休憩/Break 血小板凝集塊の無標識画像ビッグデータによる	○(M1) 胡 暁思¹, 最田 裕介¹, 野村 孝徳¹ ○滝山 和晃¹, 藤井 賢吾¹, 八杉 公基¹, 陶山 史朗¹, 山 本 裕紹¹ ○尾本 崇大¹, 藤井 賢吾¹, 八杉 公基¹, 陶山 史朗¹, 山 本 裕紹¹ ○沼澤 啓亮¹, 熊谷 幸汰¹, 早崎 芳夫¹ ○熊谷 幸汰¹, 早崎 芳夫¹ ○(D) 張 晨祺¹, Herbig Maik¹, 周 雨奇¹, 西川 真子², Shifat-E-Rabbi Mohammad³, 菅野 寬志¹, 楊 若曦¹, 伊林 侑真¹, 肖 廷輝¹, Rohde Gustavo³, 佐藤 将敬², 小寺 聡², 大門 雅夫², 矢富 裕², 合田 圭介¹.5.4.6	 1. 和歌山大院システムエ 1. 宇都宮大学 1. 宇都宮大 1. 宇都宮大オプティクス 1. 宇都宮大オプティクス 1. 東太, 2. 東大病院, 3.UVA, 4.UCLA, 5.CYBO, 6. 武漢大学

16:00				
	15p-A202-10	ディープラーニングに基づくマルチスペクトラル散乱イメージングに対する再構成手法の検討	○塚田 拓海¹, 渡邉 歴¹	1. 立命館大理工
16:15	15p-A202-11	機械学習を用いたマルチモードファイバ波長系とそのポアソン強度揺らぎと暗計数に対する耐性	\bigcirc (M2) 奥山 皓介 1 , 西脇 大輔 1 , 松野 裕 1 , 行方 直人 2 , 井上 修一郎 2	1. 日大理工, 2. 日大量子
6:30		クラン独及価らさと喧計数に対する順性 休憩/Break	井上 修一即	
	招 E 15p-A202-12	[The 53rd Young Scientist Presentation Award Speech]	O Jianving Hao ^{1, 2} , Xiaoqing Zheng ¹ , Xiao Lin ¹ ,	1.Fujian Normal Univ., 2.The Univ. of Tokyo,
	,	Double phase hologram based high-capacity	Ryushi Fujimura ^{2, 3} , Soki Hirayama ² , Yoshito	3.Utsunomiya Univ.
		holographic memory	Tanaka², Xiaodi Tan¹, Tsutomu Shimura²	
7:00	15p-A202-13	ホログラフィックメモリのための SQAM 信号の一括再生 復号法	〇本間 聡 ', 五十嵐 淳 ', 宙陛 伊藤 '	1.梨大院工
7:15	15p-A202-14	ホログラフィックメモリのための分割IFTA法による	○山下 曉弘¹, 伊藤 宙陛¹, 本間 聡¹	1.梨大院工
		SQAM信号回復		
3/16(ポスター講演 (Poster Presentation) PA 会場 (Room PA) UAV 空撮画像を用いた海藻植生の解析手法の改良	○高橋 育登¹, 高橋 春香¹, 橋本 温人¹, 湯浅 友典¹, 宮	1 完工十工 9 连自业产 9 置級庫
	10a-1 A02-1	~主成分分析を導入した判定基準の評価	崎 義弘 ² . 飯島 俊匡 ³ . 浦池 隆文 ³ . 相津 佳永 ¹	1. 主工八工, 2. 仮局小座, 3. 追秘明
	16a-PA02-2	位相変調型回折光学素子を用いたマルチフォーカスの定	○大西葵¹,加藤佳祐¹,仁坂健一¹,北村藤和¹	1.株式会社 SCREEN ホールディングス
	16 7400 0	量性評価	OWE 12 A T12 W 12 44-15 46-12	1 H= LB, - HH 0 H= LO 010
	16a-PA02-3	二光子ホログラフィック刺激顕微鏡のためのインコヒー レントディジタルホログラフィ	〇木田 成 ,至 督玉 ,Kumar Manoj ,的場 修	1. 仲尸人阮ンス情報, 2. 仲尸人 OaSIS
	16a-PA02-4	負極性コロナ放電を用いたガラスへのホログラム転写に	○酒井 大輔¹, 鈴木 達也¹, 原田 建治¹	1. 北見工大
		関する基礎的研究		
	16a-PA02-5	3次元FFTを用いたホログラム高速計算による実在物体の実時間遠隔立体表示	〇山東 悠介',後藤 佑太朗', 茨田 大輔 ^{2,3} , 谷田貝 豊 彦 ²	1.大阪技術研, 2.宇大 CORE, 3.宇大院工
	16a-PA02-6	AIRR における多様な再帰反射素子のタイリングを比較	2	1.宇都宮大
		する実験系	陶山 史朗1, 石川 智治1, 山本 裕紹1	
	16a-PA02-7	再帰反射素子のタイリングによる空中像途切れの振動を		1. 宇都宮大
3/16/7	Thu) 13:00 - 16:45	用いた改善 口頭講演 (Oral Presentation) A303 会場 (Room A303)	本裕紹	
.3:00		「第6回光工学業績賞(高野榮一賞)受賞記念講演」	○島野 健 ¹	1.日立研開
		光学応用システムの先駆的研究開発と民生機器への応用		
2.20	17 4000 6	展開機能住建刑火道法専盟印書ファトナデジタットログラ	器用 A 亚 1 ○ 4 / 佛上 1 □ 4 - 陳去 2 - a m - 小 ± 3 - 陳 - □	1 蛋层隔层上类 9 网上四水菜 9 点棚点上类
3:30	16p-A303-2	機能集積型光導波路照明素子によるデジタルホログラ フィックイメージング	飯田 公平¹,○林 健太¹,岡本 勝就²,武田 光夫³,渡邉 恵理子¹	1. 电 X 进信人子, 2. 阿 个 研
3:45	16p-A303-3	モード抽出光周波数コムを用いたフルカスケードリンク	貞廣 知輝 ¹ , 時実 悠 ² , 長谷 栄治 ¹ , 南川 丈夫 ² , 諸橋	1. 徳島大院創成科学, 2. 徳島大 pLED, 3. 情報通信研究
		型マルチ合成波長デジタル・ホログラフィーによる表面	功³, ○安井 武史²	構
4:00	16n-A303-4	形状測定法 スペックル照明を用いたレンズレス・ディジタルホログ	○(M1) 種田 壮志 ¹ 三木 碧 ¹ 船水 革差 ¹ 角住 紬 ²	1 宏工大院 9 北海学園大
1.00	10p 11303 4	ラフィック顕微鏡による細胞イメージング	相津佳永1	1. 王工八郎,5.46两丁国八
4:15	16p-A303-5	チャープパルスを用いた位相シフトディジタルホログラ	○福田 渉¹, 菅原 佑太¹, 唐澤 直樹¹	1.公立千歳科技大
4:30	16n- A 303-6	フィー 加熱された水中の金ナノ粒子のディジタルホログラフィ	○城内 於翔』日修 芜土』	1.宇都宮大CORE
4:45		非干渉領域の除去によるインコヒーレントディジタルホ		
	•	ログラフィの画質向上	井哲彦1	
5:00	15 16 A202 0	休憩/Break	○陸 聖立1 延 松二1 春畑 古曜1 11 パノラン	1 古上从脚顶
5:15	英 16p-A303-8	全変動正則化に基づくチャープ振幅変調位相シフト法の 性能向上とその3Dスキャナへの応用	○陳 瑞彦,張 智儿,日畑 早層,セット シィヨシ, 山下 真司¹	1. 果人尤编研
5:30	奨 16p-A303-9	強度輸送方程式と反復位相回復法を組み合わせた蛍光	\bigcirc 松田 汐利 1 , 米田 成 2,3 , Manoj Kumar 2,3 , 全 香玉 2,3 ,	1.立命館大院理工, 2.神戸大院シス情報, 3.神戸大
	Will ac Anno An	ビーズの散乱透視イメージング	的場修4.2.3, 渡邉 歴4	OaSIS, 4. 立命館大理工
15:45 16:00		ゴーストイメージングの雑音耐性化 スペクトル符号化単一ファイバイメージングにおける焦	○ (M1) 槻 凌多¹, 深津 晋¹ ○ (M1C) 石川 直太郎¹ 大嶋 佑介¹ 片桐 崇史¹	1.東京大院総合文化 1.富山大医薬理工
	> <f< td=""><td>点ずれの影響</td><td>0 () Дунуулын уусындуг уугылдаг</td><td></td></f<>	点ずれの影響	0 () Дунуулын уусындуг уугылдаг	
6:15	奨 16p-A303-12	シュリーレン画像の色相解析による微細構造体の密度推	○加納 宏弥¹, 高梨 健太¹, 大野 博司¹	1.東芝
6:30	将 16n-A303-13	定 ナノインプリント法を活用した光透過型ナノ人工物の試	○大辺 恕差¹ 馭 直也² 角公 董³ 法元 成久³ 這砂	1. 九大工, 2. 九大シス情, 3. 産総研, 4. 早大基幹理工
0.50	类 10p-11303-13	作とその個体認証精度の評価	仁4,水野潤4	1. 九八工, 2. 九八、八百, 5. 庄秘明, 4. 千八至軒在工
) / Biomedical optics (formerly 3.4)		
		口頭講演 (Oral Presentation) A405 会場 (Room A405)		
00:0				1 松十四工口
	15a-A405-1	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条	○山口 曉久¹, 矢吹 海¹, 門野 博文¹	1. 埼大理工研
9:15	15a-A405-1 奨E 15a-A405-2		○山口 暁久¹, 矢吹 海¹, 門野 博文¹ ○(D)Devi Arti Devi¹, Hirofumi Kadono¹, Uma	
9:15		統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価		1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of
	奨 E 15a-A405-2	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV	○ (D)Devi Arti Devi¹, Hirofumi Kadono¹, Uma Maheswari Rajagopalan²	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan
		統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene	○ (D)Devi Arti Devi ¹ , Hirofumi Kadono ¹ , Uma Maheswari Rajagopalan ² ○ (D)sanath De silva ^{1, 2} , Uma Maheswari	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama
	奨 E 15a-A405-2	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV	○ (D)Devi Arti Devi¹, Hirofumi Kadono¹, Uma Maheswari Rajagopalan²	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing
9:30	奨 E 15a-A405-2 E 15a-A405-3	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography	○ (D)Devi Arti Devi ¹ , Hirofumi Kadono ¹ , Uma Maheswari Rajagopalan ² ○ (D)sanath De silva ^{1,2} , Uma Maheswari Rajagopalan ³ , Hirofumi Kadono ¹	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan
9:30	奨 E 15a-A405-2	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の	○ (D)Devi Arti Devi ¹ , Hirofumi Kadono ¹ , Uma Maheswari Rajagopalan ² ○ (D)sanath De silva ^{1, 2} , Uma Maheswari	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty.
0:30 0:45	奨 E 15a-A405-2 E 15a-A405-3	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography	○ (D)Devi Arti Devi ¹ , Hirofumi Kadono ¹ , Uma Maheswari Rajagopalan ² ○ (D)sanath De silva ^{1,2} , Uma Maheswari Rajagopalan ³ , Hirofumi Kadono ¹	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan
9:30 9:45 0:00 0:15	奨 E 15a-A405-2 E 15a-A405-3 15a-A405-4	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 休憩/Break 円偏光の散乱現象を用いた微粒子評価における指標	○ (D)Devi Arti Devi ¹ , Hirofumi Kadono ¹ , Uma Maheswari Rajagopalan ² ○ (D)sanath De silva ^{1, 2} , Uma Maheswari Rajagopalan ³ , Hirofumi Kadono ¹ ○ 横井 直倫 ¹ , 相津 佳永 ²	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.公立千歲科技大理工,2.室關工大院
9:45 0:00 0:15 0:30	奨 E 15a-A405-2 E 15a-A405-3 15a-A405-4 15a-A405-5 15a-A405-6	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 体憩/Break 円偏光の散乱現象を用いた微粒子評価における指標 円偏光的散乱現象を用いた微粒子評価における指標	○ (D)Devi Arti Devi ¹ , Hirofumi Kadono ¹ , Uma Maheswari Rajagopalan ² ○ (D)sanath De silva ^{1, 2} , Uma Maheswari Rajagopalan ³ , Hirofumi Kadono ¹ ○ 横井 直倫 ¹ , 相津 佳永 ² ○西沢 望 ¹ ○西沢 望 ¹ ○西沢 望 ¹ , 口丸 高弘 ²	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.公立千歲科技大理工,2.室蘭工大院
0:30 0:45 0:00 0:15 0:30	奨 E 15a-A405-2 E 15a-A405-3 15a-A405-4	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 休憩/Break 円偏光の散乱現象を用いた微粒子評価における指標	○ (D)Devi Arti Devi ¹ , Hirofumi Kadono ¹ , Uma Maheswari Rajagopalan ² ○ (D)sanath De silva ^{1, 2} , Uma Maheswari Rajagopalan ³ , Hirofumi Kadono ¹ ○ 横井 直倫 ¹ , 相津 佳永 ² ○西沢 望 ¹ ○西沢 望 ¹ ○西沢 望 ¹ , 口丸 高弘 ²	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.公立千歲科技大理工,2.室關工大院
0:30 0:45 0:00 0:15 0:30 0:45	奨 E 15a-A405-2 E 15a-A405-3 15a-A405-4 15a-A405-5 15a-A405-6	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 体憩/Break 円偏光の散乱現象を用いた微粒子評価における指標 円偏光散乱を用いたがん深達度の実験的計測 反射型光電脈波法による歯髄脈液検出のための実験的検	○ (D)Devi Arti Devi ¹ , Hirofumi Kadono ¹ , Uma Maheswari Rajagopalan ² ○ (D)sanath De silva ^{1, 2} , Uma Maheswari Rajagopalan ³ , Hirofumi Kadono ¹ ○ 横井 直倫 ¹ , 相津 佳永 ² ○西沢 望 ¹ ○西沢 望 ¹ ○西沢 望 ¹ , 口丸 高弘 ²	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.公立千歲科技大理工,2.室蘭工大院
	獎 E 15a-A405-2 E 15a-A405-3 15a-A405-4 15a-A405-5 15a-A405-6 15a-A405-7 15a-A405-8 Ved.) 13:00 - 15:30	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 休憩/Break 円偏光の散乱現象を用いた微粒子評価における指標 円偏光的散乱現象を用いた微粒子評価における指標 円偏光散乱を用いたがん深達度の実験的計測 反射型光電脈波法による歯髄脈波検出のための実験的検討 赤外ATR分光法によるアンモニア皮膚ガス検出の試み 口頭講演 (Oral Presentation) A405 会場(Room A405)	○ (D)Devi Arti Devi¹, Hirofumi Kadono¹, Uma Maheswari Rajagopalan² ○ (D)sanath De silva¹², Uma Maheswari Rajagopalan³, Hirofumi Kadono¹ ○ 横井 直倫¹, 相津 佳永² ○西沢 望¹ ○西沢 望¹ ○西沢 望¹, 口丸 高弘² ○ 横山 梨香¹, 楠畑 碧¹, 柿野 聡子², 松浦 祐司¹ ○ (M2) 布施 尭之¹, 木野 彩子¹, 松浦 祐司¹	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering, Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering, Shibaura Institute of Technology, Japar 1.公立千歲科技大理工, 2.室蘭工大院 1.北里大理 1.北里大理 1.北里大理, 2.自治医大 1.東北大学医工, 2.東京医科歯科大
9:45 0:00 0:15 0:30 0:45 1:00 3/15(V	獎 E 15a-A405-2 E 15a-A405-3 15a-A405-4 15a-A405-5 15a-A405-6 15a-A405-7 15a-A405-8 Ved.) 13:00 - 15:30	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 体憩/Break 円偏光の散乱現象を用いた微粒子評価における指標 円偏光散乱を用いたがん深達度の実験的計測 反射型光電脈波法による歯髄脈波検出のための実験的検討 赤外ATR分光法によるアンモニア皮膚ガス検出の試み 口頭講演 (Oral Presentation) A405 会場(Room A405) 「第53回講演奨励賞受賞記念講演」	○ (D)Devi Arti Devi¹, Hirofumi Kadono¹, Uma Maheswari Rajagopalan² ○ (D)sanath De silva¹², Uma Maheswari Rajagopalan³, Hirofumi Kadono¹ ○ 横井 直倫¹, 相津 佳永² ○西沢 望¹ ○西沢 望¹ ○西沢 望¹, 口丸 高弘² ○ 横山 梨香¹, 楠畑 碧¹, 柿野 聡子², 松浦 祐司¹ ○ (M2) 布施 尭之¹, 木野 彩子¹, 松浦 祐司¹	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering, Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japar 1.公立千歲科技大理工, 2.室蘭工大院
9:45 0:00 0:15 0:30 0:45 1:00 3/15(V	挺 E 15a-A405-2 E 15a-A405-3 15a-A405-4 15a-A405-5 15a-A405-6 15a-A405-7 15a-A405-8 Ved.) 13:00 - 15:30 招 15p-A405-1	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 体憩/Break 円偏光の散乱現象を用いた微粒子評価における指標 円偏光散乱を用いたがん深達度の実験的計測 反射型光電脈波法による歯髄脈波検出のための実験的検討 赤外ATR分光法によるアンモニア皮膚ガス検出の試み 口頭講演 (Oral Presentation) A405 会場(Room A405) 「第53回講演奨励賞受賞記念講演」 ライトシートブリルアン散乱顕微法の原理実証	○ (D)Devi Arti Devi ¹ , Hirofumi Kadono ¹ , Uma Maheswari Rajagopalan ² ○ (D)sanath De silva ^{1,2} , Uma Maheswari Rajagopalan ³ , Hirofumi Kadono ¹ ○ 横井 直倫 ¹ , 相津 佳永 ² ○西沢 望 ¹ ○西沢 望 ¹ ○西沢 望 ¹ , 口丸 高弘 ² ○ 横山 梨香 ¹ , 楠畑 碧 ¹ , 柿野 聡子 ² , 松浦 祐司 ¹ ○ (M2) 布施 堯之 ¹ , 木野 彩子 ¹ , 松浦 祐司 ¹	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japar 1.公立千歲科技大理工, 2.室蘭工大院 1.北里大理 1.北里大理 1.北里大理 1.北里大理, 2.自治医大 1.東北大学医工, 2.東京医科歯科大 1.東北大工 1.北大電子研, 2.JST さきがけ, 3.東大院工
9:30 9:45 0:00 0:15 0:30 0:45 11:00 8/15(V	挺 E 15a-A405-2 E 15a-A405-3 15a-A405-4 15a-A405-5 15a-A405-6 15a-A405-7 15a-A405-8 Ved.) 13:00 - 15:30 招 15p-A405-1 15p-A405-2	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 体態/Break 円偏光の散乱現象を用いた微粒子評価における指標 円偏光的散乱現象を用いた微粒子評価における指標 円偏光散乱を用いたがん深達度の実験的計測 反射型光電脈波法による歯髄脈波検出のための実験的検討 赤外ATR分光法によるアンモニア皮膚ガス検出の試み 口頭講演(Oral Presentation) A405 会場(Room A405)「第53回講演奨励賞受賞記念講演」 ライトシートブリルアン散乱顕微法の原理実証 光音響イメージングによる産毛観察のための基礎的検討	○ (D)Devi Arti Devi¹, Hirofumi Kadono¹, Uma Maheswari Rajagopalan² ○ (D)sanath De silva¹¹², Uma Maheswari Rajagopalan³, Hirofumi Kadono¹ ○ 横井 直倫¹, 相津 佳永² ○ 西沢 望¹ ○ 西沢 望¹ ○ 西沢 望¹, 口丸 高弘² ○ 横山 梨香¹, 楠畑 碧¹, 柿野 聡子², 松浦 祐司¹ ○ (M2) 布施 尭之¹, 木野 彩子¹, 松浦 祐司¹ ○ 石島 歩¹², 岡部 真我³, 佐久間 一郎³, 中川 桂一³ ○ 加藤 颯人¹, 濵田 真悠子¹, 金子 昂司¹, 山岡 禎久¹, 安倉 由佳²	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Facult of Engineering. Shibaura Institute of Technology, Japan 1.公立千歲科技大理工, 2.室蘭工大院 1.北里大理 1.北里大理 1.北里大理, 2.自治医大 1.東北大学医工, 2.東京医科歯科大 1.東北大工 1.北大電子研, 2.JSTさきがけ, 3.東大院工
9:30 9:45 0:00 0:15 0:30 0:45	挺 E 15a-A405-2 E 15a-A405-3 15a-A405-4 15a-A405-5 15a-A405-6 15a-A405-7 15a-A405-8 Ved.) 13:00 - 15:30 招 15p-A405-1 15p-A405-2	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 休憩/Break 円偏光の散乱現象を用いた微粒子評価における指標 円偏光の散乱更加にたがん深達度の実験的計測 反射型光電脈波法による歯髄脈波検出のための実験的検討 赤外ATR分光法によるアンモニア皮膚ガス検出の試み口頭講演(Oral Presentation) A405 会場(Room A405)「第53回講演奨励賞受賞記念講演」ライトシートブリルアン散乱顕微法の原理実証 光音響イメージングによる産毛観察のための基礎的検討 レーザー共鳴周波数解析による臼蓋カップ設置強度の術	○ (D)Devi Arti Devi¹, Hirofumi Kadono¹, Uma Maheswari Rajagopalan² ○ (D)sanath De silva¹², Uma Maheswari Rajagopalan³, Hirofumi Kadono¹ ○ 横井 直倫¹, 相津 佳永² ○ 西沢 望¹ ○ 西沢 望¹ ○ 西沢 望¹, 口丸 高弘² ○ 横山 梨香¹, 楠畑 碧¹, 柿野 聡子², 松浦 祐司¹ ○ (M2) 布施 堯之¹, 木野 彩子¹, 松浦 祐司¹ ○ 石島 歩¹², 岡部 真我³, 佐久間 一郎³, 中川 桂一³ ○ 加藤 颯人¹, 濱田 真悠子¹, 金子 昂司¹, 山岡 禎久¹, 安倉 由佳² ○ 三上 勝大¹, 松山 哲也¹, 根本 充貴¹, 畠山 拓人², 名	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Facult of Engineering. Shibaura Institute of Technology, Japan 1.公立千歲科技大理工, 2.室蘭工大院 1.北里大理 1.北里大理 1.北里大理, 2.自治医大 1.東北大学医工, 2.東京医科歯科大 1.東北大工 1.北大電子研, 2.JSTさきがけ, 3.東大院工
9:30 0:00 0:15 0:30 0:45 1:00 3:15(V 3:30	挺 E 15a-A405-2 E 15a-A405-3 15a-A405-4 15a-A405-5 15a-A405-7 15a-A405-7 15a-A405-8 Ved.) 13:00 - 15:30 招 15p-A405-1 15p-A405-2 15p-A405-3	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 休憩/Break 円偏光的散乱現象を用いた微粒子評価における指標 円偏光散乱を用いたがん深達度の実験的計測 反射型光電脈波法による歯髄脈波検出のための実験的検討 赤外ATR分光法によるアンモニア皮膚ガス検出の試み 口頭講演 (Oral Presentation) A405 会場(Room A405)「第53回講演奨励賞受賞記念講演」 ライトシートプリルアン散乱顕微法の原理実証 光音響イメージングによる産毛観察のための基礎的検討 レーザー共鳴周波数解析による臼蓋カップ設置強度の術中計測実証	○ (D)Devi Arti Devi¹, Hirofumi Kadono¹, Uma Maheswari Rajagopalan² ○ (D)sanath De silva¹², Uma Maheswari Rajagopalan³, Hirofumi Kadono¹ ○ 横井 直倫¹, 相津 佳永² ○ 西沢 望¹ ○ 西沢 望¹, 口丸 高弘² ○ 横山 梨香¹, 楠畑 碧¹, 柿野 聡子², 松浦 祐司¹ ○ (M2) 布施 尭之¹, 木野 彩子¹, 松浦 祐司¹ ○ 石島 歩¹², 岡部 真我³, 佐久間 一郎³, 中川 桂一³ ○ 加藤 颯人¹, 濱田 真悠子¹, 金子 昂司¹, 山岡 禎久¹, 安倉 由佳² ○ 三上 勝大¹, 松山 哲也¹, 根本 充貴¹, 畠山 拓人², 名倉 武雄², 中島 大輔²	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering, Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering, Shibaura Institute of Technology, Japar 1.公立千歲科技大理工, 2.室蘭工大院 1.北里大理 1.北里大理 1.北里大理 1.北里大理, 2.自治医大 1.東北大学医工, 2.東京医科歯科大 1.東北大二 1.北大電子研, 2.JST さきがけ, 3.東大院工 1.佐賀大, 2.ナリス化粧品 1.近大生物理工, 2.慶大医
0:30 0:45 0:00 0:15 0:30 0:45 1:00 3/15(V 3:00 3:15	挺 E 15a-A405-2 E 15a-A405-3 15a-A405-4 15a-A405-5 15a-A405-6 15a-A405-7 15a-A405-8 Ved.) 13:00 - 15:30 招 15p-A405-1 15p-A405-2	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 休憩/Break 円偏光の散乱現象を用いた微粒子評価における指標 円偏光の散乱更加にたがん深達度の実験的計測 反射型光電脈波法による歯髄脈波検出のための実験的検討 赤外ATR分光法によるアンモニア皮膚ガス検出の試み口頭講演(Oral Presentation) A405 会場(Room A405)「第53回講演奨励賞受賞記念講演」ライトシートブリルアン散乱顕微法の原理実証 光音響イメージングによる産毛観察のための基礎的検討 レーザー共鳴周波数解析による臼蓋カップ設置強度の術	○ (D)Devi Arti Devi¹, Hirofumi Kadono¹, Uma Maheswari Rajagopalan² ○ (D)sanath De silva¹², Uma Maheswari Rajagopalan³, Hirofumi Kadono¹ ○ 横井 直倫¹, 相津 佳永² ○ 西沢 望¹ ○ 西沢 望¹, 口丸 高弘² ○ 横山 梨香¹, 楠畑 碧¹, 柿野 聡子², 松浦 祐司¹ ○ (M2) 布施 尭之¹, 木野 彩子¹, 松浦 祐司¹ ○ 石島 歩¹², 岡部 真我³, 佐久間 一郎³, 中川 桂一³ ○ 加藤 颯人¹, 濱田 真悠子¹, 金子 昂司¹, 山岡 禎久¹, 安倉 由佳² ○ 三上 勝大¹, 松山 哲也¹, 根本 充貴¹, 畠山 拓人², 名倉 武雄², 中島 大輔²	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering, Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering, Shibaura Institute of Technology, Japar 1.公立千歲科技大理工, 2.室蘭工大院 1.北里大理 1.北里大理 1.北里大理 1.北里大理, 2.自治医大 1.東北大学医工, 2.東京医科歯科大 1.東北大二 1.北大電子研, 2.JST さきがけ, 3.東大院工 1.佐賀大, 2.ナリス化粧品 1.近大生物理工, 2.慶大医
9:30 9:45 0:00 0:15 0:30 0:45 1:00 3:15 3:30 3:45 4:00	挺 E 15a-A405-2 E 15a-A405-3 15a-A405-4 15a-A405-5 15a-A405-6 15a-A405-7 15a-A405-7 15a-A405-1 15p-A405-1 15p-A405-2 15p-A405-3 15p-A405-4	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 体憩/Break 円偏光の散乱現象を用いた微粒子評価における指標 円偏光散乱を用いたがん深達度の実験的計測 反射型光電脈波法による歯髄脈液検出のための実験的検討 赤外ATR分光法によるアンモニア皮膚ガス検出の試み 口頭講演 (Oral Presentation) A405 会場(Room A405)「第53回講演奨励賞受賞記念講演」ライトシートブリルアン散乱顕微法の原理実証 光音響イメージングによる産毛観察のための基礎的検討 レーザー共鳴周波数解析による臼蓋カップ設置強度の術中計測実証 Nd:YAGレーザーの第5高調波(213 nm)による殺菌効果 休憩/YAGレーザーの第5高調波(213 nm)による殺菌効果	○ (D)Devi Arti Devi¹, Hirofumi Kadono¹, Uma Maheswari Rajagopalan² ○ (D)sanath De silva¹², Uma Maheswari Rajagopalan³, Hirofumi Kadono¹ ○ 横井 直倫¹, 相津 佳永² ○ 西沢 望¹ ○ 西沢 望¹, 口丸 高弘² ○ 横山 梨香¹, 楠畑 碧¹, 柿野 聡子², 松浦 祐司¹ ○ (M2) 布施 堯之¹, 木野 彩子¹, 松浦 祐司¹ ○ (M2) 布施 堯之¹, 木野 彩子¹, 松浦 祐司¹ ○ 石島 歩¹², 岡部 真我³, 佐久間 一郎³, 中川 桂一³ ○ 加藤 颯人¹, 濱田 真悠子¹, 金子 昂司¹, 山岡 禎久¹, 安自 由佳² ○ 三上 勝大¹, 松山 哲也¹, 根本 充貴¹, 畠山 拓人², 名 倉武 雄², 中島, 大輔² ○ 海村 倩弘¹, 三浦 莉理², 大中 一弘¹, 安田 慶也¹, 神村 共住³, 村山 幸市²	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering, Shibaura Institute of Technology, Japan 1.公立千歲科技大理工, 2.室蘭工大院 1.北里大理 1.北里大理 1.北里大理 1.北里大理 1.北里大学医工, 2.東京医科歯科大 1.東北大学医工, 2.東京医科歯科大 1.東北大工 1.北大電子研, 2.JSTさきがけ, 3.東大院工 1.佐賀大, 2.ナリス化粧品 1.近大生物理工, 2.慶大医 1.公立千歲科技大, 2.北海道教育大旭川校, 3.大阪工大
9:30 0:45 0:30 0:15 0:30 0:45 1:00 8/15(V 3:30 3:33 3:45	挺 E 15a-A405-2 E 15a-A405-3 15a-A405-4 15a-A405-5 15a-A405-7 15a-A405-7 15a-A405-8 Ved.) 13:00 - 15:30 招 15p-A405-1 15p-A405-2 15p-A405-3	統計干渉法(SIT)を用いた遠赤色光と青色光同時照射条件下における植物成長への影響評価 Application of bio-speckle on micro-bioassay with plankton IV Optical inspection of the combined effect of polyethylene microplastic with Zn on lentil seed germination using Biospeckle Optical Coherence Tomography レーザー光散乱を用いた疑似血流中における血栓成長の評価 体憩/Break 円偏光の散乱現象を用いた微粒子評価における指標 円偏光的散乱現象を用いた微粒子評価における指標 円偏光を放乱を用いたがん深達度の実験的計測 反射型光電脈波法による歯髄脈波検出のための実験的検討 赤外ATR分光法によるアンモニア皮膚ガス検出の試み 口頭講演 (Oral Presentation) A405 会場(Room A405)「第53回講演奨励賞受賞記念講演」 ライトシートブリルアン散乱顕微法の原理実証 光音響イメージングによる産毛観察のための基礎的検討 レーザー共鳴周波数解析による臼蓋カップ設置強度の術中計測実証 Nd:YAGレーザーの第5高調波(213 nm)による殺菌効果	○ (D)Devi Arti Devi¹, Hirofumi Kadono¹, Uma Maheswari Rajagopalan² ○ (D)sanath De silva¹², Uma Maheswari Rajagopalan³, Hirofumi Kadono¹ ○ 横井 直倫¹, 相津 佳永² ○ 西沢 望¹ ○ 西沢 望¹, 口丸 高弘² ○ 横山 梨香¹, 楠畑 碧¹, 柿野 聡子², 松浦 祐司¹ ○ (M2) 布施 堯之¹, 木野 彩子¹, 松浦 祐司¹ ○ (M2) 布施 堯之¹, 木野 彩子¹, 松浦 祐司¹ ○ 石島 歩¹², 岡部 真我³, 佐久間 一郎³, 中川 桂一³ ○ 加藤 颯人¹, 濱田 真悠子¹, 金子 昂司¹, 山岡 禎久¹, 安自 由佳² ○ 三上 勝大¹, 松山 哲也¹, 根本 充貴¹, 畠山 拓人², 名 倉武 雄², 中島, 大輔² ○ 海村 倩弘¹, 三浦 莉理², 大中 一弘¹, 安田 慶也¹, 神村 共住³, 村山 幸市²	1.Graduate School of Science and Engineering, Saitama university, Japan, 2.Dept. Mech, Eng. Faculty of Engineering, Shibaura Institute of Technology, Japan 1.Graduate School of Science and Engineering, Saitama Univ., Japan, 2.Dept. of Mechanical and Manufacturing Univ. of Ruhuna, Sri Lanka, 3.Dept. Mech, Eng. Faculty of Engineering. Shibaura Institute of Technology, Japan 1.公立千歲科技大理工, 2.室蘭工大院 1.北里大理 1.北里大理 1.北里大理, 2.自治医大 1.東北大学医工, 2.東京医科歯科大 1.東北大工 1.北大電子研, 2.JST さきがけ, 3.東大院工 1.佐賀大, 2.ナリス化粧品 1.近大生物理工, 2.慶大医

14:30	奨 15p-A405-6	非アルコール性脂肪性肝疾患モデルマウスの肝臓に蓄積		1. 徳島大院創成, 2. 徳島大ポスト LED フォトニクス研,
	yled 4.5 4.40.5 5	した脂肪滴の相転移	裕子3,安井武史2,常山幸一2,3	3. 德島大院医歯薬病理
14:45	英 15p-A405-7	ラマンタグを用いた超多色フローサイトメトリー	(D)四川 訳, 平松 光太郎, 河州 伊太郎, 阗阗孝介², 古屋 圭惟¹, ミン ウェイ³, 袖岡 幹子², 合田 圭介¹.4.5	1.東大院理, 2.理所, 3.コロンビア大, 4.UCLA, 5.武漢 大
15:00	15p-A405-8	ナノダイヤモンドNV中心を用いた全光学的温度計測に		1.京大院工
15:15	15n-A405-9	向けたゼロフォノン線の粒子依存性評価 ウェアラブルFBG生体信号計測システムのためのフォト	平井 義和¹, 蓮尾 昌裕¹	1.信州大学
13.13	13p 11403 7	ダイオードとアナログフロントエンド回路試作チップの 評価	())))) a , 1.11 /L	I. IIII/X I
3/16(7		ポスター講演 (Poster Presentation) PA 会場(Room PA)		
	16a-PA03-1	データ加増による椎弓根スクリューの機械学習設置強度 診断精度の改善	武雄3,中島大輔3	1.近大院生物理工, 2.近大生物理工, 3.慶大医
	16a-PA03-2	ニワトリ胚心臓の発生におけるカフェインの影響の SS-OCT 観測	○古田 太一¹, 山岡 喬志¹, 守山 裕大¹, 三井 敏之¹	1. 青学大理工
	16a-PA03-3	機械学習を用いた皮膚組織パラメータとヒト皮膚分光反 射率の関係性の考察		1.室工大工
	16a-PA03-4	可視光領域の皮膚照射領域近傍における浸透深さシミュ レーション	〇田村 光¹, 川村 隼斗¹, 菊地 久美子², 湯浅 友典¹, 相津 佳永¹	1.室工大工, 2.資生堂みらい研
	E 16a-PA03-5	Bio-Raman research on straight perm treatment of human grey hair	(M1) Jianhai He ¹ , Kazuyuki Suzuta ² , Len Ito ² , Mana Nemoto ³ , Shin-ichi Morita ¹	1.Graduate School of Science, Tohoku University, 2. Research & Development Department, Milbon, 3.
	16a-PA03-6	表面増強ラマン分光法(SERS)を用いた高感度バイオケミカルセンサー	○(B)衡 彦君¹,斉藤 紫音¹,平井 龍太朗¹,熊谷 龍 馬¹,葛西 重信¹,吹留 博一²,佐藤 昭²,尾辻 泰一²,內	Graduate School of Engineering, Tohoku University 1.東北工大工, 2.東北大通研
		: MN	馬, 場西 里信, 八田 停一, 佐藤 町, 尾江 ※一, 内 野 俊 ¹	
		日3.5) / Laser system and materials (formerly 3.5)		
3/15(V		ポスター講演 (Poster Presentation) PB 会場 (Room PB) He フリーガスを用いた軸方向放電励起 CO ₂ レーザーの) ○(B)宮川 大吉¹, 柳井 聖民¹, 宇野 和行¹, 渡會 翔	1. 山梨大, 2. 精電舎電子工業
	134-1 D01-1	利得特性	平 ² , 児玉 康司 ^{1,2} , 米谷 和幸 ²	1. 山木八, 4. 宿电口电 上未
	15a-PB01-2	軸方向放電励起HeフリーCO2レーザーの開発	〇大川 亮 1 , 宇野 和行 1 , 渡會 翔平 2 , 児玉 康司 $^{1.2}$, 米 谷 和幸 2	1.山梨大学, 2.精電舎電子工業
	E 15a-PB01-3	Nanosecond pulse compression by SBS technique and investigations of its SHG characteristics	○ Haik Chosrowjan¹, Toshihiro Somekawa¹, Seiji Taniguchi¹	1.ILT
	15a-PB01-4	CLBO結晶の耐久性改善に向けた結晶環境の構築	○山崎 浩司 ¹ , 薮 隆之 ¹ , 森 勇介 ^{2,4} , 吉村 政志 ^{3,4}	1. ギガフォトン株式会社, 2. 阪大院工, 3. 阪大ILE, 4. 創 晶超光
		3×3カプラを用いた9の字型Erファイバレーザー	〇山本 暉¹, 戸田 裕之¹, 鈴木 将之¹	1. 同志社大工
		レーザードップラー振動計による光学素子レーザー損傷 検出の検討	○秋吉 諒一¹, 三上 勝大¹, 宮坂 泰弘²	1. 近大生物理工, 2. 量研関西研
	15a-PB01-7	高血糖ラット脛骨中の縦波音速評価	○(M1) 羽田 雄飛 ', 稲本 脩人 ', 松川 臭美 '	1.同志社大理工
		口頭講演 (Oral Presentation) A305会場 (Room A305) [The 53rd Young Scientist Presentation Award Speech]	O Enhao Li ¹ Hivori Hehara ^{1, 2} Shigeki Tokita ³ Ryo	1 SOKENDAL 2 NIES 3 Kvoto Univ
11100	,	High-power, narrow-linewidth and widely tunable mid-IR laser based on a hybrid QCL/Fe:ZnSe laser amplifier	Yasuhara ^{1, 2}	200121071, 21111 o, 011, you o
14:15	15p-A305-2	Tm添加YScO ₃ 結晶の分光及びレーザー特性	○鈴木 杏奈 ^{1,2} , Kalusniak Sascha³, 田中 裕樹³, Ganschow Steffen³, Kränkel Christian³, 戸倉川 正 樹 ^{1,2}	1. 電通大レーザー研, 2. 電通大脳医工研, 3.IKZ
14:30	15p-A305-3	波長 $2\mu m$ に対する Yb^{3+} : Sc_2O_3 の二光子吸収係数の測定	○三井 崚平 ^{1,2} , 鈴木 杏奈 ^{1,2} , 戸倉川 正樹 ^{1,2}	1.電通大レーザー研, 2.電通大脳・医工研究センター
14:45 15:00	15p-A305-4 E 15p-A305-5	•	○高貫 広翔 ^{1,2} , 戸倉川 正樹 ^{1,2} ○Vincent Yahia ^{1,2} , Arvydas Kausas ^{1,2} , Takunori	1.電通大レーザー研, 2.電通大脳・医工研究センター 1.Inst. for Mol. Sci., 2.RIKEN SPring8
15:15	E 15p-A305-6	Amplifier Laser induced damage threshold evaluation of bonded samples for J-class amplifier system	Taira ^{2, 1} O Arvydas Kausas ^{1, 2} , Takunori Taira ^{2, 1}	1.Inst. for Mol. Sc., 2.RIKEN
15:30		休憩/Break		
15:45	15p-A305-7	各種希土類イオン添加 $Y_3Al_5O_{12}$ セラミックスの線熱膨張 係数	○佐藤 庸一 ^{1,2} , 平等 拓範 ^{1,2} , 武正 知久 ³	1. 理研, 2. 分子研, 3. 神島化学工業
16:00	E 15p-A305-8	Output pulse control of CW pumped Nd:YVO ₄ /Cr:YAG microchip laser	○ Rakesh Bhandari¹, Shota Sekiguchi¹, Tadashi Hajikano¹, Yuichi Takushima¹	1.Optoquest Co.
16:15	E 15p-A305-9	>80 MW peak power/80 Hz microchip laser with unstable resonator	(P)Hwan Hong Lim ¹ , Takunori Taira ^{2,1}	1.IMS, 2.RIKEN
16:30	·	直線型低濃度 Yb ファイバ Mamyshev 発振器のセルフス タート化に関する研究	〇谷村 実紅¹, 鹿嶋 凌駆¹, 二俣 善紀¹, 戸田 裕之¹, 鈴木 将之¹	
	hu.) 10:00 - 11:15	波長 1550nm帯における Mamyshev 発振器の開発 口頭講演 (Oral Presentation) A305 会場(Room A305)	○青山 将士¹, 鹿嶋 凌駆¹, 戸田 裕之¹, 鈴木 将之¹	1.同志社大学理工学部
10:00	16a-A305-1	レーザー伝送への適用に向けた高速動作可変形鏡の開発	○谷口 誠治¹, コスロービアン ハイク¹, 稲田 順史¹, 本越 伸二¹, 藤田 雅之¹, 則武 卓也², 岩清水 優², 西方 伸吾², 醍醐 浩之², 榊 直人³, 月花 智博³, 戎崎 俊一³	1.レーザー総研, 2. 三菱重工業, 3. 理化学研究所
10:15	16a-A305-2	波長 1.5 μm帯衛星搭載コヒーレントドップラーライダの 実現に向けた高出力 MOPA システムの開発		1.三菱電機 情報技術総合研究所, 2.三菱電機 通信機 製作所, 3.国立研究開発法人 宇宙航空研究開発機構
10:30 10:45	16a-A305-3 16a-A305-4	非偏波保持高出力Yb添加ファイバー増幅器の偏波合成 青色LD励起アレキサンドライトレーザーの自己バルス	○篠崎 琢也¹,川嶋 一裕²,鯉沼 秀臣¹,和田 智之³	1.エスシーティー, 2.信光社, 3.理研 1.東北工大工
11:00	16a-A305-5	発振特性 直流電流駆動の 900nm 帯半導体光増幅器におけるパルス	○田代 勇太郎¹, 桑原 隆太¹, 長沢 海斗¹, 鄭 和翊¹	1. 東海大理
[ceal	3 /1 1/ # # 罢	コントラス向上 材料、3.13 光制御デバイス・光ファイバーのコードシェフ	7+v2/72/Codo obsring Socion of 2.1.8.2.12	
3/16(T	hu.) 13:00 - 15:00	口頭講演 (Oral Presentation) A305会場 (Room A305)	○里 亮介 ^{1,2} , 高 磊 ² , 山本 宗継 ² , Cong Guangwei ² ,	1日十贮理工 2 产松耳
13:00		「第53回講演奨励賞受賞記念講演」 Si-SiO ₂ -Si 水平スロット導波路による広帯域光発生 メタマテルアル道波数による広帯域光発生	○里 元介 " , 尚 磊 ", 山本 示維 ", Cong Guangwei", 山田 浩治 ² , 北 智洋 ¹ ○本多 祥大 ¹ , 雨宮 智宏 ²	1. 早 大 阮 理 上 , 2. 産 総 研 1. ソニーグ ループ , 2. 東 工 大
13:15 13:30		メタマテリアル導波路による非線形光活性化関数 E/Oイコライザ搭載LiNbO ₃ 広帯域光変調器		1.ソニークルーフ, 2. 果上大 1.住友大阪セメント, 2.NICT, 3.名工大, 4. 早稲田大
13:45	16p-A305-4	(Pb,La)(Zr,Ti)O₃(PLZT) 光変調器における DC ドリフト 抑制		1.アドバンテスト研究所
14:00	16p-A305-5	PPLN導波路によるカスケード SFG/OPA 方式光パラメトリック増幅	○岸本 直¹, 逵本 吉朗¹, 和久井 健太郎¹, 藤原 幹生¹, 関根 徳彦¹	1. 情通機構

14:15 14:30		QPM素子としての水晶の特性検討 ペロブスカイト半導体を用いた太陽光励起レーザの検討		1. 理化学研究所, 2. 分子科学研究所 1. 中大理工, 2. 東大工, 3. 東大先端研
14:45	16p-A305-8	pn埋込構造を有する半絶縁性InP基板上InGaAsP-MQW	〇荒井 隼人 1 , 小林 亘 1,2 , 満原 学 1 , 進藤 隆彦 1 , 中島	1.NTT 先デ研, 2.NTT DIC
3.5 超高	速・高強度レーザ-	DFB レーザ ー(旧 3.6)/ Ultrashort-pulse and high-intensity lasers (fo	史人 ¹ ormerly 3.6)	
3/16(T		ポスター講演 (Poster Presentation) PA会場 (Room PA) シングルバス Cr:ZnS増幅器による中赤外フェムト秒バル スのスペクトル広帯域化		1. 東大生研
	16a-PA04-2	ファイバ型デュアルコム分光システムの開発		1.東邦大学
	16a-PA04-3	全偏波保持型デュアルコムファイバレーザーを用いた ASOPS	史¹,湯本 拓実¹, 中嶋 善晶¹ ○(M1)湯本 拓実¹, 西宮 友大¹, 穀山 涉², 時実 悠²³, 安井 武史³.⁴, 松原 伸一⁵, 中嶋 善晶¹	1. 東邦大, 2. 産総研, 3. 徳島大, 4. 徳島大ポスト LED 研究所, 5. 高輝度光科学研究所
	16a-PA04-4	印加電場による高次高調波発生のトンネリング過程の制 御	○西留 比呂幸 ¹ , 大元 幹人 ¹ , 永井 恒平 ² , 內田 健人 ² , 村上 雄太 ³ , 河原 憲治 ⁴ , 枝 淳子 ¹ , 大久保 瞳 ¹ , 蓬田 陽 平 ¹ , 吾郷 浩樹 ^{4,5} , 田中 耕一郎 ^{2,6} , 柳 和宏 ¹	
	16a-PA04-5	金属における超高速発光特性と電子比熱の相関	○末元 徹 ¹ , 森野 春樹 ¹ , 奥野 剛史 ¹ , 小野 頌太 ² , 鈴木 剛 ³ , 岡崎 浩三 ³ , 谷 峻太郎 ³ , 小林 洋平 ³	1. 電通大基盤理工, 2. 岐阜大工, 3. 東大物性研
	16a-PA04-6	銅ニッケル合金における近赤外超高速発光の組成依存	○(M1)森野 春樹¹,末元 徹¹,奧野 剛史¹,小野 頌太², 鈴木 剛³,岡崎 浩三³,谷 峻太郎³,小林 洋平³	1. 電通大基盤理工, 2. 岐阜大工, 3. 東大物性研
	16a-PA04-7	光渦パルス誘起コヒーレントクエンチ超伝導の時空間特 性		1.北大院工, 2.北大院理
3/17(F	Fri.) 9:00 - 10:30	口頭講演 (Oral Presentation) A501会場 (Room A501)		
9:00		ホモダイン高次高調波検出器の開発	〇内田 健人 ¹ , 田中 耕一郎 ^{1,2}	1.京大院理, 2.京大iCeMS
9:15 9:30		高強度超短パルスレーザーによる窒素ドープダイヤモン	○矢野 隆治¹, 篠島 弘幸² ○(M1)山崎 航¹, 小栗 克弥², 菱川 明栄¹, 加藤 景子¹	1. 室工大, 2. 久留米高専 1. 名古屋大理, 2.NTT 物性研
9:45	17a-A501-4	ドのキャリア・フォノンダイナミクス マイクロ流体チップを用いた気・液相の軟X線時間分解	○足立 俊輔¹ 鈴木 俊注¹	1.京大理
		分光		
10:00 10:15		回折法と分光法が与える情報は異なる? 新奇相変化材料Cr,Ge,Te,における光励起キャリアダイ	○関川 太郎 ¹ ○首提 折 ¹ 抽木 健汁 ¹ 午口 優介 ¹ 王 吟麗 ² 刃 海 ³	1.北大工 1. 構団大院理工 2 東北大院工 3 東北大 AIMR
10.13	118-V201-0	利可怕変化材料Cr ₂ Ge ₂ Ie ₆ におりる元励起キャリアダイ ナミクス	○早場 台, 仲本 健孤, 大口 優介, 土 哼鹿, 从 远, 須藤 祐司 ^{2.3} , 玉置 亮¹, 片山 郁文¹, 武田 淳¹	·····································
3/17(F		口頭講演 (Oral Presentation) A501会場 (Room A501)		
13:00	招 17p-A501-1	「第53回講演奨励賞受賞記念講演」 MHz繰返しアト秒パルス光源に向けた1.7サイクル高強 度光パルス発生	〇岡本 拓 \mathbf{u}^1 , 永井 恒平 \mathbf{u}^1 , 国橋 要司 \mathbf{u}^1 , 篠原 康 \mathbf{u}^1 , 眞田 治樹 \mathbf{u}^1 , 陳 明彰 \mathbf{u}^2 , 小栗 克弥 \mathbf{u}^1	1.NTT 物性研, 2.清大
13:15	奨 17p-A501-2	再循環光学系における非同期和周波発生を用いた周波数 スイーブバルス列の生成	\bigcirc (M1) 為本 龍汰 ¹ , 本田 亜沙美 ¹ , 漕江 駿太 ¹ , 山根 啓作 ¹ , 鈴木 雅人 ¹ , 戸田 泰則 ¹ , 尾松 孝茂 ^{2.3} , 森田 隆	
13:30	奨 17p-A501-3	半導体ナノ粒子におけるバンド内遷移の制御と高次高調 波発生との関係解明	 一 中川 耕太郎¹, 廣理 英基¹, 佐藤 駿丞², 田原 弘量¹, 関口 文哉¹, 湯本 郷¹, 猿山 雅亮¹, 佐藤 良太¹, 寺西 利 治¹, 金光 義彦¹ 	
13:45	17p-A501-4	赤外フェムト秒パルスによる液相CO₂分子の多段階振動		1. 東大生研
14:00	奨 17p-A501-5	励起 赤外フェムト秒パルスによる気相 CO₂分子の振動回転状	○(D)津坂 裕己¹, 森近 一貴¹, 芦原 聡¹	1. 東大生研
14:15	奨 17p-A501-6	態の時間分解観測 光のスピン軌道結合下での光渦固体高調波発生と動的対	〇永井 恒平 1 ,岡本 拓也 1 ,篠原 康 1 ,眞田 治樹 1 ,小栗 克弥 1	1.NTT物性研
14:30		称性 休憩/Break	5七7小	
14:45	E 17p-A501-7	BISER experiments with the Astra and J-KAREN-P lasers	O Alexander Pirozhkov ¹ , A.N. Shatokhin ² , A. Sagisaka ¹ , K. Ogura ¹ , T.A. Pikuz ³ , A.V. Kotov ⁴ , T. Dzelzainis ⁵ , A. Bierwage ¹ , Ko. Kondo ¹ , H. Ohiro ⁶ , S. Lorenz ⁷ , YK. Liu ⁸ , G.M. Grittani ⁷ , T.M. Jeong ⁷ , N. Nakanii ¹ , K. Huang ¹ , A. Kon ¹ , Y. Miyasaka ¹ , G. Hull ⁵ , S. Dann ⁵ , E.A. Vishnyakov ⁷ , A.O. Kolesnikov ² , M. Koike ¹ , P. Chen ⁸ , T.Zh. Esirkepov ¹ , J.K. Koga ¹ , R. Gray ⁹ , A.A. Soloviev ⁴ , E.N. Ragozin ² , S.V. Bulanov ⁷ , S. Namba 6, H. Kiriyama 1, M. Kando 1, K. Kondo 1, T. Kawachi 1, P. McKenna 9, D. R. Symes 5, D. Neely ⁵	1.QST, 2.LPI RAS, 3.Osaka Univ., 4.IAP RAS, 5.CLF RAL, 6.Hiroshima Univ., 7.ELI Beamlines, 8.Nat. Taiwan Univ., 9.Strathclyde Univ.
15:00	E 17p-A501-8	Weak and strong field optical response in ultrathin films of topological insulator	·	1.Kansai Photon Science Institute, National Institutes for Quantum Science and Technology (QST), Kizugawa Kyoto 619-0215, Japan, 2.Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
15:15 15:30		和周波発生を用いた超蛍光の観測 再散乱光電子運動量分布のCEP依存性に現れる多中心多		1.青学理工 1.東大物性研, 2.モスクワ物理工科大, 3.電通大
15:45	17p-A501-11	重散乱効果 erfgauポテンシャルを用いた高強度レーザー場中の実時 間第一原理計算	Tolstikhin Oleg², 森下 亨³, 板谷 治郎¹ ○織茂 悠貴¹, 佐藤 健¹, 石川 顕一¹	1.東大院工
16:00	17p-A501-12	非断熱分子ダイナミクスのための時間依存結合クラス ター法の開発 III	○佐藤健¹,石川顕一¹	1. 東大院工
	Sat.) 9:00 - 10:45 沼 E 18a-A501-1	口頭講演 (Oral Presentation) A501会場 (Room A501) [The 1st Diversity & Inclusion Awards Young Female Researchers Award] Development of an optical parametric amplifier laser system delivering CEP-stabilized sub-cycle pulses in SWIR region	○ Yu-Chieh Lin¹, Yasuo Nabekawa¹, Katsumi Midorikawa¹	1.RIKEN
	10 4501 0	モード同期Ybファイバーレーザーの数サイクルバルス発	○姜 東彦¹, 乙津 聡夫¹, 谷 峻太郎¹, 小林 洋平¹	1. 東京大学 物性研究所
9:30	18a-A501-2	生		
9:30 9:45	E 18a-A501-3	生 Multi-TW single-cycle laser based on the advanced DC-OPA	○ (P)Lu Xu ^{1,2} , Eiji J. Takahashi ^{1,3}	1.UFSXP, RAP, RIKEN, 2.AS, RAP, RIKEN, 3.ELSL, CPR, RIKEN

10:15	E 18a-A501-5	High power KTA-based OPA at 3.2 μ m at 1 kHz	○ (D)Tianqi Yang ^{1, 2} , Takayuki Kurihara ¹ , Tomoya Mizuno ¹ , Teruto Kanai ¹ , Yoshihisa Harada ^{1, 2} , Jiro Itatani ¹	1.ISSP, Univ. Tokyo, 2.GSFS, Univ. Tokyo
10:30	E 18a-A501-6	Frequency-Modulation Mode-Locked Cr:ZnS Laser	(P)Zheyuan Zhang¹, Daiki Okazaki¹, Xiangbao Bu¹, Ikki Morichika¹, Satoshi Ashihara¹	1.Tokyo Univ. IIS
3/18	Sat.) 13:00 - 16:30	口頭講演 (Oral Presentation) A501会場 (Room A501)	Du , ikki Moriciika , Satosiii Asiiiiara	
13:00		非線形光学過程におけるエンジニアリング - ラマン共鳴 四波混合過程を典型例として -	○桂川 眞幸 ^{1,2} , 大饗 千彰 ^{1,2} , 鄭 健 ¹ , 劉 衛永 ¹	1. 電通大情報理工, 2. 電通大量子
13:15	18p-A501-2		大饗 千彰 $^{1.2}$,劉 衛永 1 ,鄭 健 1 ,佐藤 昂大 1 ,鈴木 勝 $^{1.2}$, 美濃島 薫 $^{1.2}$,小川 尚史 3 ,高野 哲至 3 ,〇桂川 眞幸 $^{1.2}$	1. 電通大情報理工, 2. 電通大量子, 3. 日亜化学
13:30	E 18p-A501-3	Multiple spectral peaks filtering through nonlinear polarization rotation with molecular gas absorbed-femtosecond lasers	○ Kwangyun Jung¹, Shotaro Kitajima¹, Norihiko Nishizawa¹	1.Nagoya Univ.
13:45	奨 18p-A501-4	ファイバ型非線形偏光干渉ループミラーを用いたスペクトルピークの抽出	○坂田 直規¹, Jung Kwangyun¹, 北島 将太朗¹, 西澤 典彦¹	1.名大院
14:00	奨 18p-A501-5	206 MHz全偏波保持光周波数コムを用いた任意スペクトルピークの生成	○北島 将太朗¹, Jung Kwangyun¹, 西澤 典彦¹	1.名大院工
14:15	奨 18p-A501-6	赤外モード同期レーザーを用いたバックグラウンドフ リー相関分光法	○藤原 心 ¹, 宋 文清 ¹, 岡崎 大樹 ¹, 森近 一貴 ¹, 芦原 聡 ¹	1. 東大生研
14:30 14:45	奨 18p-A501-7	休憩/Break 100-MHz 全偏波保持機械共有型デュアルコムファイバ レーザーの開発	○(B)長尾 康生¹, 遠藤 健¹, 田 昊晨¹², 浅原 彰文¹, 美濃島 薫¹	1. 電通大, 2.JSPS 外国人特別研究員
15:00	18p-A501-8	単層カーボンナノチューブを用いた全偏波保持散逸性ソ リトンモード同期 Er添加デュアルコムファイバレーザー	水津 慶一郎1, 北島 将太郎1, 榊原 陽一2, 面田 恵美	1. 名大院工, 2. 産総研
15:15	18p-A501-9	の開発と評価 双方向動作型デュアルコムファイバレーザーによる超短 パルス光の生成	○(B)窪田 光佑¹,内山 竜成¹,湯本 拓実¹,穀山 涉², 中嶋 善晶¹	1. 東邦大学, 2. 産業技術総合研究所
15:30	18p-A501-10	デュアルコムファイバレーザーにおける相対タイミング	○中嶋 善晶¹,窪田 光佑¹,内山 竜成¹,湯本 拓実¹,穀	1. 東邦大, 2. 産総研
15:45	18p-A501-11	ジッターの高感度検出 熱鈍感なマイクロコム	山 渉 ² ○久世 直也 ^{1,2} , 西本 健司 ³ , 美濃島 薫 ^{1,4}	1.徳大pLED, 2.JST さきがけ, 3.徳大院, 4.電通大情報 理工
16:00	18p-A501-12	ソリトンマイクロコムの広範囲精密チューニング	○藤井 瞬 ^{1,2} , 和田 幸四郎 ¹ , 菅野 凌 ¹ , 熊崎 基 ¹ , 木暮 蒼真 ¹ , 加藤 雄一郎 ² , 田邉 孝純 ¹	
16:15	18p-A501-13	天体の視線速度測定用分光器校正のための高繰り返し光 コムの広帯域化		1. 東邦大学, 2. 産総研
3.6 レ	ーザープロセシング	(旧3.7) / Laser processing (formerly 3.7)		
3/16		ポスター講演 (Poster Presentation) PA会場(Room PA)		
		F ₂ レーザーによる Al ₂ O ₃ 薄膜の形成 (2)	○(M1)奥園 聡史¹,吉田 剛¹,大越 昌幸¹	1.防衛大電気電子
	16a-PA05-2	レーザー焼結法によるハイドロキシアパタイトの微細構	○溝上 真由', 三上 勝大', 西川 博昭'	1.近大生物理工
2/17	(Fri.) 9:00 - 11:30	造の検討 口頭講演 (Oral Presentation) A405 会場(Room A405)		
9:00		レーザーアブレーションおける電子温度効果:分子動力	○小林 息¹ 乙部 恕仁²	1.名工大工, 2.量研機構
7.00	114 11100 1	学シミュレーション	ON THE PERSON NAMED IN THE	1. II = / (L.) E WIDON
9:15	17a-A405-2	高強度フェムト秒レーザーから金属へのエネルギー移行 における電子間散乱の効果	○谷 水城 1.2, 乙部 智仁 2, 篠原 康 1, 石川 顕一 1	1. 東大院工, 2. 量研関西
9:30	17a-A405-3	熱的・非熱的レーザー破壊閾値の境界決定	○遠藤 翼¹, 谷 峻太郎¹, 櫻井 治之¹, 小林 洋平¹	1. 東大物性研
9:45	E 17a-A405-4	Preparation of manganese phthalocyanine nanoparticles by laser ablation in liquid and application to contrast	○ Yuchun Wang¹, Hiroyuki Wada¹	1.Tokyo Tech
10:00	17a-A405-5	agents for photoacoustic imaging 中赤外線自由電子レーザーバルス列を用いた微細周期構 造形成のポンププローブ計測	○升野振一郎¹,橋田昌樹¹.²,全炳俊³,時田茂樹¹	1. 京大化研, 2. 東海大総科研, 3. 京大エネ研
10:15		休憩/Break		
10:30		YAG レーザによるステンレスのアブレーション閾値測定		1. 東海大工, 2. 総合科技研
10:45	17a-A405-7	レーザーアブレーション過程で放出された液滴の挙動	伊東 佑真¹,吉田 岳人²,青木 珠緒¹,○梅津 郁朗¹	1. 甲南大理工, 2. 阿南高専
11:00		Laser Processing Properties of Tungsten-Rhenium Alloy and Potassium-doped Tungsten	Chihiro Suzuki ^{1,2} , Hiyori Uehara ^{1,2}	
11:15	17a-A405-9	フェムト秒レーザーを用いた ZnO 基板への単一ナノ溝構 造の形成	○(B)森本 純至 ^{1,2} , Shi Bai ¹ , 小幡 孝太郎 ¹ , 宮地 悟代 ² , 杉岡 幸次 ¹	1.理研 光量子, 2. 東京農工大
3/17 13:00	(Fri.) 13:00 - 16:45 奨 17p-A405-1	口頭講演 (Oral Presentation) A405 会場(Room A405) 自由電子レーザー照射によってSi基板に形成された微細	○(M1)星野 陽太¹,野平 真義¹,岩田 展幸¹	1.日大理工
13:15	奨 17p-A405-2	構造(LIPSS) GHzバーストモードフェムト秒レーザーを用いたTi表面	○川端 祥太 ^{1,2} , 白 石 ^{1,3} , 小幡 孝太郎 ¹ , 宮地 悟代 ² , 杉	1. 理研 光量子, 2. 東京農工大, 3. 河北科技大
13:30	奨 17p-A405-3	への新奇2次元表面微細周期構造の形成 鉄鋼材料への炭化水素液中での短バルスレーザー照射に	岡 幸次¹ ○鈴木 基牛¹. 田中 良樹¹. 中村 友哉¹. 劉 暁旭¹. 前川	1.名工大
13:45	<u> </u>	よる耐摩耗性表面作製 レーザードーピング後の光学顕微鏡画像を用いた機械学	$ \dot{\mathbb{C}}^{1} $, 糸魚川 文広 1 , 小野 晋吾 1	
14:00	<u> </u>	習による 4H-SiC 電極のコンタクト状態の予測 フェムト秒レーザ照射下のガラス内部における電子励起	村 大輔1,後藤 哲也3,池上 浩1.2	未来研
		過程の時間分解定量イメージング		
14:15 14:30	奨 17p-A405-6 奨 17p-A405-7	木材成分へのレーザー照射による生成物の特性評価 p/n 半導性制御のための不純物ドープ β - Ga_2O_3 薄膜の室 温固相結晶化に向けたエキシマレーザーアニールプロセスの検討	〇沼田 拓実 1 , 甲斐 稜也 1 , 大賀 友瑛 1 , 金子 智 $^{1.2}$, 松	1.東工大物質理工, 2.東工大理 1.東工大物質理工, 2.神奈川産技総研
14:45 15:00	奨 17p-A405-8	休憩/Break 液中レーザー照射によるイオン交換ゼオライトナノ粒子 の作製と評価	○小西 紀進1,和田 裕之1	1.東工大物
15:15	奨 17p-A405-9		○魏 超然¹, 伊藤 佑介¹, 服部 隼也¹, 孫 慧傑¹, 北村 章 吾¹, 杉田 直彦¹	1.東大院工
15:30	奨 17p-A405-10	フィードバック制御によるガラス表面へのフェムト秒	\bigcirc 長井 大輔 1,2 , 高田 英行 2 , 奈良崎 愛子 2 , 宮地 悟代 1	1.東京農工大, 2.産総研
15:45	奨 E 17p-A405-11	レーザー誘起ナノ周期構造の安定形成 Excitation dynamics in silicon using two-dimensional	○(P)Prachi Venkat ¹ , Tomohito Otobe ^{1, 2}	1.KPSI (QST), 2.PSC (Univ. of Tokyo)
16:00	17p-A405-12	Three-Temperature Model 深層学習を用いた多種誘電体材料のレーザー深穴加工シ ミュレータ開発	○(D)島原 光平¹, 谷 峻太郎¹, 櫻井 治之¹, 小林 洋 平¹	1. 東大物性研
16:15	17p-A405-13	ミュレーダ開発 深層学習を用いたレーザー誘起ナノ周期構造の推定による最適レーザー照射パラメータの決定		1.宇都宮大学オプティクス教育センター
		▽取四レ ッ 38初ハノケーテの伏比		

16:30	17p-A405-14	計算機ホログラムサーバーを備えるホログラフィック光 学エンジン	○(M1)小杉 健文¹, 長谷川 智士¹, 早崎 芳夫¹	1.宇都宮大オプティクス
3/18(S	at) 9:00 - 11:30	口頭講演 (Oral Presentation) A405会場(Room A405)		
9:00		ナノ秒レーザーバルス照射による高品質極浅穴およびラインの作製	○曽田 圭亮¹, 安東 航太¹, 中嶋 隆¹	1.京都大
9:15	18a-A405-2	水電解用電極面のレーザー加工による電解効率向上	○曽田 圭亮¹, 安東 航太¹, 内本 喜晴¹, 中嶋 隆¹	1.京都大
9:30	18a-A405-3	モスアイ反射防止構造の透過スペクトルの格子構造依存	\bigcirc 小池 陸生 1 , 川野 将太郎 1 , 櫻井 治之 1 , 小西 邦昭 1 ,	
9:45	18a-A405-4	性 透明フッ素樹脂材料CYTOPへの3次元マイクロ流路 チップの作製と高解像度細胞観察への応用	三尾 典克 ¹ ○半澤 未来 ^{1,2} , 小幡 孝太郎 ¹ , 河野 弘幸 ³ , 尾笹 一成 ¹ , 花田 修賢 ⁴ , 宮脇 敦史 ³ , 宮地 悟代 ² , 杉岡 幸次 ¹	1. 理研 光量子, 2. 農工大, 3. 理研 CBS, 4. 弘前大
10:00	E 18a-A405-5	Ultrahigh Speed Femtosecond Laser Fabrication of Numerous Glass Micro-chambers for Molecular Analysis	○ (P)Jiawei Zhang¹, Kotaro Obata¹, Koji Sugioka¹	1.RIKEN
10:15		休憩/Break		the same and the same
10:30 10:45		SiC上のFe/Cr/Ni 積層膜へのフェムト秒レーザー照射 鉄/クロム/ニッケル薄膜へのピコ秒レーザー照射による		1. 徳島大理工, 2. 秋田大理工 1. 徳島大理工, 2. 東大物性研, 3. 秋田大理工
11:00	18a-A405-8	新奇合金生成のバルス時間幅依存性 レーザーで作成した電極表面マイクロ構造における水素	洋平 ² , 富田 卓朗 ¹ ○安東 航太 ¹ , Xiaofeng Wang ¹ , 内本 喜晴 ¹ , 中嶋 隆 ¹	1.京都大学
11:15	18a-A405-9	気泡の生成挙動 ナノ秒ファイバーレーザーを用いたガラス光拡散板の作	○安東 航太¹, Weikang Rong¹, 中嶋 隆¹	1.京都大学
		製		
		口頭講演 (Oral Presentation) A405 会場 (Room A405)		a label Lattings of label Littlewines
13:00	•	アルギン酸ハイドロゲルへのレーザー照射による導電性 黒鉛質炭素構造の作製	川 光洋 1.2	
13:15	•	フェムト秒レーザーの高速走査による温度応答性ハイド ロゲル内部の多光子還元		1.慶大理工, 2.慶大院理工
13:30	18p-A405-3	フェムト秒レーザーを用いたコラーゲンの3Dマイクロ 流体構造の作製	○阿部 航大¹, 山田 壮平¹, 花田 修賢¹	1. 弘前大理工
13:45	18p-A405-4	Holographic laser processing machine with a rotating	\bigcirc (M1)YUTA NAKAMURA 1 , SATOSHI	1.Utsunomiya Univ.
14:00	18p-A405-5	stage レーザー穴加工におけるレーザー生成音を用いたレンズ	HASEGAWA¹, YOSHIO HAYASAKI¹ ○早崎 芳夫¹, 三浦 拓真¹, 熊谷 幸汰¹	1.宇都宮大オプティクス
14:15	18p-A405-6	位置制御 紙のフェムト秒レーザーに加工	清水 大輔¹, ○早崎 芳夫¹	1. 宇都宮大オプティクス
14:30 14:45	•	休憩/Break フェムト秒レーザー粒子集積プロセスにおける集光部近		1.山形大院理工
15:00	18p-A405-8	傍の伝熱解析	○西山 宏昭¹, 松本 春加¹, 大森 隆史¹	1. 山形大院理工
15:15		体のライン描画 レーザー加工時におけるリアルタイム温度計測の高感度		1. 産総研
	•	化		
15:30	18p-A405-10	レーザー誘起衝撃波によりメタノール中で生成した分子 の赤外吸収分光	石川 和香子 ', ○佐滕 俊一 '	1.東北大多元研
15:45	18p-A405-11	超高速時間分解複屈折イメージングによる超短バルス レーザー誘起異方性ナノ構造の動的観察	盛合 靖章 ^{2,4} , 小川 博嗣 ^{2,3} , 田中 真人 ^{2,3} , 坂上 和之 ⁵ ,	1.早大理工総研, 2.産総研オペランド計測 OIL, 3.産総研分析計測標準, 4.東大物性研, 5.東大院工
			菅尾 方一 ¹ 小林 洋平 ^{4,4} 里田 隆之肋 ^{4,3}	
3.7 光計》	則技術・機器(旧3	3.8) / Optical measurement, instrumentation, and sensor	鷲尾 方一 ¹ , 小林 洋平 ^{2,4} , 黒田 隆之助 ^{2,3}	
	hu.) 9:30 - 11:30	ポスター講演 (Poster Presentation) PA会場(Room PA)	(formerly 3.8)	
	hu.) 9:30 - 11:30		(formerly 3.8)	1.早大先進理工, 2.早大材研, 3.早大ナノライフ
	hu.) 9:30 - 11:30 16a-PA06-1	ポスター講演 (Poster Presentation) PA会場(Room PA) 複屈折の測定に対するモノクロメータによる不完全な単	(formerly 3.8) ○ (B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日	
	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2	ポスター講演 (Poster Presentation) PA 会場(Room PA) 複屈折の測定に対するモノクロメータによる不完全な単 色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のパタワースローパス	(formerly 3.8) ○ (B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹.³ ○ (BC) 長瀬 仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金 蓮花¹, ジェローズ ベルナール²	
	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2	ポスター講演 (Poster Presentation) PA 会場(Room PA) 複屈折の測定に対するモノクロメータによる不完全な単 色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹.³ ○(BC) 長瀬 仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金 蓮花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak	1.山梨大学, 2.名古屋大学
	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4	ポスター講演 (Poster Presentation) PA 会場 (Room PA) 複屈折の測定に対するモノクロメータによる不完全な単 色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバス フィルタ画像処理と非参照画質スコアを用いた評価	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹.3 ○(BC) 長瀬 仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金 蓮花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村 一¹, 石橋	 1. 山梨大学, 2. 名古屋大学 1. 大阪公大工 1. 産総研, 2. ニコラス・コベルニクス大学
	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5	ボスター講演 (Poster Presentation) PA会場 (Room PA) 複屈折の測定に対するモノクロメータによる不完全な単 色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバス フィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性	(formerly 3.8) ○ (B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹.³ ○ (BC) 長瀬 仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金連花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村 一¹, 石橋正二郎² ○大久保 洸祐¹, ラゴロサス ノフェル¹, 椎名 達雄¹	 1. 山梨大学, 2. 名古屋大学 1. 大阪公大工 1. 産総研, 2. ニコラス・コベルニクス大学 1. 浜松ホトニクス, 2. 海洋研究開発機構 1. 千葉大院
	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-6 16a-PA06-7	ボスター講演 (Poster Presentation) PA 会場(Room PA) 復屈折の測定に対するモノクロメータによる不完全な単 色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバス フィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMTの開発 低コヒーレンスドップラーライダーのための光源の検討 海洋水質ライダーの開発に向けた CO₂ラマン散乱信号の 測定	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹.³ ○(BC) 長瀬 仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村一¹, 石橋正二郎² ○大久保 洸祐¹, ラゴロサス ノフェル¹, 椎名 達雄¹ ○(M1) 伊藤 翔¹, 鈴木 謙一², 手塚 耕一², 椎名 達雄¹	 1.山梨大学, 2.名古屋大学 1.大阪公大工 1.産総研, 2.ニコラス・コベルニクス大学 1.浜松ホトニクス, 2.海洋研究開発機構 1.千葉大院 1.千葉大院, 2.トリマティス
	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-6 16a-PA06-7	ボスター講演 (Poster Presentation) PA会場(Room PA) 複屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMTの開発 低コヒーレンスドップラーライダーのための光源の検討 海洋水質ライダーの開発に向けた CO2 ラマン散乱信号の 測定 光学キャビティ効果を用いた水素ガスセンサの開発	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹.³ ○(BC) 長瀬 仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村一¹, 石橋 正二郎² ○大久保 洸祐¹, ラゴロサス ノフェル¹, 椎名 達雄¹ ○(M1) 伊藤 翔¹, 鈴木 謙一², 手塚 耕一², 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根 治起², 梁瀬 智², 高橋 慎吾², 山川 清志²	1. 山梨大学, 2. 名古屋大学 1. 大阪公大工 1. 産総研, 2. ニコラス・コベルニクス大学 1. 浜松ホトニクス, 2. 海洋研究開発機構 1. 千葉大院 1. 千葉大院, 2. トリマティス 1. Tianma Japan, 2. 秋田産技センター
	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-6 16a-PA06-7 16a-PA06-8	ボスター講演 (Poster Presentation) PA会場(Room PA) 複屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMT の開発 低コヒーレンスドップラーライダーのための光源の検討海洋水質ライダーの開発に向けた CO2ラマン散乱信号の測定 光学キャビティ効果を用いた水素ガスセンサの開発 光導波路を用いた高出力・高速近赤外分光器の開発	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹.³ ○(BC) 長瀬 仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村 一¹, 石橋正二郎² ○大久保 洗祐¹, ラゴロサス ノフェル¹, 椎名 達雄¹ ○(M1) 伊藤 翔¹, 鈴木 謙一², 手塚 耕一², 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根 治起², 梁瀬 智², 高橋 慎吾², 山川 清志² ○佐原 純輝¹, 五十嵐 彩¹, 赤井 伸伍¹, 世良 英之¹, 川越 寛之¹, 横山 拓馬¹, 山田 剛¹	 1. 山梨大学, 2. 名古屋大学 1. 大阪公大工 1. 産総研, 2. ニコラス・コベルニクス大学 1. 浜松ホトニクス, 2. 海洋研究開発機構 1. 千葉大院 1. 千葉大院 1. 千葉大院, 2. トリマティス 1. Tianma Japan, 2. 秋田産技センター 1. ウシオ電機株式会社
	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-6 16a-PA06-7 16a-PA06-8 16a-PA06-9 16a-PA06-10	ボスター講演 (Poster Presentation) PA会場 (Room PA) 復屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMTの開発 低コヒーレンスドップラーライダーのための光源の検討 海洋水質ライダーの開発に向けた CO2 ラマン散乱信号の測定 光学キャビティ効果を用いた水素ガスセンサの開発 光導波路を用いた高出力・高速近赤外分光器の開発レーザーを用いた微小半導体チップの検査手法の開発	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹.³ ○(BC) 長瀬 仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村 一¹, 石橋正二郎² ○大久保 洸祐¹, ラゴロサス ノフェル¹, 椎名 達雄¹ ○(M1) 伊藤 翔¹, 鈴木 謙一², 手塚 耕一², 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根 治起², 梁瀬 智², 高橋 慎吾², 山川 清志² ○佐原 純輝¹, 五十嵐 彩¹, 赤井 仲伍¹, 世良 英之¹, 川越 寛之², 横山 拓馬¹, 山田 剛¹ ○寺内 玲碧¹, 三上 勝大¹, 松山 哲也¹, 池田 研一², 中南 友佑², 大竹 政則²	 1. 山梨大学, 2. 名古屋大学 1. 大阪公大工 1. 産総研, 2. ニコラス・コベルニクス大学 1. 浜松ホトニクス, 2. 海洋研究開発機構 1. 千葉大院 1. 千葉大院, 2. トリマティス 1. Tianma Japan, 2. 秋田産技センター 1. ウシオ電機株式会社 1. 近大生物理工, 2. 株式会社オプト・システム
	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-7 16a-PA06-7 16a-PA06-9 16a-PA06-10	ボスター講演 (Poster Presentation) PA会場 (Room PA) 複屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMTの開発 低コヒーレンスドップラーライダーのための光源の検討 海洋水質ライダーの開発に向けた CO₂ラマン散乱信号の測定 光学キャビティ効果を用いた水素ガスセンサの開発 光導波路を用いた高出力・高速近赤外分光器の開発レーザーを用いた微小半導体チップの検査手法の開発 短時間フーリエ変換を用いた干渉計の走査機構の線形性の確認	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹³ ○(BC) 長瀬 仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村 一¹, 石橋正二郎² ○大久保 洸祐¹, ラゴロサス ノフェル¹, 椎名 達雄¹ ○(M1) 伊藤 翔¹, 鈴木 謙一², 手塚 耕一², 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根 治起², 梁瀬 智², 高橋 慎吾², 山川 清志² ○佐原 純輝¹, 五十嵐 彩¹, 赤井 伸伍¹, 世良 英之¹, 川越 寛之¹, 横山 拓馬¹, 山田 剛¹ ○寺内 玲碧¹, 三上 勝大¹, 松山 哲也¹, 池田 研一², 中南 友佑², 大竹 政則² ○章 冬¹, 坂井 映斗², 野口 隼人², 長谷川 就¹	1.山梨大学, 2.名古屋大学 1.大阪公大工 1.産総研, 2.ニコラス・コペルニクス大学 1.浜松ホトニクス, 2.海洋研究開発機構 1.千葉大院 1.千葉大院 1.千葉大院, 2.トリマティス 1.Tianma Japan, 2.秋田産技センター 1.ウシオ電機株式会社 1.近大生物理工, 2.株式会社オプト・システム 1.長岡技大機械工学専攻, 2.長岡技大機械工学課程
	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-6 16a-PA06-7 16a-PA06-7 16a-PA06-10 16a-PA06-11 16a-PA06-12	ボスター講演 (Poster Presentation) PA会場 (Room PA) 複屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMT の開発 低コヒーレンスドップラーライダーのための光源の検討海洋水質ライダーの開発に向けた CO2ラマン散乱信号の測定 光学キャビティ効果を用いた水素ガスセンサの開発 光導波路を用いた高出力・高速近赤外分光器の開発 レーザーを用いた微小半導体チップの検査手法の開発 短時間フーリエ変換を用いた干渉計の走査機構の線形性の確認 位相シフト照明式外観欠陥検査における人工構造と欠陥との弁別手法の確立	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹³ ○(BC) 長瀬仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村一¹, 石橋正二郎² ○大久保 洸枯¹, ラゴロサス ノフェル¹, 椎名 達雄¹ ○(M1) 伊藤 翔¹, 鈴木 謙一², 手塚 耕一², 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根 治起², 梁瀬 智², 高橋 慎吾², 山川 清志² ○佐原 純輝¹, 五十嵐 彩¹, 赤井 伸伍¹, 世良 英之¹, 川越 寛之¹, 横山 拓馬¹, 山田 剛¹ ○寺内 玲碧¹, 三上 勝大¹, 松山 哲也¹, 池田 研一², 中南 友佑², 大竹 政則² ○韋 冬¹, 坂井 映斗², 野口 隼人², 長谷川 就¹ ○大西 義人¹, 瀬尾 欣穂¹, 松岡 正興², 芹川 滋³, 津金 賢²	1.山梨大学, 2.名古屋大学 1.大阪公大工 1.産総研, 2.ニコラス・コペルニクス大学 1.浜松ホトニクス, 2.海洋研究開発機構 1.千葉大院 1.千葉大院, 2.トリマティス 1.Tianma Japan, 2.秋田産技センター 1.ウシオ電機株式会社 1.近大生物理工, 2.株式会社オブト・システム 1.長岡技大機械工学専攻, 2.長岡技大機械工学課程 1.(株)日立製作所, 2.(株)日立ハイテク, 3.(株)日立ハイテクソリューションズ
	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-6 16a-PA06-7 16a-PA06-7 16a-PA06-10 16a-PA06-11 16a-PA06-12	ボスター講演 (Poster Presentation) PA会場 (Room PA) 複屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMT の開発 低コヒーレンスドップラーライダーのための光源の検討海洋水質ライダーの開発に向けた CO2ラマン散乱信号の測定 光学キャビティ効果を用いた水素ガスセンサの開発 光導波路を用いた高出力・高速近赤外分光器の開発 レーザーを用いた微小半導体チップの検査手法の開発 短時間フーリエ変換を用いた干渉計の走査機構の線形性の確認 位相シフト照明式外観欠陥検査における人工構造と欠陥	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹³ ○(BC) 長瀬仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村一¹, 石橋正二郎² ○大久保 洸枯¹, ラゴロサス ノフェル¹, 椎名 達雄¹ ○(M1) 伊藤 翔¹, 鈴木 謙一², 手塚 耕一², 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根 治起², 梁瀬 智², 高橋 慎吾², 山川 清志² ○佐原 純輝¹, 五十嵐 彩¹, 赤井 伸伍¹, 世良 英之¹, 川越 寛之¹, 横山 拓馬¹, 山田 剛¹ ○寺内 玲碧¹, 三上 勝大¹, 松山 哲也¹, 池田 研一², 中南 友佑², 大竹 政則² ○韋 冬¹, 坂井 映斗², 野口 隼人², 長谷川 就¹ ○大西 義人¹, 瀬尾 欣穂¹, 松岡 正興², 芹川 滋³, 津金 賢²	1.山梨大学, 2.名古屋大学 1.大阪公大工 1.産総研, 2.ニコラス・コベルニクス大学 1.浜松ホトニクス, 2.海洋研究開発機構 1.千葉大院 1.千葉大院 1.千葉大院, 2.トリマティス 1.Tianma Japan, 2.秋田産技センター 1.ウシオ電機株式会社 1.近大生物理工, 2.株式会社オプト・システム 1.長岡技大機械工学専攻, 2.長岡技大機械工学課程 1.(株)日立製作所, 2.(株)日立ハイテク, 3.(株)日立ハ
3/16(TI	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-6 16a-PA06-7 16a-PA06-9 16a-PA06-10 16a-PA06-11 16a-PA06-12 16a-PA06-13 nu.) 13:00 - 17:00	ボスター講演 (Poster Presentation) PA会場 (Room PA) 複屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMT の開発 低コヒーレンスドップラーライダーのための光源の検討海洋水質ライダーの開発に向けた CO2ラマン散乱信号の測定 光学キャビティ効果を用いた水素ガスセンサの開発 光導波路を用いた高出力・高速近赤外分光器の開発 レーザーを用いた微小半導体チップの検査手法の開発 短時間フーリエ変換を用いた干渉計の走査機構の線形性の確認 位相シフト照明式外観欠陥検査における人工構造と欠陥との弁別手法の確立 グースペンシェンシフト計測による共鳴格子バイオセン	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹.³ ○(BC) 長瀬仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮化¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村一¹, 石橋正二郎² ○(M1) 伊藤 翔¹, 鈴木 謙一², 手塚 耕一², 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根 治起², 梁瀬 智², 高橋 慎吾², 山川 清志² ○佐原 純輝¹, 五十嵐 彩¹, 赤井 伸伍¹, 世良 英之¹, 川越 寛之¹, 横山 拓馬¹, 山田 剛¹ ○寺内 玲碧¹, 三上 勝大¹, 松山 哲也¹, 池田 研一², 中南 友佑², 大竹 政則² ○韋 冬¹, 坂井 映斗², 野口 隼人², 長谷川 就¹ ○大西 義人¹, 瀬尾 欣徳¹, 松岡 正興², 芹川 滋³, 津金 賢² ○清水 裕貴¹, 水谷 彰夫¹, 菊田 久雄¹	1. 山梨大学, 2. 名古屋大学 1. 大阪公大工 1. 産総研, 2. ニコラス・コペルニクス大学 1. 浜松ホトニクス, 2. 海洋研究開発機構 1. 千葉大院 1. 千葉大院 1. 千葉大院 1. 千葉大院 1. 丁葉大院, 2. トリマティス 1. Tianma Japan, 2. 秋田産技センター 1. ウシオ電機株式会社 1. 近大生物理工, 2. 株式会社オプト・システム 1. 長岡技大機械工学専攻, 2. 長岡技大機械工学課程 1. (株) 日立製作所, 2. (株) 日立ハイテク, 3. (株) 日立ハイテクソリューションズ 1. 大阪公大工
3/16(TI	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-5 16a-PA06-7 16a-PA06-7 16a-PA06-10 16a-PA06-11 16a-PA06-11 16a-PA06-13 hu.) 13:00 - 17:00 16p-A502-1	ボスター講演 (Poster Presentation) PA会場 (Room PA) 複屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMTの開発 低コヒーレンスドップラーライダーのための光源の検討海洋水質ライダーの開発に向けた CO2 ラマン散乱信号の測定 光学キャビティ効果を用いた水素ガスセンサの開発 上導波路を用いた高出力・高速近赤外分光器の開発レーザーを用いた微小半導体チップの検査手法の開発 短時間フーリエ変換を用いた干渉計の走査機構の線形性の確認 位相シフト照明式外観欠陥検査における人工構造と欠陥との弁別手法の確立 グースペンシェンシフト計測による共鳴格子バイオセンサの検討 口頭講演 (Oral Presentation) A502会場 (Room A502) 非同期光サンプリング法(ASOPS)を用いた低ノイズな時間分解反射率計測 バックグラウンドフリーで赤外吸収を計測する分光法の	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹.³ ○(BC) 長瀬仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村 一¹, 石橋正二郎² ○大久保 洸枯¹, ラゴロサス ノフェル¹, 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根 治起², 梁瀬 智², 高橋 慎吾², 山川 清志² ○佐原 純輝¹, 五十嵐 彩¹, 赤井 伸伍¹, 世良 英之¹, 川越 寛之¹, 横山 拓馬¹, 山田 剛¹ ○寺内 玲碧¹, 三上 勝大¹, 松山 哲也¹, 池田 研一², 中南 友佑², 大竹 政則² ○韋 冬¹, 坂井 映斗², 野口 隼人², 長谷川 就¹ ○大西 義人¹, 瀬尾 欣穂¹, 松岡 正興², 芹川 滋³, 津金 賢² ○清水 裕貴¹, 水谷 彰夫¹, 菊田 久雄¹ ○日達 研一¹, 石澤 淳², 石川 憲治³, 眞田 治樹¹, 小栗 克弥¹ ○趙 越¹, 黄 威紘¹², 草間 翔太¹, 小澤 進太¹, 羅 志	1. 山梨大学, 2. 名古屋大学 1. 大阪公大工 1. 産総研, 2. ニコラス・コペルニクス大学 1. 浜松ホトニクス, 2. 海洋研究開発機構 1. 千葉大院 1. 千葉大院 1. 千葉大院 1. 千葉大院 1. 丁葉大院, 2. トリマティス 1. Tianma Japan, 2. 秋田産技センター 1. ウシオ電機株式会社 1. 近大生物理工, 2. 株式会社オプト・システム 1. 長岡技大機械工学専攻, 2. 長岡技大機械工学課程 1. (株) 日立製作所, 2. (株) 日立ハイテク, 3. (株) 日立ハイテクソリューションズ 1. 大阪公大工
3/16(TH	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-6 16a-PA06-7 16a-PA06-7 16a-PA06-10 16a-PA06-11 16a-PA06-12 16a-PA06-13 hu.) 13:00 - 17:00 16p-A502-2	ボスター講演 (Poster Presentation) PA会場 (Room PA) 複屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMT の開発 低コヒーレンスドップラーライダーのための光源の検討 海洋水質ライダーの開発に向けた CO2ラマン散乱信号の測定 光学キャビティ効果を用いた水素ガスセンサの開発 上導波路を用いた高出力・高速近赤外分光器の開発 レーザーを用いた微小半導体チップの検査手法の開発 短時間フーリエ変換を用いた干渉計の走査機構の線形性の確認 位相シフト照明式外観欠陥検査における人工構造と欠陥との弁別手法の確立 グースヘンシェンシフト計測による共鳴格子バイオセンサの検討 口頭請演 (Oral Presentation) A502 会場 (Room A502) 非同期光サンプリング法(ASOPS) を用いた低ノイズな時間分解反射率計測 バックグラウンドフリーで赤外吸収を計測する分光法の開発 周波数領域光相関法の測定原理に則した計算アルゴリズ	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹³ ○(BC) 長瀬 仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciurylo Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村 一¹, 石橋正二郎² ○大久保 洸枯¹, ラゴロサス ノフェル¹, 椎名 達雄¹ ○(M1) 伊藤 翔¹, 鈴木 謙一², 手塚 耕一², 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根 治起², 梁瀬 智², 高橋 慎吾², 山川 清志² ○佐原 純輝¹, 五十嵐 彩¹, 赤井 伸伍¹, 世良 英之¹, 川 越 寛之¹, 横山 拓馬¹, 山田 剛¹ ○寺内 玲碧¹, 三上 勝大¹, 松山 哲也¹, 池田 研一², 中南 友佑², 大竹 政則² ○章 冬¹, 坂井 映斗², 野口 隼人², 長谷川 就¹ ○大西 義人¹, 瀬尾 欣穂¹, 松岡 正興², 芹川 滋³, 津金賢² ○清水 裕貴¹, 水谷 彰夫¹, 菊田 久雄¹ ○日達 研一¹, 石澤 淳², 石川 憲治³, 眞田 治樹¹, 小栗 克弥¹ ○趙 越¹, 黄 威紘¹², 草間 翔太¹, 小澤 進太¹, 羅 志偉², 藤 貴夫¹	1. 山梨大学, 2. 名古屋大学 1. 大阪公大工 1. 産総研, 2. ニコラス・コペルニクス大学 1. 浜松ホトニクス, 2. 海洋研究開発機構 1. 千葉大院 1. 千葉大院 1. 千葉大院, 2. トリマティス 1. Tianma Japan, 2. 秋田産技センター 1. ウシオ電機株式会社 1. 近大生物理工, 2. 株式会社オブト・システム 1. 長岡技大機械工学専攻, 2. 長岡技大機械工学課程 1. (株) 日立製作所, 2. (株) 日立ハイテク, 3. (株) 日立ハイテクソリューションズ 1. 大阪公大工 1. NTT物性研, 2. 日大, 3.NTT CS研
3/16(TH 3/16(TH 13:00	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-6 16a-PA06-7 16a-PA06-8 16a-PA06-10 16a-PA06-11 16a-PA06-12 16a-PA06-13 hu.) 13:00 - 17:00 16p-A502-1 16p-A502-2 16p-A502-3	ボスター講演 (Poster Presentation) PA会場 (Room PA) 複屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMT の開発 低コヒーレンスドップラーライダーのための光源の検討海洋水質ライダーの開発に向けた CO2ラマン散乱信号の測定 光学キャビティ効果を用いた水素ガスセンサの開発 光導波路を用いた高出力・高速近赤外分光器の開発 レーザーを用いた微小半導体チップの検査手法の開発 短時間フーリエ変換を用いた干渉計の走査機構の線形性の確認 グースへンシェンシフト計測による共鳴格子バイオセンサの検討 口頭講演 (Oral Presentation) A502 会場 (Room A502) 非同期光サンプリング法 (ASOPS) を用いた低ノイズな時間分解反射率計測 バックグラウンドフリーで赤外吸収を計測する分光法の開発 周波数領域光相関法の測定原理に則した計算アルゴリズムの検討 誘導ラマン効果による化学構造敏感な非線型動的光散乱	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹³ ○(BC) 長瀬 仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村一¹, 石橋正二郎² ○大久保 洸枯¹, ラゴロサス ノフェル¹, 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根治起², 梁瀬 智², 高橋 慎吾², 山川 清志² ○佐原 純輝¹, 五十嵐 彩¹, 赤井 伸伍¹, 世良 英之¹, 川越 寛之¹, 横山 拓馬¹, 山田 剛¹ ○寺内 玲碧¹, 三上 勝大¹, 松山 哲也¹, 池田 研一², 中南 友佑², 大竹 政則² ○韋冬¹, 坂井 映斗², 野口 隼人², 長谷川 就¹ ○大西 義人¹, 瀬尾 欣穂¹, 松岡 正興², 芹川 滋³, 津金賢² ○清水 裕貴¹, 水谷 彰夫¹, 菊田 久雄¹ ○日達 研一¹, 石澤 淳², 石川 憲治³, 眞田 治樹¹, 小栗 亮弥¹ ○趙 越¹, 黄 威紘¹², 草間 翔太¹, 小澤 進太¹, 羅 志偉², 藤貴夫¹ ○鈴木 涼介¹, 福士 海渡¹, 塩田 達俊¹	 1.山梨大学, 2.名古屋大学 1.大阪公大工 1.産総研, 2.ニコラス・コペルニクス大学 1.浜松ホトニクス, 2.海洋研究開発機構 1.千葉大院 1.千葉大院, 2.トリマティス 1.Tianma Japan, 2.秋田産技センター 1.ウシオ電機株式会社 1.近大生物理工, 2.株式会社オプト・システム 1.長岡技大機械工学専攻, 2.長岡技大機械工学課程 1.(株)日立製作所, 2.(株)日立ハイテク, 3.(株)日立ハイテクソリューションズ 1.大阪公大工 1.NTT物性研, 2.日大, 3.NTT CS研 1.豊田大工, 2.國立陽明交大
3/16(TH 13:00 13:15	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-3 16a-PA06-5 16a-PA06-5 16a-PA06-7 16a-PA06-7 16a-PA06-10 16a-PA06-11 16a-PA06-12 16a-PA06-13 hu.) 13:00 - 17:00 16p-A502-1 16p-A502-2 16p-A502-3 16p-A502-4	ボスター講演 (Poster Presentation) PA会場 (Room PA) 複屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去透過型ミューラー行列顕微鏡による薄膜膜厚分布計測ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価微量水分の吸収スペクトルのガス種依存性高効率GaAsP-MCP-PMTの開発低コヒーレンスドップラーライダーのための光源の検討海洋水質ライダーの開発に向けたCO₂ラマン散乱信号の測定光学キャピティ効果を用いた水素ガスセンサの開発レーザーを用いた微小半導体チップの検査手法の開発レーザーを用いた微小半導体チップの検査手法の開発短時間フーリエ変換を用いた干渉計の走査機構の線形性の確認位相シフト照明式外観欠陥検査における人工構造と欠陥との弁別手法の確立グースペンシェンシフト計測による共鳴格子バイオセンサの検討口頭講演(Oral Presentation) A502 会場 (Room A502)非同期光サンプリング法(ASOPS)を用いた低ノイズな時間分解反射率計測バックグラウンドフリーで赤外吸収を計測する分光法の開発 周波数領域光相関法の測定原理に則した計算アルゴリズムの検討誘導ラマン効果による化学構造敏感な非線型動的光散乱法の提案	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹³ ○(BC) 長瀬仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村 一¹, 石橋正二郎² ○大久保 洸枯¹, ラゴロサスノフェル¹, 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根 治起², 梁瀬 智², 高橋 慎吾², 山川 清志² ○佐原 純輝¹, 五十嵐 彩¹, 赤井 伸伍¹, 世良 英之¹, 川越 寛之¹, 横山 拓馬¹, 山田 剛¹ ○寺内 玲碧¹, 三上 勝大¹, 松山 哲也¹, 池田 研一², 中南 友佑², 大竹 政則² ○章 冬¹, 坂井 映斗², 野口 隼人², 長谷川 就¹ ○大西 義人¹, 瀬尾 欣穂¹, 松岡 正興², 芹川 滋³, 津金 賢² ○清水 裕貴¹, 水谷 彰夫¹, 菊田 久雄¹ ○日達 研一¹, 石澤 淳², 石川 憲治³, 眞田 治樹¹, 小栗 克弥¹ ○趙 越¹, 黄 威紘¹², 草間 翔太¹, 小澤 進太¹, 羅 志偉², 藤貴夫¹ ○鈴木 涼介¹, 福士 海渡¹, 塩田 達俊¹ ○瀬戸 啓介¹, 小林 孝嘉², 徳永 英司¹ ○(DC) 原田 裕生¹, 石河 睦生², 松川 真美¹, 小山 大	 1. 山梨大学, 2. 名古屋大学 1. 大阪公大工 1. 産総研, 2. ニコラス・コペルニクス大学 1. 浜松ホトニクス, 2. 海洋研究開発機構 1. 千葉大院 1. 千葉大院, 2. トリマティス 1. Tianma Japan, 2. 秋田産技センター 1. ウシオ電機株式会社 1. 近大生物理工, 2. 株式会社オプト・システム 1. 長岡技大機械工学専攻, 2. 長岡技大機械工学課程 1. (株) 日立製作所, 2. (株) 日立ハイテク, 3. (株) 日立ハイテクソリューションズ 1. 大阪公大工 1. NTT物性研, 2. 日大, 3.NTT CS研 1. 豊田大工, 2. 國立陽明交大 1. 埼玉大 1. 東理大, 2. 台湾陽明交通大
3/16(TH 13:00 13:15 13:30	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-6 16a-PA06-7 16a-PA06-7 16a-PA06-10 16a-PA06-11 16a-PA06-11 16a-PA06-12 16a-PA06-13 hu.) 13:00 - 17:00 16p-A502-1 16p-A502-2 16p-A502-3 16p-A502-5	ボスター講演 (Poster Presentation) PA会場 (Room PA) 複屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMTの開発 低コヒーレンスドップラーライダーのための光源の検討 海洋水質ライダーの開発に向けた CO₂ラマン散乱信号の測定 光学キャビティ効果を用いた水素ガスセンサの開発 と呼でを用いた微小半導体チップの検査手法の開発 レーザーを用いた微小半導体チップの検査手法の開発 短時間フーリエ変換を用いた干渉計の走査機構の線形性の確認 位相シフト照明式外観欠陥検査における人工構造と欠陥との弁別手法の確立 グースヘンシェント計測による共鳴格子バイオセンサの検討 口頭講演 (Oral Presentation) A502 会場 (Room A502) 非同期光サンプリング法 (ASOPS) を用いた低ノイズな時間分解反射率計測 バックグラウンドフリーで赤外吸収を計測する分光法の開発 周波数領域光相関法の測定原理に則した計算アルゴリズムの検討 誘導ラマン効果による化学構造敏感な非線型動的光散乱 法の提案	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹³ ○(BC) 長瀬仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村 一¹, 石橋正二郎² ○大久保 洸枯¹, ラゴロサス ノフェル¹, 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根 治起², 梁瀬 智², 高橋 慎吾², 山川 清志² ○佐原 純輝¹, 五十嵐 彩¹, 赤井 伸伍¹, 世良 英之¹, 川越 寛之¹, 横山 拓馬¹, 山田 剛¹ ○寺内 玲碧¹, 三上 勝大¹, 松山 哲也¹, 池田 研一², 中南 友佑², 大竹 政則² ○韋 冬¹, 坂井 映斗², 野口 隼人², 長谷川 就¹ ○大西 義人¹, 瀬居 欣穂¹, 松岡 正興², 芹川 滋³, 津金 賢² ○清水 裕貴¹, 水谷 彰夫¹, 菊田 久雄¹ ○日達 研一¹, 石澤 淳², 石川 憲治³, 眞田 治樹¹, 小栗 克弥¹ ○趙 越¹, 黄 威紘¹², 草間 翔太¹, 小澤 進太¹, 羅 志偉², 藤 貴夫¹ ○鈴木 涼介¹, 福士 海渡¹, 塩田 達俊¹ ○瀬戸 啓介¹, 小林 孝嘉², 徳永 英司¹ ○(DC) 原田 裕生¹, 石河 睦生², 松川 真美¹, 小山 大介¹	 1. 山梨大学, 2. 名古屋大学 1. 大阪公大工 1. 産総研, 2. ニコラス・コペルニクス大学 1. 浜松ホトニクス, 2. 海洋研究開発機構 1. 千葉大院 1. 千葉大院, 2. トリマティス 1. Tianma Japan, 2. 秋田産技センター 1. ウシオ電機株式会社 1. 近大生物理工, 2. 株式会社オプト・システム 1. 長岡技大機械工学専攻, 2. 長岡技大機械工学課程 1. (株) 日立製作所, 2. (株) 日立ハイテク, 3. (株) 日立ハイテクソリューションズ 1. 大阪公大工 1. NTT物性研, 2. 日大, 3.NTT CS研 1. 豊田大工, 2. 國立陽明交大 1. 埼玉大 1. 東理大, 2. 台湾陽明交通大
3/16(TH 13:00 13:15 13:30 13:45 14:00	hu.) 9:30 - 11:30 16a-PA06-1 16a-PA06-2 16a-PA06-3 16a-PA06-4 16a-PA06-5 16a-PA06-6 16a-PA06-7 16a-PA06-7 16a-PA06-10 16a-PA06-11 16a-PA06-11 16a-PA06-13 hu.) 13:00 - 17:00 16p-A502-1 16p-A502-2 16p-A502-3 16p-A502-5	ボスター講演 (Poster Presentation) PA会場 (Room PA) 複屈折の測定に対するモノクロメータによる不完全な単色化の影響とその除去 透過型ミューラー行列顕微鏡による薄膜膜厚分布計測 ワンショット点回折干渉顕微鏡像のバタワースローバスフィルタ画像処理と非参照画質スコアを用いた評価 微量水分の吸収スペクトルのガス種依存性 高効率 GaAsP-MCP-PMTの開発 低コヒーレンスドップラーライダーのための光源の検討海洋水質ライダーの開発に向けた CO2ラマン散乱信号の測定 光学キャビティ効果を用いた水素ガスセンサの開発 上導波路を用いた高出力・高速近赤外分光器の開発 レーザーを用いた微小半導体チップの検査手法の開発 短時間フーリエ変換を用いた干渉計の走査機構の線形性の確認 位相シフト照明式外観欠陥検査における人工構造と欠陥との弁別手法の確立 グースヘンシェンシフト計測による共鳴格子バイオセンサの検討 口頭講演 (Oral Presentation) A502会場 (Room A502) 非同期光サンプリング法 (ASOPS)を用いた低ノイズな時間分解反射率計測 バックグラウンドフリーで赤外吸収を計測する分光法の開発 周波数領域光相関法の測定原理に則した計算アルゴリズムの検討 誘導フェン効果による化学構造敏感な非線型動的光散乱 法の提案 100 MHz 帯の強力超音波照射による音響キャビテーションの評価	(formerly 3.8) ○(B) 時田 桂吾¹, チョウ コン¹, 中川 鉄馬², 朝日 透¹³ ○(BC) 長瀬仁¹, 北村 賢功¹, 有元 圭介¹, 近藤 英一¹, 金蓮花¹, ジェローズ ベルナール² ○水谷 彰夫¹, 宮崎 寛隆¹, 菊田 久雄¹ ○橋口 幸治¹, 天野 みなみ¹, Cygan Agata², Lisak Daniel², Ciuryło Roman², 阿部 恒¹ ○長谷川 寛¹, 浜名 康全¹, 穐山 啓介¹, 西村一¹, 石橋正二郎² ○大久保 洸枯¹, ラゴロサス ノフェル¹, 椎名 達雄¹ ○高橋 幸希¹, 世古 暢哉¹, 重村 幸治¹, 三浦 聡¹, 山根 治起², 梁瀬 智², 高橋 慎吾², 山川 清志² ○佐原 純輝¹, 五十嵐 彩¹, 赤井 伸伍¹, 世良 英之¹, 川越 寛之¹, 横山 拓馬¹, 山田 剛¹ ○寺内 玲碧¹, 三上 勝大¹, 松山 哲也¹, 池田 研一², 中南 友佑², 大竹 政則² ○韋冬¹, 坂井 映斗², 野口 隼人², 長谷川 就¹ ○大西 義人¹, 瀬尾 欣穂¹, 松岡 正興², 芹川 滋³, 津金賢² ○清水 裕貴¹, 水谷 彰夫¹, 菊田 久雄¹ ○日達 研一¹, 石澤 淳², 石川 憲治³, 眞田 治樹¹, 小栗 克弥¹ ○趙 越¹, 黄 威紘¹², 草間 翔太¹, 小澤 進太¹, 羅 志偉², 藤 貴夫¹ ○鈴木 涼介¹, 福士 海渡¹, 塩田 達俊¹ ○瀬戸 啓介¹, 小林 孝嘉², 徳永 英司¹ ○(DC) 原田 裕生¹, 石河 睦生², 松川 真美¹, 小山 大介¹ ○飯森 未来¹, 張 亜¹	 1. 山梨大学, 2. 名古屋大学 1. 大阪公大工 1. 産総研, 2. ニコラス・コペルニクス大学 1. 浜松ホトニクス, 2. 海洋研究開発機構 1. 千葉大院 1. 千葉大院 1. 千葉大院, 2. トリマティス 1. Tianma Japan, 2. 秋田産技センター 1. ウシオ電機株式会社 1. 近大生物理工, 2. 株式会社オブト・システム 1. 長岡技大機械工学専攻, 2. 長岡技大機械工学課程 1. (株) 日立製作所, 2. (株) 日立ハイテク, 3. (株) 日立ハイテクソリューションズ 1. 大阪公大工 1. NTT物性研, 2. 日大, 3.NTT CS研 1. 豊田大工, 2. 國立陽明交大 1. 埼玉大 1. 東理大, 2. 台湾陽明交通大 1. 同志社大, 2. 桐蔭横浜大

15:00	奨 16p-A502-8	量子もつれ光子の非局所相関を利用したリモートセンシ		1. 電通大 情報理工, 2. 電通大 量研
15:15	将 165 4502 0	ングに向けた周波数相関スペクトル測定の基礎検討 高繰り返し二波長同期光コムによる高速・高感度非同期	文 ^{1,2} ,清水 亮介 ^{1,2} ,美濃島 薫 ^{1,2}	1. 電通大 情報理工, 2.JSPS 外国人特别研究員, 3.CU
15:15	英 10p-A302-9	一般の 一般では 一般で の 開発	\bigcirc (b) 小森 血,Prasad Rovin,石肉 政律,田 矣 \bigcirc 是 $^{1.2}$,Thomas R. Schibli³,加藤 峰士 $^{1.4}$,浅原 彰文 $^{1.4}$,清水 亮介 $^{1.4}$,美濃島 薫 $^{1.4}$	
15:30	奨 16p-A502-10	環状分子を用いた超高輝度ラマンプローブの開発	○(B)古屋 圭惟¹, 西山 諒¹, McCann Carles Phillip¹,	1.東大理, 2.コペンハーゲン大, 3.インディアナ大,
15:45		休憩/Break	Kacenauskaite Laura ¹ , Laursen Bo ² , H. Flood Amar ³ , 平松 光太郎 ¹ , 合田 圭介 ^{1,4,5}	4.ULCA, 5.武漢大
16:00	16p-A502-11	位相同期した2台のレーザを用いた coherent population trapping 共鳴の観測	〇高見澤昭文 1 ,柳町 真也 1 ,松本 健太 2 ,各務 惣太 2 ,池上 健 3	1. 産総研計量標準, 2.NEC, 3.MMC
16:15	16p-A502-12	2種類の光コムを組み合わせた高速かつ高分解能なデュアルコム分光	○柏木 謙¹, 大久保 章¹, 稲場 肇¹	1. 産総研
16:30	16p-A502-13	中赤外分散型分光系による揮発性有機化合物のリアルタイム高感度検出	○多屋 奏一¹, 谷 峻太郎¹, 小林 洋平¹	1. 東大物性研
16:45	16p-A502-14	広帯域・高分解能・高シグナルノイズ比リアルタイム中 赤外分光	○谷 峻太郎¹, 多屋 奏一¹, 小林 洋平¹	1. 東大物性研
3/17(F	Fri.) 9:30 - 11:45	口頭講演 (Oral Presentation) A502会場(Room A502)		
9:30	17a-A502-1	サブビンによるスペクトル測定のSD-OCT 応用への基礎 検討	: ○(B)川田 晃平¹, 増田 純平¹, 小坂 哲夫¹, 佐藤 学¹	1.山形大工
9:45	奨 17a-A502-2	周期可変回折格子を用いた高速広帯域波長走査光源の開 発	○ (M2) 金子 優月 ¹ , 鈴木 孝昌 ² , 崔 森悦 ²	1. 新潟大院自然, 2. 新潟大工
10:00	17a-A502-3	デュアル光コム分光偏光計の安定化に関する検討	\bigcirc (M1) 北濱 弘暉 1 , 是澤 秀紀 2 , 長谷 栄治 3 , 浅原 彰 文 4 , 南川 丈夫 3 , 安井 武史 3	1. 徳島大院創成, 2. 徳島大院先端技術, 3. 徳島大 pLED, 4. 電通大情報理工
10:15	奨 17a-A502-4	複数波長を用いた光渦位相計測の検討(2)	\bigcirc (M1) 高島 綾人 1 , 時実 悠 2 , 長谷 栄治 2 , 安井 武 史 $^{1.2}$	1. 徳島大院創生, 2. 徳島大 pLED
10:30		休憩/Break		
10:45	17a-A502-5	ミロー型光干渉計によるガラス基板の振動検出	○(B)小松宗太郎¹,三浦拓真¹,早崎芳夫¹	1.宇都宮大学オプティクス
11:00	17a-A502-6	偏光探査型偏光撮像法における光散乱現象の調査	○ (M2) 小野 佑樹¹, 坂本 盛嗣¹.⁴, 野田 浩平¹.⁴, 佐々 木 友之¹.⁴, 田中 雅之².⁴, 川月 喜弘³.⁴, 小野 浩司¹.⁴	1. 長岡技科大, 2. 株式会社オプトゲート, 3. 兵庫県立大, 4. CREST, JST
11:15	17a-A502-7	偏光探査型偏光撮像法における映り込みの有る計器の高 コントラスト撮像	○(M1)守田 明生 ¹ , 坂本 盛嗣 ^{1,4} , 野田 浩平 ^{1,4} , 佐々 木 友之 ^{1,4} , 田中 雅之 ^{2,4} , 川月 喜弘 ^{3,4} , 小野 浩司 ^{1,4}	1. 長岡技科大, 2. 株式会社オプトゲート, 3. 兵庫県立大, 4. CREST, JST
11:30	17a-A502-8	2D シングルショット光断層計測における高速化と広い 計測範囲の両立		1. 埼大理工, 2. 埼玉大工
3/17(F		口頭講演 (Oral Presentation) A502会場 (Room A502)		
13:00	奨 17p-A502-1	超高層大気中に分布する流星由来カルシウム原子・イオンの全夜連続観測	○橋本彩香¹,音瀬めぐみ¹,小林蒼汰²,大饗千 彰¹³,桂川 眞幸¹¹³⁴,江尻省⁴⁵,西山尚典⁴⁵,中村卓	1.電通大基盤理工 $, 2.$ 電通大情報理工 $, 3.$ 電通大量子センター $, 4.$ 極地研 $, 5.$ 総研大
13:15	17p-A502-2	フラッシュラマンライダーによる水中油の遠隔計測技術	司 ^{4.5} 〇染川 智弘 ^{1.2} , 倉橋 慎理 ¹ , 余語 覚文 ² , 久世 宏明 ³	1. レーザー総研, 2. 阪大レーザー研, 3. 千葉大 CEReS
13:30	17p-A502-3	の開発 Siフォトニクスフル集積FMCW LiDARチップの環境光	○鎌田 幹也¹, 玉貫 岳正¹, 鉄矢 諒¹, 馬場 俊彦¹	1. 横国大院工
13:45	17p-A502-4	耐性 — 同型 FMCW LiDAR の光の混入 — 波長安定化回路を用いたコヒーレント差分吸収ライダに		1.三菱電機(株)
14:00	17p-A502-5	よる水蒸気計測の検証 市販の紫外放射照度計での多様な紫外光源の測定時のス	勝治¹ ○岩佐 祐希¹, 木下 健一¹, 蔀 洋司¹	1.産総研
14:15		ペクトルミスマッチ効果 休憩/Break		
14:30	奨 17p-A502-6	励起のデッドタイム削減のためのサブギガヘルツ	〇宇井 颯太 1 ,瀬戸 啓介 1 ,小林 孝嘉 2 ,徳永 英司 1	1. 東理大理, 2. 電通大
14:45	奨 17p-A502-7	疑似ランダム変調励起光を用いた蛍光寿命測定 OCDRにおける包括的理論の構築と理論空間分解能の再 空差	○清住 空樹¹, 宮前 知弥¹, 野田 康平¹.², 朱 光韜¹, 中村 健太郎², 水野 洋輔¹	1.横浜国大, 2.東工大
15:00	17p-A502-8	定義 二重変調 OCDR による従来の 10 倍の測定レンジでの反		1.横浜国大, 2.芝浦工大, 3.東工大
15:15	17n-A502-9	射率分布センシング 比較的広い線幅を有する光源を用いた外部変調 BOCDR	郎 ³ , 李 ひよん ² , 水野 洋輔 ¹ ○尾崎 湿大 ¹ 越恕 足河 ¹ 野田 唐平 ^{1,2} 李 ひとん ³	1 構近国大 2 車工大 3 芝浦工大
	-	の検討	中村 健太郎², 水野 洋輔¹	
15:30	奨 17p-A502-10	波長/角度変換光コムを用いた角度SPRスペクトルの デュアル光コム分光	○(M1) 児玉 裕哉', 是澤 秀紀', 長谷 宋治', 時実 悠', 南川 丈夫³, 荒木 勉⁴, 安井 武史³	1. 徳島大院創生, 2. 徳島大院先端技術, 3. 徳島大pLED, 4. 阪大基礎工
15:45	17p-A502-11	偏光素子による左右円偏光同時発生と分光計測応用	○江本 顕雄 1	1. 德島大 pLED
16:00 16:15	17n- 4502-12	休憩/Break 広帯域 (3~20 μ m) 計測を目指した反射型バッシブ分	○見立 攸仁』 业龄 友恭』 宏吹 土地』 矢竪 縹』 万五	1 禾七丁
		光イメージング光学系の実証実験	伊知郎1	
16:30	-	仮想合成された光ファイバ内ブリルアン散乱スペクトル のノイズ評価		1.農工大工
16:45		非対称三角波位相変調干渉計による絶対方向検出が容易 な動的変位計測		1.農工大工
17:00	17p-A502-15	バルス分光装置を用いた低透過率試料の高速近赤外分光 測定	良 英之 1 ,横山 拓馬 1 ,山田 剛 1	
17:15	17p-A502-16	アセトン検出に向けた 1680 nm帯光アンプの適用検討	〇吉田 理矩 1 , 野口 峻平 1 , 河崎 泰成 1 , 姜 海松 1 , 浜本 貴一 1	1. 九大総理工
) / Terahertz technologies (formerly 3.9)		
3/15(W		ポスター講演 (Poster Presentation) PB 会場(Room PB) Improvement on the cryogenic circuit with tunnel-diode	○ (P)IVAN GRYTSENKO¹, RAJESH MOHAN¹,	1.RQC RIKEN, 2.CPR RIKEN, 3.ILTPE NAS of Ukraine
	15p-PB01-2	for qubit read-out ボウタイ型プラズモンアンテナの作製	OLEKSIY RYBALKO ^{1,3} , ERIKA KAWAKAMI ^{1,2} 〇和泉 建哉 ¹ , 桑島 史欣 ⁴ , 谷 正彦 ³ , 守安 毅 ³ , 岡本 敏 弘 ¹ , 山口 堅三 ² , 直井 美貴 ^{1,2} , 高島 祐介 ¹ , 原口 雅	1. 徳島大, 2. 徳島 pled 研, 3. 福井大, 4. 福井工大
			宣1,2	
	15p-PB01-3	スピントロニック放射器が放出するテラヘルツ波の交流 磁場バイアスを用いた検出効率改善	エスカノ マリー¹, 谷 正彦¹, ブルガレビッチ ドミト	1. 福井大, 2. 物材研
	E 15n-PR01-4	Challenges with Terahertz Magneto-Optic Imaging	リ ² , ヘ ドンフェン ² , 渡邊 誠 ² ○ Dmitry S Bulgarevich ¹ , Miezel Talara ² , Hideaki	1.NIMS, 2.FIR-UF
		Scheme	Kitahara ² , Makoto Watanabe ¹ , Masahiko Tani ²	
	15p-PB01-5	廉価版sub-THz分光器の電磁波集光部測定による屈折率 の補正	○森川治¹,服部 あい¹,山本 晃司²,栗原 一嘉²,古屋 岳², 桒島 史欣³,北原 英明²,谷 正彦²	1. 四环八, 4. 佃开八, 3. 佃廾丄八

3/16((Thu.)	10:00 - 11:00	口頭講演 (Oral Presentation) A202会場 (Room A202)		
10:00	(,	16a-A202-1	周波数231 GHzで動作する室温非線形量子カスケード レーザ	〇林 昌平 1 , 伊藤 昭生 1 , 道垣内 龍男 1 , 日高 正洋 1 , 中西 篤司 1 . 藤田 和 \vdash 1	1.浜ホト中研
10:15		16a-A202-2	導体損失を削減した空洞共振器型共鳴トンネルダイオー ド発振器からの高出力テラヘルツ放射	○田中大基¹,藤方秀成¹,韓非凡¹,石川 暁¹,鈴木 左 文¹	1.東工大
10:30	奨	16a-A202-3	共鳴トンネルダイオードブッシュブッシュテラヘルツ発		1.東工大
10:45		16a-A202-4	振器の提案 共鳴トンネルダイオードテラヘルツ発振器における非線	○山崎 星雅 1, 有川 敬 1.2, 田中 耕一郎 1.3	1. 京大, 2.JST さきがけ, 3. 京大iCeMS
3/16((Thu.)		形光学応答 口頭講演 (Oral Presentation) A202 会場(Room A202)		
13:00		16p-A202-1	電気光学ポリマー積層膜を用いた超広帯域テラヘルツ電 場検出	〇山田俊樹¹, 梶貴博¹, 山田千由美¹, 大友明¹, 中西智哉², 常守秀幸², 藤丸 滋樹²	1.情報通信研究機構, 2. 帝人
13:15		16p-A202-2	分散補償チャープバルス和周波分光法による高感度シン グルショットテラヘルツ波形計測	○玉置 亮 ^{1,2} , 鈴木 雅史 ² , 武田 淳 ² , 片山 郁文 ²	1.KISTEC, 2.横浜国大理工
13:30	奨	16p-A202-3	ZnTe結晶の円偏光励起によるTHzベクトルビームの発生	○岩瀬 弘明¹, 大野 誠吾¹.²	1. 東北大理, 2. 東北大高等研究機構
13:45		16p-A202-4	エ アップコンバージョン波長変換法による高感度テラヘル ツ光検出	○櫻井 稜也¹, 岡部 大樹¹, アダム ヴァレス ^{2,3} , 尾松 孝茂 ^{1,3} , 宮本 克彦 ^{1,3}	1. 千葉大院工, 2.ICFO, 3. 千葉大学キラリティー研
14:00 14:15	奨	16p-A202-5 16p-A202-6	同軸光注入型テラヘルツバラメトリック発生器 高確度テラヘルツ光発生のための光周波数制御	○(D) 嶺 飄太¹, 山本 直弥¹, 川瀬 晃道¹, 村手 宏輔¹ ○林 伸一郎¹, 大野 誠吾², 宮本 克彦³, 浦田 佳治⁴, 関 根 徳彦¹	1. 名大院工 1. 情通機構, 2. 東北大, 3. 千葉大, 4. フラクシ
14:30		16p-A202-7	マイクロ光コムに位相同期した周波数可変テラヘルツ波信号源		1.情通機構
14:45 15:15		16p-A202-8	休憩/Break テラヘルツ集積回路の実現に向けたフォトニック結晶構	○自廃有 1 片田 梅幻 1 藤七 畑 _ 1	1. 徳島大学
			造の検討		
15:30	E	E 16p-A202-9	Comparison of Topological Valley Photonic Crystal and Unclad Silicon Terahertz Waveguides	○ Ngo Hoai Nguyen¹, Shota Yamamoto¹, Kei Iyoda¹, Yoshiharu Yamada², Yusuke Kondo², Shuichi Murakami², Masayuki Fujita¹, Tadao Nagatsuma¹	1.Osaka Univ., 2.Osaka Research Inst. of Industrial Science and Technology
15:45		16p-A202-10	バビネ相補型二重メタルメッシュ構造を持つテラヘルツ バンドバスフィルタの入射角度依存性	○(B)飯嶋 航大 ¹ , 宮田 香清 ¹ , 豊島 理彩 ¹ , 田中 海 翔 ¹ , 大西 広 ² , 正光 義則 ³ , 中岡 俊裕 ¹ , 和田 武彦 ²	1.上智大理工, 2.宇宙航空研究開発機構, 3.量子場計測システム国際拠点
16:00		16p-A202-11	電気光学ポリマー導波路とパッチアンテナアレイを用い		1.情通機構
16:15	奨 E	E 16p-A202-12	た 375 GHz 帯アンテナ結合型光変調器の試作 Mechanical nonlinearity control in doubly clamped MEMS		1.Inst. of Eng., Tokyo Univ. of Agri. &Techno., 2.IIS
16:30	Е	E 16p-A202-13	beam resonators using a preloaded lattice mismatch strain Terahertz integrated sensors based on metal-insulator	Hirakawa ^{2, 3} , Ya Zhang¹ Ja-Yu Lu¹, ○ Borwen You², Pin-Jung Lu², Yen-Shan	Tokyo Univ., 3.INQIE Tokyo Univ. 1.Cheng Kung Univ., 2.Changhua Univ.
16:45			composite woven-wire meshes 0.3THz帯積層構造メタサーフェスアンテナの接着シート	Lin ²	1.農工大
	(Fri)		を用いた設計 口頭講演 (Oral Presentation) A202会場 (Room A202)		
13:00	(ГП.)		平面共振器を用いたテラヘルツ帯誘電特性の評価	〇寺井 将貴¹, Webber Julian¹, 伊豫田 圭¹, 芳我 基	1.阪大基礎工, 2.ダイセル
13:15		17p-A202-2	超低周波・超狭帯域THz時間領域分光装置を用いたインフラ材料の評価	治², 富士田 誠之¹, 永妻 忠夫¹ 〇山本 敦¹, 高名 柚衣¹, 時実 悠², 上田 隆雄¹², 安井 武史¹.²	1. 徳島大理工, 2. 徳島大研
13:30		17p-A202-3	マイクロ光コム注入同期2モード光のフォトミキシング を用いたオール光型テラヘルツ通信		1.徳島大院創成科学, 2.徳島大pLED, 3.徳島大院社会産業理工, 4.JSTさきがけ, 5.情報通信研究機構, 6.岐阜大
13:45	奨	17p-A202-4	マイクロ光コム注入同期 CW レーザーを用いたオール光型 THz 検出 (2) 〜光キャリアと変調サイドバンドの RF ビート信号検出〜	\bigcirc (M1) 松村 雄大¹, 長谷 栄治¹, 時実 悠¹, 久世 直也¹, 藤方 潤一¹, 岸川 博紀¹, 原口 雅宣¹, 岡村 康弘¹, 梶 貴	1. 徳島大学, 2. 情報通信機構, 3. 岐阜大学
14:00	缎	17p-A202-5	テラヘルツ波ケミカル顕微鏡を用いたカルシウムイオン	井武史1	1.岡山大学
			の選択的検出 テラヘルツ波ケミカル顕微鏡を用いたアプタマーによる		1. 岡山大学
14:15	头	17p-A202-6	SARS-CoV-2検出技術の開発	□ 1, 王 璡¹, 紀和 利彦¹	1. 阿山八子
14:30 15:00	奨	17p-A202-7	休憩/Break 相対論的収縮電場形成プロセスの観測	○太田 雅人¹, 菅 晃一², 王 有為¹.³, Agulto Verdad¹, Mag-usara Valynn¹, 有川 安信¹, 淺川 誠³, 坂和 洋一¹,	1. 阪大レーザー研, 2. 阪大産研, 3. 関西大, 4. 三重大
15:15		17p-A202-8	光注入型テラヘルツ波バラメトリック光源とTHz-PMT/ THz-I.I. による分光計測	Buchmann Olaf Tobias³, Sebek Matej³, Lange Jappe	1. 浜松ホトニクス , 2. 理研 , 3.DTU Elektro
15:30	奨	17p-A202-9	2色レーザー誘起エアプラズマにより発生したTHzバル	Simon³, Jepsen Uhd Peter³, 南出 泰亜², 里園 浩¹, 大 村 孝幸¹ ○(D) 亀山 理紗子¹, 田中 駿介², 松田 拓也², 室谷 悠	1. 東大院理, 2. 東大物性研
15:45			スを用いた振動和周波発生分光法 動的光路差制御による高速周波数掃引型テラヘルツ分光	太²,神田夏輝²,松永隆佑²,吉信淳²	
16:00			法の開発 テラヘルツ円偏光二色性イメージング	○辻 将太¹, 牧原 颯馬¹, 代市 拓海¹, 三成 剛生², 大野	1.千葉大院工, 2.物材機構, 3.東北大院理, 4.千葉大学分
16:15			休憩/Break	誠吾 ³ , 尾松 孝茂 ^{1.4} , 宮本 克彦 ^{1.4}	子キラリティー研
16:30	奨	17p-A202-12	ディラック電子系薄膜におけるテラヘルツ波表面プラズ モン共鳴	○杉本 雛乃¹, 西村 佳菜¹, 高橋 茉由子¹, 田畑 仁¹	1.東大工
16:45	Е	E 17p-A202-13	Noncontact interface potential estimation on VO ₂ /Si heterojunction with temperature variation	○ (D)Dongxun Yang¹, Fumikazu Murakami¹, Shingo Genchi², Hidekazu Tanaka², Masayoshi Tonouchi¹	1.Osaka Univ., 2.SANKEN Osaka Univ.
17:00		17p-A202-14	異方性を有する単結晶酸化チタンの屈折率の温度依存性 研究		1.大阪大学レーザー科学研究所, 2.大阪大学大学院生命機能研究科
17:15	奨	17p-A202-15	テラヘルツ分光法を用いたリチウムイオン材料の電気伝 導の測定及び解析	○村上 翔真 ¹, Zuo Anhao², Li Zhe², 諸橋 功 ³, 張 亜 ¹	
17:30		17p-A202-16	広帯域テラヘルツ時間領域分光法を用いたポリ乳酸薄膜	○須山 弘太¹, 加留部 涼¹, 和田 篤¹, 田中 哲¹, 岡野 真人¹	1.防衛大
			の結晶化過程の観測 3.10) / Optical quantum physics and technologies (forme	erly 3.10)	
3/15(Wed.)	15p-PB02-1	ポスター講演 (Poster Presentation) PB 会場(Room PB) 量子鍵配送に向けた自己相関関数による光子数分布評価	○松本 遼司 ¹, 富田 章久 ², 岡本 淳 ²	1.北大院情報科学, 2.北大院情報科学研
		15p-PB02-2	シリコン細線導波路を用いた1モードスクイーズド真空 場の発生	木村 彰吾¹, 境野 一輝¹, 楊 帆¹, 岡野 誠², 竹中 充³, 山 田 博仁¹, 〇松田 信幸¹	1. 東北大院工, 2. 産総研, 3. 東大院工
		15p-PB02-3	透過優位な高フィネス光共振器の作製と評価	○石井 勇輔¹, 丹治 はるか¹	1.電通大レーザー研

	15p-PB02-4	光共振器中のリュードベリ集団励起を利用した単一光子 源の開発	○増田 晴美 ', 足立 遼太郎 ', 丹治 はるか '	1. 電通大レーザー研
	15p-PB02-5	原子・光子間結合強度の制御に向けた光双極子トラップ 走査システムの開発	○岡嶋 宗裕¹, 志村 一樹¹, 丹治 はるか¹	1.電通大レーザー研
3/16(T)	hu) 10:00 - 11:30	口頭講演 (Oral Presentation) A405 会場(Room A405)		
10:00		925nm帯LDの強パルス励起による第2量子準位発振の動特性	○ (M2)Cui Yuwen ¹ , 安食 聡一郎 ³ , 竹内 魁 ^{1,3} , 日暮 栄治 ^{1,3} , 山田 博仁 ^{1,2,3} , 横山 弘之 ^{1,2}	1. 東北大院工, 2. 東北大 NICHe, 3. 東北大工
10:15	16a-A405-2	強パルス励起FP-LDの発振出力時間波形のスペクトル抽 出波長依存性		1. 東北大学, 2. 東北大院工, 3. 東北大未来研
10:30	16a-A405-3	戻り光のある半導体レーザーの間欠発振挙動における臨 界性促進因子		1. 金沢大理工, 2.JST さきがけ
10:45	奨 16a-A405-4	戻り光を有する半導体レーザカオスにおけるリアプノフ	○井上 聡太¹, 菅野 円隆¹, 内田 淳史¹	1.埼玉大学
11:00		ベクトルの観測 機械学習を用いた力学系のモデル化	○高野冬真¹,金谷宗一郎¹,新山友暁¹,砂田哲¹.²	1. 金沢大, 2.JST さきがけ
11:15	奨 16a-A405-6	光リザーバコンピューティングにおける転移学習を用い たレーザのダイナミクスの推測	○酒巻 里衣 ', 官野 円隆 ', 犬伏 止信 ', 内田 淳史 '	1. 埼玉大, 2. 東京理大
3/16/TH	hu) 13:25 - 17:15	口頭講演 (Oral Presentation) A405 会場(Room A405)		
13:25		第7回フォトニクス奨励賞授賞式	○西澤 典彦 ^{1,2}	1.フォトニクス分科会, 2.名大
13:30		「第7回フォトニクス奨励賞受賞記念講演」 量子もつれ光を用いた超高感度吸収分光法の実現とその	○松崎 維信1	1.理研
13:45	16p-A405-3	応用 量子もつれ光子対を用いた蛍光分子における2光子吸収	○ (M2) 佐々木 駿輔¹, 阿部 尚文¹, 斎藤 凌矢¹, 久光	1. 京大院工. 2. 島津製作所
14:00	•	観測に向けて DWDM技術に適した共振器増強バラメトリック下方変	守², 徳田 勝彦², 岡本 亮¹, 竹内 繁樹¹	
	·	換による偏光エンタングル光子対配送	人 3,4 , 知名 史博 3 , 寺井 弘高 3 , 生田 力三 1,2 , 山本 俊 1,2	機構, 4. 神戸大
14:15	16p-A405-5	導波路型光バラメトリック増幅器による連続波 8dB スクイージング	○伯崎 貢大,山鳴 大地,國佛 光火,風前 拍志,升 上 飛鳥 ¹ ,福井 浩介 ² ,遠藤 護 ^{2,3} ,梅木 毅同 ¹ ,古澤 田 ^{2,3}	1.N11, 2.果大工, 3.理研RQC
14:30	奨 16p-A405-6	前置光位相感応増幅を用いたリアルタイム直交位相振幅 測定による40 GHz超広帯域5 dB スクイーズド光の観測	○井上 飛鳥¹, 柏﨑 貴大¹, 山嶋 大地², 高梨 直人², 風	1.NTT, 2.東大工, 3.理研
14:45	奨 16p-A405-7	超伝導転移端センサによる中赤外域単一光子スペクトル 測定		1.東北大, 2.産総研, 3.東京大, 4.オペランドOIL, 5.高 エネ研 OUP
15:00	16p-A405-8	光子数識別器正作用素値測度推定法(凸最適化・最尤法) の比較		1.産総研, 2.産総研・東大 オペランド計測 OIL
15:15	16p-A405-9	偏波保持ファイバ干渉計を用いた伝令付帯単一光子複製 回路	○行方 直人¹, 井上 修一郎¹	1.日大量科研
15:30 15:45	奨 16p-A405-10	休憩/Break 超伝導光量子インターフェースに向けたダイヤモンド		1. 横国大院理工, 2. 横国大IAS, 3. 豊橋技科大院工, 4. 産
16:00	16p-A405-11	NV中心を用いた音波光波変換 単一発光体を用いた連続適応量子状態推定の実現	睛 4 , 加藤 宙光 4 , 関口 雄平 2 , 小坂 英男 1,2 ○井上 真奈人 1 , 野原 紗季 1 , 嶋崎 幸之介 1 , 高島 秀 聡 1 , 阿本 亮 1 , Tran Toan Trong 2 , Aharonovich Igor 2 ,	総研 1.京大院工,2.シドニー工科大,3.阪大院理
16:15	奨 16p-A405-12	長波長励起による六方晶窒化ホウ素単一欠陥中心からの		1.京大, 2.シドニー工科大学
16:30	奨 16p-A405-13	単一光子発生 量子ドット集合体からのフェムト秒 Time-bin フォトンエ	Aharonovich Igor², 竹内 繁樹¹ ○ (M2) 河内 優太¹, 木下 裕太郎¹, 栗村 直², 赤羽 浩	1. 慶大理工, 2. 物材機構, 3. 情通機構
		コー信号の周波数上方変換単一光子検出器による位相評 価	一3, 早瀬 潤子1	
16:45		通信波長帯 Atomic Frequency Comb による Time bin qubit の 量子メモリ実証	○(M2) 安井 翔一郎 ^{1,2} , 日達 研一 ¹ , 尾身 博雄 ³ , 稲葉 智宏 ¹ , Xu Xuejun ¹ , 真田 治樹 ¹ , 鍜治 怜奈 ² , 足立 智 ² , 俵 毅彦 ⁴	1.NTT物性基礎研, 2. 北大院工, 3. 大和大, 4. 日本大
17:00	16p-A405-15	ナノファイバー共振器を用いた単一原子 - 光インター フェイスの開発	○碁盤 晃久¹,加藤 真也¹,青木 隆朗¹.²	1.NanoQT, 2.早稲田大
3.10 フォ	+トニック構造・現	象(旧 3.11)/ Photonic structures and phenomena (forn	nerly 3.11)	
3/15(Wo		口頭講演 (Oral Presentation) A501会場(Room A501) 光量子インターフェースのチップ - ファイバ接続の総合	○李 リュウ村 ¹ , 馬場 俊彦 ¹	1. 横国大院工
10:45	E 15a-A501-2	設計 Quantum electrodynamic analysis in a SiC photonic	(PC)Heungioon Kim ¹ Rong-Shik Song ^{1,2} Takashi	1.Kyoto Univ., 2.Sungkyunkwan Univ., 3.Tokai Univ.
10.43	E 13a-11301-2	nanocavity with Si-vacancy center by considering the effect of phonon sideband	Asano ¹ , Makoto Yamaguchi ³ , Susumu Noda ¹	1.Kyoto Oliv., 2.Sungkyulikwali Oliv., 3.10kal Oliv.
11:00	E 15a-A501-3	Inverse Design of High-Q SiN Photonic Crystal Cavities	○ (B)Peter Aubrey Heidt ¹ , Masato Takiguchi ^{1, 2} , Hisashi Sumikura ^{1, 2} , Akihiko Shinya ^{1, 2} , Masaya Notomi ^{1, 2, 3}	1.NTT BRL, 2.NTT Nanophotonics, 3.Tokyo Tech
11:15	15a-A501-4	$1.1~\mu$ m帯におけるナノ共振器シリコンラマンレーザの 開発に向けた検討(II)	○ (M1) 下村 悠¹, 浅野 卓², 野田 進², 高橋 和¹	1.大阪公大院工, 2.京大院工
11:30	15a-A501-5	2重スラブ1Dフォトニック結晶共振器キャリア引抜p-n EO変調器	タリロイス¹, ○倉持 栄一¹², 北 翔太¹², 野崎 謙 悟¹², 新家 昭彦¹²	1. NTT物性基礎研, 2. NTT NPC
11:45	奨 15a-A501-6	二量化高屈折率差格子と電気光学ポリマーを用いた垂直 入射光変調器の提案と検証		1. 東大院工, 2.NICT
3/15(W	ed.) 13:30 - 15:30	口頭講演 (Oral Presentation) A501会場 (Room A501)		
13:30		単結晶ダイヤモンド薄膜を用いた通信波長帯二次元フォ トニック結晶共振器の実現	○車一宏 ^{1,2} , Afaq Habib Piracha ¹ , Dylan Renaud ¹ , Cleaven Chia ¹ , Neil Sinclair ^{1,3} , Athavan Nadarajah ⁴ ,	1.Harvard Univ., 2. 学振, 3.California Inst. of Tech, 4. Univ. of Melbourne, 5.RMIT University
13:45	15p-A501-2	エアブリッジ型ダイヤモンドフォトニック結晶ナノビー ム共振器構造の作製	Alastair Stacey ^{4,5} , Steven Prawer ⁴ , Marko Lončar ¹ ○石田 悟己 ¹ , 松清 秀次 ² , 楊 燁亭 ¹ , (M2) 周 潔钰 ¹ , 大槻 秀夫 ¹ , 池 尚玟 ¹ , 牧野 俊晴 ³ , 加藤 宙光 ³ , 岩本	1. 東京大学先端研, 2. 東京大学生産研, 3. 産総研
14:00	15p-A501-3	転写プリントSiNマスクを活用したダイヤモンド中空構	敏 ^{1,2} ○高田 晃佑 ¹ , 勝見 亮太 ¹ , 飛沢 健 ¹ , 鳴瀬 駿 ¹ , 河合 健	1. 豊橋技科大
14:15	15p-A501-4	造の作製 単結晶ダイヤモンドにおける中空リング構造の作製	太¹, 佐藤 大地¹, 八井 崇¹ ○河合 健太¹, 勝見 亮太¹, 飛沢 健¹, 鳴瀬 駿¹, 高田 晃	
14:30		休憩/Break	佑¹, 佐藤 大地¹, 八井 崇¹	
14:45	15n-A501-5	ガラス薄膜を装荷したガラス上2次元フォトニック結晶	○(M1)川田 琉生¹, 藤田 晃成¹, Pholsen N.², 岩本	1. 慶應理工, 2. 東大先端研
		ナノ共振器の設計	敏 ² , 太田 泰友 ¹	
15:00	13p-A301-6	ガラス薄膜を装荷したガラス上2次元フォトニック結晶 ナノ共振器の作製	○藤田 晃成 ¹ , N. Pholsen ² , 池 尚玟 ² , 川田 琉生 ¹ , 佐藤 拓未 ¹ , 岩本 敏 ² , 太田 泰友 ²	1.废燃生工,4.果八亢鞴餠

15:15	奨 E 15p-A501-7	Enhanced vertical light extraction in nanobeam photonic crystal nanocavities based on Er,O-codoped GaAs	○ (DC)Zhidong Fang¹, Jun Tatebayashi¹, Hirotake Kajii¹, Sangmin Ji², Satoshi Iwamoto², Masahiko Kondow¹, Yasufumi Fujiwara¹	1.Osaka Univ., 2.IIS, Univ. Tokyo
3/15(V	Ved.) 16:00 - 18:00	ポスター講演 (Poster Presentation) PB会場 (Room PB)	,	
	15p-PB05-1	中空GaNナノワイヤレーザからのベクトルビーム生成	○滝口 雅人 ^{1,2} , Sergent Sylvain ^{1,2} , Damilano Benjamin ³ , Vézian Stéphane ³ , Chenot Sébastien ³ , Yazigi Nicole ³ , 養田 大騎 ^{1,2} , 土澤 泰 ^{1,4} , 角倉 久史 ^{1,2} , 新家 昭彦 ^{1,2} , 納富 雅也 ^{1,2,5}	1.NTT NPC, 2.NTT 物性研, 3.CNRS-CRHEA, 4.NTT 先デ研, 5.東工大理
	·	GaNトポロジカルPhCの作製と可視領域トポロジカルエッジ状態の観測 新たな光出力導波路を有する CirD レーザの光学特性に	〇米田幸司 ¹ , 高野大和 ¹ , 秋元 弥賴 ¹ , 倉邉 海史 ¹ , 工藤 大樹 ¹ , 本多 卓人 ¹ , 胡 暁 ⁴ , 菊池 昭彦 ^{1,2,3} 〇武藤 広高 ¹ , 鶏内 健太 ² , 足立 雄紀 ² , 佐田 一生 ² , 森	3. 上智大半導体研究所, 4. 物材機構 WPI-MANA
	-	関する研究 上下空気クラッド層の直交格子導波路をもつAlOxクラッ	藤 正人², 梶井 博武², 丸田 章博², 近藤 正彦²	
	-	ド CirD レーザに関する実験的研究	丸田 章博 ² , 近藤 正彦 ²	
	15p-PB05-5	フォトニック結晶を用いた帯電検知モジュールの放射線 耐性評価	○(B)田渕 留衣',太田 雄士',下村 悠',高橋 和'	1.大阪府大院工, 2.大阪公大院工
	E 15p-PB05-6	Inverse Design of a Hybrid III-V Silicon Nanowire Array Cavity	○ (B)Peter Aubrey Heidt ¹ , Masato Takiguchi ^{1, 2} , Hisashi Sumikura ^{1, 2} , Akihiko Shinya ^{1, 2} , Masaya Notomi ^{1, 2, 3}	1.NTT BRL, 2.NTT Nanophotonics, 3.Tokyo Tech
	15p-PB05-7	フォトニック結晶光ナノ共振器の周波数変調による動的 な結合形成の実証		1. 京大工, 2. 成均館大
	15p-PB05-8	ランダム性を有するフォトニック結晶導波路を用いた再	○國分淳之介¹,菅野 凌¹,田邉 孝純¹	1. 慶大理工
	15p-PB05-9	構成分光器の高 性能化に関する研究 高効率テラヘルツ波発生へ向けた低群速度・低分散 フォ	○小山陽太1 小田久哉2 池田 南樹3 杉太 喜正3 尾	1. 和歌山大シスエ 2. 千歳科技大 3. 物材機構
		トニック 結晶導波路 の ヘテロ 接合 モデル(Ⅱ)	崎信彦1	
3/16(T 13:30		口頭講演 (Oral Presentation) A501会場(Room A501) InP/Si ヘテロツイスト積層フォトニック結晶の数値解析	○(B)石井 佑樹¹,トルーシン ステバン¹, グォンタ イルー², 岩本 敏², 太田 泰友¹	1. 慶應大理工, 2. 東大先端研
13:45	16p-A501-2	2つの楕円空孔からなる二重格子フォトニック結晶にお ける特異なフォトニックバンド構造の観測 (2)	○吉田 渓介¹, 吉田 昌宏¹, 井上 卓也¹, 野田 進¹	1. 京大院工
14:00	16p-A501-3	半導体フォトニック結晶スラブにおける光学的非エル ミート表皮効果	○高田 健太 ^{1, 2} , 養田 大騎 ^{1, 2} , 森竹 勇斗 ³ , 納富 雅 也 ^{1, 2, 3}	1.NTT NPC, 2.NTT 物性基礎研, 3.東工大
14:15	16p-A501-4	異方性媒質中の光非エルミートスキン効果の励起の理論	① (PC) 養田 大騎¹, 森竹 勇斗², 高田 健太 ^{1,3} , 納富 雅 也 ^{1,2,3}	1.NTT 物性研, 2.東工大, 3.NTT NPC
14:30	奨 16p-A501-5		○野口 直哉¹, 井上 卓也¹, 吉田 昌宏¹, Kim	1.京大院工
14:45	that are a most of	射現象の観測 休憩/Break	Heungjoon ¹ , 浅野 卓 ¹ , 野田 進 ¹	d The 1 stroke are O
15:00	奨 16p-A501-6	バレーフォトニック結晶導波路と共鳴トンネルダイオー ドの集積化	冨士田 誠之¹, 永妻 忠雄¹	1. 阪大基礎工, 2. ローム, 3. 大阪産業技術研
15:15	16p-A501-7	$3mm$ Φ フォトニック結晶レーザーの CW 単一モード 50W 動作	○吉田 昌宏¹, 勝野 峻平¹, 井上 卓也¹, De Zoysa Menaka¹, 石﨑 賢司¹, 野田 進¹	1.京大院工
15:30	16p-A501-8	超大面積フォトニック結晶レーザーにおけるバンド端周 波数分布の影響の解析	○井上 卓也¹, 吉田 昌宏¹, 前田 健太郎¹, 勝野 峻平¹, 野田 進¹	1. 京大院工
15:45	E 16p-A501-9	Circular-polarization-induced high transmission in photonic crystal waveguides with sharp bends	○ Wei Dai ¹ , Yoda Taiki ² , Moritake Yuto ¹ , Notomi Masaya ^{1, 2, 3}	1.Tokyo Tech, 2.NTT BRL, 3.NTT NPC
16:00	奨 16p-A501-10	温度補償構造を導入した大面積フォトニック結晶レー ザーにおける面内周波数分布の評価	○勝野 峻平¹, 吉田 昌宏¹, 阿部 竜也¹, De Zoysa Menaka¹, 石﨑 賢司¹, 井上 卓也¹, 野田 進¹	1. 京大院工
16:15 16:30	16p-A501-11	休憩/Break 二重格子構造の導入による変調フォトニック結晶レー	今村 陽¹, ○坂田 諒一¹, 石崎 賢司¹, 井上 卓也¹, De	1.京大院工
16.45	E 16- AE01 12	ザーの大面積・単一モード動作に向けた検討	Zoysa Menaka ¹ , 野田 進 ¹	1 V
16:45	•	Zak phase of Three-Dimensional Photonic Crystals 複合変調フォトニック結晶レーザーの放射特性の RCWA	Satoshi Iwamoto ⁴ , Katsunori Wakabayashi ¹	1.Kwansei Gakuin Univ., 2.Ningbo Univ., 3.Kyoto Inst. of Technology, 4.The Univ. of Tokyo
	•	法による詳細解析	賢司 ¹ , De Zoysa Menaka ¹ , 野田 進 ¹	
17:15	16p-A501-14	Siフォトニック結晶光偏向器のビームコリメート用プリ ズムレンズ(VIII) 円錐状ビームの考察と修正	○窪田 陸¹, 山本 航平¹, 鉄矢 諒¹, 馬場 俊彦¹	1.横国大理工
17:30	16p-A501-15	多点同時出射変調フォトニック結晶レーザーの広FOV・ 高スローブ効率・高均一動作に向けた検討	○石崎賢司 ¹ , 坂田 諒一 ¹ , 井上 卓也 ¹ , De Zoysa Menaka ¹ , 今村 陽 ¹ , 小松原 望 ^{1,2} , 前田 修 ² , 太田 浩 紀 ^{1,2} , 山田 和義 ² , 中村 仁 ² , 山口 圭治 ² , 初田 蘭子 ¹ , 野田 進 ¹	1. 京大院工, 2.ソニーセミコンダクタソリューションズ
,	. ,	口頭講演 (Oral Presentation) D215会場 (Room D215)		
9:30 9:45		マイクロ波照射下のバイオフォトンの分光測定 フォトニック結晶レーザーの出射ビームの直線偏光度増		1. 九大院工 1. 京大院工, 2. ローム
10:00	17a-D215-3	大 縦型金属 - 絶縁体 - 金属導波路と Si 細線導波路における高 効率モード変換	田 昌宏 ¹ , De Zoysa Menaka ¹ , 石崎 賢司 ¹ , 野田 進 ¹ ○小野 真証 ^{1,2} , 新家 昭彦 ^{1,2} , 納富 雅也 ^{1,2,3}	1.NTTナノフォトニクスセンタ, 2.NTT物性科学基礎 研, 3.東工大理
10:15	17a-D215-4	大域的バンド端周波数勾配を導入した短バルスフォト ニック結晶レーザーのさらなる高ピーク出力化に向けた	○二五 和樹¹, 井上 卓也¹, 森田 遼平¹, 野田 進¹	1. 京大院工
10:30	17a-D215-5	検討 SiC上グラフェンを用いた高速非線形光学応答	○藤方潤一¹,日下智貴¹,関和彦²,乗松 航³,伊藤 孝寛³,片山 哲郎¹,永瀬 雅夫¹,古部 昭広¹	1. 徳島大, 2. 産総研, 3. 名古屋大
10:45	17a-D215-6	休憩/Break 機械学習を活用した連続・擬似連続駆動分割電極PCSEL	○和泉 孝紀』De Zovsa Menaka』行全 市却』小廿	1 京大院工
		のビーム形状制御	宇翔 \ , 井上 卓也 \ , 勝野 峻平 \ , 吉田 昌宏 \ , 石崎 賢 司 \ , 初田 蘭子 \ , 野田 進 \	
11:15	17a-D215-7	深層学習によるSi 細線 - トポロジカル導波路間カプラの 結合効率向上構造の設計	〇坂本 樹 ¹, 雨宮 智宏 ¹ ², 岡田 祥 ¹, 各務 響 ¹, 西山 伸 $\mathcal{E}^{1,2}$, 胡 暁 ³	1. 東工大院工, 2. 東工大未来研, 3. 物材機構
11:30	17a-D215-8	連続・擬似連続駆動分割電極PCSELのCMA-ESを活用 したリアルタイムビーム形状制御	〇和泉孝紀¹, 行舍直起¹, De Zoysa Menaka¹, 小林字翔¹, 井上卓也¹, 勝野峻平¹, 吉田昌宏¹, 石崎賢司¹, 初田蘭子¹, 野田進¹	1. 京大院工
11:45	17a-D215-9	位相干渉によるトポロジカル伝送路の経路切替の実証	○岡田祥 ¹ ,雨宮智宏 ^{1,2} ,各務響 ¹ ,坂本樹 ¹ ,西山伸 彦 ^{1,2} ,胡暁 ^{1,3}	1. 東工大院工, 2. 東工大未来研, 3. 物材機構
12:00	17a-D215-10	GaN系PCSELへの温度補償構造導入によるCW出力向 上	○十鳥 雅弘¹, 小泉 朋朗²¹, 江本 溪²¹, 井上 卓也¹, 石 崎 賢司¹, De Zoysa Menaka¹, 野田 進¹	1. 京大院工, 2. スタンレー電気
			y and the	

	(Thu.) 9:15 - 12:00	口頭講演 (Oral Presentation) E502会場 (Room E502)	ションMのコードシェアセッション / Code-sharing S	55551671 01 - 5.10 & 5.11 & IVI
9:15	16a-E502-1	フォトニクスの視点から開拓する半導体熱流制御技術	○野村 政宏 ¹	1.東大生研
9:30	16a-E502-2	銀薄膜より高い太陽光反射率を持つ多層膜を用いた日中 放射冷却	○石井 智 ^{1,2,3} , エルナンデス ダビーッド ¹ , タンジャヤ ニコラウス ^{1,2} , 長尾 忠昭 ^{1,4}	1.物材機構, 2. 筑波大, 3.JST さきがけ, 4.北大
9:45	奨 16a-E502-3	放射冷却素材を用いて過冷却度を増大させた蒸気圧縮冷凍サイクルの検討II		1. 大阪ガス , 2.SPACECOOL
0:00	16a-E502-4	フォノン共鳴波長近傍におけるパッシブ近接場計測モデル		1.東大工, 2.東大生研, 3.JST さきがけ
0:15	E 16a-E502-5	Bistable control of phase transition of an optomechanical SSH chain by radiation pressure 休憩/Break	○ Feng Tian ¹ , Satoshi Iwamoto ^{1,2}	1.RCAST, Univ. of Tokyo, 2.IIS, Univ. of Tokyo
0:45	E 16a-E502-6	Analysis of governing thermal radiation efficiency via GaAs/Au micro-stripe structures	○ (D)Hnin LaiLai Aye¹, Bojin Lin¹, Haruki Orito¹, Ikuya Suzuki¹, Bei Ma¹, Yoshihiro Ishitani¹	1.Chiba Univ.
1:00	16a-E502-7	光照射下で自己成長する銀樹状構造	〇菱井 有莉 1 , 並木 潮美 1 , 大久保 貴広 1 , 狩野 旬 1 , 紀 和 利 β 1 , 庄司 暁 2 , 武安 伸幸 1	1. 岡山大, 2. 電通大
1:15	16a-E502-8	膜の赤外メタマテリアル制御	藤田 明希 4	1. 東大工, 2. 三菱マテリアル, 3. 宇都宮大学, 4. 科学技術 研究所
1:30	16a-E502-9	プラズモニック共振器を用いたダイヤモンド NV ナノ レーザーの検討	○佐藤 大地¹, 勝見 亮太¹, 飛沢 健¹, 鳴瀬 駿¹, 高田 晃佑¹, 河合 健太¹, 八井 崇¹	
1:45		プラズモニック金ナノ粒子における超高速偏光分解近赤 外発光分光 構造・現象、3.12 半導体光デバイスのコードシェアセッシ	〇杉田 篤史 ¹ , 室井 堅森 ¹ , 末元 徹 ² , 浅原 彰文 ² , 奥野 剛 ² , 谷 峻太郎 ³ , 小林 洋平 ³	1. 静大工, 2. 電通大情報理工, 3. 東大物性研
		構造・現象、3.12 半導体光テバイスのコートシェアセッシー 口頭講演 (Oral Presentation) A303 会場(Room A303)	∃ ≥ / Code-sharing Session of 3.10 & 3.12	
3:30		光子・光子共鳴に基づくフォトニック結晶レーザーの直接変調帯域の広帯域化	○森田 遼平¹, 井上 卓也¹, 仲野 秀栄¹, De Zoysa Menaka¹, 石崎 賢司¹, 野田 進¹	1. 京大院工
3:45	奨 E 17p-A303-2	16-ch 50Gbps 1060-nm Single-mode Bottom-emitting Metal-aperture VCSEL Array through 5km-long SMF	○ (D)Liang Dong¹, Xiaodong Gu¹, Fumio Koyama¹	1.Tokyo Tech
4:00	17p-A303-3	フォトニック結晶レーザーの位相変調方式の提案	○井上 卓也 ¹ , 森田 遼平 ¹ , De Zoysa Menaka ¹ , 石崎 賢司 ¹ , 石村 昇太 ² , 西村 公佐 ² , 高橋 英憲 ² , 釣谷 剛 宏 ² , 鈴木 正敏 ^{2, 3} , 野田 進 ¹	1. 京大院工, 2.KDDI 総合研究所, 3. 早大理工
4:15	E 17p-A303-4	1060nm Single-mode Intra-cavity Metal-aperture VCSEL for over 2km Standard 1300nm SMF Transmission		1.Tokyo Tech.
4:30	17p-A303-5	InP系二重格子フォトニック結晶レーザーの高温単一 モード動作	○伊藤 友樹 ^{1,2} , 河野 直哉 ^{1,2} , 青木 健志 ^{1,2} , 藤井 康 祐 ^{1,2} , 高田 賢志 ^{1,2} , 吉永 弘幸 ^{1,2} , 藤原 直樹 ^{1,2} , 小笠原 誠 ¹ , 田中 礼 ¹ , 八木 英樹 ¹ , 柳沢 昌輝 ¹ , 吉田 昌宏 ² , 井 上 卓也 ² , メーナカ デゾイサ ² , 石崎 賢司 ² , 野田 進 ²	1.住友電工, 2.京大院工
:45 ::00	17p-A303-6	休憩/Break 二次元微小共振器の表面ラフネスが共振器モードに与え	○福嶋 丈浩¹, 廣田 哲也¹	1. 岡山県立大情報工
5:15	17p-A303-7	る影響 様々な形状のビームが発生可能な複合変調フォトニック	○坂田 諒一¹, 石崎 賢司¹, 井上 卓也¹, 趙 海如¹, 今村 陽¹, De Zoysa Menaka¹, 野田 進¹	1.京大院工
5:30	17p-A303-8	結晶レーザーのワット級動作 多波長スローライト面発光レーザアレイを用いた非機械 式光偏向器Ⅱ		1.東工大未来研
5:45	17p-A303-9		○陶山 実之¹, 馬場 俊彦¹	1. 横国院工
6:00	17p-A303-10		○小川 健志¹, De Zoysa Menaka¹, 十鳥 雅弘¹, 江本 渓¹.², 小泉 朋朗¹.², 井上 卓也¹, 石崎 賢司¹, 野田 進¹	1.京大工, 2.スタンレー電気
		法場光学(旧 3.12)/ Nanoscale optical science and near-f		
3/15(V		ポスター講演 (Poster Presentation) PB 会場(Room PB) 酸化チタンナノディスクアレーの狭帯域トロイダル双極		1. 神戸大院工, 2.JST さきがけ
	15p-PB06-2	子共鳴 レーザアニール法を用いた表面プラズモンフィルタの試 作	\bigcirc (B)熊谷 昌城 1 ,田邊 雅翔 1 ,久木 弘成 1 ,内海 淳志 1	1.舞鶴高専
	15p-PB06-3	TF プラズモン共鳴を用いたライブセルイメージングのため のAu on Ag Disk基板の作製	○(B)松浦 壮汰¹,小澤 優貴¹,大坂 昇¹,松山 哲也¹, 和田 健司¹,岡本 晃一¹	1. 阪公大工
	15p-PB06-4	Mie 共鳴ナノ粒子によるドナー・アクセプタ分子の蛍光		1.神戸大院工, 2.JST さきがけ
		制御		1. IT / / / / / / / / / / / / / / / / / /
	15p-PB06-5	制御 高速/広偏向な光フェーズドアレイのための五酸化二オ ブ導波路とプラズモニック導波路の結合構造提案	○ (M1C)塚本 真彩¹,鎌田 隼²,原口 雅宜¹,岡本 敏 弘¹,山口 堅三¹	•
		高速/広偏向な光フェーズドアレイのための五酸化二オ	弘1,山口堅三1	1. 徳大理工, 2.NICT
	15p-PB06-6	高速/広偏向な光フェーズドアレイのための五酸化二オ ブ導波路とプラズモニック導波路の結合構造提案 Nano Disc on Mirror 構造を用いた局在表面プラズモン共	弘 山口 堅三 \\ ○初岡 涼平 前田 早郁子 仁熊 嶺 松山 哲也 和 田 健司 岡本 晃一 \\	1. 徳大理工, 2.NICT
	15p-PB06-6	高速/広偏向な光フェーズドアレイのための五酸化二オ ブ導波路とプラズモニック導波路の結合構造提案 Nano Disc on Mirror構造を用いた局在表面プラズモン共 鳴の制御 液中レーザーアブレーション法を用いた p-GaNとAuの	弘 山口 堅三 \\ ○初岡 涼平 前田 早郁子 仁熊 嶺 松山 哲也 和田 健司 岡本 晃一 \\ ○維賀 敬 片山 哲郎 古部 昭広 2	1. 徳大理工, 2.NICT 1. 阪公立大
	15p-PB06-6 15p-PB06-7 15p-PB06-8	高速/広偏向な光フェーズドアレイのための五酸化二オ ブ導波路とプラズモニック導波路の結合構造提案 Nano Disc on Mirror構造を用いた局在表面プラズモン共 鳴の制御 液中レーザーアブレーション法を用いたp-GaNとAuの ナノ複合材料の作製と分光特性評価 バラジウムナノシートを触媒として用いた光照射下での		1. 德大理工, 2.NICT 1. 阪公立大 1. 德島大院理工, 2. 德大 pLED 研 1. 上智大学院理
	15p-PB06-6 15p-PB06-7 15p-PB06-8 15p-PB06-9 15p-PB06-10	高速/広偏向な光フェーズドアレイのための五酸化二オブ導波路とプラズモニック導波路の結合構造提案 Nano Disc on Mirror 構造を用いた局在表面プラズモン共鳴の制御 液中レーザーアプレーション法を用いたp-GaNとAuのナノ複合材料の作製と分光特性評価 バラジウムナノシートを触媒として用いた光照射下でのp-ニトロフェノール還元反応顕微ラマン分光法による酸化チタン被覆金ナノ粒子配列体薄膜の構造解析 単一指向性・波長依存性を有する伝搬型表面プラズモンビームの生成	弘¹, 山口 堅三¹ ○初岡 涼平¹, 前田 早郁子¹, 仁熊 嶺¹, 松山 哲也¹, 和田 健司¹, 岡本 晃一¹ ○維賀 敬¹, 片山 哲郎¹.², 古部 昭広¹.² ○藤田 明日香¹, 安部 萌夏¹, 内田 寛¹, 横田 幸恵¹ ○鶴崎 勇斗¹, 國府 樹¹, 片山 哲郎¹, 古部 昭広¹, 松尾 保孝² ○有富 洸人¹, 久保 敦¹, 福本 恵紀², Huang Chen-Bin³	1. 德大理工, 2.NICT 1. 阪公立大 1. 德島大院理工, 2. 德大 pLED 研 1. 上智大学院理 1. 德島大理工, 2. 北大電子研 1. 筑波大物理, 2. 高エネ研, 3. 国立清華大
	15p-PB06-6 15p-PB06-7 15p-PB06-8 15p-PB06-9 15p-PB06-10	高速/広偏向な光フェーズドアレイのための五酸化二オブ導波路とプラズモニック導波路の結合構造提案 Nano Disc on Mirror 構造を用いた局在表面プラズモン共鳴の制御 液中レーザーアプレーション法を用いたp-GaNとAuのナノ複合材料の作製と分光特性評価 バラジウムナノシートを触媒として用いた光照射下でのp-ニトロフェノール還元反応顕微ラマン分光法による酸化チタン被覆金ナノ粒子配列体薄膜の構造解析 単一指向性・波長依存性を有する伝搬型表面プラズモンビームの生成 ステンシルリソグラフィーによるシームレスナノバターンの赤外光特性	弘¹,山口 堅三¹ ○初岡 涼平¹,前田 早郁子¹,仁熊 嶺¹,松山 哲也¹,和田健司¹,岡本 晃一¹ ○維賀 敬¹,片山 哲郎¹²,古部 昭広¹² ○藤田 明日香¹,安部 萌夏¹,内田 寛¹,横田 幸恵¹ ○鶴崎 勇斗¹,國府 樹¹,片山 哲郎¹,古部 昭広¹,松尾 保孝² ○有富 洸人¹,久保 敦¹,福本 恵紀², Huang Chen-Bin³ ○山口 堅三¹,渡邉 勇起²,岡本 敏弘¹,原口 雅宣¹	1. 德大理工, 2.NICT 1. 阪公立大 1. 德島大院理工, 2. 德大pLED 研 1. 上智大学院理 1. 德島大理工, 2. 北大電子研 1. 筑波大物理, 2. 高エネ研, 3. 国立清華大 1. 德島大pLED, 2. 德島大院
	15p-PB06-6 15p-PB06-7 15p-PB06-8 15p-PB06-9 15p-PB06-10 15p-PB06-11	高速/広偏向な光フェーズドアレイのための五酸化二オブ導波路とプラズモニック導波路の結合構造提案 Nano Disc on Mirror 構造を用いた局在表面プラズモン共鳴の制御液中レーザーアプレーション法を用いたp-GaNとAuのナノ複合材料の作製と分光特性評価 バラジウムナノシートを触媒として用いた光照射下でのp-ニトロフェノール還元反応顕微ラマン分光法による酸化チタン被覆金ナノ粒子配列体薄膜の構造解析 単一指向性・波長依存性を有する伝搬型表面プラズモンビームの生成 エランシルリソグラフィーによるシームレスナノバターンの赤外光特性 ナノ構造体を用いた放射冷却による熱電発電に関する検討	弘¹,山口 堅三¹ ○初岡涼平¹,前田 早郁子¹,仁熊 嶺¹,松山 哲也¹,和田健司¹,岡本 晃一¹ ○雑賀 敬¹,片山 哲郎¹²,古部 昭広¹² ○藤田 明日香¹,安部 萌夏¹,内田 寛¹,横田 幸恵¹ ○鶴崎 勇斗¹,國府 樹¹,片山 哲郎¹,古部 昭広¹,松尾 保孝² ○有富 洸人¹,久保 敦¹,福本 恵紀², Huang Chen-Bin² ○山口 堅三¹,渡邉 勇起²,岡本 敏弘¹,原口 雅宣¹ ○四方田彩花¹,菅野 凌¹,田邉 孝純¹	1. 徳大理工, 2.NICT 1. 阪公立大 1. 徳島大院理工, 2. 徳大 pLED 研 1. 上智大学院理 1. 徳島大理工, 2. 北大電子研 1. 筑波大物理, 2. 高エネ研, 3. 国立清華大 1. 徳島大 pLED, 2. 徳島大院 1. 慶応義塾大学
	15p-PB06-6 15p-PB06-7 15p-PB06-8 15p-PB06-9 15p-PB06-10 15p-PB06-11 15p-PB06-12	高速/広偏向な光フェーズドアレイのための五酸化二オブ導波路とプラズモニック導波路の結合構造提案 Nano Disc on Mirror 構造を用いた局在表面プラズモン共鳴の制御液中レーザーアプレーション法を用いたp-GaNとAuのナノ複合材料の作製と分光特性評価パラジウムナノシートを触媒として用いた光照射下でのp-ニトロフェノール還元反応顕微ラマン分光法による酸化チタン被覆金ナノ粒子配列体薄膜の構造解析単一指向性・波長依存性を有する伝搬型表面プラズモンビームの生成ステンシルリソグラフィーによるシームレスナノバターンの赤外光特性ナノ構造体を用いた放射冷却による熱電発電に関する検討メタマテリアル熱電変換の特性向上を目的とした広帯域メタマテリアルの最適設計	弘1,山口堅三1 ○初岡涼平1,前田早郁子1,仁熊嶺1,松山哲也1,和田健司1,岡本晃一1 ○雑賀敬1,片山哲郎1-2,古部昭広1-2 ○藤田明日香1,安部萌夏1,内田寛1,横田幸恵1 ○鶴崎勇斗1,國府樹1,片山哲郎1,古部昭広1,松尾保孝2 ○有富洸人1,久保敦1,福本恵紀2,Huang Chen-Bin2 ○山口堅三1,渡邉勇起2,岡本敏弘1,原口雅宣1 ○四方田彩花1,菅野凌1,田邉孝純1 ○川村直矢1,朝倉拓也1,久保若奈1	1. 德大理工, 2.NICT 1. 阪公立大 1. 德島大院理工, 2. 德大pLED研 1. 上智大学院理 1. 德島大理工, 2. 北大電子研 1. 筑波大物理, 2. 高エネ研, 3. 国立清華大 1. 德島大pLED, 2. 德島大院 1. 慶応義塾大学 1. 東京農工大工
	15p-PB06-6 15p-PB06-7 15p-PB06-8 15p-PB06-9 15p-PB06-10 15p-PB06-11 15p-PB06-12 15p-PB06-13	高速/広偏向な光フェーズドアレイのための五酸化二オブ導波路とプラズモニック導波路の結合構造提案 Nano Disc on Mirror 構造を用いた局在表面プラズモン共鳴の制御液中レーザーアプレーション法を用いたp-GaNとAuのナノ複合材料の作製と分光特性評価バラジウムナノシートを触媒として用いた光照射下でのp-ニトロフェノール還元反応顕微ラマン分光法による酸化チタン被覆金ナノ粒子配列体薄膜の構造解析単一指向性・波長依存性を有する伝搬型表面プラズモンビームの生成ステンシルリソグラフィーによるシームレスナノバターンの赤外光特性ナノ構造体を用いた放射冷却による熱電発電に関する検討メタマテリアル熱電変換の特性向上を目的とした広帯域メタマテリアル熱電変換の発電特性を向上する広帯域メタマテリアル熱電変換の発電特性を向上する広帯域メタマテリアル構造の作製	弘1,山口堅三1 ○初岡涼平1,前田早郁子1,仁熊嶺1,松山哲也1,和田健司1,岡本晃一1 ○雜賀敬1,片山哲郎1.2,古部昭広1.2 ○藤田明日香1,安部萌夏1,内田寛1,横田幸恵1 ○鶴崎勇斗1,國府樹1,片山哲郎1,古部昭広1,松尾保孝2 ○有富洸人1,久保敦1,福本恵紀2,Huang Chen-Bin3 ○山口堅三1,渡邉勇起2,岡本敏弘1,原口雅宣1 ○四方田彩花1,菅野凌1,田邉孝純1 ○川村直矢1,朝倉拓也1,久保若奈1	1. 德大理工, 2.NICT 1. 阪公立大 1. 德島大院理工, 2. 德大pLED研 1. 上智大学院理 1. 德島大理工, 2. 北大電子研 1. 筑波大物理, 2. 高エネ研, 3. 国立清華大 1. 德島大pLED, 2. 德島大院 1. 慶応義塾大学 1. 東京農工大工 1. 東京農工大工
	15p-PB06-6 15p-PB06-7 15p-PB06-8 15p-PB06-9 15p-PB06-10 15p-PB06-11 15p-PB06-12 15p-PB06-13 15p-PB06-14 15p-PB06-15	高速/広偏向な光フェーズドアレイのための五酸化二オブ導波路とブラズモニック導波路の結合構造提案 Nano Disc on Mirror構造を用いた局在表面ブラズモン共鳴の制御液中レーザーアブレーション法を用いたp-GaNとAuのナノ複合材料の作製と分光特性評価 バラジウムナノシートを触媒として用いた光照射下でのp-ニトロフェノール還元反応顕微ラマン分光法による酸化チタン被覆金ナノ粒子配列体薄膜の構造解析単一指向性・波長依存性を有する伝搬型表面ブラズモンビームの生成ステンシルリソグラフィーによるシームレスナノバターンの赤外光特性ナノ構造体を用いた放射冷却による熱電発電に関する検討メタマテリアル熱電変換の特性向上を目的とした広帯域メタマテリアルの最適設計メタマテリアル熱電変換の発電特性を向上する広帯域メタマテリアル熱電変換の発電特性を向上する広帯域メタマテリアル構造の作製時間変調メタマテリアルに向けたスピン流注入によるCo細線の透磁率制御	弘¹,山口堅三¹ ○初岡涼平¹,前田早郁子¹,仁熊嶺¹,松山哲也¹,和田健司¹,岡本晃一¹ ○雜賀敬¹,片山哲郎¹²,古部昭広¹² ○藤田明日香¹,安部萌夏¹,內田寬¹,横田幸恵¹ ○鶴崎勇斗¹,國府樹¹,片山哲郎¹,古部昭広¹,松尾保孝² ○有富洗人¹,久保敦¹,福本恵紀²,Huang Chen-Bin³ ○山口堅三¹,渡邉勇起²,岡本敏弘¹,原口雅宣¹ ○四方田彩花¹,菅野凌¹,田邉孝純¹ ○川村直矢¹,朝倉拓也¹,久保若奈¹ ○濱田健太¹,朝倉拓也¹,久保若奈¹ ○濱田健太¹,朝倉拓也¹,久保若奈¹	1. 徳大理工, 2.NICT 1. 阪公立大 1. 徳島大院理工, 2. 徳大 pLED 研 1. 上智大学院理 1. 徳島大理工, 2. 北大電子研 1. 筑波大物理, 2. 高エネ研, 3. 国立清華大 1. 徳島大 pLED, 2. 徳島大院 1. 慶応義塾大学 1. 東京農工大工 1. 東京農工大工 1. 東京農工大工 1. 東北大帝教理, 2. 東北大高教機構, 3. 東北大多元研, 4. 北大CSIS
	15p-PB06-6 15p-PB06-7 15p-PB06-8 15p-PB06-9 15p-PB06-10 15p-PB06-11 15p-PB06-12 15p-PB06-13 15p-PB06-14 15p-PB06-15 15p-PB06-16	高速/広偏向な光フェーズドアレイのための五酸化二オブ導波路とブラズモニック導波路の結合構造提案 Nano Disc on Mirror構造を用いた局在表面プラズモン共鳴の制御液中レーザーアプレーション法を用いたp-GaNとAuのナノ複合材料の作製と分光特性評価 バラジウムナノシートを触媒として用いた光照射下でのp-ニトロフェノール還元反応顕微ラマン分光法による酸化チタン被覆金ナノ粒子配列体薄膜の構造解析単一指向性・波長依存性を有する伝搬型表面プラズモンビームの生成ステンシルリソグラフィーによるシームレスナノバターンの赤外光特性ナノ構造体を用いた放射冷却による熱電発電に関する検討メタマテリアル熱電変換の特性向上を目的とした広帯域メタマテリアル熱電変換の発電特性を向上する広帯域メタマテリアル熱電変換の発電特性を向上する広帯域メタマテリアル熱電変換の発電特性を向上する広帯域メタマテリアル熱電変換の発電特性を向上する広帯域メタマテリアル熱電変換の発電特性を向上する広帯域メタマテリアルに向けたスピン流注入によるCo細線の透磁率制御一様な電場と集光レーザーを用いたCdSe/ZnS半導体量子ドットの運動操作法の開発	弘¹,山口堅三¹ ○初岡涼平¹,前田早郁子¹,仁熊嶺¹,松山哲也¹,和田健司¹,岡本晃一¹ ○雜賀敬¹,片山哲郎¹²,古部昭広¹² ○藤田明日香¹,安部萌夏¹,内田寛¹,横田幸恵¹ ○鶴崎勇斗¹,國府樹¹,片山哲郎¹,古部昭広¹,松尾保孝² ○有富洸人¹,久保敦¹,福本恵紀²,Huang Chen-Bin² ○山口堅三¹,渡邉勇起²,岡本敏弘¹,原口雅宣¹ ○四方田彩花¹,菅野凌¹,田邉孝純¹ ○川村直矢¹,朝倉拓也¹,久保若奈¹ ○濱田健太¹,朝倉拓也¹,久保若奈¹ ○清水蓮也¹,児玉俊之²,菊池伸明³,岡本聡³,⁴,大野誠吾¹,富田知志¹² ○右馬健太郎¹,稲葉勇人¹,岡本多英¹,守安毅¹,熊倉光孝¹	1. 德大理工, 2.NICT 1. 阪公立大 1. 德島大院理工, 2. 德大pLED研 1. 上智大学院理 1. 德島大理工, 2. 北大電子研 1. 筑波大物理, 2. 高エネ研, 3. 国立清華大 1. 德島大pLED, 2. 德島大院 1. 慶応義塾大学 1. 東京農工大工 1. 東京農工大工 1. 東京農工大工 1. 東北大物理, 2. 東北大高教機構, 3. 東北大多元研, 4. 北大CSIS 1. 福井大工
	15p-PB06-6 15p-PB06-7 15p-PB06-8 15p-PB06-9 15p-PB06-10 15p-PB06-11 15p-PB06-12 15p-PB06-13 15p-PB06-14 15p-PB06-15 15p-PB06-16 15p-PB06-16	高速/広偏向な光フェーズドアレイのための五酸化二オブ導波路とブラズモニック導波路の結合構造提案 Nano Disc on Mirror構造を用いた局在表面ブラズモン共鳴の制御液中レーザーアブレーション法を用いたp-GaNとAuのナノ複合材料の作製と分光特性評価 バラジウムナノシートを触媒として用いた光照射下でのp-ニトロフェノール還元反応顕微ラマン分光法による酸化チタン被覆金ナノ粒子配列体薄膜の構造解析単一指向性・波長依存性を有する伝搬型表面ブラズモンビームの生成ステンシルリソグラフィーによるシームレスナノバターンの赤外光特性ナノ構造体を用いた放射冷却による熱電発電に関する検討メタマテリアル熱電変換の特性向上を目的とした広帯域メタマテリアルの最適設計メタマテリアル概定変換の発電特性を向上する広帯域メタマテリアル構造の作製時間変調メタマテリアルに向けたスピン流注入によるCの細線の透磁率制御一様な電場と集光レーザーを用いたCdSe/ZnS半導体量	弘¹,山口堅三¹ ○初岡涼平¹,前田早郁子¹,仁熊嶺¹,松山哲也¹,和田健司¹,岡本晃一¹ ○雜賀敬¹,片山哲郎¹²,古部昭広¹² ○藤田明日香¹,安部萌夏¹,內田寬¹,横田幸恵¹ ○鶴崎勇斗¹,國府樹¹,片山哲郎¹,古部昭広¹,松尾保孝² ○有富洸人¹,久保敦¹,福本恵紀²,Huang Chen-Bin² ○山口堅三¹,渡邉勇起²,岡本敏弘¹,原口雅宣¹ ○四方田彩花¹,菅野凌¹,田邉孝純¹ ○川村直矢¹,朝倉拓也¹,久保若奈¹ ○濱田健太¹,朝倉拓也¹,久保若奈¹ ○濱田健太¹,朝倉拓也¹,久保若奈¹ ○清水蓮也¹,児玉俊之²,菊池伸明³,岡本聡³.⁴,大野誠吾¹,冨田知志¹² ○右馬健太郎¹,稲葉勇人¹,岡本多英¹,守安毅¹,熊倉光孝¹ ○馬澤裕之¹,伊藤桂介²,上田哲也¹	1. 徳大理工, 2.NICT 1. 阪公立大 1. 徳島大院理工, 2. 徳大pLED研 1. 上智大学院理 1. 徳島大理工, 2. 北大電子研 1. 筑波大物理, 2. 高エネ研, 3. 国立清華大 1. 徳島大pLED, 2. 徳島大院 1. 慶応義塾大学 1. 東京農工大工 1. 東京農工大工 1. 東京農工大工 1. 東北大物理, 2. 東北大高教機構, 3. 東北大多元研, 4. 3 北大CSIS

	15p-PB06-19	金属分割リング共振器を内包する積層型バルクメタマテ リアル作製	\bigcirc (M2) 小野 功馬 1 , 岡本 敏弘 2 , 古閑 玲音 1 , 田上 浩 訓 1 , 山口 堅三 2 , 原口 雅宣 2	1. 徳大, 2. 徳大pLED
	15p-PB06-20	メタマテリアル熱電発電による薄膜型熱電変換素子の発		1.東京農工大工
	15p-PB06-21	電特性向上 表面増強ラマン散乱シグナルにおける素子の形状依存性	○細井 李香¹, 笠井 洋輔¹, 山下 幸起¹, 井橋 勇貴¹, 樺 澤 一真¹, 鵜飼 智文², 黑須 俊治², 草間 裕介¹, 花尻 達 郎¹², 前川 透¹², 根岸 良太¹²	1. 東洋大, 2. バイオナノセンター
	E 15p-PB06-22	Spin-related bands in surface-enhanced Raman scattering spectra for classification of rare earth ions		1. Japan Advanced Institute of Science and Technology, 2. National Institute of Advanced Industrial Science and Technology
	15p-PB06-23	均一温度環境で駆動する熱電変換に対するメタマテリアルの必要性	○齋藤 宗平¹, 中山 涼介¹, 久保 若奈¹	1.東京農工大工
3/16(TI	hu.) 10:00 - 11:15	口頭講演 (Oral Presentation) A201会場 (Room A201)		
0:00 0:15		流れが誘導する平衡から遠い量子構造 オフシェル科学とは何か? - 基本概念の再検討から圏代	○坂野 斎¹	1. 山梨大工 1. 長浜バイオ大
		数アプローチへ-		
0:30	16a-A201-3 16a-A201-4	局所ネット、因果圏とドレスト光子 不純物原子対でのドレスト光子の閉じ込めの量子ウォー ク計算	○ 岡村 和弥 ^{1,2} ○大津 元一 ¹ , 瀬川 悦生 ² , 結城 謙太 ³ , 齋藤 正顕 ⁴	1. ドレスト光子, 2. 名大情報 1. ドレスト光子研究起点, 2. 横浜国大, 3. Middenii, 4. □ 学院大
1:00	16a-A201-5	不純物対により引き起こされるドレスト光子散逸のメカ ニズム	○三宮俊¹,西郷甲矢人²,大津元一³	1.(株) リコー, 2.長浜バイオ大, 3.ドレスト光子研究起点
		口頭講演 (Oral Presentation) A305会場 (Room A305)		4 # T 1 ~ WB5
9:00	17a-A305-1	アンギュラースペクトルを用いたプラズモニックナノス リット近接場光の逆解析	〇岩ト智洋,松尾凉平,鍾沙,伊滕治彦	1.東工大工学院
9:15	17a-A305-2	上下ダブルファイバーブローブ近接場光学顕微鏡を用いたフォトクロミック結晶におけるナノ光異性化経路の内部構造の観察		1.山梨大工, 2.龍谷大理工, 3.熊本大工, 4.熊本大院, 5.東大情報理工
9:30	E 17a-A305-3	Surface Distribution of Electric Dipole Moments on a Round Ag Edge in the Surface Plasmon Resonance	○ Sa Syou¹, Ryohei Matsuo¹, Haruhiko Ito¹	1.Tokyo Inst.
9:45	17a-A305-4	非線形ナノフォトニクスのための第一原理シミュレーション	○植本 光治¹, 木原 康輝¹	1.神戸大工
0:00	17a-A305-5	光渦を用いた定在多重極近接場光の形成	半場 凱登¹, ○矢野 尚樹¹, 伊藤 治彦¹	1.東工大工
10:15 10:30	17a-A305-6	休憩/Break プラズモン-分子エキシトン結合系が放射する超高速表 面増強蛍光を用いた量子電磁力学のAP項の寄与の検証	○伊藤 民武¹, 山本 裕子²	1. 産総研健医工, 2. 北陸先端大
0:45	17a-A305-7		○(M1)渡部 紘也¹,菱井 有莉¹,紀和 利彦¹,庄司 暁², 大久保 貴広¹,狩野 旬¹,武安 伸幸¹	1. 岡山大, 2. 電通大
1:00	奨 17a-A305-8	金属との近接を必要としないリモートプラズモニックラマン増強基板の化学的処理による光増強特性の変化		1. 徳島大院創成, 2. 徳島大ポスト LED フォトニクス研 3. ウシオ電気(株), 4. 大阪大産研, 5. 京都大院工
1:15	奨 17a-A305-9	先端テーパファイバ上金ナノ微粒子堆積率制御とセンサ 高感度化の指針		
		口頭講演 (Oral Presentation) A305会場 (Room A305)		
L3:00 =	招 E 17p-A305-1	[The 53rd Young Scientist Presentation Award Speech] A reconfigurable H-shaped THz metamaterial based on		1.Tohoku Univ.
3:15	妊 E 17p-A305-2	an ultra-small micromechanical cantilever array A Deflector and QWP Combined Metasurface for	○ Ponrapee Prutphongs¹, Katsuma Aoki¹, Satoshi	1. Tokyo Univ. of Agriculture and Technology, 2. Nation
3:30	17p-A305-3	Chip-Scale Atomic Clock シリコンミー共振器を用いた中赤外誘電体ホイヘンスメ タサーフェス	Ikezawa ¹ , Motoaki Hara ² , Kentaro Iwami ¹ ○ (M2) 森本 拓実 ¹ , 增田 圭吾 ^{3,4} , 武田 英治 ^{3,4} , 高原 淳一 ^{1,2,4}	Inst. of Information and Communication Technology 1. 阪大院工, 2. 阪大フォトニクスセ, 3. パナソニック ホールディングス, 4. 阪大パナソニック協働研
3:45	奨 17p-A305-4	メタレンズ一体型MPPCによる受光性能向上について	○上野山 聡¹, 大田 良亮¹	1. 浜ホト中研
4:00	E 17p-A305-5	Design and fabrication of functional cross-shaped metamaterials using electron beam lithography for applications in infrared shielding windows and 6G communications	○ MINH VAN NGUYEN¹, Taiyu Okatani¹, Yoshiaki Kanamori¹	1.Tohoku Univ.
4:15 4:30	奨 17p-A305-6	トップハット型光強度分布整形メタサーフェス 休憩/Break	○(B)嶋谷 智生¹,山田 遼太¹,池沢 聡¹,岩見 健太郎¹	1.農工大
4:45	17p-A305-7	時間変調メタマテリアルに向けた NiFe 細線のスピン流誘 起透磁率制御	〇児玉 俊之 1 , 菊池 伸明 2 , 岡本 聡 $^{2.3}$, 大野 誠吾 4 , 冨 田 知志 $^{1.4}$	1. 東北大高教機構, 2. 東北大多元研, 3. 東北大 CSIS, 4. 北大院理
5:00	17p-A305-8	Space-time SPP 波束の時間分解観測	○伊知地 直樹 ¹ , 菊池 陽々紀 ¹ , Murat Yessenov ² , Kenneth Schepler ² , Ayman Abouraddy ² , 久保 敦 ¹	1.筑波大物理, 2.セントラルフロリダ大
5:15 5:30			○田口 敦清¹,福井 岳人¹,笹木 敬司¹ ○西田 宗弘¹,川端 浩平¹,浴野 颯馬¹,松浦 稜介¹	1. 北大電子研 1. 広大院先進理工
5:45	17p-A305-11	化 高感度偏光イメージングに向けたメタサーフェス偏光計	○相馬 豪¹, 小松 憲人¹, 任 淳¹, 中野 義昭¹, 種村 拓 夫¹	1. 東大院工
6:00 6:15	E 17p-A305-12	休憩/Break Numerical calculation of frequency conversion occurring by time-modulation of the permittivity of a homogeneous	○ MINH VAN NGUYEN¹, Toshiyuki Kodama¹, Yoshiaki Kanamori¹	1.Tohoku Univ.
6:30	17p-A305-13	medium ドルマン型金ナノ粒子三量体構造における二次非線形性 の数スサイブ体を使に関する研究	○室井 堅森¹, 杉田 篤史¹	1. 静岡大工
6:45	17p-A305-14	の粒子サイズ依存性に関する研究 大きな光損失性材料を含む多層膜構造を用いた高感度屈 と変われる概念	○高島 祐介 ^{1,2} , 永松 謙太郎 ^{1,2} , 原口 雅宣 ^{1,2} , 直井 美 貴 ^{1,2}	1. 徳島大理工, 2. 徳島大 pLED
7:00	17p-A305-15		○玉山 泰宏¹	1.長岡技科大
7:15		び偏光依存性制御 回折格子の構造変化による色度操作	○(M2) 谷 龍之介¹, 市川 裕之¹	1.愛媛理工
	Sat.) 9:00 - 11:30 吳 E 18a-A305-1	口頭講演 (Oral Presentation) A305 会場 (Room A305) GaN Ultraviolet Laser based on Bound States in the Continuum (BIC)	○ (D)MuHsin Chen¹, Di Xing¹, Vin-Cent Su², Yang-Chun Lee¹, Ya-Lun Ho¹, Jean-Jacques	1.The Univ. of Tokyo, 2.Nat'l United Univ.
9:15	18a-A305-2	Mie共鳴シリコンナノ粒子のバーセル効果による電気・ 磁気双極子発光制御	Delaunay¹ ○(M1)笠井 大幹¹, 杉本 泰¹.², 藤井 稔¹	1.神大院工, 2.JST さきがけ
7.13			○篠原 洸羽¹, 名和 靖矩¹, 長谷川 誠樹², 井村 考平²,	1 関西学院大学理工 2 早稲田大学理工
9:30	18a-A305-3	Bull's eye型プラズモニックチップにおけるナノアンテナ 増強効果のプラズモン共鳴条件依存性	田和圭子1	100 100 (1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1

10:00	18a-A305-5	ラジアル・アジマス偏光励起光を用いた金ナノプレート の非線形発光特性の究明	○長谷川 誠樹¹, 市川 帆乃香¹, 井村 考平¹	1.早大理工
10:15		休憩/Break		
10:30	18a-A305-6	Al基板上のAuナノ半球構造によるZnO薄膜の紫外域発 光増強	〇時盛 将吾 1 ,久保田 隼也 1 ,中塚 祐哉 1 ,大坂 昇 1 ,松 山 哲也 1 ,和田 健司 1 ,岡本 晃 $^{-1}$	1. 阪公大工
10:45	18a-A305-7	非局所応答理論に基づく単一分子の先端増強発光像解析		1. 阪大院基礎工, 2. 阪公大 LAC-SYS 研
11:00	18a-A305-8	ナノアンテナ蛍光体による蛍光エンジニアリング	○村井 俊介¹, チャン フェイフェイ¹.², 愛知 広樹¹,	1. 京大院工, 2. 中科院
11:15	18a-A305-9	量子ドットと楕円スプリットリング型メタマテリアルを	田中 勝久 ¹ ○プリブル 一生 ¹ , 中川 大樹 ² , 内山 恭介 ² , 向井 剛 ^{11, 2}	1.横浜国大理工, 2.横浜国大院理工
2/10/	(0 1) 12 00 16 00	組み合わせた偏光制御単一光子放出器	7年	
13:00	18p-A305-1		○福島 知宏¹, 吉光 創之², 村越 敬¹	1.北大院理, 2.北大院総化
		ス制御		
13:15 13:30	18p-A305-2 18p-A305-3	Pdナノキューブの液相合成とそのプラズモン特性 励起子-プラズモン強結合系の近接場分光特性とダイナ	3111 7352 7301 711 71 71 70 70 70 71	1. 上智大 1. 北大院総化, 2. 北大院理
13:45	18p-A305-4	ミクス 光カソード型ナノ共振器特性における酸化ニッケルの効 果	○押切 友也 ^{1.2} , 手塚 隆博 ¹ , 荒木 魁 ² , 新家 寛正 ¹ , 松 尾 保孝 ² , 三澤 弘明 ^{2.3} , 中川 勝 ¹	1. 東北大多元研, 2. 北大電子研, 3. 国立陽明交通大学
14:00	18p-A305-5	ナノ金属配列における局在モードとプラズモン - 電子正 孔対相互作用の協奏によるホットキャリア生成増大機構	\bigcirc (M1) 井上 漱春 1 , 横山 知大 1 , 笹木 敬司 2 , 三澤 弘	1. 阪大院基礎工, 2. 北大電子研, 3. 陽明交通大
14:15		休憩/Break	· , 1 / 示	
14:30	奨 18p-A305-6	化学温熱併用がん治療を目指した光熱変換機能を有する 星形 Au-Ag ナノ粒子の形態制御と表面修飾	○(D)會田 雄大¹,中川 泰宏¹,岸 哲生¹,生駒 俊之¹	1.東京工業大学
14:45	奨 18p-A305-7		○槇島 直大1, 飯塚 達也1, 松谷 巌1	1. 東京電機大理工
15:00	18p-A305-8	中赤外メタ表面に向けたハイエントロピー合金材料の開 発	○西島 喜明¹, 首藤 輝晃¹	1.横国大工
15:15	奨 E 18p-A305-9	Control of dual-resonant infrared metasurfaces for Surface enhanced infrared absorptions	Tabata ¹ , Hiroaki Matsui ¹	1.Univ. of Tokyo
15:30	18p-A305-10	ビスマステルル薄膜光検出器における光応答性とホール 周期の関係	○(M1) 小高 敏斉 ^{1,2} , 田中 拓男 ² , 久保 若奈 ¹	1. 東京農工大, 2. 理研
15:45		無機微粒子シートからなる輻射冷却材料の開発	〇小野寺 恒信 1 , 清水 信 1 , 湯上 浩雄 1 , 及川 英俊 1 , 小 池 淳一 1	
		構造・現象、3.11 ナノ領域光科学・近接場光学、合同セッ	ション M のコードシェアセッション / Code-sharing S	Session of 3.10 & 3.11 & M
3/16		口頭講演 (Oral Presentation) E502会場 (Room E502)		
9:15		フォトニクスの視点から開拓する半導体熱流制御技術	○野村 政宏¹	1. 東大生研
9:30	16a-E502-2			1.物材機構, 2.筑波大, 3.JST さきがけ, 4.北大
9:45	奨 16a-E502-3	放射冷却 放射冷却素材を用いて過冷却度を増大させた蒸気圧縮冷		1.大阪ガス, 2.SPACECOOL
10:00	16a-E502-4	凍サイクルの検討Ⅱ フォノン共鳴波長近傍におけるパッシブ近接場計測モデ	光 真大 1,2 〇 佐 久間 涼子 1 ,林 冠廷 2 ,梶原 優介 2,3	1.東大工, 2.東大生研, 3.JST さきがけ
10:15	E 16a-E502-5	Bistable control of phase transition of an optomechanical SSH chain by radiation pressure	○ Feng Tian¹, Satoshi Iwamoto¹.²	1.RCAST, Univ. of Tokyo, 2.IIS, Univ. of Tokyo
10:30	D 44 DE00 4	休憩/Break	0/0/22 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	4.01.11.17.1
10:45	E 16a-E502-6	Analysis of governing thermal radiation efficiency via	(D)Hnin LaiLai Aye ¹ , Bojin Lin ¹ , Haruki Orito ¹ ,	1.Chiba Univ.
11:00	16a-E502-7	GaAs/Au micro-stripe structures 光照射下で自己成長する銀樹状構造	Ikuya Suzuki¹, Bei Ma¹, Yoshihiro Ishitani¹ ○菱井 有莉¹, 並木 潮美¹, 大久保 貴広¹, 狩野 旬¹, 紀 和 利彦¹, 庄司 暁², 武安 伸幸¹	1. 岡山大, 2. 電通大
11:15	16a-E502-8	透明反射遮熱フィルムに向けた酸化物半導体ナノ粒子薄 膜の赤外メタマテリアル制御		1.東大工, 2.三菱マテリアル, 3.宇都宮大学, 4.科学技術 研究所
11:30	16a-E502-9	プラズモニック共振器を用いたダイヤモンドNVナノ	○佐藤 大地¹, 勝見 亮太¹, 飛沢 健¹, 鳴瀬 駿¹, 高田 晃	
11:45	16a-E502-10	レーザーの検討 プラズモニック金ナノ粒子における超高速偏光分解近赤	估¹,河合健太¹,八井崇¹ ○杉田 篤史¹, 宰井 堅姦¹, 末元 儆², 浅原 彰文², 舉野	1. 静大工, 2. 雷诵大情報理工, 3. 東大物性研
		外発光分光	剛 ² , 谷 峻太郎 ³ , 小林 洋平 ³	
		3.13) / Semiconductor optical devices (formerly 3.13) ポスター講演 (Poster Presentation) PA 会場(Room PA)		
3/10		1.5 μm帯 InP系フォトニック結晶面発光レーザ	○日高 正洋¹, 伊藤 昭生¹, 枝村 枝村¹	1.浜ホト中研
		量子カスケード検出器における極限的応答時間 (≈1 ps)		
	200 11101 2	の実証		
3/160	(Thu.) 13:30 - 16:00	口頭講演 (Oral Presentation) B409 会場(Room B409)		
		[The 44th Paper Award Speech] Insights into the utilization of porous semiconductors	○ Shubhra Shweta Pasayat¹	1.Univ. of Wisconsin-Madison
		for strain-relieved semiconductor layers		
14:00	16p-B409-2	GaAs 基板上InGaAs 格子緩和層の組成と量子井戸の発光 強度の相関調査	〇白井 一旗 1 , 本部 好記 1 , 鈴木 秀俊 1 , 荒井 昌和 1	1. 宮崎大工
14:15	16p-B409-3	InP(311)B 基板上 p ドープ 1550nm 帯量子ドットレーザ		1.早大理工, 2.NICT
14:30	16p-B409-4	の温度特性比較 Bi 照射 InP(311)B上多重積層量子ドットレーザの発振波	ンサルシーム ¹ , 松島 裕一 ¹ , 石川 浩 ¹ , 宇髙 勝之 ¹ ○ 節瀬 恕中 ^{1,2} 赤羽 浩一 ² 松木 乾 ² 梅沢 俊匡 ² 山	1 書学大理工 2 NICT 3 広阜ナ 4 タエナ
14.50	10p-2405-4	日照別 III (311)D工多里恒層量サドッドレーッの完派版長温度依存性	一、宋祖 首文 ² ,亦有 后一,松本 较,梅水 陵臣,山 本 直克 ² ,富永 依里子 ³ ,菅野 敦史 ^{2,4} ,前田 智弘 ^{1,2} ,外 林 秀之 ¹	1. P. 1 八工工, 2.11101, J. /以商八, T. 有工八
14:45		休憩/Break	11 20-	
15:00	16p-B409-5	1.55 um帯量子ドットDFBレーザの低閾値化	〇松本 敦 1 , 中島 慎也 1 , 勝原 龍海 2 , 矢吹 諒太 2 , 梅沢 俊匡 1 , 松島 裕 $-^{2}$, 宇高 勝之 2 , 赤羽 浩 $-^{1}$	1.情通機構, 2.早大理工
15:15	16p-B409-6	転写プリント法によるダイヤモンド上InP系メンブレン		1 慶大理丁 2 NTT 失端集績デバイュ研究所 2 市十生
10.10	70p D407-0	レーザーの作製		温研,4.東大ナノ量子機構
15:30	16p-B409-7	直接貼付InP/Si基板のボイドによる導波損失の数値計算		1. 上智大学
10.00	10p-1140 <i>7=1</i>	直接貼刊 Inr/31 至板のホイトによる等仮損犬の数値計算 (Ⅲ)	ZHANG JUNYU ¹ ,下村和彦 ¹	··
15:45	16p-B409-8	横方向電圧印可電界吸収型変調器のためのプロトンイオ ン多段注入特性	•	1.早稲田大学

9:30	7(Fri.) 9:30 - 11:30 奨E 17a-A303-1	口頭講演 (Oral Presentation) A303 会場(Room A303) The importance of sidewall conditions on the performance	○ (PC)Jeonghwan Park ^{1, 2} , Markus Pristovsek ³ ,	1.Nagoya Univ., 2.VBL Nagoya Univ., 3.IMaSS Nagoya
		of micro-LEDs	Wentao Cai ¹ , Heajeong Cheong ² , Atsushi Tanaka ³ , Yuta Furusawa ³ , Dong-Pyo Han ⁴ , Tae-Yeon Seong ⁵ , Hiroshi Amano ^{1, 2, 3}	Univ., 4.Hanyang Univ., 5.Korea Univ.
:45	E 17a-A303-2	Integrated module of LED array based optical wireless power transmission system	○ Mingzhi Zhao¹, Tomoyuki Miyamoto¹	1.Tokyo Institute of Technology
0:00	17a-A303-3	粒子加速器用 10kV 級 SiC 光伝導スイッチ	〇川崎 泰介 1 ,安田 浩昌 1 ,Yahia Vincent 3 2 ,吉田 光 宏 4 3 ,平等 拓範 2 ,吉田 学史 5 ,木村 重哉 5 ,太田 千 春 5 ,宮崎 久生 5	1.東芝エネルギーシステムズ, 2.理研, 3.分子研, 4.高 ネ研, 5.東芝
0:15 0:30	招 17a-A303-4	休憩/Break 「第24回光・量子エレクトロニクス業績賞(宅間宏賞) 受賞記念講演」 量子カスケードレーザーの実用化研究と室温テラヘルツ	○藤田 和上¹	1.浜松ホトニクス 中央研究所
1:00	奨 17a-A303-5	光源への展開 In ₂ O ₃ 系近赤外域透明導電性酸化膜を用いたInGaAs ショットキーフォトダイオードの評価	\bigcirc (DC) 石井 寛仁 $^{1.2}$, 大石 和明 $^{1.2}$, 鯉田 崇 2 , 清水 鉄 司 2 , 石井 裕之 2 , 張 文馨 2 , 遠藤 聡 1 , 藤代 博記 1 , 前田 辰郎 $^{1.2}$	1. 東理大, 2. 産総研
1:15	17a-A303-6	走査型非線形誘電率顕微鏡によるブラックシリコン太陽 電池のキャリア分布イメージング	○長 康雄¹, Iandolo Beniamino², Hansen Ole²	1. 東北大未来科学, 2. Technical University of Denmark
		構造・現象、3.12 半導体光デバイスのコードシェアセッシ	э $>$ / Code-sharing Session of 3.10 & 3.12	
3/17 3:30		口頭講演 (Oral Presentation) A303会場 (Room A303) 光子・光子共鳴に基づくフォトニック結晶レーザーの直 かき選供ける点状は少し		1. 京大院工
3:45	奨 E 17p-A303-2	接変調帯域の広帯域化 16-ch 50Gbps 1060-nm Single-mode Bottom-emitting	Menaka ¹ , 石崎 賢司 ¹ , 野田 進 ¹ (D) Liang Dong ¹ , Xiaodong Gu ¹ , Fumio Koyama ¹	1.Tokyo Tech
4:00	17p-A303-3	Metal-aperture VCSEL Array through 5km-long SMFフォトニック結晶レーザーの位相変調方式の提案	○井上 卓也¹, 森田 遼平¹, De Zoysa Menaka¹, 石崎 賢司¹, 石村 异太², 西村 公佐², 高橋 英憲², 釣谷 剛	1. 京大院工, 2.KDDI 総合研究所, 3. 早大理工
4:15	E 17p-A303-4	1060nm Single-mode Intra-cavity Metal-aperture VCSEL	宏 ² , 鈴木 正敏 ^{2,3} , 野田 進 ¹ ○ (D)Chang Ge ¹ , Xiaodong Gu ¹ , Fumio Koyama ¹	1.Tokyo Tech.
4:30	17p-A303-5	for over 2km Standard 1300nm SMF Transmission InP 系二重格子フォトニック結晶レーザーの高温単一 モード動作	○伊藤 友樹 ^{1,2} , 河野 直哉 ^{1,2} , 青木 健志 ^{1,2} , 藤井 康 祐 ^{1,2} , 高田 賢志 ^{1,2} , 吉永 弘幸 ^{1,2} , 藤原 直樹 ^{1,2} , 小笠原 誠 ¹ , 田中 礼 ¹ , 八木 英樹 ¹ , 柳沢 昌輝 ¹ , 吉田 昌宏 ² , 井 上 卓也 ² , メーナカ デゾイサ ² , 石崎 賢司 ² , 野田 進 ²	1.住友電工, 2.京大院工
4:45 5:00	17p-A303-6	休憩/Break 二次元微小共振器の表面ラフネスが共振器モードに与える影響	○福嶋 丈浩¹, 廣田 哲也¹	1.岡山県立大情報工
5:15	17p-A303-7		○坂田 諒一¹, 石崎 賢司¹, 井上 卓也¹, 趙 海如¹, 今村 陽¹, De Zoysa Menaka¹, 野田 進¹	1. 京大院工
5:30	17p-A303-8	多波長スローライト面発光レーザアレイを用いた非機械 式光偏向器Ⅱ		1. 東工大未来研
5:45	17p-A303-9	高効率Siスローライト回折格子ビームスキャナの実験的 観測	○陶山 実之¹, 馬場 俊彦¹	1. 横国院工
5:00	17p-A303-10	GaN系フォトニック結晶レーザーを用いた 水中 3次元 ToF-LiDAR	○小川 健志¹, De Zoysa Menaka¹, 十鳥 雅弘¹, 江本 渓¹.², 小泉 朋朗¹.², 井上 卓也¹, 石崎 賢司¹, 野田 進¹	1. 京大工, 2. スタンレー電気
		アイバー(旧 3.14)/ Optical control devices and optical	fibers (formerly 3.14)	
3/17 :30		口頭講演 (Oral Presentation) A202 会場(Room A202) 高効率光合波用中空ファイバカプラの設計	○山川 涼¹, 中川 広務², 大嶋 佑介¹, 片桐 崇史¹	1. 富山大理工, 2. 東北大理
:45	E 17a-A202-2	Single-end-access configuration for POF-based touch sensing	Hamza Javid¹, Kohei Noda¹², Shunsuke Watanabe³, Heeyoung Lee⁴, Kentaro Nakamura², ○ Yosuke Mizuno¹	
0:00 0:15	17a-A202-3 17a-A202-4	測定における測定分解能の評価	○稲葉 初¹, 黒田 圭司¹ ○和田 篤¹, 岡野 真人¹, 田中 哲¹	1. 北里大理 1. 防衛大
0:30 0:45	17a-A202-5	休憩/Break 連結ボトル共振器を用いた液中オプトメカニカルブロー バの質量分解能	○浅野 元紀¹, 山口 浩司¹, 岡本 創¹	1.NTT物性基礎研
1:00	17a-A202-6	ノイズ変調に基づく低コヒーレンスBOCDRの空間分解 能の検討	○大坪 謙太¹, 野田 康平¹.², 高橋 央¹, 李 ひよん³, 中村 健太郎², 水野 洋輔¹	1.横浜国大, 2.東工大, 3.芝浦工大
1:15	17a-A202-7	ブリルアン散乱に基づく光ファイバ型温度計測プローブ の空間分解能に関する考察		1. 横浜国大, 2. 東工大, 3. 芝浦工大
3/17		ポスター講演 (Poster Presentation) PA 会場(Room PA) BOCDR の歪測定精度の評価に向けたスペクトルピーク		1.東工大, 2. 横浜国大, 3. 芝浦工大
	17p-PA04-2	位置分布の解析 熱湯を用いたプラスチック光ファイバの長距離テーバ加		1. 芝浦工大, 2. 東工大, 3. 横浜国大
	17p-PA04-3	工の検討 Observation of multimodal interference in dry-etched	ひよん¹ ○(M1)趙 晨旭¹, 中島遼², 中西 拓登², 山根 大輔²,	1. 芝浦工大, 2. 立命館大, 3. 横浜国大
	17p-PA04-4	plastic optical fibers BOCDRにおける空間分解能の向上: 変調周波数と変調		1. 横浜国大, 2. 東工大, 3. 芝浦工大
	17p-PA04-5	振幅の寄与の比較 Double-slope-assisted BOCDRの動作シミュレーション		1. 芝浦工大, 2. 東工大, 3. 横浜国大
	17p-PA04-6		郎 ² , 水野 洋輔 ³ , 李 ひよん ¹ ○白井 悠生 ¹ , 鈴木 之大 ¹ , 捧 治紀 ¹ , 中村 健太郎 ² , 水 野 洋輔 ³ 本 ひとん ¹	1. 芝浦工大, 2. 東工大, 3. 横浜国大
	17p-PA04-7	レードオフ 遠方での歪分布測定のための差分スペクトル法に基づく POCDRの場象		1. 芝浦工大, 2. 東工大, 3. 横浜国大
	17p-PA04-8	BOCDRの提案 位相シフトデジタルホログラフィを用いた非周期ピッチ		1.NHK技研
	17p-PA04-9	光フェーズドアレイ位相補償手法の動作検証 $AI_{i}O_{3}$ マスクを用いたプロセスによる $Si_{3}N_{4}$ 光導波路の作 製	司 2 , 三浦 雅人 2 , 船橋 信彦 2 , 秋山 泰伸 1 , 青島 賢 $-^{2}$,	1. 東海大院工, 2.NHK 技研
	17p-PA04-10	Si導波路とプラズモニック導波路の低損失光結合に関す る研究	平野 芳邦 2 \bigcirc 岡崎 成吾 1 ,岡本 敏弘 2 ,山口 堅三 2 ,原口 雅宣 $^{1.2}$	1. 徳島大, 2. 徳島 pLED 研

2/10/	0-+ 0-00 11-15	口京#诗 (0.51 D.555 (4.54) - 4.202 人坦 (D.555 4.202)		
9:00		口頭講演 (Oral Presentation) A202会場(Room A202) ボリマー光導波路・光ファイバ間低損失曲面ミラーの解	○松木 太翼¹	1.早大基幹電物
9:15	18a-A202-2	析 超小型レーザ走査型映像投影装置のための光導波路型4	○中尾 慧¹, 山田 祥治¹, 勝山 俊夫¹	1.福井大産学官
9:30	18a-A202-3	波長合波器 二重周期グレーティングの非対称化による狭帯域フラットトップ導波モード共鳴フィルタの設計	〇石岡 誠太¹,楊 知雨¹,裏 升吾¹,井上 純一¹,金高 健一²	1.京都工繊大, 2.産総研
9:45	18a-A202-4	厚膜シリコンフォトニクス偏波回転分離器の作製	- ○ 今木 優斗¹, 小松 憲人¹, 宮野 広基¹, 田之村 亮汰¹, 加藤 豪作¹, エルフィキ アブドラジズ¹, 種村 拓夫¹, 中野 義昭¹	1. 東大院・エ
10:00 10:15	招 18a-A202-5	休憩/Break 「第53回講演奨励賞受賞記念講演」 高周波線路による磁気光学スイッチの高速スイッチング	○矢島 駿 ¹ , 西山 伸彦 ^{1,2,3} , 庄司 雄哉 ^{1,2}	1.東工大 電気電子系, 2.東工大 未来産業技術研究所, 3.PETRA
10:30	18a-A202-6	相変化材料を用いた光スイッチ動作のシミュレーション 解析	○佐野 陽之¹, 桑原 正史²	1. 石川高専, 2. 産総研
10:45	18a-A202-7	45°ミラー付きポリマーMZI型光スイッチの作製と評価	○桑田 椋¹, 松木 太翼¹, 宇高 勝之¹, 松島 裕一¹, 石川 浩¹	1. 早大理工
11:00	18a-A202-8	60 GHz ミリ波に対応した平面アンテナ集積量子井戸光 変調器の開発	〇関口 岳 1 ,中澤 遼太郎 1 ,中森 俊介 2 ,森 拓人 2 ,山田 健人 2 ,大田垣 祐衣 2 ,村田 博司 2 ,赤羽 浩一 3 ,荒川 太郎 1	
		材料、3.13 光制御デバイス・光ファイバーのコードシェア 口頭講演 (Oral Presentation) A305 会場 (Room A305)	アセッション / Code-sharing Session of 3.4 & 3.13	
13:00		「第53回講演奨励賞受賞記念講演」	○里 亮介 ^{1,2} , 高 磊 ² , 山本 宗継 ² , Cong Guangwei ² ,	1.早大院理工、2.産総研
10.00	1д тор лосо т	Si-SiO ₂ -Si 水平スロット導波路による広帯域光発生	山田 浩治², 北 智洋¹	1. 十八四十二,2. 注意的
13:15 13:30		メタマテリアル導波路による非線形光活性化関数 E/Oイコライザ搭載LiNbO₃広帯域光変調器		1. ソニーグループ , 2. 東工大 1. 住友大阪セメント , 2.NICT, 3. 名工大 , 4. 早稲田大
3:45	16p-A305-4	(Pb,La)(Zr,Ti)O₃(PLZT) 光変調器における DC ドリフト 抑制	○原 英生¹,阿部 峻祐¹,城市 知輝¹,關 淳¹,增田 伸¹	1.アドバンテスト研究所
14:00	16p-A305-5	PPLN導波路によるカスケード SFG/OPA 方式光パラメトリック増幅	〇岸本 直 1 , 逵本 吉朗 1 , 和久井 健太郎 1 , 藤原 幹生 1 , 関根 徳彦 1	1.情通機構
14:15 14:30		QPM素子としての水晶の特性検討 ペロブスカイト半導体を用いた太陽光励起レーザの検討		1.理化学研究所, 2.分子科学研究所 1.中大理工, 2.東大工, 3.東大先端研
14:45	16p-A305-8	pn埋込構造を有する半絶縁性InP基板上InGaAsP-MQW DFBレーザ	月女 真人 ³ , 近藤 高志 ^{2,3} , 庄司 一郎 ¹ 〇荒井 隼人 ¹ , 小林 亘 ^{1,2} , 満原 学 ¹ , 進藤 隆彦 ¹ , 中島 史人 ¹	1.NTT 先デ研, 2.NTT DIC
		ス・集積フォトニクス(旧3.15)/ Silicon photonics and in	tegrated photonics (formerly 3.15)	
3/15(V 9:00		口頭講演 (Oral Presentation) A502 会場 (Room A502) ナノピクセルによる 9:1 非対称パワースプリッタ設計手	○嶋村 雄太¹, 山内 健生¹, キム ヨンジン¹, 姜 海松¹,	1.九州大総合理工
9:15		法の検討 SARS-CoV-2検知に向けたシリコンマイクロリング共振	浜本 貴一1	
9:30		器バイオセンサの開発 高〇値中赤外Siマイクロリング共振器	平 ³ ○三宅 拓磨 ^{1,2} , 徐 学俊 ¹ , 澤野 憲太郎 ² , 小栗 克弥 ¹ ,	
9:45		ナノ共振器シリコンラマンレーザの内部吸収損失の波長	真田 治樹 ¹	
0:00		依存性 休憩/Break	高橋和 ³	
0:15	15a-A502-5	シリコンフォトニクスを用いた完全集積型パルス波形測 定器	○大嶋 広樹¹, 近藤 圭祐¹, 杉原 興浩¹	1.宇大院
10:30	奨 15a-A502-6	バルクSi上への光集積に向けたSiGe/Ge層のエピタキ シャル成長	○ (M1) 佐藤 真希斗¹, 西依 輝¹, Piedra-Lorenzana Jose A.¹, 飛沢 健¹, 石川 靖彦¹	1. 豊橋技科大
10:45	奨 15a-A502-7	Si上Ge細線構造を用いた導波路受光器の受光スペクトル と温度依存性	· ○(M1C)金子尚平¹, Piedra-Lorenzana Jose A.¹, 藤方潤一², 石川靖彦¹	1. 豊橋技科大, 2. 徳島大
11:00	E 15a-A502-8	All-Group-IV GeSn Edge-Emitting Laser on Silicon for Silicon Photonics	○ Guo-En Chang¹, Bo-Rui Wu¹, Yin-Pu Huang¹, Cheng-Ting Kuo¹	1.National Chung Cheng Univ.
3/15(W	/ed.) 13:10 - 18:00	口頭講演 (Oral Presentation) A502会場 (Room A502)		
3:10		第7回フォトニクス奨励賞授賞式	○西澤 典彦 ^{1,2}	1.フォトニクス分科会, 2.名大
13:15	招 15p-A5UZ-Z	「第7回フォトニクス奨励賞受賞記念講演」 非冗長光フェーズドアレイを用いた高分解能ビーム偏向		1.東大院工
13:30	15p-A502-3	SLG光ビームスキャナと補間kクロックサンプリングを 用いたリアルタイムSiフォトニクス非機械式FMCW		1. 横浜国立大学
13:45	15p-A502-4	LiDAR 熱光学制御SLG光ビームスキャナの低損失・低電圧化の 検討	○山本 航平¹, 馬場 俊彦¹	1.横国大院工
14:00	15p-A502-5	Si SLG LiDARチップを用いたリアルタイム振動測定	○名和 翔太¹, 陶山 実之¹, 馬場 俊彦¹	1. 横国大院工
14:15	15p-A502-6	UVオゾン親水化を用いたSOI基板上InP小片接合による ハイブリッドレーザの室温連続発振	〇菊地 健彦 1,2,3 , 黑川 宗高 1,2,3 , 藤原 直樹 1,2,3 , 井上 尚子 1,2,3 , 平谷 拓生 1,2 , 新田 俊之 1,2,3 , 御手洗 拓 矢 1,2,3 , 伊藤 友樹 1,2 , 大礒 義孝 3 , 西山 伸彦 1,3 , 八木 英樹 1,2,3	1.PETRA, 2. 住友電工伝送デバイス研, 3. 東工大工
14:30	15p-A502-7	Si フォトニクス FMCW LiDAR チップの内部反射点解析	○鎌田 幹也¹, 馬場 俊彦¹	1. 横国大院工
14:45 15:00	奨 15p-A502-8	休憩/Break $Ge_sSb_sTe_sS_z$ に基づく不揮発性相変化中赤外光位相シフタの低損失化	○(D)宮武 悠人¹,牧野 孝太郎²,富永 淳二²,宮田 典幸²,中野隆志²,岡野 誠²,トーブラサートポン カシディット¹,高木信一¹,竹中充¹	1. 東大院工, 2. 産総研
15:15	15p-A502-9	強誘電体 $\mathrm{Hf_{0.5}Zr_{0.5}O_{2}}$ における不揮発的位相変化の観測	アイット, 高木 信一, 竹甲 允 ○高城 和馬¹, 関根 尚希¹, 宮武 悠人¹, トープラサー トポン カシディット¹, 高木 信一¹, 竹中 充¹	1.東大院工
15:30	15p-A502-10	四角孔配列と回折格子を用いた高効率なSiフォトニクス ファイバカプラ		1.横国大院工
15:45	奨 15p-A502-11	ファイハカンフ 直接接合 GaInAsP/SOI 光デバイスの活性層光閉じ込め係 数制御に向けた層構造の検討	· ○佐々木 龍耶¹, 勝山 造¹, 大礒 義孝¹, 菊地 健彦¹, エ イッサモータズ¹, 雨宮 智弘¹², 西山 伸彦¹. ^{2,3}	1. 東工大院工, 2. 東工大未来研, 3.PETRA
16:00	15p-A502-12	数制御に同りた僧傳道の検討 ハイブリッドMOS位相シフタを用いた add-drop型リング共振器の実証	○脇田 耀介¹, 唐 睿¹, 湯 瀬智¹, 大野 修平¹, 赤澤 智 熙¹, モンフレ ステファン², ブフ フレデリック², トープラサートポン カシディット¹, 高木 信一¹, 竹	1. 東京大工, 2.STMicroelectronics
16:15		休憩/Break	中 充 1	

16:30	15p-A502-13	チップ接合による多機能デバイスのハイブリット集積の 検討	○高橋 巧¹	1.早稲田大学 基幹理工学部 電子物理システム学科
16:45	15p-A502-14	SOI 基板の深掘り加工とチップ接合の検討	○屈 鼎鉞¹, 高橋 巧¹, 松島 裕一¹, 石川 浩¹, 宇高 勝 之¹	1.早大理工
17:00	奨 15p-A502-15	自己注入同期を用いた狭線幅ハイブリッド波長可変レー		1.早稲田大先進
17:15	15p-A502-16	ザの結合効率最適化 ハイブリッド2波長可変レーザを用いたミリ波生成	○富村 悠雅¹, 岩永 吉祥¹, 北 智洋¹	1.早大理工
17:30		異種材料集積光回路に向けた大気圧プラズマジェットに	○日原 弘喜¹, 山内 素明¹, 沖野 晃俊¹.², 西山 伸	1.東工大工, 2.東工大科学技術創成研, 3.研究組合光電
	•	よるシリコンの表面状態の観測	彦 1,2,3	子融合基盤技研
7:45	奨 15p-A502-18	薄膜 Ce:YIG/SGGGのSi 導波路上へのμ-トランスファー	○(DC)峰村 大輝¹,高磊²,須藤 吉克²,村井 俊哉²,	1.東工大, 2.産総研
3/16/7	Thu \ 0.00 - 11.45	プリンティングを用いた導波路型光アイソレータの製作 口頭講演 (Oral Presentation) A409 会場 (Room A409)	山田 浩治*, 圧司 雄哉*	
9:00	,	多モード導波路を用いるスペックル生成器の小型化に関	○大島 拓賢¹, シーム ヘインサル¹, 管 貴志², 田中 英	1. 早大理工, 2.KDDI 総合研究所
		する検討	明 2 , 石村 昇太 2 , 高橋 英憲 2 , 鈴木 正敏 $^{1.2}$, 宇高 勝之 1	
9:15	16a-A409-2	全光ニューラルネットワークに向けた ReLU 関数として	○坂井 駿介¹, 高橋 直樹¹, 雨宮 智宏¹, 西山 伸彦¹	1.東工大工
9:30	16a-A409-3	の GaInAsP 半導体薄膜レーザの構造検討 光回路の光路長揺らぎ抑制に向けたシリコン幅広曲線導	○北 翔太 ^{1,2} , ベディル ダニエル ^{1,2} , 新家 昭彦 ^{1,2} , 納	1 NTTナノフォトニクスセンタ 2 NTT 物性研
	100.1110.0	波路の最適化	富雅也1,2	THE TOTAL OF THE PARTY OF THE P
9:45	奨 E 16a-A409-4	Analysis of low-loss silicon loop multimode waveguide for	•	1.Waseda Uni., 2.KDDI R&D Labs.
		reservoir computing	Oshima ¹ , Takashi Kan ² , Hideaki Tanaka ² , Shota Ishimura ² , Hidenori Takahashi ² , Masatoshi Suzuki ^{1, 2} ,	
			Katsuyuki Utaka ¹	
0:00	16a-A409-5	多面光変換法に基づく集積光線形変換器	○唐 睿¹, 田之村 亮汰¹, 種村 拓夫¹, 中野 義昭¹	1.東大
0:15		休憩/Break		
0:30	奨 16a-A409-6	4×4ユニバーサル光集積回路での最適化の実証	○唐 睿¹, 湯 涵智¹, 池田 和浩², 岡野 誠², トープラ サートポン カシディット¹, 高木 信一¹, 竹中 充¹	1.東大, 2.産総研
0:45	16a-A409-7	導波路加工偏差モニタリングによる方向性結合器の分岐 比ばらつき解析	○堀川 剛 ¹ , 西山 伸彦 ^{1,2,3}	1.東工大工, 2.東工大IIR, 3.PETRA
1:00	奨 16a-A409-8	ドーピング最適化によるInP-EOポリマーハイブリッド		1.東大工
	40 4	光変調器の高速化、低損失化の検証	トポンカシディット ¹ , 高木 信一 ¹ , 竹中 充 ¹	4 ## E2 1.84
1:15	16a-A409-9	光電気 FIR 等化による Si フォトニック結晶光変調器の広 帯域化	○(DC)川原 啓輔', 馬場 俊彦'	1.横国大院工
1:30	奨 16a-A409-10	Si光変調器を用いたイメージ除去 AMUX による光領域帯	○(DC)川原 啓輔¹, 馬場 俊彦¹	1.横国大院工
		域3倍拡張		
3/17(F		ポスター講演 (Poster Presentation) PA 会場 (Room PA) 正三角柱状全誘電体 Si ナノプリズムの製作に関する研究		1.静大院工
		アンファンストラックを関係を使うない。 フォトニック結晶導波路モジュールを用いた空間電荷検		
	1.p 11100 2	知	高橋和 ²	TO COMPANY TO COMPANY TO COMPANY
		チップスケール送信機に向けたSiN/Si集積の結合効率	菅野 凌¹, ○大竹 遼¹, 田邉 孝純¹	1.慶應大理
		English Session / Optics and Photonics English Session 口頭講演 (Oral Presentation) A305会場 (Room A305)	1	
3/13(V 9:00	E 15a-A305-1	Suppression of systematic error in BOCDR with injection-	○ (M2)Guangtao Zhu¹, Kohei Noda¹.², Heeyoung	1.YNU, 2.Tokyo Tech, 3.SIT, 4.CAU
		locked light source	Lee ³ , Kwang Yong Song ⁴ , Kentaro Nakamura ² ,	
9:15	E 15a-A305-2	Thermal Drift Characteristics of All-Polarization-	Yosuke Mizuno ¹ O(DC)Bowen Liu ¹ , Takuma Shirahata ^{1, 2} , Shinji	1.The Univ. of Tokyo, 2.RCAST
7.13	L 13a-11303-2	Maintaining Fiberized Lyot Filter and Its Application for		1.1 He Oliv. of Tokyo, 2.RC/151
		Tunable Laser		
9:30	E 15a-A305-3	Tapered Fiber Designed by Gene Algorithm for	○ Yifan Ma¹, Sze Yun Set¹, Shinji Yamashita¹	1.Tokyo Univ.
9:45	E 15a-A305-4	Wavelength Conversion Analysis of SiN Optical Waveguide for 2D Beam Steering	(M2) Zhiwei Zhou ¹ Yoshikazu Shimeno ¹ Shotaro	1 Kanazawa University
	2 104 11000 1	That you of our opical waveguite for 20 Deam electing	Kawai ¹ , Takeo Maruyama ¹	
10:00	奨 E 15a-A305-5	Analyzing the efficacy of antithrombotic treatments on	○ (M2)Hongqian Zhang¹, Yuqi Zhou¹, Masako	1.Univ. of Tokyo, 2.CYBO, Inc, 3.Wuhan Univ., 4.UCL
		platelets in patients with COVID-19 by optical frequency-	Nishikawa ¹ , Yutaka Yatomi ¹ , Keisuke Goda ^{1, 2, 3, 4}	
0:15	E 15a-A305-6	division-multiplexed microscopy Analysis of Chaos Synchronization of Microresonator	○ (M1)Deniz Lemcke ^{1,2} , David Moreno ^{1,3} , Shun	1.Keio Univ., 2.RWTH Aachen, 3.Poly. Univ. Valencia,
.0.15	L 13a 11303 0	Frequency Combs	Fujii ¹ , Ayata Nakashima ¹ , Atsushi Uchida ⁴ , Takasumi	
		•	Tanabe ¹	
0:30	7.45.4005.5	休憩/Break	O(D)D::1.7:123.27.11.D: 23.7.11.	A GOVERNMENT OF COMMON AND A STATE OF THE ST
0:45	E 15a-A305-7	Performance of Rotation-Symmetric Bosonic Codes in a Quantum Repeater Scheme based on Cavity-QED	○ (D)Peizhe Li ^{1, 2, 3} , Nicolo lo Piparo ^{2, 3} , Josephine Dias ^{2, 3} , William Munro ^{4, 3} , Peter van Loock ⁵ , Kae	1.SOKENDAI, 2.OIST, 3.NII, 4.NTT Basic Res. labs, 5.Uni. Mainz
		Zamiam repeater officine based off Cavity-QDD	Nemoto ^{2, 3, 1}	o.o.m. manie
1:00	E 15a-A305-8	Quantitative phase microscopy for simultaneous thermal	\bigcirc (D)Nicholaus Kevin Tanjaya ^{1, 2} , Keiichiro Toda ³ ,	1.NIMS, 2.Univ. of Tsukuba, 3.Univ. of Tokyo, 4.
	D 45 46	conductivity and thermo-optic coefficient measurement	Takuro Ideguchi ³ , Satoshi Ishii ^{1,2,4}	JST-PRESTO
1:15	E 15a-A305-9	Functional comparison of scalar and vectorial vortex filtering for all-directional edge-enhanced microscopy	○ (DC)Jigme Zangpo¹, Hirokazu Kobayashi¹	1.Kochi Univ. Tech.
1:30	奨 E 15a-A305-10	SERS-based detection and interaction of DNA bases with	○ (M2)Martin Kasavetov¹, Keiko Esashika¹, Paul	1.Keio Univ.
		gold nanoparticles	Fons¹, Toshiharu Saiki¹	
1:45	E 15a-A305-11	Molecular identification based on terahertz surface field depletion of terahertz plasmonic metamaterials	O Borwen You ¹ , Chih-Feng Huang ² , Yen-Shan Lin ¹ , Pin-Jung Lu ¹ , Chien-Chung Shih ³	1.Changhua Univ., 2.Chung Hsing Univ., 3.Yunlin Uni
		• •		
2:00	E 15a-A305-12	Gaptronics: Stretchable-Gap Embedded Metasurface for	○ (D)Mahsa HaddadiMoghaddam¹, Bamadev Das¹,	1.UNIST
		Electromagnetic wave Modulation	○ (D)Mahsa HaddadiMoghaddam¹, Bamadev Das¹, Zhihao Wang¹, DaiSik Kim¹	1.UNIST
薄膜	莫・表面 / Thin	Electromagnetic wave Modulation Films and Surfaces	-	1.UNIST
 薄膜 ンポシ	莫・表面 / Thin ジウムのプログラム	Electromagnetic wave Modulation Films and Surfaces はプログラム冒頭にございます。	-	1.UNIST
う 薄膜 シンポシ i.1 強誘	莫・表面 / Thin ジウムのプログラム s電体薄膜 / Ferroel	Electromagnetic wave Modulation Films and Surfaces はプログラム冒頭にございます。 ectric thin films	-	1.UNIST
う 薄膜 シンポシ 5.1 強誘 3/15(W	吏・表面 / Thin ジウムのプログラム 6電体薄膜 / Ferroel Ved.) 13:00 - 18:30	Electromagnetic wave Modulation Films and Surfaces はプログラム冒頭にございます。	Zhihao Wang ¹ , DaiSik Kim ¹	
5 薄膜 シンポシ 5.1 強誘 3/15(W 13:00	き・表面 / Thin ジウムのプログラム 電体薄膜 / Ferroel Ved.) 13:00 - 18:30 奨 15p-A404-1	Electromagnetic wave Modulation Films and Surfaces はプログラム冒頭にございます。 ectric thin films 口頭講演 (Oral Presentation) A404 会場(Room A404) 様々な基板上における Y:HfO₂エピタキシャル膜の合成と 評価	Zhihao Wang¹, DaiSik Kim¹ $\bigcirc (M1) 前川 芳輝¹, 平井 浩司¹, 安岡 慎之介¹, 岡本一輝¹, 清水 莊雄², 舟窪 浩¹$	1. 東工大, 2. 物質・材料研究機構
5 薄膜 シンポシ 5.1 強誘 3/15(W 13:00	吏・表面 / Thin ジウムのプログラム 6電体薄膜 / Ferroel Ved.) 13:00 - 18:30	Electromagnetic wave Modulation Films and Surfaces はプログラム冒頭にございます。 ectric thin films 口頭講演 (Oral Presentation) A404 会場(Room A404) 様々な基板上における Y:HfO₂ エピタキシャル膜の合成と	Zhihao Wang¹, DaiSik Kim¹ ○ (M1) 前川 芳輝¹, 平井 浩司¹, 安岡 慎之介¹, 岡本一輝¹, 清水 荘雄², 舟窪 浩¹ ○ (M1) 茶谷 那知¹, 平井 浩司¹, 安岡 慎之介¹, 岡本	
5 薄膜 シンポシ 3.1 強誘 3/15(W .3:00	き・表面 / Thin ジウムのプログラム 電体薄膜 / Ferroel Ved.) 13:00 - 18:30 奨 15p-A404-1	Electromagnetic wave Modulation Films and Surfaces はプログラム冒頭にございます。 ectric thin films 口頭講演 (Oral Presentation) A404 会場(Room A404) 様々な基板上における Y:HfO₂エピタキシャル膜の合成と 評価 スパッタリング法による HfO₂-CeO₂強誘電体厚膜の非加	Zhihao Wang¹, DaiSik Kim¹ ○ (M1) 前川 芳輝¹, 平井 浩司¹, 安岡 慎之介¹, 岡本一輝¹, 清水 荘雄², 舟窪 浩¹ ○ (M1) 茶谷 那知¹, 平井 浩司¹, 安岡 慎之介¹, 岡本一輝¹, 山岡 和希子², 井上 ゆか梨², 舟窪 浩¹	1.東工大, 2.物質・材料研究機構 1.東工大, 2.TDK株式会社
5 薄膜 シンポシ 3.1 強誘 3/15(W 13:00 13:15	・表面 / Thin ジウムのプログラム 電体薄膜 / Ferroel Ved.) 13:00 - 18:30 奨 15p-A404-1 奨 15p-A404-2	Electromagnetic wave Modulation Films and Surfaces はプログラム冒頭にございます。 ectric thin films 口頭請演 (Oral Presentation) A404 会場(Room A404)様々な基板上における Y:HfO₂エピタキシャル膜の合成と 評価 スパッタリング法による HfO₂-CeO₂強誘電体厚膜の非加 熱合成 正圧電応答顕微鏡法を用いた電極下分極ドメイン観察に おける空間分解能	Zhihao Wang¹, DaiSik Kim¹ ○ (M1) 前川 芳輝¹, 平井 浩司¹, 安岡 慎之介¹, 岡本一輝¹, 清水 荘雄², 舟窪 浩¹ ○ (M1) 茶谷 那知¹, 平井 浩司¹, 安岡 慎之介¹, 岡本一輝¹, 山岡 和希子², 井上 ゆか梨², 舟窪 浩¹ ○ 萩原 拓永¹, トープラサートボン カシディット², 高木 信一², 藤村 紀文¹, 吉村 武¹	 1.東工大, 2.物質・材料研究機構 1.東工大, 2.TDK株式会社 1.阪公大院工, 2.東大院工
6 薄膜 シンポジ 3/15(W 13:00 13:15	き・表面 / Thin ジウムのプログラム 電体薄膜 / Ferroel Ved.) 13:00 - 18:30 奨 15p-A404-1 奨 15p-A404-2	Electromagnetic wave Modulation Films and Surfaces はプログラム冒頭にございます。 ectric thin films □頭講演 (Oral Presentation) A404 会場(Room A404)様々な基板上における Y:HfO₂エピタキシャル膜の合成と 評価 スバッタリング法による HfO₂-CeO₂ 強誘電体厚膜の非加 熱合成 正圧電応答顕微鏡法を用いた電極下分極ドメイン観察に	Zhihao Wang¹, DaiSik Kim¹ ○ (M1) 前川 芳輝¹, 平井 浩司¹, 安岡 慎之介¹, 岡本一輝¹, 清水 荘雄², 舟窪 浩¹ ○ (M1) 茶谷 邪知¹, 平井 浩司¹, 安岡 慎之介¹, 岡本一輝¹, 山岡 和希子², 井上 ゆか梨², 舟窪 浩¹ ○萩原 拓永¹, トープラサートポン カシディット²,	1.東工大, 2.物質・材料研究機構 1.東工大, 2.TDK 株式会社
シンポシ 6.1 強誘 3/15(W 13:00 13:15 13:30 13:45	・表面 / Thin ジウムのプログラム 電体薄膜 / Ferroel Ved.) 13:00 - 18:30 奨 15p-A404-1 奨 15p-A404-2	Electromagnetic wave Modulation Films and Surfaces はプログラム冒頭にございます。 ectric thin films 口頭請演 (Oral Presentation) A404 会場(Room A404)様々な基板上における Y:HfO2エピタキシャル膜の合成と評価 スパッタリング法による HfO2-CeO2 強誘電体厚膜の非加熱合成 正圧電応答顕微鏡法を用いた電極下分極ドメイン観察における空間分解能 強誘電性ノンドーブHfO2薄膜を用いたMFSFET のしき	Zhihao Wang¹, DaiSik Kim¹ ○ (M1) 前川 芳輝¹, 平井 浩司¹, 安岡 慎之介¹, 岡本一輝¹, 清水 荘雄², 舟窪 浩¹ ○ (M1) 茶谷 那知¹, 平井 浩司¹, 安岡 慎之介¹, 岡本一輝¹, 山岡 和希子², 井上 ゆか梨², 舟窪 浩¹ ○ 萩原 拓永¹, トープラサートボン カシディット², 高木 信一², 藤村 紀文¹, 吉村 武¹	1. 東工大, 2. 物質·材料研究機構 1. 東工大, 2. TDK 株式会社 1. 阪公大院工, 2. 東大院工

14:15					
		15p-A404-6	【注目講演】強誘電特性評価可能なオペランドレーザー励 起光電子顕微鏡の開発	○藤原 弘和¹, 糸矢 祐喜², 小林 正治³, Bareille Cédric ^{4,5} , 辛 埴 ^{5,6} , 谷内 敏之 ^{4,5}	1. 東大物性研, 2. 東大生産研, 3. 東大d.lab, 4. 東大新領域, 5. 東大MIRC, 6. 東大特別教授室
14:30	奨	15p-A404-7	レーザー励起光電子顕微鏡を用いたHfO ₂ 系強誘電体キャ	○糸矢 祐喜¹, 藤原 弘和², Bareille Cédric³, ⁴, 辛 埴⁴, ⁵,	
14:45		15p-A404-8	バシタの絶縁破壊に関する評価 窒素プラズマ処理基板上に製膜したHZO薄膜の強誘電	谷内 敏之 ^{3,4} , 小林 正治 ^{1,6} ○早川 洸海 ¹ , 田中 将 ¹ , 野田 実 ¹	MIRC, 5. 東大特別教授室, 6. 東大 d. lab 1. 京工繊大工
14.43		•	体特性の改善		1. 水工
15:00	奨	15p-A404-9	RTA時種々電界印加の $Hf_{0.5}Zr_{0.5}O_2$ 強誘電体薄膜電気特性への効果	○(M2)田中 将¹, 早川 洸海¹, 野田 実¹	1.京工繊大
15:15			休憩/Break		
15:30	招 E	15p-A404-10	[The 44th Best Review Paper Award Speech] Two-dimensional polar metal by charge transfer to a	O Ariando Ariando ¹	1.Nat'l Univ. of Singapore
			ferroelectric insulator		
16:00 16:15			強誘電体材料のPBW加工における残留水素量推定 蛍光X線ホログラフィー法によるVドープBiFeO ₃ 薄膜の		1. 芝浦工大工, 2. 芝浦工大IRCGE, 3. 煙台大 1. 丘庫県立大工, 2. 玄古屋工業大工, 3. 広島市立大塘報
10.15			局所構造解析	直久3,藤澤浩訓1	1. 六年 小工八工, 5. 11 11 庄工木八工, 5. 四面中工八旧权
16:30		15p-A404-13	コンビナトリアルスパッタ法によるSi 基板上(100) BiFeO ₃ エピタキシャル薄膜の成長	〇高木 昂平¹, 藤村 紀文¹, 吉村 武¹	1. 阪公大院工
16:45		15p-A404-14	Mg添加 ZnO 薄膜の電気光学特性の向上	Yuan Xueyou¹, ○山田 智明¹, Meng Lei²	1.名古屋大工, 2.Inst. Semiconductors, Chinese
17:00			休憩/Break		Academy of Sciences
17:15		15p-A404-15	SNDM 強誘電体プローブメモリにおける超高速再生法の	○長 康雄¹, 平永 良臣²	1. 東北大未来科学, 2. 東北大通研
17:30	E	15p-A404-16	提案 Investigation of development of stoichiometric LiNbO3	○ (P)Nana Sun¹, Kanamori Hiroaki², Iizuka	1.Tohoku Univ. NICHe, 2.I-PEX Piezo Sol.
			recording media for SNDM probe memory	Takeshi ² , Konishi Akio ² , Yasuo Cho ¹	
17:45		15p-A404-17	NbN電極上に作製したエピタキシャル (Al,Sc)N膜 の電気特性評価	○(D)安岡 慎之介¹,大田 怜佳¹, 岡本 一輝¹, 清水 荘 雄²³, 舟窪 浩¹	1.東工大, 2.物材研, 3.JST さきがけ
18:00		15p-A404-18	プラズマ酸化した AlScN に及ぼす先行プラズマ窒化の影	〇堤 智 ${\bf U}^1$, 五島 一樹 1 , 桐原 芳治 1 , 岡崎 樹 2 , 保井	1. 東京都市大学, 2. 東京都市大総研, 3. 高輝度光科学研
18:15		15p-A404-19	響のAR-HAXPESによる評価 スパッタ法で作製したAIN薄膜の強誘電体特性評価	晃 ³ , 角嶋 邦之 ⁴ , 三谷 祐一郎 ^{1,2} , 野平 博司 ¹ ○長谷川 浩太 ^{1,2} , 清水 荘雄 ² , 大澤 健男 ² , 坂口 勲 ^{1,2} ,	究センター, 4. 東工大 1. 九大院総理工、2. 物材機構、3. 東工大
				大橋 直樹 1,2,3	TO STORIGHT TO STORY OF THE STO
3/16(14:00			口頭講演 (Oral Presentation) A409 会場(Room A409) Si 基板上エピタキシャル (K,Na)NbOa 薄膜の RTA 効果	○小川 零 ¹ ,田中 清高 ¹ ,權 相暁 ¹ ,譚 賡 ² ,神野 伊策 ¹	1.神戸大工、2.大阪公大工
14:15			μ-トランスファープリンティングによるチタン酸バリウ	〇村井 俊哉 1 , 高 磊 1 , コン グァンウェイ 1 , 三田村 宣	
14:30	奨	16p-A409-3	ム薄膜のSi基板上への転写 水熱合成法で作製された (Bi, K)TiO ₃ -CaTiO ₃ 固溶体薄膜	明 ² , 森戸 健 ² , 山田 浩治 ¹ ○ (M1) 村下 太一 ¹ , 胡 雨弦 ¹ , 髙橋 雄真 ¹ , 大田 怜佳 ¹ ,	1.東工大
		•	の強誘電特性	岡本一輝1,舟窪浩1	
14:45	奨 E	16p-A409-4	Flexible BaTiO ₃ Epitaxial Films with Bulk-like Ferroelectricity and Piezoelectricity	OLizhikun Gong ¹ , Binjie Chen ¹ , Rui Yu ¹ , Hiromichi Ohta ² , Katayama Tsukasa ^{2, 3}	1.IST, Hokkaido Univ., 2.RIES, Hokkaido Univ., 3. JST-PRESTO
15:00		16p-A409-5	ガラス基板上に作製された一軸配向性PZT薄膜の分極お	山崎 佑介¹, 横田 幸恵¹, 島 宏美², 中村 美子³, 舟窪	1. 上智大, 2. 防衛大, 3. 東工大
15:15	奨	16p-A409-6	よび圧電特性の改善電界下X線回折による正方晶Pb(Zr,Ti)O ₃ 膜における圧	浩³, ○内田 寬¹ ○(M1) 中畑 美紀¹, 岡本 一輝¹, 石濱 圭佑¹, 山田 智	1.東工大, 2.名古屋大
15:30		16- 4400 7	電応答の膜厚依存性の評価 バッファ層を活用したSi基板上へのPbTiO₃圧電単結晶	明 ² , 舟窪 浩 ¹	1. 東大院工, 2.Gaianixx
15:50		16p-A409-7	薄膜の作製	○伊田 永助,本局 健 ,田原 弘相,田畑 仁	1. 宋人阮工,2. Galamixx
15:45	Е	16p-A409-8	Compositional modification of epitaxial Pb(Zr,Ti)O ₃ thin films for high-performance piezoelectric energy harvesters		1.Kobe Univ., 2.Korea Univ., 3.Osaka Metropolitan Univ.
16:00			休憩/Break		
16:15		16p-A409-9	アルキメディアンスパイラル構造のチップ面垂直方向変		1. 産総研
			位の宝钽のためのP7T 薄膜アクチュエータパターンの研		
16:30			位の実現のための PZT 薄膜アクチュエータパターンの研 究		
		16p-A409-10		○(B)桐越 大貴¹,大畑 慶記²,洗平 昌晃²³,石黒 巧	1.名大工,2.名大院工,3.名大未来研,4.鷺宫製作所, 5 東大生産研 6 静大院工
			究 カリウムイオンエレクトレット内への炭素混入の影響	○ (B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黒 巧 真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢 二²³	5. 東大生産研, 6. 静大院工
16:45	奨		究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c 軸傾斜エビ PbTiO。薄膜の擬似横波	○ (B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黒 巧 真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢 二²³	5. 東大生産研, 6. 静大院工1. 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST,
16:45 17:00		16p-A409-11	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c 軸傾斜エピ PbTiO ₃ 薄膜の擬似横波 励振特性 (10-12)LiNbO ₃ スバッタエピ薄膜の GHz 帯擬似横波励振	〇 (B) 桐越 大貴 1 ,大畑 慶記 2 ,洗平 昌晃 $^{2.3}$,石黒 巧 真 4 ,三屋 裕幸 4 ,年吉 洋 5 ,芝田 泰 6 ,橋口 原 6 ,白石 賢 $-^{2.3}$ ○國信 聡太 $^{1.2}$,柳谷 隆彦 $^{1.2.3.4.5}$	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST,
17:00	奨	16p-A409-11 16p-A409-12	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c 軸傾斜エピPbTiO ₃ 薄膜の擬似横波 励振特性 (10-12)LiNbO ₃ スパッタエピ薄膜のGHz帯擬似横波励振 特性	 ○(B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黒 巧真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢二²³ ○國信 聡太¹², 柳谷 隆彦¹.².³.⁴.⁵ ○内田 拓希¹², 工藤 慎也¹², 柳谷 隆彦¹.².³.⁵.⁴ 	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START
17:00 17:15	奨	16p-A409-11 16p-A409-12 16p-A409-13	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c 軸傾斜エピPbTiO $_3$ 薄膜の擬似横波励振特性 $(10-12)$ LiNbO $_3$ スパッタエピ薄膜の GHz 帯擬似横波励振特性 $Li_{0.65}Nb_{0.3}Ta_{0.05}O_3$ スパッタエピ薄膜の GHz 帯励振特性	○(B) 桐越 大貴 ¹ , 大畑 慶記 ² , 洗平 昌晃 ²³ , 石黒 巧 真 ⁴ , 三屋 裕幸 ⁴ , 年吉 洋 ⁵ , 芝田 泰 ⁶ , 橋口 原 ⁶ , 白石 賢 二 ^{2,3} ○國信 聡太 ^{1,2} , 柳谷 隆彦 ^{1,2,3,4,5} ○内田 拓希 ^{1,2} , 工藤 慎也 ^{1,2} , 柳谷 隆彦 ^{1,2,3,5,4} ○(B) 中村 華英 ^{1,2} , 工藤 慎也 ^{1,2} , 柳谷 隆彦 ^{1,2,3,4,5}	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START
17:00	奨	16p-A409-11 16p-A409-12 16p-A409-13	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c 軸傾斜エピPbTiO ₃ 薄膜の擬似横波 励振特性 (10-12)LiNbO ₃ スパッタエピ薄膜のGHz帯擬似横波励振 特性	 ○(B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黒 巧真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢二²³ ○國信 聡太¹², 柳谷 隆彦¹.².³.⁴.⁵ ○内田 拓希¹², 工藤 慎也¹², 柳谷 隆彦¹.².³.⁵.⁴ 	5. 東大生産研, 6. 静大院工 1. 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START
17:00 17:15	奨	16p-A409-11 16p-A409-12 16p-A409-13 16p-A409-14	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c 軸傾斜エビ PbTiO₃ 薄膜の擬似横波励振特性 (10-12) LiNbO₃ スパッタエビ薄膜の GHz 帯擬似横波励振特性 Li _{0.65} Nb _{0.3} Ta _{0.05} O₃ スパッタエビ薄膜の GHz 帯励振特性 オフ角サファイア単結晶基板上 c 軸傾斜 MgZnO, ScAlN エビタキシャル薄膜の擬似横波励振特性 エビ音響ブラッグ反射器およびエビ ScAlN, MgZnO圧電	○(B) 桐越 大貴 ¹ , 大畑 慶記 ² , 洗平 昌晃 ²³ , 石黒 巧 真 ⁴ , 三屋 裕幸 ⁴ , 年吉 洋 ⁵ , 芝田 泰 ⁶ , 橋口 原 ⁶ , 白石 賢 二 ^{2,3} ○國信 聡太 ^{1,2} , 柳谷 隆彦 ^{1,2,3,4,5} ○内田 拓希 ^{1,2} , 工藤 慎也 ^{1,2} , 柳谷 隆彦 ^{1,2,3,5,4} ○(B) 中村 華英 ^{1,2} , 工藤 慎也 ^{1,2} , 柳谷 隆彦 ^{1,2,3,4,5}	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START
17:00 17:15 17:30	奨	16p-A409-11 16p-A409-12 16p-A409-13 16p-A409-14 16p-A409-15	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c 軸傾斜エピ $PbTiO_3$ 薄膜の擬似横波励振特性 $(10-12)$ LiNb O_3 スパッタエピ 薄膜の GH_2 帯擬似横波励振特性 $Li_{0.65}$ $Nb_{0.3}$ $Ta_{0.05}$ O_3 スパッタエピ 薄膜の GH_2 帯励振特性 オフ角サファイア単結晶基板上 c 軸傾斜 $MgZnO$, $ScAlN$ エピタキシャル 薄膜の 擬似横波励振特性	○ (B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黒 巧 真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢 二²³ ○國信 聡太¹², 柳谷 隆彦¹²², 4.5 ○内田 拓希¹², 工藤 慎也¹², 柳谷 隆彦¹²², 5.5,4 ○ (B) 中村 華英¹², 工藤 慎也¹², 柳谷 隆彦¹²², 4.5 ○小林 栞¹², 岸 大貴¹², 柳谷 隆彦¹²², 4.5	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START
17:00 17:15 17:30 17:45 18:00	奨	16p-A409-11 16p-A409-12 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c 軸傾斜エピ PbTiO₃ 薄膜の擬似横波励振特性 (10-12)LiNbO₃ スパッタエピ薄膜の GHz 帯擬似横波励振特性 Li₀₅sNb₀₃Ta₀₀₅O₃ スパッタエピ薄膜の GHz 帯励振特性 オフ角サファイア単結晶基板上 c 軸傾斜 MgZnO,ScAIN エピタキシャル薄膜の擬似横波励振特性 エピ音響ブラッグ反射器およびエピ ScAIN, MgZnO圧電薄膜から成る SMR YbGaNおよび YbAIN エピタキシャル薄膜を用いた BAW 共振子の特性	○(B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黒 巧 真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢 二²³ ○國信 聡太¹², 柳谷 隆彦¹¹²₃¾, 4.5 ○内田 拓希¹², 工藤 慎也¹², 柳谷 隆彦¹¹²₃, 5.4 ○(B) 中村 華英¹², 工藤 慎也¹², 柳谷 隆彦¹¹²₃, 4.5 ○小林 栞¹², 岸 大貴¹², 柳谷 隆彦¹²²₃, 4.5 ○渡海 智¹², 柳谷 隆彦¹²²₃, 4.5	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START
17:00 17:15 17:30 17:45	奨	16p-A409-11 16p-A409-12 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c 軸傾斜エビPbTiO $_3$ 薄膜の擬似横波励振特性 ($_10-12$)LiNbO $_3$ スパッタエビ薄膜の $_2$ 研擬似横波励振特性 $_2$ Li $_0$ $_6$ $_5$ Nb $_0$ $_3$ Ta $_0$ $_0$ $_5$ $_2$ $_3$ $_4$ $_5$ $_5$ $_5$ $_5$ $_5$ $_6$ $_7$ $_7$ $_7$ 平結晶基板上 $_2$ 电帕解科 MgZnO, ScAIN エビタキシャル薄膜の擬似横波励振特性 エビ音響ブラッグ反射器およびエビ ScAIN, MgZnO圧電薄膜から成る SMR YbGaN およびYbAIN エビタキシャル薄膜を用いた BAW	○ (B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黒 巧 真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢 二²³ ○國信 聡太¹², 柳谷 隆彦¹²², 4.5 ○内田 拓希¹², 工藤 慎也¹², 柳谷 隆彦¹²², 5.5,4 ○ (B) 中村 華英¹², 工藤 慎也¹², 柳谷 隆彦¹²², 4.5 ○小林 栞¹², 岸 大貴¹², 柳谷 隆彦¹²², 4.5	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START
17:00 17:15 17:30 17:45 18:00	奨	16p-A409-11 16p-A409-12 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16 16p-A409-17 13:30 - 15:30	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c軸傾斜エピPbTiO₃薄膜の擬似横波励振特性 (10-12)LiNbO₃スパッタエピ薄膜の GHz 帯擬似横波励振特性 Li _{0.65} Nb _{0.3} Ta _{0.05} O₃スパッタエピ薄膜の GHz 帯励振特性 オフ角サファイア単結晶基板上 c軸傾斜 MgZnO,ScAlN エピタキシャル薄膜の擬似横波励振特性 エピ音響ブラッグ反射器およびエピ ScAlN, MgZnO圧電 薄膜から成る SMR YbGaN およびYbAlNエピタキシャル薄膜を用いた BAW 共振子の特性 30層分極反転共振子による圧電層と基板の音響分離 ポスター講演 (Poster Presentation) PA 会場 (Room PA)	○(B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黑 巧 真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢 二²³ ○國信 聡太¹², 柳谷 隆彦¹¹², 都谷 隆彦¹¹², 都谷 隆彦¹¹², 都谷 隆彦¹¹², 都谷 隆彦¹¹², 北藤 慎也¹², 柳谷 隆彦¹¹², 4,5 ○小林 栞¹², 岸 大貴¹², 柳谷 隆彦¹¹², 柳谷 隆彦¹²², 4,5 ○渡海 智¹², 柳谷 隆彦¹²², "賈 軍軍¹, 柳谷 隆彦¹²²³, 4,5 ○髙 子泰¹², 李 嵩¹², 賈 軍軍¹, 柳谷 隆彦¹²²³, 4,5	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START
17:00 17:15 17:30 17:45 18:00	奨	16p-A409-11 16p-A409-12 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16 16p-A409-17 13:30 - 15:30	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c軸傾斜エピPbTiO₃薄膜の擬似横波励振特性 (10-12)LiNbO₃スパッタエピ薄膜のGHz帯擬似横波励振特性 Li₀ssNb₀₃Ta₀osO₃スパッタエピ薄膜のGHz帯励振特性 オフ角サファイア単結晶基板上 c軸傾斜MgZnO,ScAlNエピタキシャル薄膜の擬似横波励振特性 エピ音響ブラッグ反射器およびエピScAlN, MgZnO圧電薄膜から成るSMR YbGaNおよびYbAlNエピタキシャル薄膜を用いたBAW共振子の特性 30層分極反転共振子による圧電層と基板の音響分離	○(B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黒 巧 真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁴, 橋口 原⁶, 白石 賢 二²³ ○國信 聡太¹², 柳谷 隆彦¹¹²₃¾, 45 ○内田 拓希¹², 工藤 慎也¹², 柳谷 隆彦¹¹²₃¾, 5 ○小林 栞¹², 岸 大貴¹², 加谷 隆彦¹¹²₃¾, 5 ○渡海 智¹², 柳谷 隆彦¹²²₃¾, 5 ○馮 子泰¹², 李 嵩¹², 賈 軍軍¹, 柳谷 隆彦¹¹²₃¾, 5 ○自岩 和剛¹², 柳谷 隆彦¹¹²₃¾, 5	5. 東大生産研, 6. 静大院工 1. 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START
17:00 17:15 17:30 17:45 18:00	奨	16p-A409-11 16p-A409-12 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-17 13:30 - 15:30 17p-PA06-1	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c軸傾斜エビPbTiO3 薄膜の擬似横波励振特性 (10-12)LiNbO3 スパッタエビ薄膜の GHz 帯擬似横波励振特性 Li _{0.65} Nb _{0.3} Ta _{0.05} O3 スパッタエビ薄膜の GHz 帯励振特性 オフ角サファイア単結晶基板上 c軸傾斜 MgZnO,ScAlN エビタキシャル薄膜の擬似横波励振特性 エビ音響ブラッグ反射器およびエビScAlN, MgZnO圧電薄膜から成る SMR YbGaN およびYbAlN エビタキシャル薄膜を用いた BAW 共振子の特性 30層分極反転共振子による圧電層と基板の音響分離 ポスター講演 (Poster Presentation) PA 会場(Room PA)PLD法による LaTaO 4 エビタキシャル薄膜の作製 化学溶液堆積法により作製した LaTaO 4 薄膜の諸特性の	○(B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黑 巧 真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢 二²³ ○國信 聡太¹², 柳谷 隆彦¹²², 柳谷 隆彦¹²³, 5。 ○内田 拓希¹², 工藤 慎也¹², 柳谷 隆彦¹²², 5。 ○小林 栞¹², 工藤 慎也¹², 柳谷 隆彦¹²², 4。 ○(B) 中村 華英¹², 工藤 慎也¹², 柳谷 隆彦¹²², 4。 ○次海 智¹², 柳谷 隆彦¹²², 柳谷 隆彦¹²², 4。 ○馮 子泰¹², 李 嵩¹², 賈 軍軍¹, 柳谷 隆彦¹²², 4。 ○白岩 和剛¹², 柳谷 隆彦¹²², 4。 ○森井 颯大¹, 浜嵜 容丞¹, 江原 祥隆¹, 安井 伸太郎²,	5. 東大生産研, 6. 静大院工 1. 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START
17:00 17:15 17:30 17:45 18:00	奨 奨 奨 (Fri.) 1	16p-A409-11 16p-A409-12 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16 16p-A409-17 13:30 - 15:30 17p-PA06-1 17p-PA06-2	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c 軸傾斜エピ PbTiO₃ 薄膜の擬似横波励振特性 Lio,65Nbo₃ Tao,05O₃ スパッタエピ薄膜の GHz 帯擬似横波励振特性 Lio,65Nbo₃ Tao,05O₃ スパッタエピ薄膜の GHz 帯励振特性 オフ角サファイア単結晶基板上 c 軸傾斜 MgZnO,ScAINエピタキシャル薄膜の擬似横波励振特性エピ音響ブラッグ反射器およびエピ ScAIN, MgZnO圧電薄膜から成る SMR YbGaN および YbAINエピタキシャル薄膜を用いた BAW共振子の特性 30層分極反転共振子による圧電層と基板の音響分離 ポスター講演 (Poster Presentation) PA 会場(Room PA)PLD法による LaTaO₄ エピタキシャル薄膜の作製 化学溶液堆積法により作製した LaTaO₄ 薄膜の諸特性の Nb 置換の影響 BaTiO₃ 薄膜の強誘電特性への Ga 及び Al 置換効果	○(B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黑 巧 真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢 二²³ ○國信 聡太¹², 柳谷 隆彦¹¹², 郑谷 隆彦¹¹²³, 4.5 ○内田 拓希¹², 工藤 慎也¹², 柳谷 隆彦¹¹²³, 4.5 ○(B) 中村 華英¹²², 工藤 慎也¹², 柳谷 隆彦¹¹²³, 4.5 ○亦林 栞¹², 岸 大貴¹², 柳谷 隆彦¹¹²³, 4.5 ○渡海 智¹², 柳谷 隆彦¹²²³, 賈 軍軍¹, 柳谷 隆彦¹²²³, 4.5 ○周子泰¹², 李 嵩¹², 賈 軍軍¹, 柳谷 隆彦¹²²³, 4.5 ○自岩 和剛¹², 柳谷 隆彦¹²²³, 4.5 ○自岩 和剛¹², 柳谷 隆彦¹²²³, 12原 祥隆¹, 安井 伸太郎², 澤井 鎭也¹。 0島 宏美¹, 濱嵜 容丞¹, 澤井 真也¹, 内田 寬² ○丸野内 洸¹, 襲 李治坤², 太田 裕道³, 片山 司³⁴4	 東大生産研, 6. 静大院工 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 防衛大学校, 2. 東京工業大学 1. 防衛大, 2. 上智大 1. 北大工, 2. 北大院情報, 3. 北大電子研, 4.JST- さきがけ
17:00 17:15 17:30 17:45 18:00	奨 奨 奨 (Fri.) 1	16p-A409-11 16p-A409-12 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16 16p-A409-17 13:30 - 15:30 17p-PA06-1 17p-PA06-2	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c軸傾斜エピPbTiO₃薄膜の擬似横波励振特性 Lio,65Nbo₃Tao,603スパッタエピ薄膜のGHz帯擬似横波励振特性 上io,65Nbo₃Tao,603スパッタエピ薄膜のGHz帯励振特性 オフ角サファイア単結晶基板上 c軸傾斜MgZnO,ScAlNエピタキシャル薄膜の擬似横波励振特性エピ音響ブラッグ反射器およびエピScAlN,MgZnO圧電薄膜から成るSMRYbGaNおよびYbAlNエピタキシャル薄膜を用いたBAW共振子の特性 30層分極反転共振子による圧電層と基板の音響分離 ポスター講演 (Poster Presentation) PA会場(Room PA)PLD法によるLaTaO₄エピタキシャル薄膜の作製 化学溶液堆積法により作製したLaTaO₄薄膜の諸特性のNb 置換の影響 BaTiO₃薄膜の強誘電特性へのGa及びAl置換効果プラズマブルームの発光分光分析による強相関強誘電体	○(B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黑 巧 真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁴, 橋口 原⁶, 白石 賢 二²³ ○國信 聡太¹², 柳谷 隆彦¹¹², 北藤 慎也¹², 柳谷 隆彦¹¹²³, 5。4 ○(B) 中村 華英¹², 工藤 慎也¹², 柳谷 隆彦¹¹²³, 4。5 ○小林 栞¹², 岸 大貴¹², 柳谷 隆彦¹¹²³, 4。5 ○渡海 智¹², 柳谷 隆彦¹¹²³, 曹 軍軍¹, 柳谷 隆彦¹¹²³, 4。5 ○店 子泰¹², 李 嵩¹², 賈 軍軍¹, 柳谷 隆彦¹¹²³, 4。5 ○白岩 和剛¹², 柳谷 隆彦¹²²³, 5。6 ○森井 颯大¹, 浜嵜 容丞¹, 江原 祥隆¹, 安井 伸太郎², 澤井 真也¹。	5. 東大生産研, 6. 静大院工 1. 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 下大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 防衛大学校, 2. 東京工業大学 1. 防衛大学校, 2. 東京工業大学
17:00 17:15 17:30 17:45 18:00	獎 獎 獎	16p-A409-11 16p-A409-13 16p-A409-13 16p-A409-15 16p-A409-16 16p-A409-17 13:30 - 15:30 17p-PA06-1 17p-PA06-2 17p-PA06-3 17p-PA06-4	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c軸傾斜エピPbTiO₃薄膜の擬似横波励振特性 (10-12)LiNbO₃スパッタエピ薄膜の GHz 帯擬似横波励振特性 Li₀,65Nb₀₃Ta₀,05O₃スパッタエピ薄膜の GHz 帯励振特性 オフ角サファイア単結晶基板上c軸傾斜 MgZnO,ScAlN エピタキシャル薄膜の擬似横波励振特性 エビ音響ブラッグ反射器およびエピ ScAlN, MgZnO圧電薄膜から成る SMR YbGaN およびYbAlN エピタキシャル薄膜を用いた BAW 共振子の特性 30層分極反転共振子による圧電層と基板の音響分離 ポスター講演 (Poster Presentation) PA 会場(Room PA)PLD 法による LaTaO₄エピタキシャル薄膜の作製 化学溶液堆積法により作製した LaTaO₄薄膜の諸特性の Nb 置換の影響 BaTiO₃薄膜の強誘電特性への Ga 及び Al 置換効果 ブラズマブルームの発光分光分析による強相関強誘電体 YMnO₃薄膜の PLD 成長ブロセスモニタリング II 磁気秩序形成過程におけるマルチフェロイック YbFe₂O₄	○(B) 桐越大貴¹,大畑慶記²,洗平昌晃²³,石黑巧真⁴,三屋 裕幸⁴,年吉洋⁵,芝田泰⁴,橋口原⁶,白石賢二²³ ○國信聡太¹²,柳谷隆彦¹²²¾4.5 ○内田拓希¹²,工藤慎也¹²,柳谷隆彦¹²²¾5.4 ○(B) 中村 華英¹²,工藤慎也¹²,柳谷隆彦¹²²¾4.5 ○小林栞¹²,岸大貴¹²,柳谷隆彦¹²²¾4.5 ○渡海智¹²,柳谷隆彦¹²²¾4.5 ○高子泰¹²,李嵩¹²,賈軍軍¹,柳谷隆彦¹²²¾4.5 ○白岩和剛¹²,柳谷隆彦¹²²¾4.5 ○白岩和剛¹²,柳谷隆彦¹²²¾4.5 ○京李¹²,李嵩¹²,賈軍軍¹,柳谷隆彦¹²²¾4.5 ○九野和剛¹²,柳谷隆彦¹²²¾4.5 ○流井颯大¹,浜嵜容丞¹,江原祥隆¹,安井伸太郎²,澤井貞也¹。○島宏美¹,濱嵜容丞¹,澤井貞也¹,內田寛² ○九野内洗¹,襲李治坤²,太田裕道³,片山司³⁴。○五十嵐悠生¹,嶋本健人¹,吉村武¹,藤村紀文¹ ○(D) 嶋本健人¹,五十嵐悠生¹,葉山琢充¹,吉村	 東大生産研, 6. 静大院工 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 防衛大学校, 2. 東京工業大学 1. 防衛大, 2. 上智大 1. 北大工, 2. 北大院情報, 3. 北大電子研, 4.JST- さきがけ
17:00 17:15 17:30 17:45 18:00	奨 奨 奨 ((Fri.) 1	16p-A409-11 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16 16p-A409-17 13:30 - 15:30 17p-PA06-1 17p-PA06-2 17p-PA06-3 17p-PA06-4	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c軸傾斜エピPbTiO₃薄膜の擬似横波励振特性 (10-12)LiNbO₃スバッタエピ薄膜の GHz 帯擬似横波励振特性 比i₀ωδNb₀₃Ta₀₀δO₃スバッタエピ薄膜の GHz 帯励振特性 オフ角サファイア単結晶基板上 c軸傾斜 MgZnO、ScAlN エピタキシャル薄膜の擬似横波励振特性 エビ音響ブラッグ反射器およびエピ ScAlN、MgZnO圧電薄膜から成る SMR YbGaN およびYbAlN エピタキシャル薄膜を用いた BAW 共振子の特性 30層分極反転共振子による圧電層と基板の音響分離 ポスター講演 (Poster Presentation) PA 会場(Room PA)PLD法によるLaTaO₄エピタキシャル薄膜の作製 化学溶液堆積法により作製したLaTaO₄薄膜の諸特性のNb 置換の影響 BaTiO₃薄膜の強誘電特性への Ga 及び Al 置換効果プラズマブルームの発光分光分析による強相関強誘電体 YMnO₃薄膜のPLD成長プロセスモニタリングII 磁気秩序形成過程におけるマルチフェロイック YbFe₂O₄薄膜の電気伝導	○(B) 桐越大貴¹,大畑慶記²,洗平昌晃²³,石黑巧真⁴,三屋 裕幸⁴,年吉洋⁵,芝田泰ө,橋口原ө,白石賢二²³ ○國信聡太¹²,柳谷隆彦¹²²,4、4。 ○内田拓希¹²,工藤慎也¹²,柳谷隆彦¹²²,5.4。 ○(B) 中村華英¹²,工藤慎也¹²,柳谷隆彦¹²²,4.5。 ○小林栞¹²,岸大貴¹²,柳谷隆彦¹²²,4.5。 ○渡海智¹²,柳谷隆彦¹²²,4.5。 ○店子泰¹²,李嵩¹²,賈軍軍¹,柳谷隆彦¹²²,4.5。 ○白岩和剛¹²,柳谷隆彦¹²²,4.5。 ○白岩和剛¹²,柳谷隆彦¹²²,明百年至。○白岩和剛¹²,柳谷隆彦¹²²³,曹軍軍¹,柳谷隆彦¹²²³,李嵩²²,賈軍軍¹,柳谷隆彦¹²²³,芹山贵。○高玄美¹,濱嵜容丞¹,深井真也¹,内田寬²。 ○九野内洗¹,襲李治坤²,太田裕道³,片山司³²4。○五十嵐悠生¹,嶋本健人¹,吉村武¹,藤村紀文¹。 ○(D) 嶋本健人¹,五十嵐悠生¹,葉山琢充¹,吉村武¹,藤村紀文¹	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 防衛大学校, 2. 東京工業大学 1. 防衛大, 2. 上智大 1. 批大工, 2. 北大院情報, 3. 北大電子研, 4.JST- さきがけ1. 阪公大院工
17:00 17:15 17:30 17:45 18:00	奨 奨 奨 ((Fri.) 1	16p-A409-11 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16 16p-A409-17 13:30 - 15:30 17p-PA06-1 17p-PA06-2 17p-PA06-3 17p-PA06-4	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c 軸傾斜エピ PbTiO₃ 薄膜の擬似横波励振特性 (10-12)LiNbO₃ スパッタエピ薄膜の GHz 帯擬似横波励振特性 Li₀₅sNb₀₃Ta₀₀₅O₃ スパッタエピ薄膜の GHz 帯髄振特性 オフ角サファイア単結晶基板上c 軸傾斜 MgZnO,ScAIN エピタキシャル薄膜の擬似横波励振特性 エレ音響ブラッグ反射器およびエピ ScAIN, MgZnO圧電薄膜から成る SMR YbGaNおよび YbAIN エピタキシャル薄膜を用いた BAW 共振子の特性 30層分極反転共振子による圧電層と基板の音響分離 ポスター講演 (Poster Presentation) PA 会場(Room PA)PLD法による LaTaO₄エピタキシャル薄膜の作製 化学溶液堆積法により作製した LaTaO₄薄膜の諸特性の Nb 置換の影響 BaTiO₃薄膜の強誘電特性への Ga 及び Al 置換効果プラズマブルームの発光分光分析による強相関強誘電体 YMnO₃薄膜のPLD成長プロセスモニタリング II 磁気秩序形成過程におけるマルチフェロイック YbFe₂O₄薄膜の電気伝導 PLD法を用いた YbFe₂O₄ 工ビタキシャル薄膜の組成制御強相関強誘電体 YbMnO₃ 薄膜の電気伝導	○(B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黑 巧真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢二²³。 ○國信 聡太¹², 柳谷 隆彦¹¹²³, 4.5 ○内田 拓希¹², 工藤 慎也¹², 柳谷 隆彦¹¹²³, 4.5 ○内田 拓希¹², 工藤 慎也¹², 柳谷 隆彦¹¹²³³, 4.5 ○小林 栞¹², 岸 大貴¹², 柳谷 隆彦¹¹²³³, 4.5 ○渡海 智¹², 柳谷 隆彦¹¹²³³, 4.5 ○渡海 智¹², 柳谷 隆彦¹¹²³³, 賈 軍軍¹, 柳谷 隆彦¹¹²³³4.5 ○古岩 和剛¹², 柳谷 隆彦¹²²³4.5 ○白岩 和剛¹², 柳谷 隆彦¹²²³4.5 ○白岩 和剛¹², 柳谷 隆彦¹²²³4.5 ○九野内 洗¹, 燕嵜 容丞¹, 江原 祥隆¹, 安井 伸太郎², 澤井 真也¹。 ○鳥 宏美¹, 濱嵜 容丞¹, 江原 祥隆¹, 安井 伸太郎², 澤井 真也¹。 ○九野内 洗¹, 襲 李治坤², 太田 裕道³, 片山 司³⁴。 ○九野内 洗¹, 襲 李治坤², 太田 裕道³, 片山 司³⁴。 ○九野内 洗¹, 襲 李治坤², 太田 裕道³, 片山 司³⁴。 ○九町內 洗¹, 襲 李治坤², 太田 裕道³, 片山 司³⁴。 ○九町內 洗¹, 襲 李治坤², 太田 裕道³, 片山 司³⁴。 ○九町內 洗¹, 襲 本神², 太田 裕道³, 片山 司³⁴。 ○九町內 洗¹, 襲 本神², 太田 裕道³, 片山 司³⁴。 ○九町內 洗¹, 襲 本神², 太田 裕道³, 片山 司³⁴。 ○九町內 洗¹, 轉 本健人¹, 五十嵐 悠生¹, 葉山 琢充¹, 藤村 紀文¹。 ○葉山 琢充¹, 嶋本 健人¹, 吉村 武¹, 藤村 紀文¹	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 防衛大学校, 2.東京工業大学 1. 防衛大学校, 2.東京工業大学 1. 防衛大, 2. 上智大 1. 北大工, 2. 北大院情報, 3. 北大電子研, 4.JST-さきがけ 1. 阪公大院工
17:00 17:15 17:30 17:45 18:00	獎 獎 獎	16p-A409-11 16p-A409-13 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16 16p-A409-17 13:30 - 15:30 17p-PA06-1 17p-PA06-2 17p-PA06-3 17p-PA06-5 17p-PA06-5	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c 軸傾斜エピ PbTiO₃ 薄膜の擬似横波励振特性 (10-12)LiNbO₃ スパッタエピ薄膜の GHz 帯擬似横波励振特性 Li₀₅5Nb₀₃ Ta₀₀₅5O₃ スパッタエピ薄膜の GHz 帯髄振特性 オフ角サファイア単結晶基板上 c 軸傾斜 MgZnO,ScAlN エピタキシャル薄膜の擬似横波励振特性 エピ音響ブラッグ反射器およびエピ ScAlN, MgZnO圧電薄膜から成る SMR YbGaN および YbAlN エピタキシャル薄膜を用いた BAW 共振子の特性 30層分極反転共振子による圧電層と基板の音響分離 ポスター講演 (Poster Presentation) PA会場(Room PA)PLD法による LaTaO₄エピタキシャル薄膜の作製 化学溶液堆積法により作製した LaTaO₄ 薄膜の諸特性の Nb 置換の影響 BaTiO₃薄膜の強誘電特性への Ga 及び Al 置換効果プラズマブルームの発光分光分析による強相関強誘電体 YMnO₃薄膜のPLD 成長プロセスモニタリング II 磁気秩序形成過程におけるマルチフェロイック YbFe₂O₄ 薄膜の電気伝導 PLD 法を用いた YbFe₂O₄ エピタキシャル薄膜の組成制御強相関強誘電体 YbMnO₃薄膜の成長機構と化学量論組成が誘電特性に及ぼす影響	○(B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黑 巧真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢二²³。 ○國信 聡太¹², 柳谷 隆彦¹¹²³, 4.5 ○内田 拓希¹², 工藤 慎也¹², 柳谷 隆彦¹¹²³, 4.5 ○内田 拓希¹², 工藤 慎也¹², 柳谷 隆彦¹¹²³³, 4.5 ○小林 栞¹², 岸 大貴¹², 柳谷 隆彦¹¹²³³, 4.5 ○渡海 智¹², 柳谷 隆彦¹¹²³³, 4.5 ○渡海 智¹², 柳谷 隆彦¹¹²³³, 賈 軍軍¹, 柳谷 隆彦¹¹²³³4.5 ○古岩 和剛¹², 柳谷 隆彦¹²²³4.5 ○白岩 和剛¹², 柳谷 隆彦¹²²³4.5 ○白岩 和剛¹², 柳谷 隆彦¹²²³4.5 ○九野内 洗¹, 燕嵜 容丞¹, 江原 祥隆¹, 安井 伸太郎², 澤井 真也¹。 ○鳥 宏美¹, 濱嵜 容丞¹, 江原 祥隆¹, 安井 伸太郎², 澤井 真也¹。 ○九野内 洗¹, 襲 李治坤², 太田 裕道³, 片山 司³⁴。 ○九野内 洗¹, 襲 李治坤², 太田 裕道³, 片山 司³⁴。 ○九野内 洗¹, 襲 李治坤², 太田 裕道³, 片山 司³⁴。 ○九町內 洗¹, 襲 李治坤², 太田 裕道³, 片山 司³⁴。 ○九町內 洗¹, 襲 本神², 太田 裕道³, 片山 司³⁴。 ○九町內 洗², 襲 本神², 太田 裕道³, 片山 司³⁴。 ○九町內 洗², 襲 本健人¹, 古村 武¹, 藤村 紀文¹。 ○東山 琢充¹, 嶋本 健人¹, 古村 武¹, 藤村 紀文¹	5.東大生産研, 6.静大院工 1.早大先進理工, 2.材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1.早大先進理工, 2.材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1.早大先進理工, 2.材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 下大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 防衛大学校, 2.東京工業大学 1. 防衛大, 2. 上智大 1. 版公大院工 1. 阪公大院工 1. 阪公大院工 1. 阪公大院工 1. 阪公大院工
17:00 17:15 17:30 17:45 18:00	奨 奨 奨	16p-A409-11 16p-A409-13 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16 16p-A409-17 13:30 - 15:30 17p-PA06-1 17p-PA06-2 17p-PA06-3 17p-PA06-5 17p-PA06-6 17p-PA06-7	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c軸傾斜エピPbTiO₃薄膜の擬似横波励振特性 (10-12)LiNbO₃スバッタエピ薄膜の GHz 帯擬似横波励振特性 Li₀ssNb₀₃Ta₀ssO₃スパッタエピ薄膜の GHz 帯励振特性 オフ角サファイア単結晶基板上 c軸傾斜MgZnO,ScAlNエピタキシャル薄膜の擬似横波励振特性 エピ音響ブラッグ反射器およびエピ ScAlN, MgZnO圧電薄膜から成る SMR YbGaN およびYbAlNエピタキシャル薄膜を用いた BAW共振子の特性 30層分極反転共振子による圧電層と基板の音響分離 ボスター講演 (Poster Presentation) PA 会場(Room PA)PLD法による LaTaO₄エピタキシャル薄膜の作製 化学溶液堆積法により作製した LaTaO₄薄膜の諸特性の Nb 置換の影響 BaTiO₃薄膜の強誘電特性への Ga 及び Al 置換効果 ブラズマブルームの発光分光分析による強相関強誘電体 YMnO₃薄膜のPLD成長ブロセスモニタリング II 磁気秩序形成過程におけるマルチフェロイック YbFe₂O₄ 薄膜の電気伝導 PLD 法を用いた YbFe₂O₄エピタキシャル薄膜の組成制御強相関強誘電体 YbMnO₃薄膜の成長機構と化学量論組成が誘電特性に及ぼす影響 バッファ層による Si 基板上エピタキシャル (K,Na)NbO₃薄膜の特性改善	 ○(B) 桐越大貴¹,大畑慶記²,洗平昌晃²³,石黒巧真⁴,三屋 裕幸⁴,年吉洋⁵,芝田泰⁴,橋口原⁶,白石賢二²³ ○國信聡太¹²,柳谷隆彦¹¹²³,基田泰²,橋口原⁶,白石賢二²³ ○内田拓希¹²,工藤慎也¹²,柳谷隆彦¹¹²³,5.4 ○(B) 中村華英¹²,工藤慎也¹²,柳谷隆彦¹¹²³,4.5 ○亦林栞¹²,岸大貴¹²,柳谷隆彦¹¹²³,4.5 ○渡海智¹²,柳谷隆彦¹²²³,4.5 ○海子泰¹²,李嵩¹²,賈軍軍¹,柳谷隆彦¹²²³,4.5 ○自岩和剛¹²,柳谷隆彦¹²²³,5 ○自岩和剛¹²,柳谷隆彦¹²³³,5 ○高素并颯大¹,浜嵜容丞¹,江原祥隆¹,安井伸太郎²,澤井真也¹ ○島宏美¹,濱嵜容丞¹,澤井真也¹,内田寛² ○丸野内洗¹,襲李治坤²,太田裕道³,片山司³⁴ ○五十嵐悠生¹,嶋本健人¹,吉村武¹,藤村紀文¹ ○(D) 嶋本健人¹,五十嵐悠生¹,葉山琢充¹,吉村武¹,藤村紀文¹ ○(D) 嶋本健人¹,五十嵐悠生¹,葉山琢充¹,吉村武¹,藤村紀文¹ ○市川颯大¹,深江圭佑²,吉村武¹,藤村紀文¹ ○田中清高¹,小川零¹,權相暁¹,譚ゴオン²,神野伊策¹ 	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 下条、上型大是、上型大名、上型大名、上型大名、1. 下条、1. 下条、2. 上型大名、2. 上型大名、2. 上型大名、2. 上型大名、2. 上型大名、2. 上型大名、2. 上型大名、3. 北大電子研, 4.JST-さきがけ 1. 下条、2. 上型大名、2. 上型、2. 上
17:00 17:15 17:30 17:45 18:00	奨 奨 奨	16p-A409-11 16p-A409-13 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16 16p-A409-17 13:30 - 15:30 17p-PA06-1 17p-PA06-2 17p-PA06-3 17p-PA06-5 17p-PA06-6 17p-PA06-7	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c軸傾斜エピPbTiO₃薄膜の擬似横波励振特性 (10-12)LiNbO₃スバッタエピ薄膜のGHz帯擬似横波励振特性 Li₀ωςNb₀₃Ta₀ωςO₃スパッタエピ薄膜のGHz帯励振特性 オフ角サファイア単結晶基板上c軸傾斜MgZnO,ScAlNエピタキシャル薄膜の擬似横波励振特性エピ音響ブラッグ反射器およびエピScAlN,MgZnO圧電薄膜から成るSMR YbGaNおよびYbAlNエピタキシャル薄膜を用いたBAW共振子の特性 30層分極反転共振子による圧電層と基板の音響分離 ボスター講演 (Poster Presentation) PA会場(Room PA)PLD法によるLaTaO₄エピタキシャル薄膜の作製 化学溶液堆積法により作製したLaTaO₄薄膜の諸特性のNb 置換の影響 BaTiO₃薄膜の強誘電特性へのGa及びAl置換効果プラズマブルームの発光分光分析による強相関強誘電体YMnO₃薄膜のPLD成長ブロセスモニタリングII 磁気秩序形成過程におけるマルチフェロイックYbFe₂O₄溝膜の電気伝導 PLD法を用いたYbFe₂O₄エピタキシャル薄膜の組成制御軸相関強誘電体YbMnO₃薄膜の成長機構と化学量論組成が誘電特性に及ぼす影響バッファ層によるSi基板上エピタキシャル(K,Na)NbO₃薄膜の特性改善	 ○(B) 桐越大貴¹,大畑慶記²,洗平昌晃²³,石黒巧真⁴,三屋 裕幸⁴,年吉洋⁵,芝田泰⁶,橋口原⁶,白石賢二²³ ○國信聡太¹²,柳谷隆彦¹¹²³,4.5 ○内田拓希¹²,工藤慎也¹²,柳谷隆彦¹¹²³,5.4 ○(B) 中村華英¹²,工藤慎也¹²,柳谷隆彦¹¹²³,4.5 ○亦林栞¹²,岸大貴¹²,柳谷隆彦¹¹²³,4.5 ○渡海智¹²,柳谷隆彦¹²²³,4.5 ○馮子泰¹²,季嵩¹²,賈軍軍¹,柳谷隆彦¹²²³,4.5 ○自岩和剛¹²,柳谷隆彦¹²²³,5 ○自岩和剛¹²,柳谷隆彦¹²²³ ○高美²,濱嵜容丞¹,江原祥隆¹,安井伸太郎²,澤井真也¹,内田寛² ○九野内洗¹,襲李治坤²,太田裕道³,片山司³⁴ ○五十嵐悠生¹,嶋本健人¹,吉村武¹,藤村紀文¹ ○(D) 嶋本健人¹,五十嵐悠生¹,葉山琢充¹,吉村武¹,藤村紀文¹ ○東山琢充¹,嶋本健人¹,吉村武¹,藤村紀文¹ ○市川颯大¹,深江圭佑²,吉村武¹,藤村紀文¹ ○田中清高¹,小川零¹,權相晓¹,潭ゴオン²,神野伊 	5.東大生産研, 6.静大院工 1.早大先進理工, 2.材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1.早大先進理工, 2.材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1.早大先進理工, 2.材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 下大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 防衛大学校, 2.東京工業大学 1. 防衛大, 2. 上智大 1. 版公大院工 1. 阪公大院工 1. 阪公大院工 1. 阪公大院工 1. 阪公大院工
17:00 17:15 17:30 17:45 18:00	獎 獎 獎	16p-A409-11 16p-A409-13 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16 16p-A409-17 13:30 - 15:30 17p-PA06-2 17p-PA06-3 17p-PA06-4 17p-PA06-5 17p-PA06-6 17p-PA06-7 17p-PA06-7	究 カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c軸傾斜エピPbTiO3薄膜の擬似横波励振特性 (10-12)LiNbO3スバッタエピ薄膜のGHz帯擬似横波励振特性 Li _{0.65} Nb _{0.3} Ta _{0.05} O3スバッタエピ薄膜のGHz帯擬似横波励振特性 オフ角サファイア単結晶基板上 c軸傾斜MgZnO,ScAlNエピタキシャル薄膜の擬似横波励振特性 エア音響ブラッグ反射器およびエピScAlN,MgZnO圧電薄膜から成るSMR YbGaNおよびYbAlNエピタキシャル薄膜を用いたBAW共振子の特性 30層分極反転共振子による圧電層と基板の音響分離 ボスター講演 (Poster Presentation) PA会場(Room PA)PLD法によるLaTaO4エピタキシャル薄膜の作製 化学溶液堆積法により作製したLaTaO4薄膜の諸特性のNb置換の影響 BaTiO3薄膜の強誘電特性へのGa及びAl置換効果プラズマブルームの発光分光分析による強相関強誘電体YMnO3薄膜のPLD成長プロセスモニタリングII 磁気秩序形成過程におけるマルチフェロイックYbFe2O4薄膜の電気伝導 PLD法を用いたYbFe2O4エピタキシャル薄膜の組成制御強相関強誘電体YbMnO3薄膜の成長機構と化学量論組成が誘電特性に及ぼす影響バッファ層によるSi基板上エピタキシャル(K,Na)NbO3薄膜の特性改善ALD法によりGa2O3基板上に作製したHf,Zr1xO2薄膜の結晶化過程 II	○(B) 桐越 大貴¹, 大畑 慶記², 洗平 昌晃²³, 石黒 巧真⁴, 三屋 裕幸⁴, 年吉 洋⁵, 芝田 泰⁶, 橋口 原⁶, 白石 賢二²³。 ○國信 聡太¹², 柳谷 隆彦¹¹²¾, 柳谷 隆彦¹²²¾, 曹 大貴¹², 賈 軍軍¹, 柳谷 隆彦¹¹²¾, 李 嵩¹², 賈 軍軍¹, 柳谷 隆彦¹¹²¾, 李 嵩¹², 賈 軍軍¹, 柳谷 隆彦¹¹²¾, 李 井 與也¹, 內田 寬²。 ○ 古田剛¹², 柳谷 隆彦¹²²¾, 正原 祥隆¹, 安井 伸太郎²,澤井 與也¹。 ○ 島 宏美¹, 演嵜 容丞¹, 江原 祥隆¹, 安井 伸太郎²,澤井 與也¹。 ○ 九野內 洗¹, 襲 李治坤², 太田 裕道³, 片山 司³⁴。 ○ 九野內 洗¹, 襲 李治坤², 太田 裕道³, 片山 司³⁴。 ○ 九野內 洗¹, 襲 本治坤², 太田 裕道³, 片山 司³⁴。 ○ 九町內 洗¹, 嶋本 健人¹, 吉村 武¹, 藤村 紀文¹。 ○ (D) 嶋本 健人¹, 五十嵐 悠生¹, 輔本 健人¹, 吉村 武¹, 藤村 紀文¹。 ○ 市川 颯大¹, 深江 圭佑², 吉村 武¹, 藤村 紀文¹。 ○ 市川 颯大¹, 深江 圭佑², 吉村 武¹, 藤村 紀文¹。 ○ 内藤 圭吾¹, 山口 晃一², 吉村 武¹, 藤村 紀文¹。 ○ 内藤 圭吾¹, 山口 晃一², 吉村 武¹, 藤村 紀文¹。 ○ (PC) Siddhant Anandrao Dhongade¹, Hiroyuki	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. FT、先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. FT、先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 防衛大学校, 2.東京工業大学 1. 防衛大, 2. 上智大 1. 版公大院工 1. 阪公大院工 1. 下公大院工 1. 下公式院工 1. 下
17:00 17:15 17:30 17:45 18:00	獎 獎 獎	16p-A409-11 16p-A409-13 16p-A409-13 16p-A409-14 16p-A409-15 16p-A409-16 16p-A409-17 13:30 - 15:30 17p-PA06-2 17p-PA06-3 17p-PA06-4 17p-PA06-5 17p-PA06-6 17p-PA06-7 17p-PA06-7	究カリウムイオンエレクトレット内への炭素混入の影響 オフ各基板を用いた c軸傾斜エピPbTiO₃薄膜の擬似横波励振特性(10-12)LiNbO₃スパッタエピ薄膜の GHz 帯擬似横波励振特性 Lio.65Nbo₃Tao.05O₃スパッタエピ薄膜の GHz 帯励振特性 オフ角サファイア単結晶基板上c軸傾斜MgZnO,ScAlNエピタキシャル薄膜の擬似横波励振特性 エピ音響ブラッグ反射器およびエピScAlN, MgZnO圧電薄膜から成る SMR YbGaNおよびYbAlNエピタキシャル薄膜を用いたBAW共振子の特性 30層分極反転共振子による圧電層と基板の音響分離 ポスター講演 (Poster Presentation) PA会場 (Room PA) PLD法によるLaTaO₄エピタキシャル薄膜の作製 化学溶液堆積法により作製したLaTaO₄薄膜の諸特性のNb 置換の影響 BaTiO₃薄膜の強誘電特性へのGa 及びAl置換効果ブラズマブルームの発光分光分析による強相関強誘電体 YMnO₃薄膜のPLD成長ブロセスモニタリング II 磁気秩序形成過程におけるマルチフェロイック YbFe₂O₄薄膜の電気伝導 PLD法を用いた YbFe₂O₄エピタキシャル薄膜の組成制御 強相関強誘電体 YMnO₃薄膜のよどが上でタースであるにより Sageの特性である Si 基板上エピタキシャル (K,Na)NbO₃薄膜の特性で発	 ○(B) 桐越大貴¹,大畑慶記²,洗平昌晃²³,石黒巧真⁴,三屋 裕幸⁴,年吉洋⁵,芝田泰²,橋口原⁶,白石賢二²³ ○國信聡太¹²,柳谷隆彦¹²²¾4.5 ○内田拓希¹²,工藤慎也¹²,柳谷隆彦¹²²¾5.4 ○(B) 中村華英¹²,工藤慎也¹²,柳谷隆彦¹²²¾4.5 ○小林栞¹²,岸大貴¹²,柳谷隆彦¹²²¾4.5 ○波海智¹²,柳谷隆彦¹²²¾4.5 ○馮子泰¹²,李嵩¹²,賈軍軍¹,柳谷隆彦¹²²¾4.5 ○自岩和剛¹²,柳谷隆彦¹²²¾4.5 ○高素美¹,濱嵜容丞¹,江原祥隆¹,安井伸太郎²,澤井貞也¹。 ○島太美¹,濱嵜容丞¹,澤井貞也¹,内田寛² ○九野内洗¹,襲李治坤²,太田裕道³,片山司³⁴ ○五十嵐悠生¹,嶋本健人¹,吉村武¹,藤村紀文¹ ○(D) 嶋本健人¹,五十嵐悠生¹,葉山琢充¹,吉村武¹,藤村紀文¹ ○市川颯大¹,深江圭佑²,吉村武¹,藤村紀文¹ ○市川颯大¹,深江圭佑²,吉村武¹,藤村紀文¹ ○田中清高¹,小川零¹,權相暁¹,譚ゴオン²,神野伊策¹ ○内藤圭吾¹,山口晃一²,吉村武¹,藤村紀文¹ 	5.東大生産研, 6.静大院工 1.早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 早大先進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 下充光進理工, 2. 材研, 3.JST-CREST, 4.JST-FOREST, 5.JST-START 1. 防衛大学校, 2.東京工業大学 1. 防衛大, 2. 上智大 1. 北大工, 2. 北大院情報, 3. 北大電子研, 4.JST-さきがけ1. 阪公大院工 1. 阪公大院工 1. 阪公大院工 1. 阪公大院工 1. 陳公大院工 1. 神戸大工, 2. 阪府大工

		基板近傍に成長空間を制限して作製したHfO₂薄膜の ALD成長機構	〇市川 龍斗 1 , 宝栄 周弥 2 , 内藤 圭吾 1 , 吉村 武 1 , 藤村 紀文 1	
		有機圧電シートを用いた筋音図測定	○さこ田 壮真 ¹, 藤村 紀文 ¹, 吉村 武 ¹	1. 阪公大院工
	17p-PA06-14	タン片持ち梁上のc軸配向性AIN薄膜合成	○庄野 武洋¹, 芳賀 大樹¹, 藤村 紀文¹, 吉村 武¹ ○(B) 長尾 知哉¹, H. H. Nguyen², 桑野 博喜², 大口 裕之¹	1. 阪公大工 1. 芝浦工大工, 2. 東北大 NiCHe
		on-based thin films		
3/15(V 9:00		口頭講演 (Oral Presentation) A408会場 (Room A408) 同軸型アークブラズマ成膜法による超ナノ微結晶ダイヤモンド電極の作製と電気化学的耐腐食性	○楢木野 宏¹, 長野 里基¹, 橋口 寛生¹, 吉武 剛¹	1. 九大院総理工
9:15	E 15a-A408-2	Influence of negative bias voltages on mechanical and	○ (D)Lama Osman Mohamed ^{1,2} , Abdelrahman Zkria ^{1,2} , Ali M Ali ^{1,3} , Hiroshi Naragino ¹ , Tsuyoshi Yoshitake ¹	1.Department of Applied Science for Electronics and Materials, Kyushu University, Fukuoka 816-8580, Japar 2.Department of Physics, Faculty of Science, Aswan University, Aswan 81528, Egypt, 3.Department of Physics, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
9:30	奨 15a-A408-3	多結晶ダイヤモンドフレークの作製と電界整列	〇清家 清弥 1 , 陳 映 \mathbb{R}^1 , 大曲 新 \mathbb{R}^2 , 稲葉 優 \mathbb{R}^1 , 中野 道 \mathbb{R}^1 , 末廣 純 \mathbb{R}^1	
9:45	15a-A408-4	大型熱フィラメント CVD法によるダイヤモンド電子舌センサの作製と面内均一性評価	〇大曲 新矢 ¹, 中原 大哉 ¹, 森田 伸友 ¹, 竹村 謙信 ¹, 岩 崎 渉 ¹	1.産総研センシング
10:00	15a-A408-5	大型バルク (100)CVD 単結晶成長と加工による高次の面 指数を持つ単結晶ダイヤモンド自立基板作製	○嶋岡 毅紘¹, 山田 英明¹, 茶谷原 昭義¹	1. 産総研
10:15	15a-A408-6	重畳されたマイクロ波を用いたプラズマCVDによるダイヤモンド結晶成長	〇山田 英明 1 ,茶谷原 昭義 1 , 杢野 由明 1 , 嶋岡 毅紘 1 , 弥政 和宏 2	1. 産総研, 2. 三菱電機
10:30	奨 15a-A408-7		〇伊原 隆宏 1 , 木村 豊 2 , 高須 智也 3 , 大島 龍司 $^{1.3}$, 澤 邉 厚仁 2 , 會田 英雄 1	1.長岡技科大, 2.青学大, 3.ディスコ
10:45	E 15a-A408-8	Misorientation Angle of Heteroepitaxial Diamond on Sapphire Misoriented Substrate	○ (M1)JACQUES DAGBETO ¹ , Koji Koyama ² , Seongwoo Kim ² , Makoto Kasu ¹	1.Saga Univ., 2.Orgray Co., Ltd
11:00	15a-A408-9	共焦点ラマン分光法によるモザイク・ダイヤモンドと HFCVDダイヤモンド層の評価	○田中 孝治¹, 大曲 新矢¹, 嶋岡 毅紘¹, 梅沢 仁¹, 山田 英明¹	1.産総研
11:15	15a-A408-10	RFC VD ダイヤモント層の評価 NV センターを有する CVD ダイヤモンド膜中の応力分布 観察	2 4 7 4	1.産総研
3/15(W	/ed.) 13:00 - 16:45	口頭講演 (Oral Presentation) A408会場(Room A408)	N21 (X*11)	
13:00	15p-A408-1	超高圧水素加圧処理による DLC 膜の構造変化	○安井 晃美¹, 小松 啓志¹, 齋藤 秀俊¹	1. 長岡技科大
13:15		HiPIMS および高周波 HiPIMS 法を用いた DLC 膜の化学 結合評価	英², 國次 真輔³, 鷹林 将⁴, 太田 裕己⁵, 米澤 健⁵, ¹	5. ケニックス
13:30	奨 15p-A408-3	高周波 HiPIMS 法を用いた DLC 膜の膜密度と炭素結合の 関係	英², 國次 真輔³, 鷹林 将⁴, 太田 裕己⁵, 米澤 健⁵, 1	5. ケニックス
13:45	·	高水素化DLC膜の熱分解過程(2)	○(M1) 丹羽 大輔¹, 三嶋 友博¹, 中西 康次¹, 福室 直 樹², 鈴木 常生³, 神田 一浩¹	
14:00 14:15		ダイヤモンドライクカーボンへのナノ制御ドーピング 圧力勾配式高周波マグネトロンスパッタ法を用いたアモ		1. 有明高専 1. 鹿児島大工, 2. 東北大多元研, 3. 兵県大高度研
14:30	奨 15p-A408-7	ルファス窒化炭素薄膜の作製 DLC膜の軟X線照射効果	一浩 ³ ○(M1)三嶋 友博 ¹ , 森田 恭司 ¹ , 中西 康次 ¹ , 神田 一 浩 ¹ , 赤坂 大樹 ²	1. 兵県大高度研, 2. 東工大工
14:45 15:00	15- 4409 9	休憩/Break ホウ素ドープ非晶質炭素体の特性に関する第一原理分子	OVID OLANG! ALL 4±1 MP 66+1 HILL K	1 図山上陸互外科學 2 図山上甘珠江
		動力学計算	馬 ¹ , 中本 歷 ¹ , 横谷 尚睦 ² , 村岡 祐治 ²	1. 岡山大院自然科学, 2. 岡山大基礎研
15:15		4-アミノ安息香酸の電解酸化によるアモルファス炭素薄膜の表面修飾		1. 龍谷大理工
15:30		重水素湿度下での水素化アモルファス炭素膜の摺動による反応検出		1.東工大
15:45		フルオロカーボン凝縮層への低速電子線照射による PTFE/a-C:F 薄膜成長機構の解明	〇秋山 恒樹 ¹ , 三谷 隼弘 ¹ , 佐藤 哲也 ¹ , 塩澤 佑一朗 ² , 上垣 良信 ²	
16:00		C ₂ H ₂ , N ₂ , Ar混合気体の RF プラズマ CVD を用いた高窒素含有水素化アモルファス窒化炭素薄膜の合成	○伊藤 治彦¹,綿貫 了太¹,鈴木 常生¹,斎藤 秀俊¹	1.長岡技科大(工)
16:15 16:30 3/16/7	15p-A408-14	窒化炭素膜による電界効果トランジスタの作製 水素雰囲気下での層状窒化炭素膜の作製 口頭講演 (Oral Presentation) A408 会場 (Room A408)	○橘 昌希¹, 樋口 航太¹, 浦上 法之¹², 橋本 佳男¹² ○浦上 法之¹², 高島 健介¹, 橋本 佳男¹²	1.信州大工, 2.信州大 先鋭材料研 1.信州大工, 2.信州大 先鋭材料研
9:00		ラマン分光法によるSi基板上ダイヤモンド単結晶中のNV ⁰ 欠陥評価	〇山崎 翔平 1 , 山岸 綾人 1 , 萩原 大智 1 , 塚本 貴広 1 , 一色 秀夫 1	1.電通大
9:15	16a-A408-2	リンドープn形ダイヤモンドへのホウ素イオン注入によるp形伝導層の形成	〇小倉政 g^1 , 西村智 g^2 , 加藤宙 g^2 , 加藤宙 g^2 , 竹内大輔 g^1 , 山崎聡 g^2 , 牧野俊晴 g^2	1. 産総研, 2. 法政大
9:30	16a-A408-3	核種変換によるLiドープダイヤモンドの製作(2) -IIaダイヤモンド基板中のBeの熱拡散の調査 -	○三宅泰斗¹,奥野広樹¹,渡邊幸志²	1.理研仁科センター, 2.産総研
9:45	E 16a-A408-4	Application of nanosecond laser annealing to diamond materials	○ Abdelrahman Zkria Ahmed¹, Eslam Abubakr¹, Tsuyoshi Yoshitake¹	1.Kyushu Univ.
10:00	奨 16a-A408-5	バーマロイ/Bドープp型ダイヤモンドショットキーバリ アダイオード	○河野 慎¹, 高梨 晴己¹, 平間 一行¹, 熊倉 一英¹, 谷保 芳孝¹	1.NTT物性研
10:15	奨 E 16a-A408-6	Low Specific Contact Resistance Nanocarbon Ohmic Contacts Fabricated by Coaxial Arc Plasma Deposition on	$\bigcirc(D) Sreenath Mylo Valappil^{1,2}, Shinya Ohmagari^2, Abdelrahman Zkria^1, Tsuyoshi Yoshitake^1$	1.Kyushu Univ., 2.AIST
10:30	奨 16a-A408-7	Semiconducting Diamonds and Their Device Applications 表面終端処理、酸化膜堆積の連続プロセスによる ダイヤ モンド MOSFET のヒステリシス低減		1. 金沢大学, 2. 産総研
10:45	16a-A408-8	C-Si-Oチャネルを用いたダイヤモンドMOSFETの極低 温環境下における動作実証	\bigcirc (B) 竹内 雅治 1 , 若林 千幸 1 , 太田 康介 1 , 成田 憲 人 1 , 高橋 康裕 1 , 蔭浦 泰資 1 , 高野 義彦 2 , 立木 実 2 , 大 井 修 $-^2$, 有沢 俊 $-^2$, 川原田 洋 1,3	1.早大理工, 2.物質・材料研究機構, 3.早大材研
11:00	奨 16a-A408-9	C-Si-O チャネルノーマリーオフダイヤモンド MOSFET の高周波動作特性		1.早大理工, 2.早大材研, 3.電子科技大学
11:15	招 16a-A408-10	「第53回講演奨励賞受賞記念講演」 高出力高速相補型インパータ実現に向けたC-Si-O 側壁 チャネルを用いたノーマリーオフ縦型ダイヤモンド MOSFETの開発	〇成田 憲人 1 , 太田 康介 1 , 付 裕 1 , 若林 千幸 1 , 平岩 篤 1 , 川原田 洋 $^{1.2}$	1.早大理工, 2.早大材研

3/16(Thu.) 13:00 - 17:45	口頭講演 (Oral Presentation) A408会場 (Room A408)		
3:00	奨 E 16p-A408-1	Effect of Ultra-High Vacuum Annealing and Hydrogen Plasma Treatment on the Resonance Properties of Single-Crystal Diamond MEMS Cantilevers	○ (D)Guo Chen¹, Zilong Zhang¹, Liwen Sang¹, Yasuo Koide¹, Satoshi Koizumi¹, Meiyong Liao¹	1.NIMS
3:15	E 16p-A408-2	High-temperature diamond MEMS magnetic sensor with		1.NIMS
3:30	16p-A408-3	on-chip actuation and sensing 超短パルスレーザー単一ショットによるダイヤモンド		1.京大化研, 2.東海大総科研, 3.京大スピンセンター
3:45	奨 16p-A408-4	NV中心の広域形成 超高濃度窒素ドープCVDダイヤモンドへの電子照射によ る高濃度 NV アンサンブルの作製	田茂樹¹,橋田昌樹¹²,水落 憲和¹³ ○淺野 雄大¹,早坂 京祐¹,上田真由¹,木村 晃介²,金 久 京太郎¹,蔭浦 泰資¹³,谷井 孝至¹,小野田 忍²,榎 本 心平⁴,河野 省三⁴,川原田 洋¹⁴	1. 早大理工, 2. 量研機構, 3. 物材機構, 4. 早大材研
4:00	16p-A408-5	バルクアンサンブル NV センタを用いた DC 磁気センサ 高感度化のための HPHT ダイヤモンドの特性評価	本 心 中 , 池 町 自 二 , 川 県 田 洋 「 〇関口 武治 「 上 甲 優希 「	1. 東工大, 2. 量研, 3. 物材機構
l:15	奨 E 16p-A408-6	Transform-Limited Single Lead-Vacancy Center in Diamond	(DC)PENG WANG¹, Lev Kazak², Petr Siyushev², Takashi Taniguchi⁴, Mutsuko Hatano¹, Fedor Jelezko², Takayuki Iwasaki¹	1.TIEC, 2.Ulm Univ., 3.Stuttgart Univ., 4.NIMS
1:30	奨 16p-A408-7	NVH センターの弱い磁気双極子相互作用	○真栄力¹, 增山雄太², 宮川 仁¹, 阿部 宏之², 石井 秀 弥², 佐伯 誠一², 小野田 忍², 谷口 尚¹, 大島 武², 寺地 徳之¹	1. 物材機構, 2. 量研機構
4:45	奨 16p-A408-8	不純物抑制したダイヤモンド中の NV 中心コヒーレンス 時間長時間化	○ (M2) 川瀬 凜久¹, 川島 宏幸¹, 加藤 宙光², 徳田 規 夫³, 山崎 聡³, 小倉 政彦², 牧野 俊晴², 水落 憲和¹.⁴	1. 京大化研, 2. 産総研, 3. 金沢大, 4. 京大 CSRN
5:00	奨 16p-A408-9	同位体制御によるダイヤモンドNV電子スピンコヒーレ	\bigcirc (M1) 渡辺 幹成 1 , 市川 公善 2,3 , 寺地 徳之 2,4 , 関口	1. 横国大院理工, 2. 物材機構, 3. 金沢大, 4. 横国大 IA
5:15	16p-A408-10	ンスの向上 ダイヤモンド量子センサの高感度化に向けたSpin bath drive による T,* の伸長	雄平⁴,小坂 英男¹⁴ ○荒木 裕太¹,藤崎 伊久哉¹,波多野 雄治¹,関口 武治¹,岩﨑 孝之¹,波多野 睦子¹	1.東工大工
5:30 5:45	奨 16p-A408-11	体態/Break h-BN被覆による水素終端下・単一ダイヤモンドNV中心 のスピン操作	○蔭浦 泰資 1.2, 笹間 陽介 1, 寺地 徳之 1, 渡邊 賢司 1,	1. 物材機構, 2. 産総研, 3. 量研機構
6:00	奨 16p-A408-12	MOS構造を用いたダイヤモンドNVセンターの電荷状態		1.筑波大, 2. 産総研
6:15	16p-A408-13	制御 生体内リアルタイム温度計測のための高速温度計測技術	藤 有香子 2 , 牧野 俊晴 1,2 〇井門 勇太 1 , 押味 佳裕 1 , 藤原 正澄 1	1. 岡山大院自然
6:30	16p-A408-14		○中島 大夢¹, 押味 佳裕¹, 藤原 正澄¹	1. 岡山大理
6:45	16p-A408-15	イクロ波共振器の開発 ロックイン検出法を用いた光検出磁気共鳴の高感度測定	○ (M1) 示野 義和¹, 河合 勝太郎¹, 桑村 有司¹, 丸山 武男¹	1.金沢大
7:00	奨 E 16p-A408-16	Temperature Sensing Based on Germanium-vacancy in Detonation Nanodiamond	○ (M2)haining FU¹, masanori FUJIWARA¹, izuru OHKI¹¹², ming LIU³, akihiko TSURUI³, taro YOSHIKAWA³, yuto MAKINO³, masahiro	1.ICR, Kyoto Univ., 2.QST, 3.Daicel.Corp., 4.CSRN, Kyoto Univ.
7:15	奨 16p-A408-17	ダイヤモンド表面に形成したナノビラー中の浅い単一 NVセンターによる交流磁場計測	NISHIKAWA³, norikazu MIZUOCHI $^{1.4}$ ①齋藤 大樹¹, 大谷 和毅¹, Chanuntranont Akirabha¹, 上田 優樹¹, 津川 雅人¹, 三宅 悠斗¹, 臼井 俊太郎¹, 寺 地 徳之², 小野田 忍³, 品田 高宏⁴, 川原田 洋¹, 谷井 孝 至¹	
7:30	16p-A408-18	ダイヤモンド量子センサーヘッドを用いた磁場イメージ ング	〇吉田 翔太朗 ¹,吉川 博道 ¹,大坪 楓季 ²,見川 巧弥 ²,早瀬 潤子 ²,徳田 規夫 ³,岸田 裕司 ¹	1.京セラ, 2.慶大理工, 3.金沢大ナノマリ研
3/17 :00	* /	口頭講演 (Oral Presentation) A302 会場(Room A302) EV車電池電流を高精度に計測するダイヤモンド量子センサ	○波多野 雄治¹, 谷川 純也², 中園 晃充², 関口 武治¹, 小野田 忍³, 大島 武³, 岩崎 孝之¹, 波多野 睦子¹	1.東工大工, 2.矢崎総業(株), 3.量研
:15	奨 17a-A302-2		○(M2)杉本 昂暉¹, 土方 泰斗¹, 清水 麻希¹	1.埼玉大院理工
:30		電気的検出型NV量子センシングにおける光キャリア生 成のスピン依存性ダイナミクス	野田 忍 ⁵ , 阿部 浩之 ⁵ , 大島 武 ⁵ , 水落 憲和 ^{3,4}	大CSRN, 5.QST
:45	17a-A302-4	スピン波駆動 NV スピン系における非平衡ダイナミクス の観測	○ (M2) 蔭山 隆史¹, Dwi Prananto¹, 林 都隆¹, 安 東 秀¹	1.北陸先端大
00:0		Floquet理論を用いたダイヤモンド中電子スピン二重共鳴 現象の解析	田 規夫4, 早瀬 潤子1,2	1. 慶大理工, 2. 慶大 CSRN, 3. 産総研, 4. 金沢大
0:15	17a-A302-6	ダイヤモンド中電子スピンの RF-Dressed 状態を用いた微 細回路の交流磁場強度・位相イメージング	〇大坪 楓季 $^{1.2}$, 見川 巧弥 $^{1.2}$, 松崎 雄一郎 3 , 渡邊 幸志 3 , 徳田 規夫 4 , 水落 憲和 $^{5.6.7}$, 早瀬 潤子 $^{1.2}$	1. 慶大理工, 2. 慶大 CSRN, 3. 産総研, 4. 金沢大, 5. 京化研, 6. 京大 CSRN, 7. QUP KEK
3/17(ポスター講演 (Poster Presentation) PA 会場(Room PA) 不純物を注入した水素終端ナノダイヤモンド中 NV セン	\bigcirc 山口 陽大 1 , 朴 相みん 1 , 圖師 拓海 1 , 大島 武 2 , 小野	1.早大理工, 2.量研
	17p-PA07-2	ターの荷電状態制御 NVセンターを用いたパルス ODMR 長時間計測のための		1.早大理工, 2. 東北大 CIES
	17p-PA07-3	ダイヤモンド上オンチップマイクロ波アンテナの作製 ダイヤモンド中電子スピンの RF-Dressed 状態を用いた温	○田淵 響1.2, 鈴木 琉生1.2, 松崎 雄一郎3, 渡邊 幸志3,	
	17p-PA07-4	度と交流磁場強度の複合センシング Lindbladマスター方程式を用いたダイヤモンド電子スピ		化研, 6.京大 CSRN, 7.QUP KEK 1.慶大理工, 2.慶大 CSRN, 3.産総研, 4.金沢大
		ン二重共鳴スペクトルの解析 層状窒化炭素薄膜合成におけるメラミンの前処理の影響		1.岐阜高専
		カーボン薄膜の選択的エッチング	○春山 雄一¹, 森本 大貴¹, 部家 彰², 住友 弘二², 豊田 紀章², 伊藤 省吾²	
	17p-PA07-7	窒素含有による DLCの酸素還元反応の向上	\bigcirc (M1) 松崎 充晃 ¹, 長谷部 伸一 ¹, 長谷川 和 ¹, 山口 朝輝 ¹, 渡辺 千也 ¹, 向山 義治 ¹, 平栗 健二 ¹, 大越 康 晴 ¹	1. 果尿电機天字
	17p-PA07-8	圧力負荷における非晶質炭素薄膜の基板依存性評価	10	1.東京電機大学, 2.タイ王立シンクロトロン光研究所
	17p-PA07-9	水素化アモルファス炭素膜を用いた高耐久性難雪氷接着 表面の開発		1.名大院工
		ス / Oxide electronics		
11 - 1		口頭講演 (Oral Presentation) A409 会場 (Room A409) 新規熱電材料創製に向けた不純物添加非晶質酸化バナジ	○(M1)大澤 樹¹, 庄司 拓貴¹, 金子 健太¹, 金子 智².¹.	1.東工大物質理工, 2.神奈川産技総研
	× 13a 11407 1			
0:00 0:15		ウム系薄膜のUV光照射等による構造・電気特性制御 VO ₂ 三端子素子におけるゲート誘起相転移と温度誘起相	松田 晃史1, 吉本 護1	1 4 周十巻

10:30	奨	15a-A409-3	${ m Pt/TaO_x/Ta_2O_5/Pt$ 抵抗変化素子のアナログ高抵抗化時の酸素空孔輸送特性	○宮谷 俊輝¹, 上沼 睦典², 浦岡 行治², 木本 恒暢¹, 西 佑介¹.³	1. 京大院工, 2. 奈良先端大, 3. 舞鶴高専
10:45		15a-A409-4	PLDによる Y_2O_3 薄膜成長におけるHe バッファーガスの 効果	○高橋 竜太¹,鈴木 静華¹,徳永 智春²,山本 剛久², リップマー ミック³	1. 日大工, 2. 名大工, 3. 東大物性研
1:00	奨	15a-A409-5	Tb:Y ₂ O ₃ 蛍光体薄膜のHeバッファーガス効果		1. 目大工, 2. 名大工
11:15	奨	15a-A409-6	結晶方位に依存した遷移金属酸化物SrFeOxへの電気化学		1. 京大化研, 2. 京大院工
2/15/V	Mad)	13:00 - 16:00	的プロトン注入 口頭講演 (Oral Presentation) A409 会場(Room A409)		
3/13(v 13:00			膜厚による Ti ₂ O ₃ 薄膜の格子変形制御	○(M1) 高田 瀬那¹, 吉松 公平¹, 組頭 広志¹	1.東北大多元研
13:15			その場放射光電子分光による Cr ドープ VO_2 エピタキシャル薄膜の電子相図		
13:30	奨	15p-A409-3	$LnRuO_3$ ($Ln = Pr$, Sm , Eu , Gd) 単結晶薄膜の作製と磁気輸送特性		1. 東大院工, 2. 理研 CEMS
13:45	奨	15p-A409-4	ガスソース分子線エピタキシー法による $SrVO_3$ 二重量子井戸構造の作製と輸送特性	\bigcirc (D) 高原 規行 ^{1,2} , 高橋 圭 ² , 十倉 好紀 ^{1,2,3} , 川崎 雅 司 ^{1,2}	1. 東大院工 , 2. 理研 CEMS, 3. 東大東京カレッジ
14:00	奨 E	15p-A409-5	Phase transition of high-quality epitaxial spinel Fe $_2O_4$ to γ -Fe $_2O_3$ thin films for spin-wave propagation	O(D)Siyi Tang¹, Md Shamim Sarker¹, Kaijie Ma¹, Hiroyasu Yamahara¹, Munetoshi Seki¹, Hitoshi Tabata¹	1.the University of Tokyo
14:15 14:30	奨	15p-A409-6	休憩/Break 界面制御によるパイロクロア型 $\mathrm{Bi_2Rh_2O_7}$ 単結晶薄膜の安	○大野 瑞貴¹, 藤田 貴啓¹, 川崎 雅司¹.²	1.東大工院, 2.理研CEMS
14:45	奨	15p-A409-7	定化 光電子分光によるBi-Rh-O層状化合物薄膜の電子状態解 析	\bigcirc (M1) 增竹 悠紀¹, 志賀 大亮¹.², 神田 龍彦¹, 長谷川 直人¹, 早坂 亮太朗¹, 北村 未歩², 吉松 公平¹, 大野 瑞	
15:00	奨	15p-A409-8	バイロクロア型磁性絶縁体/非磁性金属界面の異常ホー	貴³, 藤田 貴啓³, 川崎 雅司³,⁴, 組頭 広志¹,² ○大西 嘉祐¹, 藤田 貴啓¹, 川崎 雅司¹,²	1. 東大院工, 2. 理研 CEMS
15:15	奨	15p-A409-9	ル効果 ミスカット基板上に作製したダブルペロブスカイト型酸	○ (M2) 南野 龍樹¹, 相馬 拓人¹, 大友 明¹	1.東工大物質理工
5:30			化物薄膜の物性 放射光電子分光によるSrVO ₃ /LaAlO ₃ ヘテロ構造の電子		1. 東北大多元研, 2.KEK 物構研
5:45			状態 放射光電子分光による SrNbO ₃ /SrTiO ₃ 界面の電子状態	早坂 亮太朗 1 , 北村 未歩 2 , 吉松 公平 1 , 組頭 広志 1,2 \bigcirc (B) 早坂 亮太朗 1 , 神田 龍彦 1,2 , 長谷川 直人 1 , 増竹	
		Î		悠紀 ¹, 和田 亜里斗 ¹, Nathawuth Wongwutcharanukoun ¹, 北村 未步 ², 志賀 大亮 ¹.², 吉 松 公平 ¹, 組頭 広志 ¹.²	
3/16(Thu.)		ボスター講演 (Poster Presentation) PA会場 (Room PA) 導電性ITO 上相転移 VO。薄膜の電圧印加自励発振現象に 関する研究 - 電極用コンタクトプローブ圧の効果 -		1. 東海大院工, 2. 成蹊大, 3. 京大院工
		16p-PA08-2	・電極用コンダンドノローノ圧の効果・シュウ酸酸化バナジウムを用いた VO ₂ 膜の作製と特性評価	○山田 知紀¹, 田橋 正浩¹, 高橋 誠¹, 後藤 英雄¹	1.中部大工
		16p-PA08-3 16p-PA08-4	液体金属表面酸化膜を用いた抵抗変化型素子の動作改善 ペロプスカイト酸化物抵抗変化メモリにおける繰り返し		1. 龍谷大理工
		16p-PA08-5	動作特性とスイッチング電圧の相関関係 シュウ酸チタンカリウムの加水分解による酸化チタンナ ノ粉体の合成:結晶相・非晶質相の評価	○(M1)梶原 奨平 ¹ , 板谷 清司 ^{1,3} , 桑原 英樹 ¹ , 横井 太 史 ² , 遠山 岳史 ³ , 佐々木 哲朗 ⁴ , 黒江 晴彦 ¹	1.上智大理工, 2.東医歯大生材研, 3.日大理工, 4.静岡工
		16p-PA08-6	超音波分散法で作製した GaOx/Ga 粉末の光触媒特性評価	〇前田 直輝 1 , 永井 慈 1 , 今井 崇人 1 , 山本 伸一 1	1. 龍大理工
		16p-PA08-7	g-C ₃ N ₄ / 金属酸化物用いた可視光応答性光触媒材料	○立川 雅貴¹, 今井 崇人¹, 山本 伸一¹	1. 龍谷大理工
	Е	16p-PA08-8	The Spin Polarization of Palladium on Magneto-Electric $\rm Cr_2O_3$	○ Takashi Komesu ¹ , Shiv Kumar ³ , Amit Jadaun ² , Yuudai Miyai ² , Kenya Shimada ³ , Ch. Binek ¹ , Peter Dowben ¹	1.Univ. of Nebraska, 2.Hiroshima University, 3.HiSOR
	Е	16p-PA08-9	Epitaxial Growth of Meta-stable $\mathrm{Hf_{0.5}Zr_{0.5}O_2}$	○ (D)Yufan Shen¹, Daisuke Kan¹, Yuichi Shimakawa¹	1.Kyoto Univ. ICR
		16p-PA08-10	反応性DCスパッタ法で堆積したZnO薄膜の基板位置依存性		1. 成形大理工
	Е	16p-PA08-11	Pre-annealing effect on transport properties of γ -Al ₂ O ₃ /SrTiO ₃ heterostructure		1.ISSP, Univ. of Tokyo
		16p-PA08-12	${ m VO}_2$ 安定領域でのトポタクティック酸化による単一配向	〇西井 飛智 1 , 池之上 卓己 1 , 三宅 正男 1 , 平藤 哲司 1	1. 京大院エネ科
		16p-PA08-13	VO ₂ 薄膜の作製 反応性スパッタで作製した酸化タングステン薄膜のCV		1.成蹊大理工
		16p-PA08-14	耐久性 LaNiO ₃ エビタキシャル薄膜の構造・物性への4価ドービ ング効果	ズミヤ ¹ , 中野 武雄 ¹ ○河村 和哉 ¹ , 後藤 裕己 ¹ , 金子 健太 ¹ , 金子 智 ^{2,1} , 吉 本護 ¹ , 松田 晃史 ¹	1.東工大物質理工, 2.神奈川産技総研
		16p-PA08-15	ング効果 エビタキシャル二層膜 $La_{2/3}Ba_{1/3}MnO_3/SrIrO_3$ におけるスピン流生成		1. 阪大理, 2. 阪大 CSRN, 3. 阪大先端強磁場
		16p-PA08-16	反応性スパッタリング法による V_2O_3 エピタキシャル薄膜		1. 京大化研
		16p-PA08-17	の作製 酸化銅エピタキシャル薄膜の真空紫外光照射による構造・ 物性変化	○喬 宇馳¹, 金子 健太¹, 庄司 拓貴¹, 金子 智².¹, 吉本 護¹, 松田 晃史¹	1.東工大物質理工, 2.神奈川産技総研
		16p-PA08-18	物性変化 スピンスプレー法で作製した銅張積層基板上亜酸化銅薄膜の基板温度依存性		1. 防大材料
3/17	(Fri)	9:30 - 11:30	展の基权温度依存性 口頭講演 (Oral Presentation) A408会場(Room A408)		
9:30	, · 111/	17a-A408-1	α -Ga ₂ O ₃ /4H-SiC直接接合の作製と界面構造の評価	○(M1)山本 誠志郎¹, 大島 祐一², 大野 裕³, 永井 康介³, 重川 直輝¹, 梁 剣波¹	1.大阪公大院工, 2.物質・材料研究機構, 3.東北大学金研
9:45	Е	17a-A408-2	Controlling the defect states formation in anatase TiO ₂ thin film by rf magnetron sputtering and its role on photocratalytic performance.	○ (D)Rahul Deeliprao Deshmukh¹, Mitsuhiro Honda¹, Yo Ichikawa¹	1.Nagoya Inst.of Tech.
10:00		17a-A408-3	photocatalytic performance Z-スキーム型可視光応答光触媒 C_3N_5/WO_3 の水素生成量向上	○藤岡 秀太¹, 伊藤 皇聖¹, 内田 涼太¹, 野田 啓¹	1.慶應大理工
10:15		17a-A408-4	TiO_2 および SrTiO_3 単結晶のキャリア再結合に表面研磨処理が及ぼす影響	張 銘鑫¹, 張 恩棟¹, ○加藤 正史¹	1.名工大
10:30 10:45		17a-A408-5	体憩/Break 液相析出法による銅添加酸化チタン微粒子の合成と光触 媒応用	○本田 光裕 ¹ , 落合 剛 ² , Popy Listiani ¹ , 山口 佑馬 ¹ , 市川 洋 ¹	1.名工大応物, 2.KISTEC
			Anger world		

11:00	17a-A408-6	$\operatorname{La_2LiHO_3}$ エビタキシャル薄膜の ab 面内における高速H $^-$ 伝導	○笹原 悠輝 ^{1,2} , 廣瀬 隆¹, 吉本 将隆¹, 松井 直喜 ^{1,3} , 小 林 成¹, 生方 宏樹², 竹入 史隆⁴⁵, 鈴木 耕太¹³, 平山 雅章¹³, 西尾 和記¹, 清水 亮太¹。, 菅野 了次¹³, 小林 玄器⁴.5.7, 一杉 太郎¹8	
11:15		アモルファスLiイオン薄膜電池のIn situ XAFS観察	〇松田 菜月 1 , 辻 健太 1 , 面迫 啓介 1 , 神野 伊策 1	1.神戸大工
3/17(F 13:00	Fri.) 13:00 - 16:45 招 17p-A408-1	口頭講演 (Oral Presentation) A408会場(Room A408) 「第53回講演奨励賞受賞記念講演」 ルチル型 TiO ₂ 中の剪断面構造及び酸素空孔挙動に関する 第一原理計算	〇二宮 雅輝 ¹ , 藤平 哲也 ¹ , 林 侑介 ¹ , 酒井 朗 ¹	1. 阪大基礎工
13:15	17p-A408-2	PdCrO ₂ /CuCrO ₂ ~テロ構造における不純物相形成メカニズム	○市場 友宏 $^{1.2}$, ユン サンムーン $^{1.3}$, オーケー ジョン モック $^{1.4}$, ユン ミーナ 1 , リー ホニオン 1 , レボレド フェルナンド 1	1. オークリッジ国立研, 2. 北陸先端大, 3. 嘉泉大, 4. 釜山 国立研
13:30	17p-A408-3	Si 及び $Gd_3Ga_5O_{12}$ 基板に成膜された二層膜 Pt /磁性絶縁体 $Y_3Fe_5O_{12}$ のスピンホール磁気抵抗効果		1. 阪大理, 2. 阪大 CSRN, 3. 阪大 SRDN, 4. 阪大先端強磁場
13:45	17p-A408-4	エピタキシャルWO ₂ から誘起されるスピン軌道トルク		1. 阪大理, 2. 阪大 CSRN, 3. 阪大 SRDN, 4. 阪大先端強磁場
14:00 14:15	17p-A408-5 17p-A408-6	$5d$ 電子系 IrO_2 の結晶性がスピン流生成に与える影響 微細構造基板上の $In\text{-WO}_3$ 薄膜を用いた高感度アセトン 検出	○ (M2) 森本 鉄郎¹, 上田 浩平¹.².³, 松野 丈夫¹.².³ ○岩瀬 大輝¹, 朱 子誠¹, 中西 卓也², 朝日 透²	1. 阪大理, 2. 阪大 CSRN, 3. 阪大 SRND 1. 株式会社オプトラン, 2. 早大先進理エ
14:30 14:45	E 17p-A408-7	Machine learning analysis of RHEED images for structural phase mapping 休憩/Break	○ Mikk Lippmaa ¹ , Taizo Mori ¹ , Ryota Takahashi ² , Haotong Liang ³ , Ichiro Takeuchi ³	1.Tokyo Univ., 2.Nihon Univ., 3.Maryland Univ.
15:00	招 17p-A408-8	「第53回講演奨励賞受賞記念講演」 放射光角度分解光電子分光による Ti₂O₃薄膜の金属・絶縁	〇長谷川 直人 1 , 吉松 公平 1 , 志賀 大亮 1 , 神田 龍彦 1 , 宮崎 悟 1 , 北村 未歩 2 , 堀場 弘司 2 , 組頭 広志 $^{1.2}$	1. 東北大多元研 , 2.KEK 物構研
15:15	17p-A408-9	体転移の起源 λ-Ti ₃ O ₅ 薄膜におけるレーザー誘起超高速相転移		1. 兵庫県大院理, 2. 東北大多元研, 3. 阪大レーザー研
15:30	17p-A408-10	ドメイン閉じ込めによるVO₂/hBNでのステップ電流ス	組頭 広志 ² , 和達 大樹 ^{1,3} 玄地 真悟 ¹ , 中払 周 ² , 岩崎 拓哉 ² , 渡邉 賢司 ² , 谷口	1. 阪大産研, 2. 物材機構
15:45	E 17n-A408-11	イッチ Epitaxial growth of oxygen vacancy ordered n=3	尚 ² , 若山 裕 ² , ○服部 梓 ¹ , 田中 秀和 ¹ ○ Haobo Li ¹ , Shunsuke Kobayashi ² , Binjie Chen ³ ,	1.Osaka Univ., 2.JFCC, 3.Hokkaido Univ., 4.Kyoto Univ.
10.43	D 17p 11400 11	Ruddlesden-Popper Sr4Co3O9	Hiroshi Takatsu ⁴ , Azusa Hattori ¹ , Wei-Hua Wang ⁵ , Hiromichi Ohta ⁶ , Hidekazu Tanaka ¹ , Hiroshi Kageyama ⁴	5.Nankai Univ., 6.Hokkaido Univ. RIES
16:00	17p-A408-12	β - パイロクロア型酸化物における金属 - 絶縁体転移と ラットリング運動	○相馬 拓人 ¹ , 吉松 公平 ¹ , 堀場 弘司 ² , 組頭 広志 ² , 大 友 明 ¹	1.東工大物質理工, 2.KEK-PF
16:15	17p-A408-13	薄膜下地基板の表面状態改善によるSmNiO ₃ の水素拡散 抵抗変化率の向上	\bigcirc (M1) 梅崎 景都 1 , 大坂 藍 1 , 服部 梓 1 , 田中 秀和 1	1. 阪大産研
16:30	17p-A408-14	${ m CaRuO_3}$ 超薄膜で見られる異常サイズ効果のエンハンス 条件	○迫田 將仁¹, 香田 匡貴¹, 新谷 和司¹	1.北大工
		口頭講演 (Oral Presentation) A302会場 (Room A302)		
10:00		Ta ₂ O ₅ スパッタ膜の熱刺激電流測定の電極依存性 Ca ₂ RuO ₄ 薄膜が示す温度誘起金属-絶縁体転移に依存しないモット型抵抗スイッチング現象	○三沢源人¹,島久¹,内藤泰久¹,秋永広幸¹ ○福地厚¹,椿啓司¹,片瀬貴義²,神谷利夫²,有田正志¹,高橋庸夫¹	1. 産総研デバイス技術 1. 北大院情報, 2. 東工大フロ研
10:30	E 18a-A302-3	Modeling of Memristive Devices Using Phase-Field Method	John Sevic ^{1, 2} , ○ Nobuhiko P Kobayashi ^{3,4,5,6}	1.Electrical Engineering, 2.Embry-Riddle Aeronautical University, 3.Nanostructured Energy Conversion Technology and Research (NECTAR), 4.Electrical and Computer Engineering Department, 5.Baskin School of Engineering, 6.University of California Santa Cruz
10:45	18a-A302-4	HfO_2 -ReRAM における Au ドープ層と Hf 層の抵抗変化挙動への影響	〇田中 正和 1 , 黄 川洋 1 , 岡安 信治 1 , 清水 智弘 1 , 伊藤 健 1 , 新宮原 正三 1	1. 関西大理工
11:00	18a-A302-5	二層の酸化タンタルを用いた抵抗変化素子における量子 ポイントコンタクトの消失	○大野 知晟 ¹, 西 佑介 ¹	1.舞鶴高専
11:15	E 18a-A302-6	Modulation of synaptic behavior in a 2-terminal protonic device through proton potential and applied voltage	○ SatyaPrakash Pati¹, Satoshi Hamasuna¹, Takeaki Yajima¹	1.Kyushu Univ.
		s and New materials		
3/16(1		ポスター講演 (Poster Presentation) PA 会場(Room PA) パルスレーザ堆積で作製した Pb(Zr _{0.52} , Ti _{0.48})O ₃ 薄膜の化		1.近畿大生物理工, 2.太洋工業研究開発部
	16p-PA09-2	学組成変化 鉄酸ビスマスエピタキシャル薄膜のトポケミカルフッ化	○佐野 瑞歩¹, 上垣外 明子¹, 若山 悠有佑², 廣瀬 靖³,	1.お茶大理, 2.東大理, 3.都立大理
	16p-PA09-3	反応 結晶構造の違いによる鉄酸フッ化ビスマス薄膜の物性と		1.お茶大理, 2.北大電子研, 3.東工大フロンティア材料
	16p-PA09-4	電子状態変化 赤外レーザー蒸着法を用いた CaH_2 および SrH_2 の薄膜合		研 1. 芝浦工応化, 2. 物材研
	16p-PA09-5	成 BaH ₂ 薄膜合成の再現性向上を目指した合成条件探索	太 1 ,原田尚之 2 ,大口裕之 1 〇市岡俊樹 1 ,福士英里香 1 ,原田尚之 2 ,大口裕之 1	1. 芝浦工大理工, 2. 物材研
	16p-PA09-6	Bドープ ${ m In_2O_3}$ 透明導電膜への水素ドーピングによる電気特性向上	○木菱 完太¹, 山寺 真理¹, 森 峻¹, 相川 慎也¹	1.工学院大
	16p-PA09-7	PET 基板上に室温スパッタ成膜した B ドープ ${\rm In_2O_3}$ 透明 導電膜 の酸素分圧最適化	〇森 峻 ¹, 木菱 完太 ¹, 山寺 真理 ¹, 野寺 步夢 ¹, 渡辺 幸太郎 ¹, 鷹野 一朗 ¹, 相川 慎也 ¹	1.工学院大
	16p-PA09-8	ZnOナノロッドバッファ層導入によるpolyimide上VO ₂ 膜のIMT特性の改善	○(M1) 小澤 雪斗¹, 宮武 佑多¹, 沖村 邦雄¹	1. 東海大院工
	16p-PA09-9	ポリイミド基板上に作製した NiFeMo スパッタ薄膜における磁気弾性効果	○望月 航介¹, 芦澤 好人¹, 中川 活二¹	1. 日大院理工
	16p-PA09-10	VO ₂ の化学気相成長における最適原料 - 基板間距離の検討	○後藤 新悟¹, 稲田 貢¹, 谷 弘詞¹, 山本 真人¹	1.関西大システム理工
	16p-PA09-11	GST/VO ₂ 積層構造においてGSTの結晶化がVO ₂ の転移 特性に及ぼす影響(II) - TiO ₂ (001) 基板とAl ₂ O ₃ (001) 基板の比較-	\bigcirc (M1) 大貫 卓斗 , 沖村 邦雄 1 , 中本 \mathbb{E}^2 , 村岡 祐治 3 , 坂井 穣 4 , 桑原 正史 5	1.東海大院工, 2.岡山大院自然科学, 3.岡山大基礎研, 4.豊島製作所, 5.産業技術総合研究所
	16p-PA09-12	超高感度磁気センサ用積層磁性薄膜に関する高周波磁気 バイアスの印加方法	○閑野 義達¹, 土田 洋介¹, 新海 健¹, 鶴岡 誠¹	1.東京工科大
	16p-PA09-13	RFマグネトロンスバッタリング法によって作製した Mn ドープ ITO 薄膜の物性に対するアニール処理効果の評価		1.京都大学大学院人間・環境学研究科, 2.京都大学国際 高等教育院
	16p-PA09-14	非平衡相磁性ガーネット膜の結晶性と磁気特性のバッファ層組成依存性(II)		1. 神戸高専, 2. 名古屋大, 3. 高純度化学, 4. 長岡技科大
		表面プラズモン共鳴によるFeSiの磁気光学応答の増大 FeRh 合金薄膜の結晶化条件の違いによる磁気相転移温度	○安川 雪子¹, 伊藤 雅晃¹, 杉田 諒¹, 山根 治起²	1. 千葉工大, 2. 秋田産技センター 1. 兵庫県立工業技術センター
	10h-1403-10	rekn 音玉海膜の結晶化余件の遅いによる幽気性転移温度 への影響	○Ⅲ正 北入	1.万坪尔ユ土木1X間でノクー

	16p-PA09-17	還元型酸化タングステン薄膜のパルスレーザー堆積およ		1. 東工大 物質理工, 2. 神奈川産技総研
	16p-PA09-18	び導電性評価 ウェットプロセスによる金属酸化物超薄膜の開発	本 護¹, 松田 晃史¹ ○加藤 隆誠¹, 村田 貴朗¹, 弓削 哲治¹	1. 三菱ケミカル
3/17(F 9:00		口頭講演 (Oral Presentation) D419会場 (Room D419) 表面 SEM/EDX分析と 2次計画法を用いた非破壊深さプ	○星名 豊¹, 久保 優吾¹, 中山 陽次郎¹	1. 住友電工
9:15		ロファイル評価 Mg-Ir-O薄膜のパルスレーザー堆積におけるレーザーフ		1. 東北大金研, 2. 東北大 CSIS
J.13	11a-D417-2	ルーエンスによる組成調整と新規スピネル型結晶相の形成	○ 仅件 癸旭,廖/尔 丛 Ⅰ ,外剛 扒	1.来北八亚则,2.来北八〇333
9:30		複合成膜により成膜された低屈折率 $\mathrm{Al_2O_3}$ 光学薄膜の不均質の改善		1.東海大院工, 2. (株) シンクロン
9:45 10:00		複合成膜手法による TiO_2 薄膜の低屈折率化の検討 複合成膜手法により成膜された低屈折率 SiO_2 光学薄膜の 親水性評価 [5]	 ○ (M1) 遠藤 孝祐¹, 室谷 裕志¹, 松平 学幸² ○ (M2) 伊藤 睦記¹, 松平 学幸², 室谷 裕志¹ 	1. 東海大院工, 2.(株) シンクロン 1. 東海大院工, 2.(株) シンクロン
10:15 10:30		複合成膜により成膜された低屈折率SiO ₂ 光学薄膜(2) ナノインプリント法およびパルスレーザー堆積を用いた ポリマー表面上への金属ナノ粒子周期パターン形成	○(D)田島 直弥¹,室谷 裕志¹,松平 学幸² ○島田 侑果¹,前田 優斗¹,大賀 友瑛¹,金子 智²¹,吉 本護¹,松田 晃史¹	1. 東海大院工, 2.(株) シンクロン 1. 東工大 物質理工, 2. 神奈川産技総研
10:45	奨 17a-D419-8	MBE法でLSAT 基板上に成膜した β 相 MoO $_3$ 薄膜のプロトネーション効果	○仲井 啓悟¹, 宮本 武¹, リチャード オンコ¹, 広藤 裕 一¹, 廣芝 伸哉¹, 小池 一歩¹	1.大阪工大 ナノ材研
11:00	奨 17a-D419-9	MBE成長した CuI 薄膜における金属的な低温伝導特性の 観測	〇安波 貴広 1 , 中村 優男 2 , 小川 直毅 2 , 十倉 好 紀 1,2,3 , 川崎 雅司 1,2	1. 東大院工, 2. 理研 CEMS, 3. 東京カレッジ
11:15	17a-D419-10	膜厚制御された PbI_2 薄膜における二次元励起子閉じ込め 効果	〇中村 優男 1 , 難波 隆 $-^{2}$, 安波 貴広 2 , 小川 直毅 $^{1.2}$, 十倉 好紀 $^{1.2,3}$, 川﨑 雅司 $^{1.2}$	1. 理研 CEMS, 2. 東大院工, 3. 東京カレッジ
11:30	17a-D419-11	$MgF_2(001)$ 基板上に作製した W ドープ VO_2 薄膜の金属 - 絶縁体転移	○村岡 祐治¹, 中原 隼人², 脇田 高徳¹, 横谷 尚睦¹	1. 岡山大基礎研, 2. 岡山大院自然科学
11:45	17a-D419-12	MnドープITOエピタキシャル成長膜におけるSnドープ 量が物性に与える影響	○(D)北川 彩貴¹, 中村 敏浩¹.²	1. 京大院人環, 2. 京大国際高等教育院
3/17(F	ri.) 13:30 - 17:45	口頭講演 (Oral Presentation) D419会場(Room D419)		
13:30	招 17p-D419-1	「第7回薄膜・表面物理分科会論文賞受賞記念講演」 傾斜歪希土類鉄ガーネット薄膜におけるフレクソエレク トリック分極	〇山原 弘靖 ¹ , Feng Bing ¹ , 関 宗俊 ¹ , 足立 真輝 ¹ , Md Shamim Sarker ¹ , 武田 崇仁 ¹ , 小林 正起 ¹ , 石川 亮 ¹ , 幾原 雄一 ¹ . 長 康雄 ² . 田畑 仁 ¹	1. 東大院工, 2. 東北大 NICHe
14:00	17p-D419-2	置換元素選択による Y ₃ Fe _{5-x} M _x O ₁₂ (M=Al, Ga, In, Cr, Mn, Co-Si) 薄膜のスピン凍結温度の制御		1.東京大学
14:15	17p-D419-3	Al置換 $Y_3Fe_5O_{12}$ 薄膜における高温スピングラス特性とメモリー効果	○(M2)吉野 貴大¹, 山原 弘靖¹, 田畑 仁¹, 関 宗俊¹	1.東大院工
14:30	17p-D419-4	ビスマス置換磁性ガーネットの磁気回転比向上に関する 研究	○朝野 航¹, 西 敬生², 大島 大輝³, 加藤 剛志³, 李 基 鎮⁴, 河原 正美⁵, 西川 雅美¹, 石橋 隆幸¹	1. 長岡技大, 2. 神戸高専, 3. 名古屋大学, 4. 西江大学, 5. 高純度化学
14:45	17p-D419-5	$Mn_3(Ge,Mn)N$ における室温交換バイアスの観測とPLD 法を用いたその薄膜作製	○川口 昂彦¹, 杉浦 怜希¹, 坂元 尚紀¹, 脇谷 尚樹¹	1. 静大院工
15:00	17p-D419-6	窒素サーファクタント効果を用いて作製したFeCo規則 合金薄膜の磁気異方性と原子スケール界面構造	\bigcirc (M1) 梅田 佳孝 1 , 小野 広喜 1 , 山本 航平 3 , 石山 修 3 , 横山 利彦 3 , 水口 将輝 1,2 , 宮町 俊生 1,2	1.名大院工, 2.名大未来研, 3.分子研
15:15 15:30	E 17- D410 7	休憩/Break	Jessiel Siaron GUERIBA ^{1, 2} , Nur Ellina Annisa	1 Ocala II-in 2 DI CH Dhilinnin - 2 HVM Malania
15:50	E 17p-D419-7	Defluorination and Adsorption of Tetrafluoroethylene (TFE) on $TiO_2(110)$ and $Cr_3O_3(0001)$ Defluorination and Adsorption of Tetrafluoroethylene (TFE) on $TiO_2(110)$ and $Cr_3O_3(0001)$		1.Osaka Univ., 2.DLSU-Philippines, 3.UKM-Malaysia, 4.Hirotec Co., Ltd., 5.Charmant, Inc.
15:45	17p-D419-8	PCSD法を用いる透明導電膜配線のリマニュファクチャリング		1. 産総研
16:00	17p-D419-9	液相析出法による三次元規則多孔質構造を有する金ナノ 粒子分散酸化チタン薄膜の作製	○ (M2) 堤 冬美花¹, 青井 芳史¹	1. 龍谷大院理工
16:15	17p-D419-10	コンビナトリアルスパッタ成膜法による MgSiSn系薄膜のナノ構造制御と熱電特性	○後藤 真宏¹, 佐々木 道子¹	1. 物材機構
16:30	17p-D419-11	化学ボロフェン無機液晶に向けた高結晶性 KBH4エピタ キシャル薄膜の作製	\bigcirc (B) 佐々木 啓太 1 , 神永 健 $-^2$, 丸山 伸伍 2 , 松本 祐 司 2	1. 東北大, 2. 東北大院工
16:45	17p-D419-12	赤外レーザー蒸着法によるペロブスカイト水素化物 MLiH ₃ 薄膜合成	\bigcirc (M1) 福士 英里香 1 , 森 史弥 1 , 原田 尚之 2 , 大口 裕之 1	1. 芝浦工大理工, 2. 物材研
17:00		Ni(OH)₂薄膜の光学特性に対する熱処理温度の影響		1. 北見工大
17:15	•	ReRAM characteristics utilizing pentacene/LaB $_{x}N_{y}$ insulator stacked structure	○ Li Fenghao¹, Eun Ki Hong¹, JiaAng Zhao¹, Ohmi Shun-ichiro¹	
17:30	_	Multiferroic ϵ -Fe $_2$ O $_3$ Thin Films for Highly Efficient Visible Light Photoelectrochemical Water Splitting	○ Xinjue Wang¹, Haining Li¹, Hiroyasu Yamahara¹, Hitoshi Tabata¹, Munetoshi Seki¹	1.Tokyo Univ.
		ice Physics, Vacuum ポスター講演 (Poster Presentation) PA 会場(Room PA)		
3/17(F		カーボンナノチューブ複合紙の顕微光電子分光解析	○長門 諒浩¹, 藤田陽平¹, 佐々木知嶺¹, 梶山 海人¹, 吉田圭佑¹, 坂井田 樹¹, 今堀 樹¹, 大矢 剛嗣¹, 小澤 健 一², 間瀬一彦², 大野 真也¹	1. 横国大院理工, 2. 高エネ研
	17p-PA08-2	白金を蒸着した [EMIm] Tf ₂ N/Si表面の構造観察	一, 同阕 一	1. 宇部高専, 2. 広大ナノデバイス, 3. 九工大院工
	17p-PA08-3	二硫化モリブデン薄膜のヘリシティ分解ラマン分光	□ 太一,無木 仲一郎,內藤 止龄,啶 育恕 ○根間 裕史¹,藤井 康裕¹,齋藤 匠悟¹,大石 栄一¹,是 枝 聡肇¹	1. 立命館大理工
	17p-PA08-4	真空蒸着法におけるフッ素系有機膜表面からの高効率金 属原子脱離—脱離の支配因子について—		1.大阪教育大学
	17p-PA08-5	大気中光電子収量分光法を用いた水溶液中の酸化鉄(III) 粒子の表面電子状態の解析	○木下 真梨子¹, 柳田 さやか¹, 染川 正一¹, 桑原 聡 士¹	1.都産技研
	17p-PA08-6	表面ナノ構造の相互作用を解明する走査プローブ顕微鏡 像の画像解析法の開発		1.立命館大情報理工, 2.分子研, 3.京大院人環, 4.九工元
	17p-PA08-7	酸化物粉末の軟 X 線出現電位分光	○柏倉 隆之¹	1. 宇都宮大工
3/18(Sa 13:00		口頭講演 (Oral Presentation) D519会場 (Room D519) 第一原理計算による Ti2AlNb/TiAl界面エネルギーと酸 素吸着	○李悦¹,代建红¹,宋岩¹	1.ハルビン工業大学
13:15	18p-D519-2	素収有 二次元材料創出に向けた層状三元化合物 MAX 相合成と 高温高真空炉開発	○(M2)竹澤 伸吾 ^{1,2} , 吉成 朝子 ^{1,2} , 國貞 雄治 ³ , 坂口 紀史 ³ , 粟津 亮祐 ³ , 小嗣 真人 ¹ , 永村 直佳 ^{1,2,4}	1.東京理科大, 2.物材機構, 3.北大, 4.JST さきがけ
13:30	奨 18p-D519-3	TiN 膜付アルミナ碍子の耐電圧特性の向上に関する研究		1. 筑波大学
13:45	E 18p-D519-4	A Liquid-Solid Nonequilibrium Heterointerface for Programmable Patterning of 1D-Nanowire-Based Soft Electronics		1.NIMS, 2.Jiangnan Univ., 3.C-INK
		Electronics	Niikura', Tomonobu Nakayama', Takeo Minari'	

14:00	18p-D519-5	Mn鎖/Si(001)のTRHEPD解析	○三木 一司 ¹ , 一宮 彪彦 ² , 山崎 隆浩 ^{3,4} , 望月 出海 ² , 奈良 純 ⁴ , 和田 健 ² , 兵頭 俊夫 ²	1. 兵庫県立大工, 2.KEK 構造研, 3. 阪大工, 4. 物材機構
14:15	奨 18p-D519-6	Si(111) 上のIn 多層膜の成長と原子構造		1. 京大院理
14:30 14:45	18p-D519-7	休憩/Break 原子層超伝導表面上の有機ラジカルのSTM/STS研究	○市川 稜¹, 松田 健志郎², Albrecht Ken³, 山田 豊 和¹.4	1.千葉大院工, 2. 九大院総理工, 3. 九大先導研, 4. 千葉大分子キラ研
15:00	18p-D519-8	ジラジカル性に対する表面相互作用の影響解明へ向けた 理論研究		1. 産総研, 2. 大阪大理, 3. 大阪大基礎工
15:15	18p-D519-9	Ag-In-Yb準結晶 2 回回転軸表面上のペンタセン吸着における acute rhombohedron の重要性		1. 鹿大院理工
15:30	18p-D519-10	RSB直接検証に向けたDy(Ru _{1-x} Co _x) ₂ Si ₂ 系の4f電子スピンのSTMによる検出	○曽田 光亮¹, 黒川 修¹, 田畑 吉計¹	1. 京都大工
15:45	18p-D519-11	準結晶表面上に吸着するPb原子のニューラルネットワークポテンシャル	○(M1)福山 勝也¹, 野澤 和生¹	1. 鹿児島大理
16:00		休憩/Break		
16:15	18p-D519-12	局在プラズモンにおける量子効果の数値計算による検討	○市川 昌和1	1.東大院工
16:30		ガラス表面のヤケの評価方法の検討 [2]	○(M1)山口 麻人¹, 室谷 裕志¹	1. 東海大院工
16:45		ガラスピペットを通過するアルゴンガスの真空コンダク タンスの解析検討		
17:00	18p-D519-15	0.2%Be-Cu材料を用いた超高真空容器の特性評価と溶接 加工	〇中村 孝夫 1 , 黑岩 雅英 2 , 岸川 信介 2 , 佐々木 優直 2 , 岡橋 和成 2 , 佐藤 慶吾 3	1. 東京大学 生産研, 2. 東京電子, 3. 古河電工
[CS.5]	6.5 表面物理・真空	、7.6 原子・分子線およびビーム関連新技術のコードシェ	アセッション / Code-sharing Session of 6.5 & 7.6	
3/18 9:00		口頭講演 (Oral Presentation) D519会場 (Room D519) 光触媒ルチルTiO ₂ 上で水素ガス生成中のポーラロントン	○加藤 弘一 ¹ 短公 古 ラ ¹	1. 東大生研
9:15		ネル現象 アナターゼ型TiO ₂ (001)表面への超音速NO分子線の照		1. 理研, 2. 横浜国大院工, 3. 阪大院基礎工, 4. 原子力機
		射	栄 -5 , 吉越 章隆 4 , 阿部 真之 3	構,5.高知工大
9:30 9:45		Rutile TiO ₂ (110) 上 Pentacene の分子配向 XANES, EXAFS, and XPS study of the atomic structures	○ (M1) 杉江 知輝¹, 滝沢 優¹ ○ (D)YUHUA TSAI¹.², Yoshiyuki Yamashita¹.²	1. 立命館大 1.NIMS, 2.Kyushu Univ.
9:45	英 E 10a-D519-4	and chemical states of active and inactive dopant sites in 4H-SiC(0001)	(D)TOHOA TSAL , Tosmyuki Tamasmta	1.MINIS, 2.Kyushu Univ.
10:00	18a-D519-5	CVD単層グラフェンのドメイン境界の可視化	〇大野 真也 1 , 青柳 良英 1 , 長門 諒浩 1 , 藤田 凌太 1 , 松 井 文彦 2	1. 横国大院理工, 2. 分子研
10:15		休憩/Break	升义彦"	
10:30	E 18a-D519-6	Observation of Electronic States in Sb-doped ZrTe ₅	○ (M2)Muhammad Frassetia Lubis¹, Takuto Nakamura¹.², Chen Yitong¹, Hiroki Sugihara¹, Kiyohisa Tanaka³, Myung-Hwa Jung⁴, Shin-ichi	1.Department of Physics, Osaka Univ., 2.Graduate School of Frontier Biosciences, Osaka Univ., 3.Institute for Molecular Sci., 4.Department of Physics, Sogang
			Kimura ^{1, 2, 3}	Univ.
10:45	奨 18a-D519-7	硫化サマリウムの光誘起非線形バンドシフトと価数転移	○陳奕同¹,中村 拓人²¹,渡邉浩²¹,鈴木 剛³,任 千 慧³,劉 珂成³, Zhong Yigui³,金井 輝人³,板谷 治郎³, 辛 埴¹, 岡崎 浩三³,井村 敬一郎⁵,鈴木 博之³,佐藤 憲 昭⁶,木村 真一².1.7	1. 阪大理, 2. 阪大生命, 3. 東大物性研, 4. 東大特別教授室, 5. 名大理, 6. 愛工大, 7. 分子研
11:00	奨 18a-D519-8	CoPc/γ'-Fe4N有機・無機ハイブリッド界面における電子軌道依存磁気結合	○(M1)小野 広喜¹,梅田 佳孝¹,山本 航平³,石山 修³, 横山 利彦³,水口 将輝¹²,宮町 俊生¹.²	1. 名大院工, 2. 名大未来研, 3. 分子研
11:15	18a-D519-9	励起子絶縁体物質 ${\rm Ta_2Ni}({\rm Se_{1-x}S_x})_5$ の自発的励起子相の電子相関		1.分子研, 2.基礎科学研究院, 3.浦項加速器研究所, 4.浦項工大
11:30	18a-D519-10	準大気圧光電子分光における環境帯電補償効果の試料位 置依存性		1.兵庫県大高度研, 2.兵庫県大院理, 3.マツダ(株)
11:45	18a-D519-11	低速原子散乱分光法によるSrF ₂ (111)表面原子の観察	○福田 浩昭 ¹ , 譚 ゴオン ¹ , 大賀 友瑛 ² , 松田 晃史 ² , 吉 本 護 ² , 梅澤 憲司 ¹	1.大阪公立大学, 2.東工大
66 プr	コーブ顕微鏡 / Prob	e Microscopy	平 設,悔佯 思刊	
		口頭講演 (Oral Presentation) D405会場(Room D405)		
9:30		「第7回薄膜・表面物理分科会論文賞受賞記念講演」	〇張 開鋒 ^{1,4} , 包 一凡 ² , 曹 茂豊 ² , 谷口 伸一 ¹ , 渡辺 正	1. 目立研開, 2. (中国) 厦門大化工, 3. 徳島大 pLED, 4. 京
		プラズモン薄膜導波路プローブによる低バックグラウン		
		ド探針増強ラマン分光	圭⁴, 山田 啓文⁴, 任 斌², 立崎 武弘⁵	
10:00	奨 E 16a-D405-2	Spin Polarization of Trioxotriangulene Neutral Radicals	○ (M2)Zhangyu Yuan ^{1, 2} , Tsuyoshi Murata ³ , Kewei	1.UniV. of Tsukuba, 2.National Inst. for Materials
		on a AuSi _x /Au(111) Surface	Sun², Yasushi Morita³, Shigeki Kawai².1	Science, 3.Aichi Inst. of Technology
10:15	奨 16a-D405-3	イオン液体/金電極界面構造の分子スケール3D-SFM観		1. 金大, 2. 電中研, 3. 東大工, 4. 理研 CEMS
10:30	奨 E 16a-D405-4	察とその探針および電極電位依存性 Atomic force microscopy studies on ionic liquids at solid	一輝¹, 宮澤 佳甫¹, 清水 直², 岩佐 義宏³.⁴, 福間 剛士¹ ○ (DC)Yifan Bao¹, Takashi Ichii¹, Toru	1.Kyoto Univ.
		interfaces and their surface charge dependences	Utsunomiya ¹ , Hiroyuki Sugimura ¹	
10:45	16a-D405-5	界面状態密度を測定できる高周波と低周波の交流バイア ス電圧を用いるケルビンプローブ力分光法	和泉 遼', 宮崎 雅人', 李 艷君', 〇管原 康弘'	1.阪大院工
11:00	16a-D405-6	特徴点マッチングを用いたナノスケールイメージングに 向けた自動ドリフト補正システム	○ (DC)DIAO ZHUO¹, 上田 啓一¹.², Hou Linfeng¹, 山下 隼人¹, Custance Oscar³	1. 阪大院基礎工, 2. 都産技研, 3. 物材機構
11:15	16a-D405-7	AM距離制御を用いたFM-EFMの有効性の検証		1.東大生研, 2.東大ナノ量子機構
11:30		超常磁性探針を用いた交番磁気力顕微鏡による広帯域・ 高周波磁場エネルギーイメージング	○斉藤 準¹, 鈴木 魁智¹, Makarova Marina¹, 園部 博¹, 松村 透¹	
3/16(ポスター講演 (Poster Presentation) PA 会場(Room PA) 圧縮センシングを応用した時間短縮SPMの開発	○上田 啓市 ^{1,2} , Diao Zhuo², Hou Linfeng², 山下 隼	1. 都産技研, 2. 大阪大学
	16p-PA10-2	マルチプローブ電気化学AFMの開発に向けた小型AFM	人 ² , 阿部 真之 ² ○田口 遼 ¹ , 杉村 博之 ¹ , 一井 崇 ¹ , 宇都宮 徹 ¹	1. 京都大学院工学研究科
	16p-PA10-3	の開発 針状ガラスの先端を用いた NV 中心ダイヤモンド磁気セ	○文 嘉祺¹, 小久保 伸人¹	1.電通大情報理工
	16p-PA10-4	ンサの作製 AFMによる溶融Ga/Cu-Ga合金界面のin situ 分析	○片岡 宏樹¹, 鈴木 七央也¹, 一井 崇¹, 宇都宮 徹¹, 杉	1.京大
	16p-PA10-5	ガラス針先端のナノ SQUID を探針とした走査型熱・磁	村 博之¹ ○磯部 陽州¹, 上原 諒², 小久保 伸人¹, 島田 宏¹	1. 電通大院情報理工, 2. 電通大 III 類
		気顕微鏡の開発 液中FM-AFMを用いたポリリシンの分子分解能観察およ		1.京大工
		び物性計測		
		温度可変型高速走査型トンネル顕微鏡の開発 大気中・液中で動作する探針増強ラマン分光 AFM 装置 の開発 (2)		1. 阪大院基礎工 1. 京大工, 2. 日立製作所

	E 16p-PA10-9	The charge state of steps on ${\rm TiO_2}$ anatase (101) by AFM/KPFM	○ (D) Jiuyan Wei¹, Masato Miyazaki¹, Yasuhiro Sugawara¹, Yanjun Li¹	1.Osaka Univ.
	16p-PA10-10	畳み込みニューラルネットワークを用いた SPM 探針先端修復システム	○ (DC)DIAO ZHUO¹, Hou Linfeng¹, Custance Oscar², 阿部 真之¹	1. 阪大院基礎工, 2. 物材機構
	E 16p-PA10-11	Exploration of charge properties of Au NPs on rutile	Oscar, 阿丽 其之 O(DC)Qiang Zhu ¹ , Yasuhiro Sugawara ¹ , Yanjun Li ¹	1.Osaka Univ.
3/17(F		TiO ₂ (110) surface by AFM/KPFM at 78 K 口頭講演 (Oral Presentation) D519会場(Room D519)		
:30	17a-D519-1	周波数変調 AFM によるリチウムイオン電池用電解液/マイカ界面構造の計測	〇山岸 裕史 1 , 木南 裕陽 2 , 小林 \pm^{2} , 井垣 恵美子 1 , 山 田 啓文 2	1.パナソニック ホールディングス, 2.京大院工
:45	17a-D519-2	FM-AFMとMDシミュレーションによるアニオン界面活性剤結晶/水界面構造の分子スケール解析	○張 皓輝¹, 長谷 一輝¹, 熊谷 陽一¹, 吉野 巧¹, 橋本 遼 太², 宮澤 佳甫¹, 五十嵐 陽彦¹, 宮田 一輝¹, 森垣 篤 典², Ygor Morals Jaques³, Adam S.Foster³, 柿澤 恭 史², 福間 剛士¹	1. 金沢大, 2. ライオン, 3.Aalto大
0:00	17a-D519-3	異なる溶液濃度におけるアニオン性界面活性剤結晶/溶液界面構造の 3D-SFM 計測		1.金沢大, 2. ライオン (株)
):15	17a-D519-4	原子間力顕微鏡を用いたウリ類炭疽病菌の付着器の膨圧 計測	○松森 海晴¹, 宮澤 佳甫¹.².³, 熊倉 直祐³.⁴, 白須 賢⁴, 福間 剛士¹.²	1. 金沢大, 2. ナノ研, 3.JST ACT-X, 4. 理研
):30	E 17a-D519-5	Effect of Probe Vibration Frequency and Polarity of the Solvent on Tapping-Mode Scanning Probe Electrospray Ionization		1.Graduate school of science, Osaka Univ, 2.Graduate school of engineering, Osaka Univ
0:45	17a-D519-6	垂直力と水平力を同時検出可能な液中FM-AFMによる水	○阿部 拓実¹,川村 隆三¹,小林 成貴²	1.埼玉大院理工, 2.滋賀県立大工
1:00	17a-D519-7	和構造計測 原子間力顕微鏡法と弾性シェル理論による植物細胞の弾	○(D)山崎 勇輝¹, 岡野 和宣¹, 細川 陽一郎¹	1. 奈良先端大物質
1:15	17a-D519-8	性と膨圧の解明: 浸透圧制御による評価 タッピングモード走査型プローブエレクトロスプレーイ		1.阪大理, 2.国立国際医療研究センター
0/17/5	.) 12 20 16 15	オン化法によるマウス精巣の脂質イメージング	智美 ² , 豊田 岐聡 ¹	
3/17(Fr 3:30		口頭講演 (Oral Presentation) D519 会場 (Room D519) 2探針 STMによる Si表面の電気伝導測定	The state of the s	1. 福岡教育大, 2. カナダ国立研究評議会, 3. アルバー
3:45	17p-D519-2	光照射STMによるグラフェンナノデバイスの熱励起電子		1. 横浜国大院理工, 2. 北陸先端大
1:00	17p-D519-3	観測 フタロシアニン単分子内での磁性原子吸着位置による近	草場 哲¹, 水田 博², 片山 郁文¹, 武田 淳¹ ○(M1) 石井 響誠¹, 山田 豊和¹.²	1.千葉大院工, 2.千葉大分子キラ研
1:15	17p-D519-4	藤共鳴変化のSTM観察 集束へリウムイオンビームによるグラフェンナノギアの	○櫻井 亮 ¹ , 永野 聖子 ² , ヨアキム クリスチャン ^{1,3}	1.物材機構 MANA, 2.物材機構 共用部門,
1:30	17p-D519-5	作製 水素 - 酸素ガス炎エッチングによって調整したタングス	○(B)宇都宮 信彦¹, 富取 正彦², 新井 豊子¹	3.CEMES-CNRS1.金沢大, 2.北陸先端科技大
1:45		テン探針の評価 休憩/Break		
5:00	17p-D519-6	自己組織化単分子膜によるAuナノシートの温度分布計測	○(DC)加藤 太朗¹,田中 貴久¹,宮岸 拓路²,寺尾 潤²,內田 建¹	1. 東大工, 2. 東大総文
5:15	17p-D519-7	走査プローブ顕微鏡による Ag(111) 上の酸素分子単層低密度相の格子歪みの評価	○(D)木村 光男¹, 杉本 宜昭¹	1. 東大新領域
5:30	17p-D519-8	強磁場低温プローブ顕微鏡を用いたIr(001)上の一次元鉄 チェーンの観察	○安達 有輝¹,飯山 敦司¹,安井 勇気¹,杉本 宜昭¹	1. 東大新領域
5:45 6:00		周波数変調原子間力顕微鏡を用いた金属の表面抵抗評価 探針による三次元分子の構造異性化		1. 金沢大, 2. 北陸先端科技大 1. 物質・材料研究機構, 2. 筑波大, 3. Aalto 大, 4. 大阪ブ 5. 金沢大
ビー.	ム応用 / Bean	n Technology and Nanofabrication	W 1 × , 1 oster runn	
		はプログラム冒頭にございます。		
3/17(F		ポスター講演 (Poster Presentation) PA会場(Room PA) DAFS法による粉末結晶試料に対する3次元的局所構造	○宇留賀 朋哉¹, 金子 拓真¹	1. 高輝度セ
	17a-PA01-2	解析法の検討 ニュースバルX線リソグラフィーによる微細構造体作成	○天野 壯¹. 渡部 太希¹. 伊濹 伸哉¹. 玉田 幸浩¹. 山崎	1. 兵庫県大高度研
		FIB-SIMSによるドーパント分析検討	徹¹,山口明啓¹,内海裕一¹ ○阿久津稔¹,比氣朋典¹,吉川政夫¹	1. ローム株式会社
		ガラス円筒面チャネルによりガイドされたAr ⁷⁺ イオン ビームの運動エネルギー	〇風祭 佑弥 1 , 高橋 遼平 1 , 關 誠晃 1 , 高山 裕仁 2 , 杉本 奈々 2 , 本橋 健次 1,2	
	17a-PA01-5	ガラス円筒面チャネルによりガイドされたAr ⁶⁺ イオン	○關 誠晃¹, 高橋 遼平¹, 風祭 佑弥¹, 高山 裕仁², 杉本 奈々². 本橋 健次¹.²	1. 東洋大院理工, 2. 東洋大理工
	17a-PA01-6	ビームの位置と形状の時間発展 リチウム - ジルコニウム酸化物における二酸化炭素吸収	\bigcirc 小山 征哉 1 , 土屋 $\dot{\chi}^1$, 坂 えり $\dot{\chi}^1$, 池邉 由美 $\dot{\chi}^1$,	1.名城大理
	17a-PA01-7	および放出特性 超低地球軌道におけるポリイミドエッチング増速効果	佐々木 知子 1 ○横田 久美子 1 , 井出 航 1 , 藤田 敦史 1 , 堀本 流石 1 , 西 岡 燦太 1 , 牛嶌 飛翔 1 , 田川 雅人 1 , 土屋 佑太 2 , 後藤 亜 希 2 , 行松 和輝 2 , 宮崎 英治 2 , 木本 雄吾 2	1. 神戸大工, 2. 宇宙航空研究開発機構
	t術 / X-ray techno			
3/17(F :00		口頭講演 (Oral Presentation) E502 会場(Room E502) 石英基板に成膜した Mo/SI 多層膜ミラーの精密除去法	○豊田 光紀¹, 横山 諒¹, 脇 俊太郎¹, 角館 俊行², 陳	1.東京工芸大工, 2.東北大多元研
:15	17a-E502-2	多層膜回折格子による軟X線ビームスプリッターの検討	軍¹ ○江島 丈雄 ^{1,2} , 羽多野 忠 ^{1,2}	1. 東北大 SRIS, 2. 東北大多元研
:30	17a-E502-2	ベイズ超解像を用いたX線光電子分光測定の高速化	○原田 俊太¹, 辻森 皓太¹, 野本 豊和², 伊藤 孝寛¹	1.名大, 2.あいち産科技センター
		Spectroscopic diagnostics of H-radicals formed by an extreme ultraviolet light source generated with a laser produced plasma	O (P)James Edward Hernandez¹, Nozomi Tanaka¹, Yubo Wang¹, Katsunobu Nishihara¹, Shinsuke Fujioka¹, Atsushi Sunahara¹.², Tomoyuki Johzaki¹.³, Kyung Sik Kang⁴, Youngduk Such⁴, Jeong-Gil Kim⁴, Shinji Ueyama⁵, Ken Ozawa⁵	1.ILE, OSAKA Univ., 2.Purdue Univ., 3.Hiroshima Univ., 4.Samsung MR, 5.Samsung DS R&D Japan
0:00	E 17a-E502-5	Comparison of focusing optics for extreme vacuum ultraviolet and vacuum ultraviolet emission from laser produced plasma	○ Nozomi Tanaka¹, Yubo Wang¹, James Edward Hernandez¹, Katsunobu Nishihara¹, Shinsuke Fujioka¹, Atsushi Sunahara¹.², Tomoyuki Johzaki¹.³, Kyung Sik Kang⁴, Youngduk Suh⁴, Jeong-Gil Kim⁴, Shinji Ueyama⁵, Ken Ozawa⁵	1.ILE, Osaka Univ., 2.Purdue Univ., 3.Hiroshima Uni 4.Samsung MR, 5.Samsung DS R&D Japan
0:15	17a-E502-6	レーザープラズマ光源の輝度分布を考慮した EUV 照明系 照度の精密評価	○脇 俊太郎¹, 津久井 雄祐¹, 陳 軍¹, 豊田 光紀¹	1.東京工芸大学院工

10:45	17a-E502-7	X線で100 nm ビームサイズを実現するダイヤモンド製屈 折レンズの開発	○岡田 京子¹, 梶原 堅太郎¹, 隅谷 和嗣¹, 加藤 有香子²	1. 高輝度光科学研究センター, 2. 産業技術総合研究所
11:00	E 17a-E502-8	Optical Properties of Micro-Diamond using Hard X-ray nanoprobe	O Ke ShangWei ¹ , Wu YuHao ^{1,2} , Wang EnRuei ¹ , Chang ChaoHsun ^{1,3} , Lee ChienYu ¹ , Chen BoYi ¹ , Yin GungChian ¹ , Tang MauTsu ¹ , Lin BiHsuan ¹	1.NSRRC, 2.NYC Univ, 3.NT Univ of Tech
11:15	E 17a-E502-9	Studying the valence states of europium ions in $BaAl_2O_4{:}Eu^{2+,3+} \ via\ hard\ X{-}ray\ nanoprobe$	○ BiHsuan Lin¹, Yu-Hao Wu¹, Shang-Wei Ke¹, Chien-Yu Lee¹, Bo-Yi Chen¹, Gung-Chian Yin¹, Mau- Tsu Tang¹	1.NSRRC
11:30	17a-E502-10	符号化開口を用いた放射光 X 線コンプトン散乱イメージング法の開発		1. 群馬大理工, 2.JASRI, 3. 兵庫県立大, 4.理研放射光センター, 5. 群大重粒子線医学研究センター
11:45	17a-E502-11	コンプトン散乱 X線による全固体電池の operando 計測	〇高野 皓大 1 ,鈴木 宏輔 1 ,星 和志 1 ,宇都野 太 2 ,辻 成 希 3 ,櫻井 浩 1	1.群馬大理工, 2.出光興産, 3.高輝度光研
12:00	17a-E502-12	放射光を用いたクライオ・マイクロX線CTの開発とそ の応用		1.九州シンクロトロン光研究センター, 2. 産総研, 3. 西 九州大学
12:15	17a-E502-13	宇宙軟X線観測にむけたpnCCD素子の分光性能評価	〇平賀純子¹,吉田明弘¹,藤本健二郎¹,佐藤匡駿¹, 畠中大介¹,杉本奏¹,有元誠²,米徳大輔²,获野直樹²,盛顯捷³,坂本貴紀³	1. 関学理工, 2. 金沢大宇宙物理, 3. 青学理工
		cations and technologies of electron beams 口頭講演 (Oral Presentation) D209会場(Room D209)		
13:30		HAADF STEM法を用いたPt表面の精密原子間距離計測	○小林 俊介¹, 大森 雄貴¹, 黄 馨慧¹, 桑原 彰秀¹	1.JFCC
13:45		環境セル内試料のその場高分解能STEM観察		1.物質・材料研究機構
14:00	15p-D209-3	サブ・マイクロ秒の露光時間窓幅での同期露光式電子線		1.理研 CEMS, 2. 東北大多元研
14:15	E 15p-D209-4	ホログラフィー In situ scanning electron microscopy observation of ion	大輔 ¹ ○ Gada He ¹ , Yoshifumi Oshima ¹ , Masahiko	1.JAIST
11110	2 10p 2 00 1	distribution variation at the electrode-electrolyte interface in an electrochemical cell		<i>x</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
14:30	15p-D209-5	パルス大強度相対論的電子ビーム照射による氷の格子欠 陥	〇伊藤 大登 ¹, Do Thi Mai Dung ¹, 末松 久幸 ¹, 菊池 崇志 ¹, 中山 忠親 ¹, 今田 剛 ²	1. 長岡技大工, 2. 新潟工科大工
14:45 15:00	15p-D209-6	表面修飾型電子源の修飾状態によるSKチャートの変化 休憩/Break		1.香川高専
15:15	招 15p-D209-7	「第53回講演奨励賞受賞記念講演」 Graphene/h-BN構造を用いた転写フリー平面型電子源の 開発	〇山本 将也 1,2 , 村田 博雅 2 , 長尾 昌善 2 , 三村 秀典 1 , 根尾 陽一郎 1 ,村上 勝久 2	1. 静大電研, 2. 産総研
15:30	15p-D209-8	大電流動作電子源の実現に向けたSiエミッタ上TiNコーティングの検討	○村田 博雅¹, 村上 勝久¹, 長尾 昌善¹	1. 産業技術総合研究所
15:45	15p-D209-9	反応性スパッタ法により成膜した窒化ハフニウム薄膜の 加熱による仕事関数低下量の評価	○大住 知暉 1.2, 長尾 昌善 2, 後藤 康仁 1	1. 京大院工, 2. 産総研
16:00	15p-D209-10	高温超伝導体Bi2212からの電界電子放出	津田 紘希 ¹, 大櫃 温仁 ¹, \bigcirc 永井 滋一 ¹, 岩田 達夫 ¹, 畑 浩一 ¹	1. 三重大院工
16:15	15p-D209-11	${\rm LaB_6}$ 薄膜をもちいた透過光型フォトカソード電子銃の開発	○石田 高史¹, 桑原 真人¹, 齋藤 晃¹	1. 名大未来研
16:30	15p-D209-12	通常より低い加熱温度でのLaB ₆ 熱電子銃の平均輝度およびリチャードソン定数の推定	〇岡田 風杜 1 ,梶田 龍太郎 1 ,村田 英 $-^1$,田中 崇之 1 , 六田 英治 1	1. 名城大理工
		- / / / / / / / / / / / / / / / / / / /		
		造形成技術 / Micro/Nano patterning and fabrication		
	/ed.) 10:30 - 11:45	造形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場(Room D209) UV ナノインブリントリソグラフィによるシリコンナノ	○高野修綺¹,新家寬正¹,森田伊織²,後藤和泰³,押	1. 東北大多元研, 2. 東北大通研, 3. 名大院工
3/15(W	/ed.) 10:30 - 11:45 15a-D209-1	生形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場(Room D209) UV ナノインブリントリソグラフィによるシリコンナノ ディスク配列体の作製 熱ナノインブリントによるボリ乳酸シート表面の原子ス	切 友也 1 ,中川 勝 1 ○梅本 琉花 1 ,前田 優斗 1 ,大賀 友瑛 1 ,金子 智 2 1 ,吉	
3/15(W 10:30	/ed.) 10:30 - 11:45 15a-D209-1 奨 15a-D209-2	 形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UV ナノインプリントリソグラフィによるシリコンナノディスク配列体の作製 	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智²¹, 吉 本 護¹, 松田 晃史¹ ○廣瀬 大亮¹, 山田 大貴², 尾原 幸治², Tseng Jochi²,	1. 東工大 物質理工, 2. 神奈川産技総研
3/15(W 10:30 10:45	/ed.) 10:30 - 11:45 15a-D209-1 奨 15a-D209-2 15a-D209-3	** ** ** ** ** ** ** ** ** **	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智²²¹, 吉本 護¹, 松田 晃史¹ ○廣瀬 大亮¹, 山田 大貴², 尾原 幸治², Tseng Jochi², 高村 禪¹	1. 東工大 物質理工, 2. 神奈川産技総研
3/15(W 10:30 10:45 11:00	/ed.) 10:30 - 11:45 15a-D209-1 獎 15a-D209-2 15a-D209-3 15a-D209-4	主形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209会場 (Room D209) UVナノインブリントリソグラフィによるシリコンナノディスク配列体の作製 熱ナノインブリントによるポリ乳酸シート表面の原子ステップ平坦化 ナノレオロジーブリンティングによるチタニアのサブミクロンバターン作製 化学増幅系レジストを対象とした電子線リソグラフィの	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智².¹, 吉本 護¹, 松田 晃史¹ ○廣瀬 大亮¹, 山田 大貴², 尾原 幸治², Tseng Jochi², 高村 禪¹ ○中村 大紀¹, 山田 絵斗¹, 井上 文太¹, 安田 雅昭¹	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研
3/15(W 10:30	/ed.) 10:30 - 11:45 15a-D209-1 獎 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UV ナノインブリントリソグラフィによるシリコンナノディスク配列体の作製 熱ナノインブリントによるボリ乳酸シート表面の原子ステップ平坦化ナノレオロジープリンティングによるチタニアのサブミクロンバターン作製 化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション 平面レチクルを用いた対向放物面ミラー立体投影露光の可能性・加速器ピーム分析、7.4 量子ピーム界面構造計測、7.5 イ	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智²¹, 吉本 護¹, 松田 晃史¹ ○廣瀬 大亮¹, 山田 大貴², 尾原 幸治², Tseng Jochi², 高村 禅¹ ○中村 大紀¹, 山田 絵斗¹, 井上 文太¹, 安田 雅昭¹ ○堀内 敏行¹, 小林 宏史¹	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工
3/15(W 10:30	/ed.) 10:30 - 11:45 15a-D209-1 獎 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UV ナノインブリントリソグラフィによるシリコンナノディスク配列体の作製 熱ナノインブリントによるボリ乳酸シート表面の原子ステップ平坦化 ナノレオロジープリンティングによるチタニアのサブミクロンバターン作製 化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション 平面レチクルを用いた対向放物面ミラー立体投影露光の可能性	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智²¹, 吉本 護¹, 松田 晃史¹ ○廣瀬 大亮¹, 山田 大貴², 尾原 幸治², Tseng Jochi², 高村 禅¹ ○中村 大紀¹, 山田 絵斗¹, 井上 文太¹, 安田 雅昭¹ ○堀内 敏行¹, 小林 宏史¹ オンビームー般のコードシェアセッション / Code-s	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1] 3/16(1	/ed.) 10:30 - 11:45 15a-D209-1 獎 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UV ナノインブリントリソグラフィによるシリコンナノディスク配列体の作製 熱ナノインブリントによるボリ乳酸シート表面の原子ステップ平坦化 ナノレオロジーブリンティングによるチタニアのサブミクロンパターン作製 化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション 平面レチクルを用いた対向放物面ミラー立体投影露光の可能性・加速器ビーム分析、7.4 量子ビーム界面構造計測、7.5 イロ頭講演 (Oral Presentation) D519 会場 (Room D519)	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智²¹, 吉本 護¹, 松田 晃史¹ ○廣瀬 大売¹, 山田 大貴², 尾原 幸治², Tseng Jochi², 高村 裨¹ ○中村 大紀¹, 山田 絵斗¹, 井上 文太¹, 安田 雅昭¹ ○堀内 敏行¹, 小林 宏史¹ オンビーム一般のコードシェアセッション / Code-s ○藤田 泰樹¹², 佐藤 真一郎², 出来 真斗³, 渡邊 浩崇⁴, 新田 州吾⁴, 本田 善央⁴, 天野 浩³⁴, 土田 秀次¹	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工 haring Session of 2.3 & 7.4 & 7.5
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1]: 3/16(1 9:00	/ed.) 10:30 - 11:45 15a-D209-1 奨 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1 奨 16a-D519-2	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209会場 (Room D209) UVナノインブリントリソグラフィによるシリコンナノディスク配列体の作製 熱ナノインブリントによるポリ乳酸シート表面の原子ステップ平坦化ナノレオロジープリンティングによるチタニアのサブミクロンバターン作製 化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション 平面レチクルを用いた対向放物面ミラー立体投影露光の可能性・加速器ピーム分析、7.4 量子ピーム界面構造計測、7.5 イロ頭講演 (Oral Presentation) D519 会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件の検討	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智²¹, 吉本 護¹, 松田 見史¹ ○廣瀬 大亮¹, 山田 大貴², 尾原 幸治², Tseng Jochi², 高村 禅¹ ○中村 大紀¹, 山田 絵斗¹, 井上 文太¹, 安田 雅昭¹ ○堀内 敏行¹, 小林 宏史¹ オンピームー般のコードシェアセッション / Code-s ○藤田 泰樹¹², 佐藤 真一郎², 出来 真斗³, 渡邊 浩崇³, 新田 州吾³, 本田 善央⁴, 天野 浩³⁴, 土田 秀次¹ ○内田 真裕人¹, 一宮 正義², 番 貴彦², 柳澤 淳一²	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工 haring Session of 2.3 & 7.4 & 7.5 1. 京大院工, 2. 量研, 3. 名大VBL, 4. 名大IMaSS
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1]: 3/16(1 9:00	/ed.) 10:30 - 11:45 15a-D209-1 奨 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1 奨 16a-D519-2	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UV ナノインブリントリソグラフィによるシリコンナノディスク配列体の作製 熱ナノインブリントによるポリ乳酸シート表面の原子ステップ平坦化ナノレオロジープリンティングによるチタニアのサブミクロンバターン作製 化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション 平面レチクルを用いた対向放物面ミラー立体投影露光の可能性・加速器ビーム分析、7.4 量子ビーム界面構造計測、7.5 イロ頭講演 (Oral Presentation) D519 会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件の検討 Au-Siイオン照射で形成されるSiO2表面のナノ構造を利用したAuナノ粒子の形成イオン照射による銀ナノ粒子凝集体のブラズモン吸収帯の尖鋭化とVOC蒸気応答性の向上 低速 Ar 照射 Si 基板上 Au 蒸着による Auナノワイヤ成長モ	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智²¹, 吉本 護¹, 松田 晃史¹ ○廣瀬 大亮¹, 山田 大貴², 尾原 幸治², Tseng Jochi², 高村 禅¹ ○中村 大紀¹, 山田 絵斗¹, 井上 文太¹, 安田 雅昭¹ ○堀内 敏行¹, 小林 宏史¹ オンビーム一般のコードシェアセッション / Code-s ○藤田 泰樹¹², 佐藤 真一郎², 出来 真斗³, 渡邊 浩崇⁴, 新田 州吾⁴, 本田 善央⁴, 天野 浩³⁴, 土田 秀次¹ ○内田 真裕人¹, 一宮 正義², 番 貴彦², 柳澤 淳一² ○(M1) 渡邉 謙吾¹, 小谷 祐太¹, 高廣 克己¹	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工 haring Session of 2.3 & 7.4 & 7.5 1. 京大院工, 2. 量研, 3. 名大 VBL, 4. 名大 IMaSS 1. 滋賀県立大院工, 2. 滋賀県立大工
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1]: 3/16(1 9:00 9:15	授d.) 10:30 - 11:45 15a-D209-1 獎 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1 獎 16a-D519-2 16a-D519-3	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UVナノインブリントリソグラフィによるシリコンナノディスク配列体の作製熱ナノインブリントによるポリ乳酸シート表面の原子ステップ平坦化ナノレオロジーブリンティングによるチタニアのサブミクロンバターン作製化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション平面レチクルを用いた対向放物面ミラー立体投影露光の可能性小加速器ピーム分析、7.4 量子ピーム界面構造計測、7.5 イロ頭講演 (Oral Presentation) D519 会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件の検討 Au-Siイオン照射で形成される SiO₂表面のナノ構造を利用した Auナノ粒子の形成イナン照射による銀ナノ粒子凝集体のブラズモン吸収帯の尖鋭化と VOC 蒸気応答性の向上低速 Ar照射 Si 基板上 Au 蒸着による Au ナノワイヤ成長モデルの構築	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智²¹, 吉本 護¹, 松田 晃史¹ ○廣瀬 大売¹, 山田 大貴², 尾原 幸治², Tseng Jochi², 高村 禅¹ ○中村 大紀¹, 山田 絵斗¹, 井上 文太¹, 安田 雅昭¹ ○堀内 敏行¹, 小林 宏史¹ オンビーム一般のコードシェアセッション / Code-s ○藤田 泰樹¹², 佐藤 真一郎², 出来 真斗³, 渡邊 浩崇⁴, 新田 州吾⁴, 本田 善央⁴, 天野 浩³⁴, 土田 秀次¹ ○内田 真裕人¹, 一宮 正義², 番 貴彦², 柳澤 淳一² ○(M1) 渡邉 謙吾¹, 小谷 祐太¹, 高廣 克己¹ ○(DC) 水谷 仁美¹, 山本 春也², 高廣 克己¹	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工 haring Session of 2.3 & 7.4 & 7.5 1. 京大院工, 2. 量研, 3. 名大VBL, 4. 名大IMaSS 1. 滋賀県立大院工, 2. 滋賀県立大工 1. 京工繊大
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1]:3/16(T 9:00 9:15 9:30 9:45	/ed.) 10:30 - 11:45 15a-D209-1 奨 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1 奨 16a-D519-3 奨 16a-D519-4 16a-D519-5	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UVナノインブリントリソグラフィによるシリコンナノディスク配列体の作製熱ナノインブリントによるボリ乳酸シート表面の原子ステップ平坦化ナノレオロジープリンティングによるチタニアのサブミクロンバターン作製化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション平面レチクルを用いた対向放物面ミラー立体投影露光の可能性・加速器ビーム分析、7.4 量子ビーム界面構造計測、7.5 イロ頭講演 (Oral Presentation) D519 会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件の検討 Au-Siイオン照射で形成される SiO₂表面のナノ構造を利用した Au ナノ粒子の形成イオン照射による銀ナノ粒子凝集体のブラズモン吸収帯の尖鋭化と VOC 蒸気応答性の向上低速 Ar 照射 Si 基 放上 Au 蒸着による Au ナノワイヤ成長モデルの構築 Si のイオンビームスバッタと Au 蒸着による Au ナノワイヤの低温成長イオンビーム分析法を用いた電極/固体電解質界面のリ	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智²¹, 吉本 護¹, 松田 晃史¹ ○廣瀬 大売¹, 山田 大貴², 尾原 幸治², Tseng Jochi², 高村 禅¹ ○中村 大紀¹, 山田 絵斗¹, 井上 文太¹, 安田 雅昭¹ ○堀内 敏行¹, 小林 宏史¹ オンビーム一般のコードシェアセッション / Code-s ○藤田 秦樹¹², 佐藤 真一郎², 出来 真斗³, 渡邊 浩崇⁴, 新田 州吾⁴, 本田 善央⁴, 天野 浩³⁴, 土田 秀次¹ ○内田 真裕人¹, 一宮 正義², 番 貴彦², 柳澤 淳一² ○(M1) 渡邉 謙吾¹, 小谷 祐太¹, 高廣 克己¹ ○(DC) 水谷 仁美¹, 山本 春也², 高廣 克己¹ ○(B) 西畠 佳汰¹, 水谷 仁美¹, 高廣 克己¹	1.東工大物質理工, 2.神奈川産技総研 1.北陸先端大, 2.高輝度光科学研 1.阪公大院工 1.東京電機大工 haring Session of 2.3 & 7.4 & 7.5 1.京大院工, 2.量研, 3.名大VBL, 4.名大IMaSS 1.滋賀県立大院工, 2.滋賀県立大工 1.京工繊大 1.京工繊大, 2.量研機構高崎
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1]: 3/16(T 9:00 9:15 9:30 9:45 10:00	Wed.) 10:30 - 11:45 15a-D209-1 奨 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1 奨 16a-D519-3 奨 16a-D519-3	北成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UV ナノインブリントリソグラフィによるシリコンナノディスク配列体の作製 熱ナノインブリントによるポリ乳酸シート表面の原子ステップ平坦化 ナノレオロジーブリンティングによるチタニアのサブミクロンバターン作製 化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション 平面レチクルを用いた対向放物面ミラー立体投影露光の可能性・加速器ビーム分析、 7.4 量子ビーム界面構造計測、 7.5 イロ頭講演 (Oral Presentation) D519 会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件の検討 Au-Siイオン照射で形成される SiO2表面のナノ構造を利用した Au ナノ粒子の形成イオン照射による銀ナノ粒子凝集体のブラズモン吸収帯の尖鋭化と VOC 蒸気応答性の向上 低速 Ar 照射 Si 基板上 Au 蒸着による Au ナノワイヤ成長モデルの構築 Si のイオンビームスバッタと Au 蒸着による Au ナノワイヤの低温成長 イオンビーム分析法を用いた電極/固体電解質界面のリチウム濃度分布その場測定 ガラス円筒面チャネルによりガイドされた Ar $^{6+}$ イオン	切 友也¹,中川 勝¹ ○梅本 琉花¹,前田 優斗¹,大賀 友瑛¹,金子 智²¹,吉 本 護¹,松田 晃史¹ ○廣瀬 大死¹,山田 大貴²,尾原 幸治², Tseng Jochi²,高村 禅¹ ○中村 大紀¹,山田 絵斗¹,井上 文太¹,安田 雅昭¹ ○堀内 敏行¹,小林 宏史¹ オンビーム一般のコードシェアセッション / Code-s ○藤田 泰樹¹²,佐藤 真一郎²,出来 真斗³,渡邊 浩崇⁴,新田 州吾⁴,本田 善央⁴,天野 浩³⁴,土田 秀次¹ ○内田 真裕人¹,一宮 正義²,番 貴彦²,柳澤 淳一² ○(M1) 渡邉 謙吾¹,小谷 祐太¹,高廣 克己¹ ○(DC) 水谷 仁美¹,山本 春也²,高廣 克己¹ ○(B) 西畠 佳汰¹,水谷 仁美¹,高廣 克己¹ ○土屋 文¹,小寺 拓¹,鈴木 耕拓²,佐々木 知子³	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工 haring Session of 2.3 & 7.4 & 7.5 1. 京大院工, 2. 量研, 3. 名大VBL, 4. 名大IMaSS 1. 滋賀県立大院工, 2. 滋賀県立大工 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 名城大理工, 2. 若狭湾エネ研, 3. 東北大金研
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1] 3/16(1 9:00 9:15 9:30 9:45 10:00 10:15 10:30	/ed.) 10:30 - 11:45 15a-D209-1 奨 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1 奨 16a-D519-3 奨 16a-D519-3 奨 16a-D519-5 16a-D519-6 奨 16a-D519-7	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UVナノインブリントリソグラフィによるシリコンナノディスク配列体の作製熱ナノインブリントによるボリ乳酸シート表面の原子ステップ平坦化ナノレオロジープリンティングによるチタニアのサブミクロンパターン作製化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション平面レチクルを用いた対向放物面ミラー立体投影露光の可能性・加速器ビーム分析、7.4 量子ビーム界面構造計測、7.5 イロ頭講演 (Oral Presentation) D519 会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件の検討 Au-Siイオン照射で形成される SiO₂表面のナノ構造を利用した Auナノ粒子の形成イオン照射による銀ナノ粒子凝集体のブラズモン吸収帯の尖鋭化と VOC 蒸気応答性の向上低速 Ar 照射 Si 基板上 Au 蒸着による Au ナノワイヤの低温成長イオンビーム分析法を用いた電極/固体電解質界面のリチウム濃度分布その場測定ガラス円筒面チャネルによりガイドされた Ar ⁶⁺ イオンビームの運動エネルギー分布体態/Break	切 友也¹,中川 勝¹ ○梅本 琉花¹,前田 優斗¹,大賀 友瑛¹,金子 智²¹,吉 本 護¹,松田 晃史¹ ○廣瀬 大売¹,山田 大貴²,尾原 幸治², Tseng Jochi²,高村 禅¹ ○中村 大紀¹,山田 絵斗¹,井上 文太¹,安田 雅昭¹ ○堀内 敏行¹,小林 宏史¹ オンピーム一般のコードシェアセッション / Code-s ○藤田 泰樹¹², 佐藤 真一郎², 出来 真斗³,渡邊 浩崇⁴,新田 州吾⁴,本田 善央⁴,天野 浩³⁴,土田 秀次¹ ○内田 真裕人¹,一宮 正義²,番 貴彦²,柳澤 淳一² ○(M1) 渡邉 謙吾¹,小谷 祐太¹,高廣 克己¹ ○(DC)水谷 仁美¹,山本 春也²,高廣 克己¹ ○(B) 西畠 佳汰¹,水谷 仁美¹,高廣 克己¹ ○土屋 文¹,小寺 拓¹,鈴木 耕拓²,佐々木 知子³ ○高橋 遼平¹,風祭 佑弥¹,關 誠晃¹,高山 祐仁²,杉本 奈々²,本橋 健次¹²	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工 haring Session of 2.3 & 7.4 & 7.5 1. 京大院工, 2. 量研, 3. 名大VBL, 4. 名大IMaSS 1. 滋賀県立大院工, 2. 滋賀県立大工 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 名城大理工, 2. 若狭湾エネ研, 3. 東北大金研 1. 東洋大院理工, 2. 東洋大理工
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1]: 3/16(T 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00	/ed.) 10:30 - 11:45 15a-D209-1 獎 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1 獎 16a-D519-2 16a-D519-3 獎 16a-D519-4 16a-D519-6 獎 16a-D519-6	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UVナノインブリントリソグラフィによるシリコンナノディスク配列体の作製熱ナノインプリントによるボリ乳酸シート表面の原子ステップ平坦化ナノレオロジープリンティングによるチタニアのサブミクロンバターン作製化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション平面レチクルを用いた対向放物面ミラー立体投影露光の可能性・加速器ビーム分析、7.4 量子ビーム界面構造計測、7.5 イコ頭講演 (Oral Presentation) D519 会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件の検討 Au-Siイオン照射で形成されるSiO₂表面のナノ構造を利用したAuナノ粒子の形成イオン照射による銀ナノ粒子凝集体のブラズモン吸収帯の尖鋭化とVOC蒸気応答性の向上低速Ar照射Si基板上Au蒸着によるAuナノワイヤ成長モデルの構築 SiのイオンビームスバッタとAu蒸着によるAuナノワイヤの低温成長イオンビームスが法を用いた電極/固体電解質界面のリチウム濃度分布その場測定ガラス円筒面チャネルによりガイドされたAr ⁶⁺ イオンビームの運動エネルギー分布体想/Break	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智²¹, 吉本 護¹, 松田 晃史¹ ○廣瀬 大売¹, 山田 大貴², 尾原 幸治², Tseng Jochi², 高村 禅¹ ○中村 大紀¹, 山田 絵斗¹, 井上 文太¹, 安田 雅昭¹ ○堀内 敏行¹, 小林 宏史¹ オンビーム一般のコードシェアセッション / Code-s ○藤田 泰樹¹², 佐藤 真一郎², 出来 真斗³, 渡邊 浩崇¹, 新田 州吾⁴, 本田 善央⁴, 天野 浩³⁴, 土田 秀次¹ ○内田 真裕人¹, 一宮 正義², 番 貴彦², 柳澤 淳一² ○(M1) 渡邉 謙吾¹, 小谷 祐太¹, 高廣 克己¹ ○(DC) 水谷 仁美¹, 山本 春也², 高廣 克己¹ ○(B) 西畠 佳汰¹, 水谷 仁美¹, 高廣 克己¹ ○土屋 文¹, 小寺 拓¹, 鈴木 耕拓², 佐々木 知子³ ○高橋 遼平¹, 風祭 佑弥¹, 關 誠晃¹, 高山 祐仁², 杉本 奈々², 本橋 健次¹² ○二宮 啓¹, 常木 誠之助¹, チェン リーチュイン¹, 平 岡 賢三¹	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工 1. 東京電機大工 1. 東京電機大工 1. 京大院工, 2. 量研, 3. 名大VBL, 4. 名大IMaSS 1. 滋賀県立大院工, 2. 滋賀県立大工 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 名城大理工, 2. 岩狭湾エネ研, 3. 東北大金研 1. 東洋大院理工, 2. 東洋大理工 1. 山梨大工
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1]: 3/16(T 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00	/ed.) 10:30 - 11:45 15a-D209-1 奨 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1 奨 16a-D519-3 奨 16a-D519-4 16a-D519-5 16a-D519-6 奨 16a-D519-7 16a-D519-7	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UV ナノインブリントリソグラフィによるシリコンナノディスク配列体の作製熱ナノインブリントによるボリ乳酸シート表面の原子ステップ平坦化ナノレオロジープリンティングによるチタニアのサブミクロンバターン作製化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション平面レチクルを用いた対向放物面ミラー立体投影露光の可能性・加速器ビーム分析、7.4 量子ビーム界面構造計測、7.5 イロ頭講演 (Oral Presentation) D519 会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件の検討 Au-Siイオン照射で形成されるSiO₂表面のナノ構造を利用したAuナノ粒子の形成イオン照射による銀ナノ粒子凝集体のブラズモン吸収帯の尖鋭化とVOC蒸気応答性の向上低速Ar照射が記載上Au蒸着によるAuナノワイヤ成長モデルの構築 SiのイオンビームスバッタとAu蒸着によるAuナノワイヤの低温成長イオンビームスが内法を用いた電極/固体電解質界面のリチウム濃度分布その場測定ガラス円筒面チャネルによりガイドされたAr ⁶⁺ イオンビームの運動エネルギー分布体憩/Break サイズと価数が異なる液滴イオンによるスバッタ特性 Arクラスターによりスパッタされたベンジルビリジニウム分子の内部エネルギーの評価	切 友也¹,中川 勝¹ ○梅本 琉花¹,前田 優斗¹,大賀 友瑛¹,金子 智²¹,吉本 護¹,松田 晃史¹ ○廣瀬 大売¹,山田 大貴²,尾原 幸治², Tseng Jochi²,高村 禅¹ ○中村 大紀¹,山田 絵斗¹,井上 文太¹,安田 雅昭¹ ○堀内 敏行¹,小林 宏史¹ オンビーム一般のコードシェアセッション / Code-s ○藤田 泰樹¹²,佐藤 真一郎²,出来 真斗³,渡邊浩崇⁴,新田 州吾⁴,本田 善央⁴,天野 浩³⁴,担田 秀次¹ ○内田 真裕人¹,一宮 正義²,番 貴彦²,柳澤 淳一² ○(M1) 渡邉 謙吾¹,小谷 祐太¹,高廣 克己¹ ○(DC) 水谷 仁美¹,山本 春也²,高廣 克己¹ ○(B) 西畠 佳汰¹,水谷 仁美¹,高廣 克己¹ ○土屋 文¹,小寺 拓¹,鈴木 耕拓²,佐々木 知子³ ○高橋 遼平¹,風祭 佑弥¹,闕誠晃¹,高山 祐仁²,杉本 奈々²,本橋 健次¹² ○二宮 啓¹,常木 誠之助¹,チェン リーチュイン¹,平 岡賢三¹ 徳 泰成¹,○盛谷 浩右¹,乾 徳夫¹	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工 1. 東京電機大工 1. 京大院工, 2. 量研, 3. 名大VBL, 4. 名大IMaSS 1. 滋賀県立大院工, 2. 滋賀県立大工 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 名城大理工, 2. 若狭湾エネ研, 3. 東北大金研 1. 東洋大院理工, 2. 東洋大理工 1. 山梨大工 1. 兵庫県立大工
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1]: 3/16(1 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15	Wed.) 10:30 - 11:45 15a-D209-1 奨 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1 奨 16a-D519-2 16a-D519-3 奨 16a-D519-5 16a-D519-6 奨 16a-D519-7 16a-D519-7 16a-D519-7	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UVナノインブリントリソグラフィによるシリコンナノディスク配列体の作製熱ナノインブリントによるボリ乳酸シート表面の原子ステップ平坦化ナノレオロジープリンティングによるチタニアのサブミクロンパターン作製化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション平面レチクルを用いた対向放物面ミラー立体投影露光の可能性・加速器ビーム分析、7.4 量子ビーム界面構造計測、7.5 イロ頭講演 (Oral Presentation) D519 会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件の検討 Au-Sid オン照射で形成される SiO₂表面のナノ構造を利用した Au ナノ粒子の形成 イオン照射による銀ナノ粒子凝集体のブラズモン吸収帯の尖鋭化と VOC 蒸気応答性の向上低速 Ar 照射 Si 基板 L Au 蒸着による Au ナノワイヤ成長モデルの構築 Siのイオンビームスバッタと Au 蒸着による Au ナノワイヤの低温成長イオンビーム分析法を用いた電極/固体電解質界面のリチウム濃度分布その場測定ガラス円筒面チャネルによりガイドされた Ar ゲイオンビームの運動エネルギー分布体憩/Breakサイズと価数が異なる液滴イオンによるスパッタ特性 Ar クラスターによりスパッタされたペンジルビリジニウム分子の内部エネルギーの評価 Ar-GCIB スパッタリングによる有機高分子損傷の分子量依存性	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智²¹, 吉本 護¹, 松田 晃史¹ ○廣瀬 大亮¹, 山田 大貴², 尾原 幸治², Tseng Jochi², 高村 禅¹ ○中村 大紀¹, 山田 絵斗¹, 井上 文太¹, 安田 雅昭¹ ○堀内 敏行¹, 小林 宏史¹ オンビーム一般のコードシェアセッション / Code-s ○藤田 泰樹¹², 佐藤 真一郎², 出来 真斗³, 渡邊 浩崇⁴, 新田 州吾⁴, 本田 善央⁴, 天野 浩³⁴, 土田 秀次¹ ○内田 真裕人¹, 一宮 正義², 番 貴彦², 柳澤 淳一² ○(M1) 渡邉 謙吾¹, 小谷 祐太¹, 高廣 克己¹ ○(DC) 水谷 仁美¹, 山本 春也², 高廣 克己¹ ○土屋 文¹, 小寺 拓¹, 鈴木 耕拓², 佐々木 知子³ ○高橋 遼平¹, 風祭 佑弥¹, 關 誠晃¹, 高山 祐仁², 杉本 奈々², 本橋 健次¹² ○二宮 啓¹, 常木 誠之助¹, チェン リーチュイン¹, 平岡 賢三¹ 徳 泰成¹, ○盛谷 浩右¹, 乾 徳夫¹ ○(B) 杉本 萌紀¹, 瀬木 利夫², 松尾 二郎²	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工 1. 東京電機大工 1. 京大院工, 2. 量研, 3. 名大VBL, 4. 名大IMaSS 1. 滋賀県立大院工, 2. 滋賀県立大工 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 名城大理工, 2. 若狭湾エネ研, 3. 東北大金研 1. 東洋大院理工, 2. 東洋大理工 1. 山梨大工 1. 兵庫県立大工 1. 京大工, 2. 京大院工
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1]: 3/16(T 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15	/ed.) 10:30 - 11:45 15a-D209-1 奨 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1 奨 16a-D519-3 奨 16a-D519-4 16a-D519-5 16a-D519-6 奨 16a-D519-7 16a-D519-7 16a-D519-7 16a-D519-8 16a-D519-9 16a-D519-10 奨 16a-D519-10	形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UVナノインブリントリソグラフィによるシリコンナノディスク配列体の作製熱ナノインブリントによるボリ乳酸シート表面の原子ステップ平坦化ナノレオロジーブリンティングによるチタニアのサブミクロンバターン作製化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション平面レチクルを用いた対向放物面ミラー立体投影露光の可能性、加速器ピーム分析、7.4 量子ピーム界面構造計測、7.5 イロ頭講演 (Oral Presentation) D519 会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件の検討 Au-Siイオン照射で形成されるSiO₂表面のナノ構造を利用したAuナノ粒子の形成イオン照射による銀ナノ粒子凝集体のブラズモン吸収帯の尖鋭化とVOC蒸気応答性の向上低速Ar照射で基板上Au蒸着によるAuナノワイヤ成長モデルの構築 SiのイオンピームスバッタとAu蒸着によるAuナノワイヤの低温成長イオンピームスが断法を用いた電極/固体電解質界面のリチウム濃度分布その場測定ガラス円筒面チャネルによりガイドされたAr ⁶⁺ イオンピームの運動エネルギー分布体憩/Breakサイズと価数が異なる液滴イオンによるスバッタ特性 Arクラスターによりスバッタされたベンジルビリジニウム分子の内部エネルギーの評価Ar-GCIBスパッタリングによる有機高分子損傷の分子量依存性 反応性ガス吸着とO₂-GCIBを用いたNiバターンエッチング	切 友也¹, 中川 勝¹ ○梅本 琉花¹, 前田 優斗¹, 大賀 友瑛¹, 金子 智²¹, 吉本 護¹, 松田 晃史¹ ○廣瀬 大売¹, 山田 大貴², 尾原 幸治², Tseng Jochi², 高村 禅¹ ○中村 大紀¹, 山田 絵斗¹, 井上 文太¹, 安田 雅昭¹ ○堀内 敏行¹, 小林 宏史¹ オンピーム一般のコードシェアセッション / Code-s ○藤田 泰樹¹², 佐藤 真一郎², 出来 真斗³, 渡邊 浩崇⁴, 新田 州吾⁴, 本田 善央⁴, 天野 浩³⁴, 土田 秀次¹ ○内田 真裕人¹, 一宮 正義², 番 貴彦², 柳澤 淳一² ○(M1) 渡邉 謙吾¹, 小谷 祐太¹, 高廣 克己¹ ○(DC) 水谷 仁美¹, 山本 春也², 高廣 克己¹ ○土屋 文¹, 小寺 拓¹, 鈴木 耕拓², 佐々木 知子³ ○高橋 遼平¹, 風祭 佑弥¹, 闕 誠晃¹, 高山 祐仁², 杉本 奈々², 本橋 健次¹² ○二宮 啓¹, 常木 誠之助¹, チェン リーチュイン¹, 平 岡賢三¹ 徳 泰成¹, ○盛谷 浩右¹, 乾 徳夫¹ ○(B) 杉本 萌紀¹, 瀬木 利夫², 松尾 二郎² ○作田 昂大¹, 竹内 雅耶¹, 豊田 紀章¹	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工 1. 東京電機大工 1. 京大院工, 2. 量研, 3. 名大VBL, 4. 名大IMaSS 1. 滋賀県立大院工, 2. 滋賀県立大工 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 名城大理工, 2. 若狭湾エネ研, 3. 東北大金研 1. 東洋大院理工, 2. 東洋大理工 1. 山梨大工 1. 兵庫県立大工 1. 兵庫県立大工 1. 兵庫県立大工 1. 兵庫県立大工 1. 兵庫県立大工
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1]: 3/16(1 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15	/ed.) 10:30 - 11:45 15a-D209-1 奨 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1 奨 16a-D519-3 奨 16a-D519-4 16a-D519-5 16a-D519-6 奨 16a-D519-7 16a-D519-7 16a-D519-9 16a-D519-10 奨 16a-D519-11	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UVナノインブリントリソグラフィによるシリコンナノディスク配列体の作製熱ナノインブリントによるボリ乳酸シート表面の原子ステップ平坦化ナノレオロジープリンティングによるチタニアのサブミクロンバターン作製化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション平面レチクルを用いた対向放物面ミラー立体投影露光の可能性 小加速器ピーム分析、7.4 量子ピーム界面構造計測、7.5 イコ頭講演 (Oral Presentation) D519 会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件の検討 Au-Siイオン照射で形成される SiO₂表面のナノ構造を利用した Au ナノ粒子の形成 イオン照射による銀ナノ粒子凝集体のブラズモン吸収帯の尖鋭化と VOC 蒸気応答性の向上低速 Ar 照射 Si 基板上 Au 蒸着による Au ナノワイヤ成長モデルの構築 Siのイオンビームスバッタと Au 蒸着による Au ナノワイヤの低温成長 イオンビームの運動エネルギー分布 体想/Break サイズと価数が異なる液滴イオンによるスパッタ特性 Ar クラスターによりスパッタされたベンジルビリジニウム分子の内部エネルギーの評価 Ar-GCIB スパッタリングによる有機高分子損傷の分子量依存性 反応性ガス吸着と O₂-GCIB を用いた Niバターンエッチング中性クラスタービーム照射と VUV 光を用いた金属膜の ALE	切 友也¹,中川 勝¹ ○梅本 琉花¹,前田 優斗¹,大賀 友瑛¹,金子 智²¹,吉本 護¹,松田 見史¹ ○廣瀬 大死²,山田 大貴²,尾原 幸治², Tseng Jochi²,高村 禅¹ ○中村 大紀¹,山田 絵斗¹,井上 文太¹,安田 雅昭¹ ○堀内 敏行¹,小林 宏史¹ オンビーム―般のコードシェアセッション / Code-s ○藤田 泰樹¹²,佐藤 真一郎²,出来 真斗³,渡邊 浩崇⁴,新田 州吾⁴,本田 善央⁴,天野 浩³⁴,土田 秀次¹ ○内田 真裕人¹,一宮 正義²,番 貴彦²,柳澤 淳一² ○(M1) 渡邉 謙吾¹,小谷 祐太¹,高廣 克己¹ ○(DC) 水谷 仁美¹,山本 春也²,高廣 克己¹ ○(B) 西畠 佳汰¹,水谷 仁美¹,高廣 克己¹ ○土屋 文¹,小寺 拓¹,鈴木 耕拓²,佐々木 知子³ ○高橋 遼平¹,風祭 佑弥³,闕誠晃¹,高山 祐仁²,杉本 奈々²,本橋 健次¹² ○二宮 啓¹,常木 誠之助¹,チェン リーチュイン¹,平岡賢三¹ 徳 泰成¹,○盛谷 浩右¹,乾徳夫¹ ○(B) 杉本 萌紀¹,瀬木 利夫²,松尾 二郎² ○作田 昂大¹,竹内 雅耶¹,豊田 紀章¹	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工 1. 東京電機大工 1. 京大院工, 2. 量研, 3. 名大VBL, 4. 名大IMaSS 1. 滋賀県立大院工, 2. 滋賀県立大工 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 名城大理工, 2. 若狭湾エネ研, 3. 東北大金研 1. 東洋大院理工, 2. 東洋大理工 1. 山梨大工 1. 兵庫県立大工 1. 京大工, 2. 京大院工
3/15(W 10:30 10:45 11:00 11:15 11:30 [CS.1]: 3/16(T 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30	Wed.) 10:30 - 11:45 15a-D209-1 奨 15a-D209-2 15a-D209-3 15a-D209-4 15a-D209-5 2.3 加速器質量分析 Thu.) 9:00 - 12:45 16a-D519-1 奨 16a-D519-3 奨 16a-D519-4 16a-D519-5 16a-D519-6 奨 16a-D519-7 16a-D519-7 16a-D519-8 16a-D519-9 16a-D519-10 奨 16a-D519-10 奨 16a-D519-11 奨 16a-D519-11	上形成技術 / Micro/Nano patterning and fabrication 口頭講演 (Oral Presentation) D209 会場 (Room D209) UVナノインブリントリソグラフィによるシリコンナノディスク配列体の作製熱ナノインブリントによるボリ乳酸シート表面の原子ステップ平坦化ナノレオロジープリンティングによるチタニアのサブミクロンバターン作製化学増幅系レジストを対象とした電子線リソグラフィの確率論法・分子動力学法ハイブリットシミュレーション平面レチクルを用いた対向放物面ミラー立体投影露光の可能性 小加速器ピーム分析、7.4 量子ピーム界面構造計測、7.5 イコ頭講演 (Oral Presentation) D519 会場 (Room D519) 窒化ガリウム半導体における単一イオンヒット検出条件の検討 Au-Siイオン照射で形成される SiO₂表面のナノ構造を利用した Au ナノ粒子の形成 イオン照射による銀ナノ粒子凝集体のブラズモン吸収帯の尖鋭化と VOC 蒸気応答性の向上低速 Ar 照射 Si 基板上 Au 蒸着による Au ナノワイヤ成長モデルの構築 Siのイオンビームスバッタと Au 蒸着による Au ナノワイヤの低温成長 イオンビームの運動エネルギー分布 体想/Break サイズと価数が異なる液滴イオンによるスパッタ特性 Ar クラスターによりスパッタされたベンジルビリジニウム分子の内部エネルギーの評価 Ar-GCIB スパッタリングによる有機高分子損傷の分子量依存性 反応性ガス吸着と O₂-GCIB を用いた Niバターンエッチング中性クラスタービーム照射と VUV 光を用いた金属膜の ALE	切 友也¹,中川 勝¹ ○梅本 琉花¹,前田 優斗¹,大賀 友瑛¹,金子 智²¹,吉 本護¹,松田 晃史¹ ○廣瀬 大売²,山田 大貴²,尾原 幸治², Tseng Jochi²,高村 禅¹ ○中村 大紀¹,山田 絵斗¹,井上 文太¹,安田 雅昭¹ ○堀内 敏行¹,小林 宏史¹ オンビーム一般のコードシェアセッション / Code-s ○藤田 泰樹¹²,佐藤 真一郎²,出来 真斗³,渡邊 浩崇⁴,新田 州吾⁴,本田 善央⁴,天野 浩³⁴,土田 秀次¹ ○内田 真裕人¹,一宮 正義²,番 貴彦²,柳澤 淳一² ○(M1) 渡邉 謙吾¹,小谷 祐太¹,高廣 克己¹ ○(DC) 水谷 仁美¹,山本 春也²,高廣 克己¹ ○(B) 西畠 佳汰¹,水谷 仁美¹,高廣 克己¹ ○土屋 文¹,小寺 拓¹,鈴木 耕拓²,佐々木 知子³ ○高橋 遼平¹,風祭 佑弥¹,闕誠晃¹,高山 祐仁²,杉本 奈々²,本橋 健次¹² ○二宮 啓¹,常木 誠之助¹,チェン リーチュイン¹,平岡賢三¹ ⑥(B) 杉本 萌紀¹,瀬木 利夫²,松尾 二郎² ○作田 昂大¹,竹内 雅耶¹,豊田 紀章¹ ○竹内 雅耶¹,藤原 怜輝¹,山下 大晴¹,豊田 紀章¹	1. 東工大 物質理工, 2. 神奈川産技総研 1. 北陸先端大, 2. 高輝度光科学研 1. 阪公大院工 1. 東京電機大工 haring Session of 2.3 & 7.4 & 7.5 1. 京大院工, 2. 量研, 3. 名大VBL, 4. 名大IMaSS 1. 滋賀県立大院工, 2. 滋賀県立大工 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 京工繊大 1. 名城大理工, 2. 若狭湾エネ研, 3. 東北大金研 1. 東洋大院理工, 2. 東洋大理工 1. 山梨大工 1. 兵庫県立大工

3/16(Thu.) 14:30 - 18:45	口頭講演 (Oral Presentation) D519会場 (Room D519)		
14:30	16p-D519-1	高速クラスターイオンビーム照射による自立グラフェン 膜からの二次電子放出	\bigcirc (M1) 宇野 鳴記 1 , 間嶋 拓也 1 , 斉藤 学 1 , 土田 秀次 1	1.京都大院工
14:45	16p-D519-2	イオンビームによる液相水中で起こるヌクレオチド分子 の損傷過程	〇土田 秀次 1 , 手塚 智哉 1 , 大田 哲郎 1 , 秀嶋 雄登 1 , 間嶋 拓也 1 , 斉藤 学 1	1. 京大院工
15:00	16p-D519-3	イオンビーム誘起発光分析・イメージングを用いた粒子 線微細加工(PBW) 微細加工領域のその場観察技術	\bigcirc (M2) 張 錦汕 1 , 臼井 洸貴 1 , 菊池 涼太 1 , 加田 渉 1 , 花泉 修 1 , 山田 尚人 2 , 佐藤 隆博 2 , 石井 保行 2	1.群馬大, 2.量研
15:15	奨 16p-D519-4	ラジオクロミックフィルムを用いたマイクロメートル空 間分解能の線量計測手法の開発	○ (DC) 宮武 立彦 ^{1,2} , 小島 完興 ² , 榊 泰直 ^{1,2} , 竹本 伊 吹 ^{1,2} , ヂン タンフン ² , 畑 昌育 ² , 錦野 将元 ² , 近藤 康 太郎 ² , 西内 満美子 ² , 渡辺 幸信 ¹ , 岩田 佳之 ³ , 白井 敏 之 ³ , 神門 正城 ² , 近藤 公伯 ²	1. 九大院総理工, 2. 量研 関西研, 3. 量研 放医研
15:30	奨 16p-D519-5	半導体レーザを用いた有機物のためのレーザーアブレーション -AMS ¹⁴ C 測定システムの開発	\bigcirc (DC) 南谷 史菜 1 , 大森 貴之 2 , 山崎 孔平 2 , 尾嵜 大 真 2 , 米田 穣 2	1.東大新領域, 2.東大博物館
15:45		休憩/Break		
16:00		加速器質量分析法による長半減期放射性セシウム 135 の 高感度検出試験	口 綾 ²	
16:15	16p-D519-7	超小型 AMS 開発の現状	○神野智史¹,松原章浩²,藤田奈津子¹,木村健二¹	
16:30	16p-D519-8	中赤外光周波数コムと光フィードバック量子カスケード レーザーを用いたキャビティリングダウン分光に基づく 放射性炭素分析法の開発		1.名古屋大, 2.東京大, 3.産総研
16:45	*	Speciation distribution of iodine isotopes (¹²⁷ I and ¹²⁹ I) in the Beaufort, Chukchi, and Bering Seas	○ (P) Yuanzhi Qi¹, Qiuyu Yang¹, Takeyasu Yamagata¹, Hisao Nagai¹.², Yuichiro Kumamoto³	1.The Univ. of Tokyo, 2.Nihon Univ., 3.JAMSTEC
17:00	16p-D519-10	樹木年輪の ¹⁴ C分析による19世紀の太陽活動の調査	○三宅 芙沙¹, 箱崎 真隆², 早川 尚志¹, Lukas Wacker³	1. 名古屋大, 2. 国立歷史民俗博物館, 3.ETH Zurich
17:15		休憩/Break		
17:30	·	共振器強化型高感度レーザー吸収分光に基づく ⁹⁰ Sr分析 のための SrO 分子近赤外域振動 - 回転遷移観測		1.東大院工, 2.JAEA
17:45	•	共鳴イオン化二次中性粒子質量分析による多元素・同位 体分析のための 波長可変レーザーシステムの開発	真人², 坂本 哲夫², 富田 英生¹	
18:00	•	東京大学 MALT の現状 – 2023 年春 -	○山形 武靖¹, 德山 裕憲¹, 土屋 陽子¹, 戸谷 美和子¹, Qi Yuanzhi¹, 松崎 浩之¹	
18:15		山形大学に導入した高感度加速器質量分析装置の現状 VI	山 幹成4, 斉藤 久子5, 門叶 冬樹1.2	大植物園,5.千葉大法医
18:30		都市大タンデムの現状(2022年度)	○羽倉 尚人¹, 渡部 創², 佐藤 真一郎³	1.都市大, 2.原子力機構, 3.量研
		、7.6 原子・分子線およびビーム関連新技術のコードシェ	アセッション / Code-sharing Session of 6.5 & 7.6	
9:00		□頭講演 (Oral Presentation) D519 会場 (Room D519) 光触媒ルチルTiO₂上で水素ガス生成中のポーラロントン ネル現象	○加藤 弘一¹, 福谷 克之¹	1. 東大生研
9:15	奨 18a-D519-2	アナターゼ型 ${ m TiO_2(001)}$ 表面への超音速 ${ m NO}$ 分子線の照射	〇勝部 大樹 1 , 大野 真也 2 , 金 庚民 3 , 津田 泰孝 4 , 稲見 栄 $-^{5}$, 吉越 章隆 4 . 阿部 真之 3	1. 理研, 2. 横浜国大院工, 3. 阪大院基礎工, 4. 原子力機構, 5. 高知工大
9:30	奨 18a-D519-3	Rutile TiO ₂ (110) 上 Pentacene の分子配向	○(M1)杉江 知輝¹, 滝沢 優¹	1. 立命館大
9:45		XANES, EXAFS, and XPS study of the atomic structures and chemical states of active and inactive dopant sites in	○ (D)YUHUA TSAI ^{1,2} , Yoshiyuki Yamashita ^{1,2}	1.NIMS, 2.Kyushu Univ.
10:00	18a-D519-5	4H-SiC(0001) CVD単層グラフェンのドメイン境界の可視化	○大野 真也¹, 青柳 良英¹, 長門 諒浩¹, 藤田 凌太¹, 松 井 文彦²	1. 横国大院理工, 2. 分子研
10:15		休憩/Break	71 人/5	
10:30	E 18a-D519-6	Observation of Electronic States in Sb-doped ZrTe ₅	○ (M2)Muhammad Frassetia Lubis¹, Takuto Nakamura¹.², Chen Yitong¹, Hiroki Sugihara¹, Kiyohisa Tanaka³, Myung-Hwa Jung⁴, Shin-ichi Kimura¹.².³	1.Department of Physics, Osaka Univ., 2.Graduate School of Frontier Biosciences, Osaka Univ., 3.Institute for Molecular Sci., 4.Department of Physics, Sogang Univ.
10:45	奨 18a-D519-7	硫化サマリウムの光誘起非線形バンドシフトと価数転移	慧³, 劉 珂成³, Zhong Yigui³, 金井 輝人³, 板谷 治郎³, 辛 埴¹, 岡崎 浩三³, 井村 敬一郎⁵, 鈴木 博之³, 佐藤 憲 昭 6 , 木村 真一 $^{2.1.7}$	
11:00		$\operatorname{CoPc}/\gamma$ '- $\operatorname{Fe_4N}$ 有機・無機ハイブリッド界面における電子軌道依存磁気結合	\bigcirc (M1) 小野 広喜 ¹ , 梅田 佳孝 ¹ , 山本 航平 ³ , 石山 修 ³ , 横山 利彦 ³ , 水口 将輝 ^{1,2} , 宮町 俊生 ^{1,2}	
11:15	18a-D519-9	励起子絶縁体物質 ${ m Ta_2Ni(Se_{1,s}S_s)_5}$ の自発的励起子相の電子相関	○福谷圭祐 ^{1,2,3} , Roland Stania ^{2,3} , Chag Il Kwon ^{2,4} , Jun Sung Kim ^{2,4} , 田中 清尚 ¹ , Jaeyoung Kim ^{2,3} , Han Woong Yeom ^{2,4} , 解良 聡 ¹	1.分子研, 2.基礎科学研究院, 3.浦項加速器研究所, 4.浦項工大
11:30	18a-D519-10	準大気圧光電子分光における環境帯電補償効果の試料位 置依存性	-	1.兵庫県大高度研, 2.兵庫県大院理, 3.マツダ(株)
11:45		低速原子散乱分光法による SrF ₂ (111) 表面原子の観察	〇福田 浩昭 1 ,譚 ゴオン 1 ,大賀 友瑛 2 ,松田 晃史 2 ,吉 本 護 2 ,梅澤 憲司 1	1.大阪公立大学, 2.東工大

8	ブ	° =	ラス	<u> </u>	ィエ	レ	ク	<u>۲</u>	口	Ξ	ク	ス	/	Pla	sma	El	ect	tror	nics

シンポジウムのプログラムに	はプログラム冒頭にございます。		
3/15(Wed.) 13:30 - 15:30	ポスター講演 (Poster Presentation) PB 会場(Room PB)		
	Influence of the UV wavelengths on photoemission- induced atmospheric pressure DC gas discharge	○ (PC)Sukma Wahyu Fitriani¹, Hideki Yajima², Akimitsu Hatta¹	1.Kochi Univ. Technol., 2.ORC Manufacturing
*	空気プラズマガス気泡化による 1,4- ジオキサンの分解処理 Π	○吉木 宏之¹, 中村 和弘², 遠田 明広¹	1. 鶴岡高専, 2. 飛島建設株式会社
	有機物をゲスト分子とするハイドレートへの DBD 照射 による生成物調査	○田坂 勇人¹, 向笠 忍¹, 亀岡 大輝¹, 野村 信福¹	1. 愛媛大工
	異なる温度でセシウムと酸素で共蒸着した n型 AlGaNの熱電子放出特性	〇名村 海 1 , 木村 重哉 2 , 吉田 学史 2 , 宮崎 久生 2 , 荻野 明久 1	1.静大院工, 2.(株) 東芝研究開発センター
	大気圧非平衡プラズマジェットを用いた有機材料-金属 異材接合技術の開発	〇竹中 弘祐 ¹, 中本 壮太郎 ¹, 小鑓 亮輔 ¹, 都甲 将 ¹, 内田 儀一郎 ², 節原 裕一 ¹	1. 阪大接合研, 2. 名城大理工
*	ユニポーラダブルパルス印加大電力パルススパッタを用いたDLC成膜	○太田 貴之¹, 國枝 滉¹, 小田 昭紀², 上坂 裕之³	1. 名城大理工, 2. 千葉工大, 3. 岐阜大工
	デュアルバイポーラ大電力パルススパッタによる Cu 薄膜 構造の制御	大庭 託優 1 , \bigcirc 中野 武雄 1 , モハメッド シュルズ ミヤ 1	1.成蹊大理工
*	液中プラズマによるダングリングボンド形成を通じた六 方晶窒化ホウ素への官能基修飾	〇井上 健一 $^{1.2}$, 高木 直人 1 , 伊藤 剛仁 1 , 清水 禎樹 2 , 石川 健治 3 , 堀 勝 3 , 寺嶋 和夫 $^{1.2}$	1. 東大新領域, 2. 産総研, 3. 名大 cLPS
*	SF_6 混合ガスプラズマによりフッ素終端した基板上での MoS_2 合成	○荻野 明久¹, 加藤 佑人¹	1. 静大院工
15p-PB03-10	低温大気圧プラズマ処理によるPETの表面処理	○清水 鉄司 1, 野中 準也 1, 2, 石原 悠景 1, 2, 榊田 創 1, 2	1. 産総研, 2. 筑波大

15p-PB03-11	AZ91Dを用いたPEO処理におけるアルコール添加の影響	○(M1) 古賀 涼真¹, 武村 祐一朗¹	1. 近大院総理工
•	ECR ブラズマ中で合成した鉄・フラーレン複合体の TOF-SIMS 分析	橋 健次1.2.3	1.東洋大院理工, 2.東洋大理工, 3.バイオ・ナノエレトロニクス研究センター
15p-PB03-13	ECR プラズマ中で合成した鉄・フラーレン複合体の XPS 分析	〇木塚 智基 1 , 張 宸涵 1 , 北浦 凜弥 2 , 松本 愛優穂 2 , 本 橋 健次 $^{1.2.3}$	1.東洋大院理工, 2.東洋大理工, 3.バイオ・ナノエレトロニクス研究センター
15p-PB03-14	TMVS を原料として作製した SiO:CH 微粒子堆積膜の RF 出力依存性	○中泉 有稀¹, 井上 泰志¹, 高井 治²	1.千葉工大院工, 2. 関東学院大材料表面研
15p-PB03-15	酸化スズ薄膜の斜入射スパッタリング堆積における基板 温度依存性	○亀田 悠真¹, 井上 泰志¹, 高井 治²	1.千葉工大院工, 2. 関東学院大材料表面研
15(Wed.) 16:00 - 18:00	ポスター講演 (Poster Presentation) PA 会場 (Room PA)		
15p-PA02-1	高速ガス流を用いた減圧形成によるマイクロ波放電の易 化	〇小川 泰那 1 , 岩田 悠揮 1 , 鈴木 陽香 $^{1.2}$, 豊田 浩 孝 $^{1.2.3}$	1.名大工, 2.名大低温プラズマ, 3.核融合研
15p-PA02-2	高周波ハイブリッド放電による高密度水素プラズマ生成	○大津 康徳¹, 田原 竜夫²	1. 佐大理工, 2. 産総研
15p-PA02-3	原料ガスの有効利用を目的とした低圧Ar/CH ₄ のプラズマ特性に及ぼす投入電力依存性の数値解析	○(B)石原 卓也¹, 佐々木 瞬¹, 小田 昭紀¹, 上坂 裕之²	1.千葉工大工, 2.岐阜大工
15- DA02 4	アセチレンプラズマを用いた膜堆積におけるプラズマ供	中民 医电上 本田 签件上十二 左吐上 任 4 大 法上 ○签	1 短図土 3 市立ていなしロンニカノロジ ソリ
•	給電力の効果	原 正典 ¹ , 田中 諭志 ² , 松本 貴士 ²	ションズ
•	表面発射型プラズマ弾丸のdV/dt依存性~放電開始遅延 との関係~		1.大阪公大工
•	二種放電方式を備えた大気圧プラズマジェットの分光計 測		1. 名城大理工
15p-PA02-7	水素ガス中での氷砂糖トライボルミネッセンスの 広波長 域高分解プラズマ分光	○ (M1) 谷口 太一¹, 北川 柚葉¹, 久富 瑞稀¹, Kuzmin Arseniy¹, 四竈 泰一¹, 蓮尾 昌裕¹	1. 京大院工
*	電極に埋設されたカーリングプローブによるプラズマ中 の 電子密度計測のための基礎調査		1.中部大学
15p-PA02-9	バイオ応用を目的とした大気圧Heプラズマの細胞に対 する電気的作用の数値解析	〇杉野 拓海 1 , 佐々木 瞬 1 , 小田 昭紀 1 , 山内 翔太 2 , 八 木 一平 2 , 内田 論 2 , 立花 孝介 3	1.千葉工大, 2.東京都立大, 3.大分大
15p-PA02-10	大気圧 $\mathrm{He} + \mathrm{O}_2$ ブラズマ照射された乳酸リンゲル液による肺がん細胞の不活化	〇艾子卓 ¹ , 宮下 拓也 ¹ , 綾部 龍 ² , 吉川 翔平 ² , 前川 竜 摩 ² , 二木 秀太 ² , 野中 亮吾 ² , 加藤 和則 1,2,3 , 本橋 健 次 1,2,3	
15p-PA02-11	温度制御マルチガスプラズマジェットによる植物細胞へ のタンパク質導入機構の解析	\bigcirc (PC) 柳川 由紀 ^{1,2} , 相澤 駿輝 ³ , 末永 祐磨 ³ , 飯島 勇 介 ³ , 沖野 晃俊 ³ , 光原 一朗 ⁴	1. 千葉大院園芸, 2. 理研 CSRS, 3. 東工大未来研, 4. 提機構
15p-PA02-12	イチゴ栽培での低温プラズマ処理による果実硬度への効 果の検討	○橋爪 博司¹, 三田 薫¹, 水野 寛子¹, 阿部 明子¹, タン マウォン マナスィカン², ミロン カメリア¹, ブリト ンニコライ¹, 田中 宏昌¹, 嶋津 光鑑², 中野 浩平², 堀	1. 名古屋大学, 2. 岐阜大学

			.,***	
		Plasma production and diagnostics		
3/15(W	/ed.) 13:00 - 18:45	口頭講演 (Oral Presentation) B309会場 (Room B309)		
13:00	招 15p-B309-1	「第44回優秀論文賞受賞記念講演」	大西 広1, 山崎 文徳1, 箱崎 喜郎1, 竹村 将沙樹1, 根津	1.東工大
		大気圧非平衡プラズマの連続スペクトル発光分光計測の	篤¹, ○赤塚 洋¹	
		その後の展開 電子エネルギー分布関数の測定		
13:30	15p-B309-2	発光分光診断による CF B – X 遷移の振動温度の推定	○小林 明¹, 山下 雄也¹, 砂川 晃伯¹, 米田 和真¹, 清田	1.東工大, 2.アルバック
			哲司², 土居 謙太², 根津 篤¹, 赤塚 洋¹	
13:45	15p-B309-3	マッハ・ツェンダー干渉計を用いた大気圧グロー放電内	○杤久保 文嘉¹, 吉川 昇汰¹, 中川 雄介¹	1.都立大院システムデザイン
		のガス温度推定		
14:00	15p-B309-4	窒素直流アークにおいて添加酸化物種が陰極消耗現象に	○(D) 竹本 裕貴¹, 田中 学¹, 渡辺 隆行¹	1. 九大院工
		及ぼす影響		
14:15		休憩/Break		
14:30	奨 15p-B309-5	大型化した大気圧誘電体バリア放電におけるプラズマ弾	○曽我 悠太¹, 白井 直機¹, 佐々木 浩一¹	1.北大工
		丸の伝搬		
14:45	奨 15p-B309-6	【注目講演】トモグラフィック発光分光計測によるアルゴ		1.東工大, 2.アルバック
		ン誘導結合プラズマの電子温度・電子密度の空間分布診	一郎2,細谷宗太郎1,菊地 航行1,根津 篤1,赤塚 洋1	
		断		
15:00	15p-B309-7	トモグラフィック発光分光計測による窒素誘導結合プラ		1.東工大, 2.アルバック
		ズマの振動温度・回転温度の空間分布診断	川慶一郎2,石健太1,根津篤1,赤塚洋1	
15:15	奨 15p-B309-8	表面波プラズマにおける fourier-bessel 法による三次元再		1. 京工繊大
		構成法	稲垣秦一郎1	
15:30	15p-B309-9	光ファイバーによる光学干渉非接触温度測定 (OICT) 系		1. 広大工, 2. 広大院先進理工
		の小型化とリアルタイム温度測定	明², 東清一郎²	
15:45		休憩/Break		and the second second
16:00	15p-B309-10	トムソン散乱法を用いた空気ストリーマ放電中電子密度・	○富田 健太郎 ', 宮澤 冬馬 ', 小至 淳史 ', 小野 兄 '	1. 北大院工, 2. 東大工
	Mg 45 D000 44	電子エネルギー分布関数の時間変化および空間分布計測	O (254) (1997 Fel. 1974; 2 2 2 2 3 1 49 Feb.	A LECUL O LECT LOCALED
16:15	樊 15p-B309-11	触媒金属が受けるプラズマ熱流束の増加現象を用いたラ		1. 大阪公大, 2. 大阪府大, 3. 名古屋大
1 (00	NG 15 D000 10	ジカル密度測定	子1, 松浦寛人1	4 II. I 2466 0 II. I. M. Marri
16:30	英 15p-B309-12	真空紫外吸収分光法による小型 ECR 窒素プラズマ中の		1. 北大工字阮, 2. 北大熙躲研
		窒素原子密度計測 ー活性窒素種の表面吸着確率評価のために-	朝君 消局	
16.45	15 D200 12	超臨界・液体窒素中のカーボンナノチューブ電極による		1 市上陸転送は
16:45	15p-B309-13		〇示画 均,無由 知暉,伊滕 剛仁,守鳴 仙大	1. 東大院新領域
17:00	15 D200 14	放電の発光分光測定 超臨界・液体アルゴン中のカーボンナノチューブ電極に	○空図 杓 1 田田 知曜 1 伊藤 剛仁 1 土峭 和土 1	1. 東大院新領域
17:00	15p-B309-14	超端界・液体アルコン中のカーボンナノナューノ電極による放電の発光分光測定	○示岡 均,無田 知嗶,伊膝 剛仁,守暢 和大	1. 宋八阮州 唄坝
17:15		よる放車の発光分光測定 休憩/Break		
17:15	15p-R200 15	体恕/Break 裏面照射フォトカソードを用いた大気圧放電の電圧電流	○八田 音火1 マクマ ワイコフィット 川マー・1 左	1 真知工科士 2 オーク制作所
17:30	15h-p203-12	装曲照射ノオトガノートを用いた人式圧放电の电圧电流 特件	○八田 早元 , ベクマ ケイエフィットリナーニ , 大 島 英樹 ²	1. 回加工作八, 4. 4 一 2 安計///
17:45	15p-R200 14	大気圧プラズマによるラジカル生成に及ぼす酸素ガス混		1 大阪公士 2 大阪府士 3 夕士
17:40	15h-p203-10	た ACE / ノスマによる / シガル主成に及ぼり 酸系ガス能 合の効果	して田 見入 , トノン トノンクエン , 岡本 陽太 , 胡 敏², 仲野 匠¹, 岩田 悠揮³, 鈴木 陽香³, 豊田 浩孝³	1.八败4八,4.八败的八,3.4八
18:00	将 15p-R200-17	マイクロ波を用いた反応性負イオン生成実験	\bigcirc (M1) 鞆津 匠人 1 , 岡内 航 1 , 香月 悠良 1 , 丹波 天晴 1 ,	1 京工繊大工
10.00	天 10p-0307*17	、コノー級を用いた区別任兵イオノ工風大歌	\mathbb{Q}	1. //\
18:15	15n-B309-18	ホウ素ドープダイヤモンドホローカソードを用いた直流		1.東芝RDC
10.10	15p 1507-10	プラズマ源による大電流・低電圧放電		I. A.C.III
18:30	15p-B309-19	ガス制御による光電子制御プラズマの形状制御	○鷹林 捋¹, 塚嵜 琉太¹, 古賀 永¹	1.有明高專
10.00	15p 1507-17	ハン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	○周田 四,亦可 机八,口具 八	vi U. VIIIA.

3/16(T 9:15	hu.) 9:15 - 10:45 16a-A402-1	口頭講演 (Oral Presentation) A402 会場(Room A402) プラズマジェット由来の短寿命活性酸素の評価	鳥居 岳大 1 , 松本 雄太 2 , 大槻 凌介 2 , 白藤 立 $^{1.2}$, 〇呉	1.大阪市大工, 2.大阪公大工
9:30	16a-A402-2	DBD埋め込みマイクロコンタクタによる液体処理	準席 $^{1.2}$ 〇白藤 $\dot{\varpi}^1$, 加藤 晴輝 1 , 山本 紗哉 \dot{m}^1 , 呉 準席 1 , 高岡	1.大阪公大工, 2.神戸女学院大
9:45	16a-A402-3	反応性プラズマにおけるカーリングプローブのアンテナ	素子 ² ○ (M1) 加藤 翔太 ¹ , 中村 圭二 ¹ , 小川 大輔 ¹	1.中部大工
		デザインによる反射スペクトルへの影響		
10:00 10:15		カーリングプローブ電極埋設時のイオン衝撃による影響 発光イメージをもとにしたプラズマ構造の評価	○紀平 侑樹¹, 中村 圭二¹, 小川 大輔¹ ○(M1) 原田 健汰¹, 久蔵 学¹, 豊田 浩孝¹.²³, 大舘 睞³	1. 中部大工 1. 名大工, 2. 名大低温プラズマ, 3. 核融合研
10:30	16a-A402-6	二周波容量結合型Ar/C ₄ F ₈ /O ₂ プラズマにおける電力変調 方式がイオン組成に与える影響	-94	1.名古屋大学, 2.名大低温プラズマ, 3.核融合研
3.2 プラ	ズマ成膜・エッチ:	ング・表面処理 / Plasma deposition of thin film, plasma e	etching and surface treatment	
3/17(F	Fri.) 9:00 - 11:30	口頭講演 (Oral Presentation) A205会場 (Room A205)		
9:00	17a-A205-1	バルスレーザー堆積法により作製したSiCN薄膜の機械 的特性に及ぼす窒素ガス圧と基板温度の効果	○(B) 竹中 達貴¹, 青井 芳史¹, 野瀬 正照²	1. 龍谷大理工, 2. 富山大
9:15		電子サイクロトン共鳴プラズマスパッタリング(ECR)法 を用いた SiCN 薄膜の作製と評価		
9:30		プラズマ支援反応性スパッタリングによるアモルファス 酸化ガリウム薄膜形成	介², 江部 明憲³, 神谷 利夫², 節原 裕一¹	
9:45		中性粒子ビーム原子層堆積法による HfO2/SiO2 界面制 御	川 誠二 2,1	
10:00	17a-A205-5	カーボンナノウォールへのメラミンガスを用いた窒化炭 素合成	○石榑 浩大¹, 平松 美根男¹, 竹田 圭吾¹	1.名城大理工
10:15		休憩/Break		- market miles
10:30	奨 17a-A205-6	る水素希釈の影響		1. 阪大院工
10:45		成膜パラメータの寄与度解析に基づく、水素化アモルファスカーボン薄膜のエッチ耐性の向上	○(M1)安藤 悠介¹, 近藤 博基², 石川 健治², 堤 隆嘉², 関根 誠², 堀 勝²	
11:00		ナノネットワーク構造解析に基づく微細トレンチ内の窒化ホウ素膜特性予測	谷川 繁彦³, 山下 満⁴, 占部 継一郎¹, 江利口 浩二¹	ンター, 5. 学振特別研究員 DC
11:15	奨 17a-A205-9	コイル状陽極を用いた直流真空アーク蒸着による TiN膜 の作製	○鬼頭 純平',枕木 善則',本間 健斗',波辺 聖也',坡 東 隆宏 ¹ ,針谷 達 ¹ ,滝川 浩史 ¹ ,儀間 弘樹 ² ,杉田 博 昭 ²	1. 豊橋及科大, 2. オーエスシー
3/17(F	ri.) 13:00 - 17:45	口頭講演 (Oral Presentation) A205会場 (Room A205)		
13:00	17p-A205-1	粉体ターゲットを用いた3次元の元素空間分布を持つ傾 斜膜の作製	○川崎 仁晴¹, 佐竹 卓彦¹.², 青木 振一²	1. 佐世保高専, 2. 崇城大
13:15	17p-A205-2	無機色材を用いたプラズマインジケータの N_2 プラズマに対する変色挙動の調査	〇平山 奈津美 1 ,浅見 綾香 1 ,山川 裕 1 ,大城 盛作 1 ,釆 山 和弘 1	1.サクラクレパス
13:30	17p-A205-3	マイクロ波水素プラズマによるシリコンナノコーン形成 における窒素および水蒸気添加の影響	○多村 尚起¹, 野村 俊光¹, 垣内 弘章¹, 大参 宏昌¹	1. 阪大院工
13:45		プラズマ処理による表面改質特性の長期保持技術	○田口 貢士¹, 山原 基裕¹, 富川 弥奈¹, 登尾 一幸¹	1.株式会社魁半導体
14:00	17p-A205-5	プラズマ処理の長期保持技術の応用:撥水処理	○田口 貢士¹, 富川 弥奈¹, 山原 基裕¹, 登尾 一幸¹	1.株式会社魁半導体
14:15	17p-A205-6	チャンバー内での直接気化を利用した水蒸気プラズマに よる OH 基の修飾	○田口 貢士¹,柏木 大樹¹,登尾 一幸¹,山原 基裕¹,富 川 弥奈¹,山村 明弘¹	1.魁半導体
14:30	17p-A205-7	真空プラズマ技術を用いたガスフリーの還元処理法	○植野 伸哉¹, 山原 基裕¹, 登尾 一幸¹, 田口 貢士¹	1.株式会社魁半導体
14:45		熱酸化膜/シリコン界面でのプラズマ誘起欠陥の発生と 修復	○布村 正太¹, 坂田 功¹, 堤 隆嘉², 堀 勝²	1. 産総研, 2. 名大
15:00	奨 17p-A205-9	繰り返しナノインデンテーション法による低誘電率絶縁 膜の機械的構造変化の解析	○郷矢 崇浩¹, 占部 継一郎¹, 江利口 浩二¹	1. 京大院工
15:15 15:30	17p-A205-10	休憩/Break 反応層脱離工程に準安定状態のAr照射を用いたSiNサイ	○塩田 貴支¹, 佐竹 真¹, 岩瀬 拓¹, 國田 靖²	1.日立研開, 2.日立ハイテク
15:45	17p-A205-11	クルエッチ F_2 添加 Ar プラズマを用いた基板昇温下での $AlGaN$ の原 子層エッチング	○中村 昭平 ^{1,2} , 谷出 敦 ^{1,2} , 灘原 壮一 ^{1,2} , 石川 健治 ² , 小田 修 ² . 堀 勝 ²	1.SCREENホールディングス, 2.名古屋大学
16:00	奨 17p-A205-12	SiO ₂ 高アスペクト比加工におけるFCガス分子の構造と 組成の影響		1.キオクシア
16:15	奨 17p-A205-13	ALIXの影響 二周波重畳容量結合型プラズマにおけるシース内衝突が RF電極入射粒子の角度分布に及ぼす影響		1.名古屋大, 2. キオクシア
16:30	17p-A205-14	フッ化タングステンイオンによるSiおよびSiO₂エッチング反応の評価		1. 阪大院工, 2.Samsung Electronics
16:45	17p-A205-15	反応性大気圧熱プラズマジェットを用いた急速熱処理と 原子状酸素ラジカルの同時供給によるフォトレジストの		1. 広島大先進理工
17:00	17p-A205-16	超高速エッチング イットリウム鉄ガーネットに対するアルゴン・メタン水	○(M1)北井 達也 ¹ , 高 思源 ² , 岩本 敏 ² , 太田 泰友 ¹	1. 慶應大理工, 2. 東大先端研
17:15	17p-A205-17	素混合ガスを用いたプラズマドライエッチングの検討 F,N,およびCFラジカルを用いたSiGe/Si選択エッチの第	○菅野 量子¹, 岩瀬 拓¹, 桑原 謙一²	1.日立研開, 2.日立ハイテク
17:30	17p-A205-18	一原理計算解析 C_2F_4 の電子物性と PTFE の生成機構	○林 俊雄¹, 石川 健治¹, 関根 誠¹, 堀 勝¹, 兒玉 直人¹,	1.名古屋大学工
			豊田 浩孝	
		ジー / Plasma nanotechnology		
3/18(S 9:00		口頭講演 (Oral Presentation) A408会場 (Room A408) 旋回流による流動液体プラズマ処理装置の放電部の電極 保護	○柚木 健吾¹, 鈴木 陽香¹², 笹井 建典², 増崎 貴³, 林 浩己³. 村瀬 尊則³, 中川 翔³, 柳原 悠人³, 豊田 浩	1. 名大工, 2. 名大 cLPS, 3. 核融合研
9:15	18a-A408-2	多相交流アークにおけるLi-Mn複合酸化物ナノ粒子の合	孝 1,2,3	1. 九大工, 2. パナソニックインダストリー, 3. パナソ
9:30		成と金属蒸気の可視化 光ピンセットによる捕捉微粒子を用いたArプラズマ中の	久雄 ³ , 丸山 大貴 ³	ニックホールディングス 1.九大シス情, 2.北大院工, 3.九大総理工, 4.自然科学研
		電場強度分布及び電場揺動計測(3)	Yiming³, 山下 大輔¹, 山下 尚人¹, 奧村 賢直¹, 板垣 奈 穂¹, 古閑 一憲¹.⁴, 白谷 正治¹	究機構
9:45	18a-A408-4	フェムト秒レーザー生成液中プラズマによる六方晶窒化 ホウ素微粒子の表面改質(1)-実験系の構築およびプロセ ス評価-	永祐 ²	
10:00	18a-A408-5	フェムト秒レーザー生成液中プラズマによる六方晶窒化 ホウ素微粒子の表面改質(2) - 表面改質微粒子の液中分散性評価 -	〇小池 健 $^{1.2}$, 宗岡 均 1 , 井上 健 $^{-1.2}$, 伊藤 剛仁 1 , 寺嶋 和夫 $^{1.2}$, 三浦 永祐 2	1. 東大院新領域, 2. 産総研オペランド OIL
10:15		・衣面以真似也」の似乎分散住計画・ 休憩/Break		
10.15		YPADA / DICAK		

10:30	18a-A408-6	プラズモニックプラズマプロセス由来のシリコン上絶縁	○北嶋 武¹, 渡邉 一叶¹, 中野 俊樹¹	1.防大電気
10:45	18a-A408-7	膜の断面観察 プラズマCVD法で堆積した2層a-C:Hの機械的強度に対		
		するカーボンナノ粒子挿入の効果	礼 1 , 山下 尚人 1 , 板垣 奈穂 1 , 古閑 一憲 1,2 , 白谷 正治 1	1. 阪大院工
11:00	奨 18a-A408-8	機構の検討		1. 胶入灰工
11:15	奨 E 18a-A408-9	Nano/micro-structures formation on various semiconductors by argon plasma irradiation assisted with molybdenum impurity	,	1.NIFS, 2.Univ. of Tokyo, 3.Nagoya Univ.
[CS.6]	8.3 プラズマナノテ	クノロジー、9.2 ナノ粒子・ナノワイヤ・ナノシート、13.	6 ナノ構造・量子現象・ナノ量子デバイスのコードシ	ェアセッション / Code-sharing Session of 8.3 & 9.2 &
3/180		口頭講演 (Oral Presentation) A202会場(Room A202)	0 = 1	
13:00	招 18p-A202-1	「第53回講演奨励賞受賞記念講演」 GaAs/InGaAs/GaAs コアマルチシェルナノワイヤ共振器 における軸対称偏光ピームの生成	〇国本 大雅 ^{1.2} , 原 真二郎 ^{1.2} , 本久 順一 ^{1.2}	1.北大情報科学院, 2.量集センター
13:15	18p-A202-2	半導体ナノワイヤレーザへの集束イオンビーム加工とそ のダメージ抑制	〇滝口 雅人 $^{1.2}$, 章 国強 $^{1.2}$, 佐々木 智 2 , 舘野 功太 $^{1.2}$, John Caleb 2 , 小野 真証 $^{1.2}$, 角倉 久史 $^{1.2}$, 新家 昭彦 $^{1.2}$, 納富 雅也 $^{1.2.3}$	1.NTT NPC, 2.NTT 物性研, 3.東工大理
13:30	18p-A202-3	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性		1. 東北工大, 2. 東大生産研, 3. 東北大通研, 4. 理研 CEMS, 5. 東京農工大, 6. 東大院工
13:45	E 18p-A202-4		\bigcirc Yunzi Xin 1 , Yuping Xu 1 , Kunihiko Kato 1 , Takashi	
14:00 14:15	10 1202 5	休憩/Break 炭素ナノウォール構造体の電界放出特性と電界分布シ	○原尻 駿吾¹, Huang Lei¹, 堤井 君元¹	1. 九大総理工
14:15	18p-A202-5	ミュレーション	○原凡 駿吾¹, Huang Lei¹, 堤井 君元¹	1.九大総理工
14.30		電界放出特性と電界分布シミュレーション		
14:45	E 18p-A202-7	Integration of surface engineered silicon quantum dots in formamidinium lead iodide perovskite solar cells	O Svrcek Vladimir ¹ , Calum McDonald ¹ , Dilli Babu Padmanaban ² , Ruairi McGlynn ² , Ankur Kambley ² , Bruno Alessi ¹ , Davide Mariotti ² , Takuya Matsui ¹	1.AIST Tsukuba, 2.Ulster University
15:00	奨 18p-A202-8	メカノケミカル反応によるH _x WO ₃ /カーボン複合ナノ粒子合成と光触媒応用	○加藤 邦彦¹, 辛 韵子¹, 白井 孝¹	1.名工大セラ研
		レス / Plasma life sciences		
9:30		口頭講演 (Oral Presentation) A409会場 (Room A409) 大気圧プラズマ源の構造の違いが中性ラジカル生成密度 に及ぼす影響	○(M1)杉江 恭輔¹, 呉 準席², 田中 宏昌³, 堀 勝³, 伊藤 昌文¹	1. 名城大理工, 2. 大阪公立大工, 3. 名古屋大
9:45	奨 17a-A409-2	ーボンナノウォール足場上での電気刺激重畳培養におけるヒト間葉系幹細胞の形態変化		1.名大院工, 2.名大低温プラズマ科学研
10:00	17a-A409-3	電界印加による過酸化水素の生体膜透過特性	○岩田 優太¹, 髙見 幸亮¹, 八木 一平¹, 立花 孝介², 小田 昭紀³, 佐藤 岳彦⁴, 内田 諭¹	1. 都立大, 2. 大分大, 3. 千葉工大, 4. 東北大
10:15 10:30	17a-A409-4	大気圧酸素プラズマ複数回照射によるT細胞活性化特性 休憩/Break		1. 九大総理工, 2. 九大 i-SPES, 3. 佐賀大医
10:45	奨 17a-A409-5	酸素マイクロバブルを導入した大気圧プラズマ活性化乳 酸リンゲル液による皮膚がん細胞の不活化	〇宮下 拓也 1 , 艾 子卓 1 , 綾部 龍 2 , 吉川 祥平 2 , 加藤 和 則 1,2,3 , 本橋 健次 1,2,3	1.東洋大院理工, 2.東洋大理工, 3.バイオ・ナノエレクトロニクス研究センター
11:00	奨 17a-A409-6	プラズマ活性乳酸リンゲル液によるがん細胞死経路上の オートファジー観察		
11:15	奨 17a-A409-7	細胞密度を考慮した等価回路網によるプラズマ遺伝子導 入の機序検討	○田中 蒼大¹, 本村 英樹¹, 池田 善久¹, 木戸 裕吾², 佐藤 晋³, 神野 雅文¹, 3	1. 愛媛大, 2. パール工業, 3. アイジーン
		口頭講演 (Oral Presentation) A409 会場 (Room A409)		1 4 404 0 4 4
13:30	17p-A409-1	酸素ラジカル処理I-トリプトファン溶液含有培地による シロイヌナズナの成長促進	○ 元 不 件 多 , 太 田 督 通 , 啄越 啓 天 , 若 田 直 辛 , 堀 勝 ² , 伊藤 昌 文 ¹	1. 名城人, 5. 名人
13:45	奨 17p-A409-2	プラズマ照射によるレタス種子表面および内部の分子変 動	○ (M2) 阿南 輝樹¹, 奥村 賢直¹, アトリ バンカジ¹, 鎌滝 晋礼¹, 山下 尚人¹, 板垣 奈穂¹, 古閑 一憲¹², 白 谷正治¹	1.九州大学, 2.自然科学研究機構
14:00	奨 17p-A409-3	窒素 - 水気液界面反応のための混相流を横切る大気圧窒 素プラズマ生成	○(M2)藤田 立樹¹, 高島 圭介¹, 金子 俊郎¹	1.東北大院工
14:15	17p-A409-4	過酸化亜硝酸を持続生成するプラズマ活性ミスト源の開 発	〇佐々木 涉太 1 , 丸子 高志 2 , 西牧 真木夫 2 , 河合 伸 典 2 , 北川 清太郎 2 , 金子 俊郎 1	1. 東北大院工, 2. ナルックス株式会社
14:30 14:45	奨 17p-A409-5	休憩/Break プラズマ合成 N ₂ O ₅ の短時間照射による植物免疫活性	〇岩本 拡仁 1 , 佐々木 涉太 1 , 高島 圭介 1 , 築舘 大輝 2 , 安藤 杉尋 2 , 東谷 篤志 3 , 豊田 正嗣 4 , 高橋 英樹 2 , 金子 俊郎 1	1. 東北大院工, 2. 東北大院農, 3. 東北大院生命, 4. 埼玉大院理工
15:00	奨 17p-A409-6	プラズマ生成五酸化二窒素による窒素施肥効果と傷害	○武士 将熙¹,高島 圭介¹,佐々木 涉太¹,東谷 篤志², 金子 俊郎¹	1. 東北大院工, 2. 東北大院生命
15:15	17p-A409-7	植物細胞への分子導入におけるプラズマの二つの役割	○池田 善久¹,濱田 侑希¹,上嶋 涼介¹,木戸 祐吾²,賀 屋 秀隆³,八丈野 孝³,神野 雅文¹	1.愛媛大院理工, 2. バール工業, 3.愛媛大院農
15:30	奨 17p-A409-8	沿面放電処理によるメダカ魚卵への分子導入	〇土井 拓郎 1 , 玉利 卓也 1 , 木戸 祐吾 2 , 池田 善久 1 , 神 野 雅文 1	1. 愛媛大工, 2. パール工業
15:45	Î	非平衡大気圧プラズマがゼブラフィッシュに及ぼす影響 とその機構解明	一¹, 橋爪 博司¹, 堀 勝¹	1.名古屋大学
		· 融合分野 / Plasma phenomena, emerging area of plasm 口頭講演 (Oral Presentation) A205 会場(Room A205)	ias and their new applications	
10:00	招 18a-A205-1	「第53回講演奨励賞受賞記念講演」 レーザー誘起脱溶媒和信号の光子エネルギー依存性が示唆する"部分水和電子"の可能性	○稲垣 慶修¹, 佐々木 浩一¹	1.北大工
10:15	奨 18a-A205-2	低ガス圧酸素プラズマと水ジェットの界面反応による水 素分子の生成および酸素分子の損失	○高橋仁¹,佐々木浩一¹	1.北海道大学
10:30	奨 18a-A205-3	大気圧直流グロー放電における自己組織化した発光模様 形成の外部電場による制御	○(M2)宮崎 俊明¹, 白井 直機¹, 佐々木 浩一¹	1.北大工
10:45	奨 18a-A205-4		○濱名優輝¹, 白井 直機¹, 佐々木 浩一¹	1.北大工
11:00	奨 18a-A205-5	プラズマー高速水流を用いた液相短寿命活性窒素種減衰 の実験的検出	○武田 一希¹, 佐々木 渉太¹, 高島 圭介¹, 金子 俊郎¹	1.東北大院工
11:15	18a-A205-6	液柱流の表面電荷生成と実験的評価法	村冨 孝輔¹, ○高島 圭介¹, 金子 俊郎¹	1. 東北大院工

13:00		口頭講演 (Oral Presentation) A205 会場 (Room A205) 「分科内招待講演」	○御手洗 光祐 1.2	1. 阪大基礎工, 2. 阪大 QIQB
		量子コンピュータによる機械学習アルゴリズムの現状		
3:30	,	ける電子速度分布関数の計算	○川口 悟¹, 髙橋 一弘¹, 佐藤 孝紀¹	1.室蘭工大
3:45	18p-A205-3	間欠型深振動マグネトロンスパッタリングの放電バルス 設計とプラズマ分光計測	〇横山 英佐 1 , 永井 友樹 1 , 筒井 海太 1 , 西宮 信夫 1 , 實 方 真臣 1 , 戸名 正英 2 , 山本 宏晃 2 , 塚本 恵三 2 , 冨宅 喜 代一 3 , 大下 慶次郎 4 , 美齊津 文典 4	1.東京工芸大工, 2.㈱アヤボ, 3.神戸大, 4.東北大院理
4:00	18p-A205-4	CO_2 -LIBS 法での異なる温度を持ったプラズマの元素解析	○栗原 一嘉¹, 酒井 雄平¹, 石原 瑠也¹, 大友 香奈¹, 新宮 要¹, ウスマワンダ チョニア¹	1. 福井大学
4:15		電子ビーム照射によるプラズマ加熱装置の提案		1.センリョウ
		クス分科内招待講演 / Plasma Electronics Invited Talk		
1:00		口頭講演 (Oral Presentation) A402 会場 (Room A402) 「分科内招待講演」	○堀 勝¹	1.名大低温プラズマ
		ラジカル制御によるプラズマエレクトロニクスの進化		
	· · · · · · · · · · · · · · · · · · ·	d Materials Science		
		はプログラム冒頭にございます。 electrics, ferroelectrics		
		口頭講演 (Oral Presentation) D215会場(Room D215)		
0:00	15a-D215-1	溶液法IGZOとAu電極によるショットキーバリアダイ オードの作製	〇森本 貴明 ¹, 笹島 宏青 ¹, 田内 千裕 ¹, 石川 航平 ¹, 石 井 啓介 ¹	1.防衛大学校
9:15	E 15a-D215-2	Formation of Single-Crystal Copper Oxide by Laser- induced Crystallization: Chevron Beam-Profiles Work While Gaussian Beam-Profiles Fail	William Bodeau ^{1, 2, 3, 4} , Kaisei Otogo ^{5, 6} , Wenchang Yeh ^{5, 6} , ○Nobuhiko P Kobayashi ^{1, 2, 3, 4}	1.Nanostructured Energy Conversion Technology and Research (NECTAR), 2.Electrical and Computer Engineering Department, 3.Baskin School of Engineering, 4.University of California Santa Cruz, 5.Graduate School of Natural Science and Technology 6.Shimane University
:30	15a-D215-3	MgZnO複合酸化物薄膜の電気機械結合特性	○賈 軍軍 ¹ , 岸 大貴 ² , 柳谷 隆彦 ²	1.早大国際理工学センター, 2.早大先進理工
0:45	奨 15a-D215-4	六方晶 TbFeO₃薄膜のスピン・電荷における反フェローフェロ相転移	○Liu Yaoming¹, Chen Binjie¹, 太田 裕道², 片山 司².3	1.北大情報院, 2.北大電子研, 3.JST さきがけ
0:00 0:15	15a-D215-5	休憩/Break フラックス法によるマイクロ波誘電体Mg ₂ SiO ₄ 板状結晶 の合成及びその樹脂/セラミックス複合体の誘電特性	○上野 慎太郎¹, 斉藤 聖¹, 藤井 一郎¹, 和田 智志¹, 丸 山 拓², 山崎 正典²	1.山梨大, 2.三菱ケミカル(株)
0:30	奨 15a-D215-6	BaTiO ₃ 八面体結晶の構造相転移	○(B) 白川 皓介¹, 福島 凪世¹, Kim Sangwook¹, Nam Hyunwook², 藤井 一郎², 上野 慎太郎², 和田 智志², 黒岩 芳弘¹	1. 広島大, 2. 山梨大
0:45	15a-D215-7	クエン酸塩法により合成したナノ粒子からのBT-BMT- BF圧電セラミックスの低温作製	〇中川 翔太 ¹, ナム ヒョンウク ¹, 藤井 一郎 ¹, 上野 慎 太郎 ¹, 和田 智志 ¹	1.山梨大
1:00		BT-BMT-BF強誘電体の結晶構造に対する急冷処理の影響	上野 慎太郎², 藤井 一郎², 和田 智志², 黒岩 芳弘¹	
1:15		多軸分子性強誘電体 [AH] [ReO4] の分極反転におけるドメイン挙動の可視化と強弾性歪みの効果	○ (M1) 宮本 樹¹, 松岡 悟志¹, 原田 潤², 長谷川 達生¹	1. 東大院工, 2. 北大院理
3:30		口頭講演 (Oral Presentation) D215会場 (Room D215) (0.4-x)(Bi _{0.5} K _{0.5})TiO ₃ -0.6BiFeO ₃ -xK(Ta _{0.97} Mo _{0.03})O ₃ の強誘電特性および平均・局所・電子構造	○近藤 真輝¹, 石橋 千晶¹, 北村 尚斗¹, 井手本 康¹	1. 東理大理工
3:45	15p-D215-2	$(Bi_{0.5}K_{0.5})$ Ti O_3 -BiF $e_{1.4}M_2O_3$ -K $(Nb_{0.5}Ta_{0.5})O_3(M=Ni,Mn)$ における強誘電特性と置換種および熱処理の関係と平均・電子・局所構造解析	○衣笠 友哉¹, 石橋 千晶¹, 北村 尚斗¹, 井手本 康¹	1. 東理大理工
4:00	15p-D215-3	第一原理計算による圧電材料特性評価	○中岡 宏徳1	1.住友金属鉱山
4:15	E 15p-D215-4	Evaluate the piezoelectric properties of Li _(1-x) Na _x NbO ₃ by	○ (M1)FEN KAN ^{1, 2}	1.AIST, 2.Kyushu Univ.
4:30		first-principles calculation 休憩/Break		
4:45	15p-D215-5	多変量解析を用いた複屈折像の解析による応力誘起強誘	○豊田 健晟¹, 三浦 陽子², 真中 浩貴¹	1. 鹿児大院理工, 2. 鈴鹿高専
		電体 SrTiO₃のドメイン観察		
5:00 5:15		欠陥複合体を利用した強誘電体設計 強誘電体 $BaTiO_3$ における 90° ドメイン壁の自由エネル ギー計算	○野口祐二¹, 松尾 拓紀¹ ○吾妻 真光¹, 尾形 修司¹, 小林 亮¹, 浦長瀬 正幸¹, 都 築 貴寛¹, 下井 聖也¹, 出口 元貴¹, Frank Wendler², Dilshod Durdiev²	1.熊本大学 1.名工大工, 2.FAU Erlangen-Nurnberg
5:30	15p-D215-8	YFe ₂ O ₄ の格子欠陥制御と誘電的性質		1.京大工, 2.名工大工, 3.東洋大バイオナノセンター
5:45	15p-D215-9	交流分極を行った 2 成分系リラクサ - PbTiO $_3$ 圧電単結晶 の構造	○真岩 宏司 1 , 向 宇 1 , 山下 洋八 1,2,3 , 孫 億琴 2 , 唐木 智明 2	1.湘南工大工, 2.富山県立大学, 3.ノースカロライナ 立大学
3/17(F		ポスター講演 (Poster Presentation) PB 会場(Room PB)	○(M1)川名 惣一朗¹, 平田 研二², 徐 超男¹.²	1 九十 2 产绘缸
		第一原理計算によるLi _x Zn _{1-x} Oの圧電特性評価 MgとWを同時添加したAlN 薄膜の作製		1. 九大, 2. 産総研 1. 産総研, 2. 九大総理工, 3. 物材機構
	17p-PB01-3	Sc _x Ga _{1-x} N における XANES スペクトルの第一原理計算		1. 九大総理工, 2. 産総研, 3. SAGA-LS
	E 17p-PB01-4	Effect of addition of elements in group IVB (C, Si, Ge, Sn) on polarity inversion of Scandium Aluminum Nitride (ScAlN) piezoelectric thin films	OSri Ayu Anggraini ¹ , Masato Uehara ¹ , Kenji Hirata ¹ , Hiroshi Yamada ¹ , Morito Akiyama ¹	1.AIST
		・ナノシート / Nanoparticles, Nanowires and Nanosheets	5	
3/17(F		ボスター講演 (Poster Presentation) PA会場(Room PA) Layer-by-layer法による CdSe 量子ドット超格子の作製と 量子共鳴の観測	○楊 震宇¹, 米倉 聖貴², 金 大貴¹.²	1.大阪公大院工, 2.大阪市大院工
	17a-PA02-2 17a-PA02-3	ZnSと ZnSeナノ粒子の混合積層膜作製と光学定数評価	○中谷開智 ¹ ,金大貴 ¹ ,沈用球 ¹ ○天野 広希 ¹ ,新居 和音 ² ,小原 健太郎 ² ,中澤 健太 ³ , 坂本壮 ² ,藤田 陽平 ² ,森脇 智将 ³ ,川口 育海 ¹ ,小林 周 太 ¹ ,下濱 大州 ¹ ,一柳 優子 ^{1,2}	1. 大阪公大院工 1. 横国大理工, 2. 横国大院理工, 3. 横国大院環情
	17a-PA02-4	近赤外光で確認可能なアンチモンドープ酸化スズの合成 と光学特性	〇中村 知亜梨 ', 前田 秀一 '	1.東海大工
	17a-PA02-4 17a-PA02-5	近赤外光で確認可能なアンチモンドーブ酸化スズの合成と光学特性 配位子を使った $AgInS_2$ ナノ粒子の表面改質と発光機構の転換 II		

	E 17a-PA02-7	Fabrication of Si Nanotube Arrays by Nanoimprint Lithography with Spacer Patterning	○ Yonglie Sun¹, Wipakorn Jevasuwan¹, Naoki Fukata¹	1.NIMS
	E 17a-PA02-8	Top-down Fabrication of Ge/Si core/shell Nanowire	\bigcirc Chao Le ^{1, 2} , Yonglie Sun ¹ , Wipakorn Jevasuwan ¹ ,	1.NIMS, 2.Univ. of Tsukuba
	E 17a-PA02-9	Channels for Vertical-type Field Effect Transistors Hybrid Nanostructures of Al-Catalyzed Si Nanowires and	Naoki Fukata ^{1, 2} O Wipakorn Jevasuwan ¹ , Bern Yu Jeco Espaldon ¹ ,	1.NIMS
		· ·	Mostafa Abdelbar ¹ , Qinqiang Zhang ¹ , Mohammed Abdelhameed ¹ , Naoki Fukata ¹	
	E 17a-PA02-10		○ Pengyu ZHANG ^{1, 2} , Yonglie Sun ¹ , Wipakorn Jevasuwan ¹ , Naoki Fukata ^{1, 2}	1.NIMS, 2.Univ. of Tsukuba
	E 17a-PA02-11	Polarization dependence of quantum dot excitonic emission from InAsxP1-x/InP nanowire heterostructure	○ (P)Suman Mukherjee¹, Junichi Motohisa¹	1.RCIQE, Hokkaido University
3/17(13:30		口頭講演 (Oral Presentation) D221会場 (Room D221) Reduced-Pressure CVDにより形成したGeコアSi量子	○牧原 克典 ^{1, 2} , Yamamoto Yuji ² , Schubert Markus	1. 名大院工, 2.IHP, 3.TU Berlin
		ドットの構造評価と室温発光特性評価	Andreas², 田岡 紀之¹, Tillack Bernd².³, 宮﨑 誠一¹	
13:45		ルタチオンの選択的分離	〇森脇 智将¹, 小原 健太郎², 中澤 健太¹, 坂本 壮², 新居 和音², 藤田 陽平², 下濱 大州³, 一柳 優子².³	
14:00		がん細胞抑制効果	〇小原 健太郎 1 ,阿部 真之 2 ,中澤 健太 3 ,坂本 壮 1 ,新居 和音 1 ,藤田 陽平 1 ,森脇 智将 3 ,一柳 優子 1	
14:15	奨 17p-D221-4	磁気ナノ微粒子を用いた温熱療法によるがん細胞死のメ カニズム	○ (M2) 中澤 健太¹, 小原 健太郎², 坂本 牡², 新居 和音², 藤田 陽平², 森脇 智将¹, 中村 達夫¹, 一柳 優子², 堀内 大³	1.横国大 環情院, 2.横国大 理工院, 3.埼玉医科大
14:30	奨E 17p-D221-5	Gas Sensing Mechanism in Au@SnO $_2$ Nanoparticle-Based Chemiresistor Studied by $in\text{-}situ$ Surface-Enhanced Raman Spectroscopy	○ (P)Haoming Bao¹, Kenta Motobayashi¹, Katsuyoshi Ikeda¹	1.Nagoya Institute of Technology
14:45 15:00	奨 17p-D221-6	Ptナノ触媒の形状が脂肪族アルコールセンシング特性へ 及ぼす効果と長鎖アルコールセンサの実現 休憩/Break	○(M2)濱中 悠輔¹,田中 貴久¹,內田 建¹	1.東大工
	奨 E 17p-D221-7	In-situ Compositional Identification of Mixed Aliphatic	$\bigcirc (M2) WENJIN LEI^{\scriptscriptstyle 1}, Chaiyanut Jirayupat^{\scriptscriptstyle 1}, Guozhu$	1.Univ. Tokyo, 2.JST PRESTO, 3.Kyushu Univ.
		Molecules Adsorbed on Nanostructured Metal Oxide Surfaces via Machine Learning of Infrared Spectra	Zhang ¹ , Takuro Hosomi ^{1, 2} , Jiangyang Liu ¹ , Yu Yamaguchi ¹ , Wataru Tanaka ¹ , Tsunaki Takahashi ^{1, 2} ,	
			Kazuki Nagashima ^{1, 2} , Takeshi Yanagida ^{1, 3}	
15:30	17p-D221-8	バラジウムナノワイヤー水素ガスセンサーのワイヤ長依 存性	○山口 航 ¹ , Yang Mingyue ¹ , Sun Yexiao ¹ , 新田 亮介 ¹ , 真島 豊 ¹	1.東工大フロ研
15:45	17p-D221-9	熱伝導率低減に向けた超高面密度 Si 自立ナノワイヤ周期 配列の作製		1.信州大学, 2.信州大学 IFES
16:00	17p-D221-10	超高面密度・完全配向 ZnO ナノロッド配列の周期構造 化に向けたテンプレート基板の検討	○野呂 拓未¹, 目片 祥¹, 渡辺 健太郎¹,²	1.信州大学, 2.信州大学 IFES
16:15	17p-D221-11	構造別ナノ発光分光/その場差分FV評価に基づくZnO 自立ナノロッド電気特性の酸素雰囲気アニール温度依存 性の解明	宮嶋 航汰¹, 村田 雄生¹, ○渡辺 健太郎¹.²	1.信州大学, 2.信州大学 IFES
16:30	17p-D221-12	GaAs/AlGaAsコア・シェルナノワイヤ埋込構造の成長と 最外殻シェル層に起因する構造変形	○橋本 英季 ^{1,2} , 峰久 恵輔 ^{1,2} , 中間 海音 ^{1,2} , 谷川 武 瑠³, 長島 一樹 ⁴ , 柳田 剛 ⁴ , 石川 史太郎 ^{1,2}	1.北大情科院, 2.北大量集積セ, 3.愛媛大工, 4.東大工
16:45	17p-D221-13		\bigcirc 中根 茂行 ¹, 名嘉 節 ¹, 寺田 典樹 ¹, Valenta Jaroslav ¹,	1.物材機構, 2.群馬大, 3.東京都立大, 4.Amsterdam大, 5.ASCR, 6.Charles大, 7.阪大
		/ V - F	性験 相対 , 1971 光間 , 八面木 心命 , Vissel Aillie de ⁴ , Kaštil Jiří ⁵ , Míšek Martin ⁵ , Prchal Jiří ⁵ , Li Fei ⁷ , 阿部 浩也 ⁷	J.A.J.C.R., O.C.Harles A., 1. B.A.
【CS.6】 13.6	8.3 プラズマナノテ	クノロジー、9.2 ナノ粒子・ナノワイヤ・ナノシート、13. 	6 ナノ構造・量子現象・ナノ量子デバイスのコードシ	ェアセッション / Code-sharing Session of 8.3 & 9.2 &
3/18(13:00		口頭講演 (Oral Presentation) A202 会場(Room A202) 「第53回講演奨励賞受賞記念講演」	○国本 大雅 ^{1,2} , 原 真二郎 ^{1,2} , 本久 順一 ^{1,2}	1.北大情報科学院, 2.量集センター
		GaAs/InGaAs/GaAs コアマルチシェルナノワイヤ共振器 における軸対称偏光ビームの生成		
13:15	18p-A202-2		○滝口 雅人 ^{1,2} , 章 国強 ^{1,2} , 佐々木 智 ² , 舘野 功太 ^{1,2} , John Caleb ² , 小野 真証 ^{1,2} , 角倉 久史 ^{1,2} , 新家 昭彦 ^{1,2} ,	1.NTT NPC, 2.NTT 物性研, 3.東工大理
		のダメージ抑制	納富 雅也 1.2.3	
13:30	18p-A202-3	のダメージ抑制 ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ ,阿部 真弓 ¹ ,平川 一彦 ² ,大塚 朋廣 ³ ,	1. 東北工大, 2. 東大生産研, 3. 東北大通研, 4. 理研 CEMS, 5. 東京農工大, 6. 東大院工
	18p-A202-3 E 18p-A202-4	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi	CEMS, 5. 東京農工大, 6. 東大院工
13:45 14:00	E 18p-A202-4	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 休憩/Break	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹	CEMS, 5. 東京農工大, 6. 東大院工 1.Nagoya Inst. Technol. ACRC
13:45 14:00		ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 体想/Break 炭素ナノウォール構造体の電界放出特性と電界分布シ ミュレーション	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹	CEMS, 5. 東京農工大, 6. 東大院工
13:45 14:00 14:15	E 18p-A202-4	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 体想/Break 炭素ナノウォール構造体の電界放出特性と電界分布シ ミュレーション	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹	CEMS, 5. 東京農工大, 6. 東大院工 1.Nagoya Inst. Technol. ACRC
13:45 14:00 14:15 14:30	E 18p-A202-4	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 体想/Break 炭素ナノウォール構造体の電界放出特性と電界分布シ ミュレーション ダイヤモンドナノ粒子で修飾したナノウォール構造体の	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹	CEMS, 5. 東京農工大, 6. 東大院工 1.Nagoya Inst. Technol. ACRC 1. 九大総理工
13:45 14:00 14:15 14:30 14:45	E 18p-A202-4 18p-A202-5 奨 18p-A202-6 E 18p-A202-7	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 休憩/Break 炭素ナノウォール構造体の電界放出特性と電界分布シ ミュレーション ダイヤモンドナノ粒子で修飾したナノウォール構造体の 電界放出特性と電界分布シミュレーション Integration of surface engineered silicon quantum dots in	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○ Svrcek Vladimir ¹ , Calum McDonald ¹ , Dilli Babu Padmanaban ² , Ruairi McGlynn ² , Ankur Kambley ² , Bruno Alessi ¹ , Davide Mariotti ² , Takuya Matsui ¹	CEMS, 5. 東京農工大, 6. 東大院工 1.Nagoya Inst. Technol. ACRC 1. 九大総理工 1. 九大総理工
13:45 14:00 14:15 14:30 14:45 15:00	E 18p-A202-4 18p-A202-5 奨 18p-A202-6 E 18p-A202-7 奨 18p-A202-8 /エレクトロニクス	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 体想/Break 炭素ナノウォール構造体の電界放出特性と電界分布シミュレーション ダイヤモンドナノ粒子で修飾したナノウォール構造体の電界放出特性と電界分布シミュレーション Integration of surface engineered silicon quantum dots in formamidinium lead iodide perovskite solar cells メカノケミカル反応によるH _x WO ₃ /カーボン複合ナノ粒 子合成と光触媒応用	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○ Svrcek Vladimir ¹ , Calum McDonald ¹ , Dilli Babu Padmanaban ² , Ruairi McGlynn ² , Ankur Kambley ² , Bruno Alessi ¹ , Davide Mariotti ² , Takuya Matsui ¹	CEMS, 5. 東京農工大, 6. 東大院工 1. Nagoya Inst. Technol. ACRC 1. 九大総理工 1. 九大総理工 1. AIST Tsukuba, 2. Ulster University
13:45 14:00 14:15 14:30 14:45 15:00	E 18p-A202-4 18p-A202-5 奨 18p-A202-6 E 18p-A202-7 奨 18p-A202-8 /エレクトロニクス / (Thu.) 9:30 - 11:30	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 体想/Break 炭素ナノウォール構造体の電界放出特性と電界分布シミュレーション ダイヤモンドナノ粒子で修飾したナノウォール構造体の電界放出特性と電界分布シミュレーション Integration of surface engineered silicon quantum dots in formamidinium lead iodide perovskite solar cells メカノケミカル反応によるH _x WO ₃ /カーボン複合ナノ粒子合成と光触媒応用	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○ Svrcek Vladimir ¹ , Calum McDonald ¹ , Dilli Babu Padmanaban ² , Ruairi McGlynn ² , Ankur Kambley ² , Bruno Alessi ¹ , Davide Mariotti ² , Takuya Matsui ¹ ○ 加藤 邦彦 ¹ , 辛 韵子 ¹ , 白井 孝 ¹	CEMS, 5. 東京農工大, 6. 東大院工 1. Nagoya Inst. Technol. ACRC 1. 九大総理工 1. 九大総理工 1. AIST Tsukuba, 2. Ulster University
13:45 14:00 14:15 14:30 14:45 15:00	E 18p-A202-4 18p-A202-5 奨 18p-A202-6 E 18p-A202-7 奨 18p-A202-8 /エレクトロニクス / (Thu.) 9:30 - 11:30	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 体想/Break 炭素ナノウォール構造体の電界放出特性と電界分布シミュレーション ダイヤモンドナノ粒子で修飾したナノウォール構造体の電界放出特性と電界分布シミュレーション Integration of surface engineered silicon quantum dots in formamidinium lead iodide perovskite solar cells メカノケミカル反応によるH _x WO ₃ /カーボン複合ナノ粒子合成と光触媒応用 Nanoelectronics ポスター講演 (Poster Presentation) PB会場(Room PB)	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○ Svrcek Vladimir ¹ , Calum McDonald ¹ , Dilli Babu Padmanaban ² , Ruairi McGlynn ² , Ankur Kambley ² , Bruno Alessi ¹ , Davide Mariotti ² , Takuya Matsui ¹ ○ 加藤 邦彦 ¹ , 辛 韵子 ¹ , 白井 孝 ¹ ○ (D)Yusheng Li ¹ , Dandan Wang ¹ , Yongge Yang ¹ , Yuyao Wei ¹ , Dong Liu ¹ , Hua Li ¹ , Chao Ding ¹ , Shuzi	CEMS, 5. 東京農工大, 6. 東大院工 1.Nagoya Inst. Technol. ACRC 1. 九大総理工 1. 九大総理工 1. AIST Tsukuba, 2.Ulster University 1. 名工大セラ研
13:45 14:00 14:15 14:30 14:45 15:00	E 18p-A202-4 18p-A202-5 奨 18p-A202-6 E 18p-A202-7 奨 18p-A202-8 /エレクトロニクス / (Thu.) 9:30 - 11:30	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 休憩/Break 炭素ナノウォール構造体の電界放出特性と電界分布シ ミュレーション ダイヤモンドナノ粒子で修飾したナノウォール構造体の 電界放出特性と電界分布シミュレーション Integration of surface engineered silicon quantum dots in formamidinium lead iodide perovskite solar cells メカノケミカル反応によるH _x WO ₃ /カーボン複合ナノ粒 子合成と光触媒応用 Nanoelectronics ポスター講演 (Poster Presentation) PB会場(Room PB) How to extract hot carriers from perovskite nanocrystal by fullerenes: forming state-coupled complexes	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○ Svrcek Vladimir ¹ , Calum McDonald ¹ , Dilli Babu Padmanaban ² , Ruairi McGlynn ² , Ankur Kambley ² , Bruno Alessi ¹ , Davide Mariotti ² , Takuya Matsui ¹ ○ 加藤 邦彦 ¹ , 辛 韵子 ¹ , 白井 孝 ¹ ○ (D) Yusheng Li ¹ , Dandan Wang ¹ , Yongge Yang ¹ , Yuyao Wei ¹ , Dong Liu ¹ , Hua Li ¹ , Chao Ding ¹ , Shuzi Hayase ¹ , Qing Shen ¹ ○ (D) yongge yang, yusheng li, chao ding, shuzi	CEMS, 5. 東京農工大, 6. 東大院工 1.Nagoya Inst. Technol. ACRC 1. 九大総理工 1. 九大総理工 1. AIST Tsukuba, 2.Ulster University 1. 名工大セラ研
13:45 14:00 14:15 14:30 14:45 15:00 9.3 + / 3/16(E 18p-A202-4 18p-A202-5 奨 18p-A202-6 E 18p-A202-7 奨 18p-A202-8 /エレクトロニクス / (Thu.) 9:30 - 11:30 E 16a-PB01-1 E 16a-PB01-2 (Sat.) 9:00 - 11:00	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 体想/Break 炭素ナノウォール構造体の電界放出特性と電界分布シミュレーション ダイヤモンドナノ粒子で修飾したナノウォール構造体の電界放出特性と電界分布シミュレーション Integration of surface engineered silicon quantum dots in formamidinium lead iodide perovskite solar cells メカノケミカル反応によるH _x WO ₃ /カーボン複合ナノ粒子合成と光触媒応用 Nanoelectronics ボスター講演 (Poster Presentation) PB会場(Room PB)How to extract hot carriers from perovskite nanocrystal by fullerenes: forming state-coupled complexes High carrier transport based on perovskite quantum dots in perovskite matrix 口頭講演 (Oral Presentation) D221会場(Room D221)	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○ Svrcek Vladimir ¹ , Calum McDonald ¹ , Dilli Babu Padmanaban ² , Ruairi McGlynn ² , Ankur Kambley ² , Bruno Alessi ¹ , Davide Mariotti ² , Takuya Matsui ¹ ○ (D) Yusheng Li ¹ , Dandan Wang ¹ , Yongge Yang ¹ , Yuyao Wei ¹ , Dong Liu ¹ , Hua Li ¹ , Chao Ding ¹ , Shuzi Hayase ¹ , Qing Shen ¹ ○ (D) yongge yang, yusheng li, chao ding, shuzi hayase, qing shen	CEMS, 5. 東京農工大, 6. 東大院工 1.Nagoya Inst. Technol. ACRC 1. 九大総理工 1. 九大総理工 1. AIST Tsukuba, 2.Ulster University 1. 名工大セラ研 1.The University of Electro Communications
13:45 14:00 14:15 14:30 14:45 15:00 9.3 + / 3/16(3/18(9:00	E 18p-A202-4 18p-A202-5 奨 18p-A202-6 E 18p-A202-7 奨 18p-A202-8 /エレクトロニクス (Thu.) 9:30 - 11:30 E 16a-PB01-1 E 16a-PB01-2 (Sat.) 9:00 - 11:00 18a-D221-1	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 休憩/Break 炭素ナノウォール構造体の電界放出特性と電界分布シミュレーション ダイヤモンドナノ粒子で修飾したナノウォール構造体の電界放出特性と電界分布シミュレーション Integration of surface engineered silicon quantum dots in formamidinium lead iodide perovskite solar cells メカノケミカル反応によるH _x WO ₃ /カーボン複合ナノ粒子合成と光触媒応用 Nanoelectronics ポスター講演 (Poster Presentation) PB 会場(Room PB)How to extract hot carriers from perovskite nanocrystal by fullerenes: forming state-coupled complexes High carrier transport based on perovskite quantum dots in perovskite matrix 口頭講演 (Oral Presentation) D221 会場(Room D221)分子コンピューティングの原理に学ぶ単電子回路の改良検討	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○ Svrcek Vladimir ¹ , Calum McDonald ¹ , Dilli Babu Padmanaban ² , Ruairi McGlynn ² , Ankur Kambley ² , Bruno Alessi ¹ , Davide Mariotti ² , Takuya Matsui ¹ ○ 加藤 邦彦 ¹ , 辛 韵子 ¹ , 白井 孝 ¹ ○ (D) Yusheng Li ¹ , Dandan Wang ¹ , Yongge Yang ¹ , Yuyao Wei ¹ , Dong Liu ¹ , Hua Li ¹ , Chao Ding ¹ , Shuzi Hayase ¹ , Qing Shen ¹ ○ (D)yongge yang, yusheng li, chao ding, shuzi hayase, qing shen	CEMS, 5. 東京農工大, 6. 東大院工 1.Nagoya Inst. Technol. ACRC 1. 九大総理工 1. 九大総理工 1. AIST Tsukuba, 2.Ulster University 1. 名工大セラ研 1. The University of Electro Communications 1. 横国大院理工
13:45 14:00 14:15 14:30 14:45 15:00 9.3 + / 2 3/18(9:00 9:15	E 18p-A202-4 18p-A202-5 奨 18p-A202-6 E 18p-A202-7 奨 18p-A202-8 /エレクトロニクス / (Thu.) 9:30 - 11:30 E 16a-PB01-1 E 16a-PB01-2 (Sat.) 9:00 - 11:00 18a-D221-1 18a-D221-2	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 休憩/Break 炭素ナノウォール構造体の電界放出特性と電界分布シミュレーション ダイヤモンドナノ粒子で修飾したナノウォール構造体の電界放出特性と電界分布シミュレーション Integration of surface engineered silicon quantum dots in formamidinium lead iodide perovskite solar cells メカノケミカル反応によるH _x WO ₃ /カーボン複合ナノ粒子合成と光触媒応用 Nanoelectronics ポスター講演 (Poster Presentation) PB 会場(Room PB)How to extract hot carriers from perovskite nanocrystal by fullerenes: forming state-coupled complexes High carrier transport based on perovskite quantum dots in perovskite matrix 口頭講演 (Oral Presentation) D221 会場(Room D221)分子コンピューティングの原理に学ぶ単電子回路の改良検討 単電子リザーバコンピューティング回路の性能向上検討	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○ Svreek Vladimir ¹ , Calum McDonald ¹ , Dilli Babu Padmanaban ² , Ruairi McGlynn ² , Ankur Kambley ² , Bruno Alessi ¹ , Davide Mariotti ² , Takuya Matsui ¹ ○ 加藤 邦彦 ¹ , 辛 韵子 ¹ , 白井 孝 ¹ ○ (D) Yusheng Li ¹ , Dandan Wang ¹ , Yongge Yang ¹ , Yuyao Wei ¹ , Dong Liu ¹ , Hua Li ¹ , Chao Ding ¹ , Shuzi Hayase ¹ , Qing Shen ¹ ○ (D) yongge yang, yusheng li, chao ding, shuzi hayase, qing shen ○ 横山 海里 ¹ , 大矢 剛嗣 ¹	CEMS, 5. 東京農工大, 6. 東大院工 1.Nagoya Inst. Technol. ACRC 1. 九大総理工 1. 九大総理工 1. AIST Tsukuba, 2.Ulster University 1. 名工大セラ研 1.The University of Electro Communications 1. 横国大院理工 1. 横国大院理工
3/16(3/18(9:00	E 18p-A202-4 18p-A202-5 奨 18p-A202-6 E 18p-A202-7 奨 18p-A202-8 /エレクトロニクス (Thu.) 9:30 - 11:30 E 16a-PB01-1 E 16a-PB01-2 (Sat.) 9:00 - 11:00 18a-D221-1	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性 Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane 休憩/Break 炭素ナノウォール構造体の電界放出特性と電界分布シミュレーション ダイヤモンドナノ粒子で修飾したナノウォール構造体の電界放出特性と電界分布シミュレーション Integration of surface engineered silicon quantum dots in formamidinium lead iodide perovskite solar cells メカノケミカル反応によるH _x WO ₃ /カーボン複合ナノ粒子合成と光触媒応用 Nanoelectronics ポスター講演 (Poster Presentation) PB 会場(Room PB)How to extract hot carriers from perovskite nanocrystal by fullerenes: forming state-coupled complexes High carrier transport based on perovskite quantum dots in perovskite matrix 口頭講演 (Oral Presentation) D221 会場(Room D221)分子コンピューティングの原理に学ぶ単電子回路の改良検討	納富 雅也 ^{1,2,3} ○吉田 政希 ¹ , 阿部 真弓 ¹ , 平川 一彦 ² , 大塚 朋廣 ³ , Bisri Satria ^{4,5} , 岩佐 義宏 ^{4,6} , 柴田 憲治 ¹ ○ Yunzi Xin ¹ , Yuping Xu ¹ , Kunihiko Kato ¹ , Takashi Shirai ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○原尻 駿吾 ¹ , Huang Lei ¹ , 堤井 君元 ¹ ○ Svrcek Vladimir ¹ , Calum McDonald ¹ , Dilli Babu Padmanaban ² , Ruairi McGlynn ² , Ankur Kambley ² , Bruno Alessi ¹ , Davide Mariotti ² , Takuya Matsui ¹ ○ 加藤 邦彦 ¹ , 辛 韵子 ¹ , 白井 孝 ¹ ○ (D) Yusheng Li ¹ , Dandan Wang ¹ , Yongge Yang ¹ , Yuyao Wei ¹ , Dong Liu ¹ , Hua Li ¹ , Chao Ding ¹ , Shuzi Hayase ¹ , Qing Shen ¹ ○ (D) yongge yang, yusheng li, chao ding, shuzi hayase, qing shen ○ 横山 海里 ¹ , 大矢 剛嗣 ¹ ○ 波邉 隼弥 ¹ , 大矢 剛嗣 ¹	CEMS, 5. 東京農工大, 6. 東大院工 1.Nagoya Inst. Technol. ACRC 1. 九大総理工 1. 九大総理工 1. AIST Tsukuba, 2.Ulster University 1. 名工大セラ研 1. The University of Electro Communications 1. 横国大院理工

10:30	18a-D221-6	aFキャパシタDRAMでのノイズ-エネルギー変換のエネ	○知田 健作¹,藤原 聡¹,西口 克彦¹	1.NTT物性研
10:45	E 18a-D221-7	ルギー障壁高さ依存性 Mechanism of electromigration in metal nanocontacts in	○ (D)Tian Yue ¹ , Shaoqing Du ³ , Kazuhiko	1.IIS, Univ.of Tokyo, 2.INQIE,Univ.of Tokyo, 3.SIMIT
1 1 1 5		the diffusive transport regime	Hirakawa ^{1, 2}	CAS
	変換 / Thermoelec hu.) 9:45 - 11:45	tric conversion 口頭講演 (Oral Presentation) D411会場(Room D411)		
):45		「第53回講演奨励賞受賞記念講演」 GeTe/Mg₃Sb₂モジュールにおける高密度&高効率熱電発		1.パナソニック ホールディングス, 2.産総研
0:00	E 16a-D411-2	電の実証 Development of monolithic chalcogenide thermoelectric generators for energy harvesting applications	勉 ¹ ○ (P)Artoni Ang ¹ , Itsuki Yamazaki ¹ , Keisuke Hirata ¹ , Saurabh Singh ² , Masaharu Matsunami ¹ , Tsunehiro	1.Toyota Tech. Inst., 2.Pennsylvania State Uni.
0:15	16a-D411-3	微細加工技術を用いた薄膜型熱電デバイスの開発	Takeuchi¹ ○大久保勇男¹,村田正行²,大井晓彦¹, Mariana S.	1.物材機構, 2. 産総研, 3. 筑波大
0:30		休憩/Break	Lima ^{1,3} , 櫻井 岳暁 ³ , 相澤 俊 ¹ , 森 孝雄 ¹	
0:45		ゼーベック係数を制御した異常ネルンスト型熱流センサ ーでの面直熱流計測	〇田中 宏和 1 , 肥後 友也 $^{2.3}$, 上杉 良太 3 , 中西 陽 1 , 待永 広宣 1 , 中辻 知 $^{2.3}$	
1:00	16a-D411-5	3ω法を用いたCuワイヤーの熱伝導率測定による離散 フーリエ変換を用いた正弦交流電圧測定の検証	○高田 丈志¹, 長谷川 靖洋¹	1.埼玉大院
1:15	16a-D411-6		〇天谷 康孝 ¹ , 島崎 毅 ¹ , 大川 顕次郎 ¹ , 坂本 憲彦 ¹ , 金 子 晋久 ¹	
1:30		高効率熱電変換	○掛本 博文¹	1.テクノプロ R&D
3:30		口頭講演 (Oral Presentation) D411会場(Room D411) 延性を有する化合物半導体 $Ag_2S_{1:x}Te_x$ ($x=0.3-0.6$)の 構造と熱電物性	○佐藤 紅介¹, 平田 圭佑¹, シン サウラブ¹, 松波 雅 治¹, 竹内 恒博¹	1. 豊田工大
3:45 4:00		銀カルコゲナイド Ag ₂ Teにおける電子物性の場所依存性 大気開放型 CVD 法による Cu-S 系化合物薄膜熱電変換材		1. 北陸先端大
4:15	16p-D411-4	料の作製 スクッテルダイト型硫化物 $Co_2Ge_3S_3$ の合成条件と熱電特 性	○橋國 克明¹, 阿武 宏明¹	1.山口東京理科大工
4:30	16p-D411-5	ケステライト化合物 Cu_2ZnSnS_4 を用いた環境調和型熱電デバイスの開発 $t^{*,0}$ (Papels	〇永岡 章 ¹ , 長友 克馬 ¹ , 岡本 晃一 ¹ , 吉野 賢二 ¹ , 西岡 賢祐 ¹	1.宮崎大工
4:45 5:00	16p-D411-6	休憩/Break 溶融法で作製した Mg ₃ Sb ₂ 系熱電材料への Si 添加効果	○羅 偉唐¹, 井上 裕之¹, 鵜殿 治彦²	1. テックスイージー, 2. 茨城大学
5:15	•	性		1. 横浜国立大学, 2. 防衛大学校
5:30 5:45	-	[Ca ₂ (Co _{0.65} Cu _{0.35}) ₂ O ₄] _{0.63} CoO ₂ の配向バルク体の作製と熱 電特性 エピタキシャル ZnO薄膜/Al2O3 の歪制御によるゼー		1. 東北大工 1. 阪大院基礎工, 2. 東邦大
5:45 5:00	10p-D411-9	エピタキシャル ZnO 溥	○小松原 布衡',石部 黄史',大江 純一郎',中村 方明¹	1. 四八四至灰土,4. 宋州八
6:15	E 16p-D411-10	Robust p-type Behavior of Epitaxial $Mg_2Sn_{1-x}Ge_x$ Thermoelectric Thin Films	○ (D)Kenneth Magallon Senados ^{1, 2} , Takashi Aizawa ² , Isao Ohkubo ² , Akira Uedono ¹ , Takao Mori ^{1, 2} , Takeaki Sakurai ¹	1.Tsukuba Univ., 2.NIMS
6:30	E 16p-D411-11	Thermoelectric properties of bulk Ni-doped β -FeSi $_2$	○ Sopheap Sam¹, Soma Odagawa¹, Hiroshi Nakatsugawa¹, Yoichi Okamoto²	1.Yokohama National Univ., 2.National Defense Academy
6:45	•	析		1.株式会社東ソー分析センター, 2.東ソー株式会社
	Fri.) 9:45 - 11:45	Ba ₈ Au _{6-x} Fe _x Ge ₄₀ クラスレートの熱電特性 口頭講演 (Oral Presentation) D411会場(Room D411)		1.山陽小野田市立山口東理大工
:45		部分酸化されたブルシャンブルー類似体を用いた三次電 池		1. 筑波大数理, 2. 筑波大エネ物セ
0:00 0:15 0:30		三次電池の放電レート特性と内部抵抗との相関 FeCl、錯体の形成による電気化学ゼーベック係数の制御 休憩/Break	○(B)尾崎 映志¹,柴田 恭幸¹,大貫 等¹,守友 浩² ○野村 由仁香¹,井上 大¹,守友 浩¹²	1. 東京海洋大, 2. 筑波大数理 1. 筑波大数物科, 2. 筑波大TREMS
0:30	17a-D411-4	熱化学セルに及ぼすGuanidinium添加のエントロピー効果	○関和彦¹, Nandal Vikas¹, 衛 慶碩¹, 向田 雅一¹, 堀 家 匠平², 桐原 和大¹	1. 産総研, 2. 神戸大院工
1:00	17a-D411-5	米 Ge粉体を用いた半導体増感型熱利用電池用電極の作製	○土井亮太¹,望月泰英¹,磯部敏宏¹,中島章¹,松下祥子¹	1.東工大物質
1:15	E 17a-D411-6	Enhancement of thermoelectric properties in carbon- nanotube yarns by an improved dispersion method	(C) (D)ANH NGOC NGUYEN ¹ , Naofumi Okamoto ¹ , Ryo Abe ¹ , Nikita Kumari ¹ , Manish Pandey ¹ , Hiroaki Benten ¹ , Yongyoon Cho ¹ , Masakazu Nakamura ¹	1.Laboratory for Organic Electronics, NAIST
1:30	17a-D411-7	アンビエント発電に向けた自立型電気化学ドーピング技 術の開発		1. 産総研 SSRC, 2. 京都工繊大
3/17(Fr		ポスター講演 (Poster Presentation) PB 会場(Room PB) InGaO ₃ (ZnO) _n の大型単結晶を用いた熱輸送特性	$○$ 加瀬 直樹 1 , 井上 禎人 1 , 漆間 由都 1 , 川上 冬樹 1 , 河	1.東理大理
	17p-PB02-2	PLD法で作製した硫化鉄薄膜の熱電特性	村 優介¹, 宮川 宣明¹ ○播間 愛実¹, 長南 安紀¹, 小宮山 崇夫¹, 小谷 光司¹, 山口 博之¹, 山内 繁¹, 菅原 靖², 関根 崇², 杉山 重彰²	1. 秋田県立大, 2. 秋田産業技術センター
	17p-PB02-3	二重管封入法で作製した Zn ₄ Sb ₃ の特性評価	○(B)尾関一樹¹,田橋正浩¹,竹内恒博²,高橋誠¹,後藤英雄¹	1.中部大工, 2.豊田工大
	•	系材料の電気伝導率計算	○平山 尚美1	1.島根大NEXTA
		磁性半導体MnBi₂Te₄超薄膜における横型熱電効果の第一 原理計算		1.金沢大自然, 2.金沢大NanoMaRi
		熱リークを考慮したTDIS法による無次元性能指数評価 走査電子顕微鏡/熱画像カメラを用いた金属ワイヤの熱 伝導特性評価	○兒玉琴胡¹,長谷川 靖洋¹ ○池田 浩也¹,川村 尚暉¹,望月 拓海¹,早川 泰弘¹,村 上 健司¹,猪川 洋¹,下村 勝¹	1. 埼玉大院 1. 静岡大
	17p-PB02-8	伝導特性評価 半導体増感型熱利用電池における PVDF-HFP 系固体高分 子電解質の検討		1.東工大物質
		New functional materials and new phenomena		
8/15(W∈ 0:00		口頭講演 (Oral Presentation) D221会場 (Room D221) 光応答性有機材料P3HTを用いたマテリアルリザバーデ バイスの評価	○中岡 佑輔¹, 琴岡 匠¹, 宇佐美 雄生¹², 田中 啓文¹.²	1.九工大, 2.Neumorph センター
0.00		- < H 1 Hert	○(P)Deep Banerjee¹, Yuki Usami¹, Hiroyuki	1.KYUTECH, 2.Ritsumeikan Univ

10:30	15a-D221-3	Su–Schrieffer–Heeger 回路における固有周波数ばらつき	〇長澤 郁弥¹, 福本 睛花¹, 鶴田 一魁¹, 宮前 義範¹, 奥 良彰¹, 中原 健¹	1.ローム
10:45	15a-D221-4	$BiFeO_3$ の磁気強誘電状態におけるスピン揺らぎ		1. 東北大金研, 2. 芙大理工, 3.KEK 物構研, 4. 総研大
11:00	15a-D221-5	磁性窒化マンガン - 炭素複合材料の低温合成に関する研究	○神保 直永¹,和田 善伸¹,本多 善太郎¹	1.埼玉大院理工
11:15	15a-D221-6	金属が均一分散した窒化炭素の簡易合成と磁性及びイオン吸着	〇島津 陸斗 1 , 萩原 政幸 2 , 木田 孝則 2 , 栗原 英紀 3 , 本 多 善太郎 1	1.埼玉大院理工, 2. 阪大先端強磁場, 3. 埼玉県産業技術 総合センター
11:30	15a-D221-7	有機無機層状水酸化コバルトの磁性と層剥離	〇安田 有智 1 , 久下 真人 1 , 萩原 政幸 2 , 木田 孝則 2 , 本 多 善太郎 1	1.埼玉大院理工, 2. 阪大先端強磁場
3/15(Wed.) 13:30 - 17:15	口頭講演 (Oral Presentation) D221会場 (Room D221)		
13:30	15p-D221-1	酸化クロムナノ粒子の室温強磁性的振る舞い3	\bigcirc (M2) 中澤 拓斗 1 , 府川 明弘 1 , 田村 丈介 1 , 山之内 大河 1 , 竹岡 智久 1 , 清水 智弘 3 , 高瀬 浩一 2	1.日大院理工, 2.日大理工, 3.関大システム理工
13:45		ZnOナノ粒子にみられる室温強磁性の磁気モーメントの 起源	大河1, 竹岡智久1, 高瀬浩一2	
14:00	15p-D221-3	Sb ₂ Te ₃ /強磁性体における逆スピンホール効果と界面構造	○諸田 美砂子¹, 畑山 祥吾¹, ジェバスワン ウイパ コーン², 深田 直樹², 齊藤 雄太¹	1. 産総研, 2. 物材機構
14:15	15p-D221-4	銀・水素形Y型ゼオライトにおけるPLの銀数依存性	\bigcirc (M1) 佐藤 大和 1 , 冨岡 凌輔 1 , 鳴海 旬哉 1 , 目黒 晴輝 1 , 宮永 崇史 1 , 鈴木 裕史 1	1. 弘前大院理工
14:30	15p-D221-5	Ag/Cu 形ゼオライトの PL 挙動	○鳴海 旬哉¹, 冨岡 凌輔¹, 目黒 晴輝¹, 佐藤 大和¹, 宮 永 崇史¹, 鈴木 裕史¹	1. 弘前大学大学院理工学研究科
14:45	15p-D221-6	光学フォノンモードに由来する極低温における比熱の増 大	○西岡 颯太郎¹, 齋藤 明子¹	1.物材研
15:00	奨 E 15p-D221-7	Computational Investigation of Strongly Correlated Yttrium, Europium-based Ternary Hydrides	○ (D)Abdul Ghaffar¹, Peng Song¹, Kenta Hongo², Ryo Maezono¹	1.Info Sci-JAIST, 2.RCACI-JAIST
15:15		休憩/Break		
15:30	奨 15p-D221-8	基板の表面状態が Si マイクロ・ナノロールの形状に及ぼす影響	〇喬 楊木易 1 ,新井 太貴 1 ,鈴木 俊明 1 ,吉越 章隆 2 ,丹 羽 雅昭 1 ,本橋 光也 1	1.東電大工, 2.原子力機構
15:45	奨 15p-D221-9	超臨界 CO ₂ を用いた触媒化プロセスによる Ni-P/PET 複合繊維の創製	○ (M1) 近藤 輝¹, 栗岡 智行¹, Wan-Ting Chiu¹, Chun-Yi Chen¹, Mark Chang¹, 上野 路佳², 神野 有 沙², 黒子 弘道², 曽根 正人¹	1. 東工大, 2. 奈良女
16:00	奨 E 15p-D221-10	Functionalization of Polyethylene Terephthalate Fabrics with Au@Cu ₂ O Core@Shell Nanocrystals for Environmental Purifications	○ JHENYANG WU ¹ , Tomoyuki Kurioka ¹ , Chun-Yi Chen ¹ , Masato Sone ¹ , Tso-Fu Mark Chang ¹ , Yung-Jung Hsu ²	1.Tokyo Tech, 2.NYCU
16:15		超臨界CO₂支援触媒化プロセスによるNi-P/PET複合3 次元材料の創製	○岩崎 亜美 ¹ , Po-Wei Cheng ¹ , 栗岡 智行 ¹ , Chun-Yi Chen ¹ , Tso-Fu Mark Chang ¹ , 曽根 正人 ¹	1.東工大
16:30	奨 15p-D221-12	ポリアニリンと貴金属原子の複合電極の開発と1-プロパ ノールの電解酸化に対する触媒活性評価	○吉田 祥平1	1.東工大物質理工
16:45	E 15p-D221-13	Silver Bismuth Iodide Rudorffite for Photocatalytic CO_2 Reduction	○ (D)JiaMao Chang¹, TingHan Lin¹, YinHsuan Chang¹, MingChung Wu¹	1.Chang Gung Univ.
17:00	15p-D221-14	マイクロ波分光による水素化酸化モリブデン光熱変換・ 触媒材料の電荷ダイナミクス解明	〇西久保 綾佑 1,2 , 桑原 泰隆 1,2,3 , 内藤 眞太郎 1 , 楠 和 樹 1 , 佐伯 昭紀 1,2	1. 阪大院工, 2. 阪大 ICS-OTRI, 3.JST さきがけ
3/16	(Thu.) 9:30 - 11:30	ポスター講演 (Poster Presentation) PB 会場(Room PB)		
	16a-PB02-1	酢酸塩ゲルから合成した $(Pr_{1-y}Sm_y)_{1-x}Ca_xCoO_3$ の特性評価	修平 ² , 一野 祐亮 ³ , 吉田 隆 ⁴	
	16a-PB02-2	酢酸塩ゲルから合成した $(Pr_{1-y}Y_y)_{1-x}Ca_xCoO_3$ の特性におよぼす酸素分圧の影響	後藤 英雄 ¹ , 舩木 修平 ² , 一野 祐亮 ³ , 吉田 隆 ⁴	
	16a-PB02-3	酢酸塩ゲルから合成した $(Pr_{1-y}Y_y)_{1-x}Ca_xCoO_3$ 厚膜の作製とその特性測定	後藤 英雄 ¹ , 舩木 修平 ² , 一野 祐亮 ³ , 吉田 隆 ⁴	
	16a-PB02-4	KOHフラックス法による $(Pr_{1-y}RE_y)_{1-x}Ca_xCoO_3$ 膜の組成制御	〇山本 樹輝 1 , 鷦鷯 瑛介 1 , 舩木 修平 1 , 山田 容土 1 , 田橋 正浩 2 , 吉田 隆 3 , 一野 祐亮 4	1. 島根大総理工, 2. 中部大, 3. 名古屋大, 4. 愛工大
		Pt薄膜トランジスタの量子輸送特性評価	○富田 亮¹, 木村 仁哉¹, 吉住 年弘¹	1. 埼大院理工
		ビスマス薄膜における電界効果応答評価	○木村 仁哉¹, 宮﨑 理央², 富田 亮¹, 吉住 年弘¹	1. 埼大院理工, 2. 埼大工
		定		1.埼大工, 2.埼大院理工
	E 16a-PB02-8	${\rm BaTiO_3/TiO_2}$ Nanocomposite for Piezo-Photocatalytic Wastewater Treatment	\bigcirc (M2) YiLin Wang $^{\rm l}$, Jia Mao Chang $^{\rm l}$, Ting Han Lin $^{\rm l}$, Ming Chung Wu $^{\rm l}$	1.Chang Gung Univ.
	E 16a-PB02-9	Electrospun Ag/PVP/PMMA Porous Nanofibers for Monitoring Exhaled Diabetes Biomarker	○ (M1)TingHung Hsieh¹, KaiChi Hsiao¹, TingHan Lin¹, YinHsuan Chang¹, MingChung Wu¹	1.Chang Gung Univ.
	16a-PB02-10	自己組織化を用いたZnOナノネット構造の形成と光応答 特性のサイズ依存性		1. 関西大学
	16a-PB02-11	基材の吸水性に着目した ${ m TiO_2}$ ナノニードル合成の制御とその物性評価	\bigcirc (M2) 白坂 知也 ^{1, 2} , 五十嵐 香 1 , 宮崎 ゆかり 2 , 根岸 信彰 2	1. 千葉工大院, 2. 産総研
10 ス	ピントロニクス	ス・マグネティクス / Spintronics and Magn	etics	
		はプログラム冒頭にございます。		
	Wed.) 13:30 - 15:30	ポスター講演 (Poster Presentation) PA 会場(Room PA)		1 市海上陸子 9 MIV 井頂
	15p-PA01-1	磁化固定層に合成反強磁性を用いた磁壁移動型MO光変	()(MZ) 早乙女 圴县 ', 川那 真弓 ', 青島 賢一 ', 船橋	1. 泉海天院上, 2.NHK 夜餅

15p-PA01-1 磁化固定層に合成反強磁性を用いた磁壁移動型MO光変 \bigcirc (M2) 早乙女 巧真 1 , 川那 真弓 2 , 青島 賢 $^-$ 2, 船橋 $^-$ 1. 東海大院エ, 2.NHK 技研 信彦2, 秋山泰伸1, 町田賢司2 調素子の磁化挙動シミュレーション 15p-PA01-2 ノッチ構造を用いた磁性細線型MO光変調素子 \bigcirc (M1) 保坂 千都 2 , 青島 賢-1, 川那 真弓 1 , 船橋 信 1.NHK 技研, 2. 東京電機大学院工 彦¹, 本橋 光也², 町田 賢司¹ 15p-PA01-3 第一原理計算に基づく磁気トンネル接合素子 Fe-LiF-〇関川 卓也 1 , 髙田 和樹 1 , 大野 義章 2 1.新潟大院自然, 2.新潟大理 MgO の電子状態 15p-PA01-4 Cr-Oシード層によるHcp(001)-Co₈₀Pt₂₀薄膜の垂直磁気 ○山根 治起¹, 長谷川 崇², 安川 雪子³, 小林 政信³ 1. 秋田産技センター, 2. 秋田大, 3. 千葉工大 特性の向上 15p-PA01-5 Remanent magnetic domain dependent spin-orbit torques \bigcirc 磯上 慎二 1 , 鈴木 -平 1 , 高橋 有紀子 1 1.物材機構 in $L1_0$ -FePt-C granular media 15p-PA01-6 磁性トポロジカル絶縁体素子の電圧制御磁化反転におけ \bigcirc 小峰 啓史 1 ,綿引 詩門 1 ,千葉 貴裕 2 1. 茨城大工, 2. 福島高専 る書き込みエラー率の数値解析 E 15p-PA01-7 Improvement of Spin-Orbit Torque efficiency for high ○ (B)Kazuhiko Tokunaga¹, Yuichiro Kurokawa¹, Lin 1.Kyushu Univ. speed Operation of Tb/Co-based skyrmions Zhang¹, Ryuta Satone¹, Hiromi Yuasa¹ E 15p-PA01-8 Current-induced domain wall motion in a perpendicularly \bigcirc (M1)Takaya Koyama¹, Yuki Nishioka¹, Tetsuya 1.Hokkaido Univ. Uemura¹, Michihiko Yamanouchi¹

E 15p-PA01-9	Temperature dependence of relaxation time of superparamagenetic tunnel junctions	○ (B)Haruna Kaneko ^{1,2} , Rikuto Ota ^{1,3} , Keito Kobayashi ^{1,3} , Shun Kanai ^{1,3,4,5,6,7} , Hideo Ohno ^{1,3,6,7,8} , Shunsuke Fukami ^{1,3,6,7,8,9}	1.RIEC, Tohoku Univ., 2.School of Eng., Tohoku Univ., 3.Grad. School of Eng., Tohoku Univ., 4.JST PRESTO, 5.DEFS, Tohoku Univ., 6.CSIS, Tohoku Univ., 7. WPI-AIMR, Tohoku Univ., 8.CIES, Tohoku Univ., 9. InaRIS
E 15p-PA01-10	Flexible spin device on dimethylpolysiloxane sheet	○ (B)Seiya Oishi¹, Yuichiro Kurokawa¹, Hiromi Yuasa¹	1.Kyushu Univ.
E 15p-PA01-11	Investigation of flexible magnetoresistive device using giant magnetoresistance	○ Yuichiro Kurokawa¹, Hiromi Yuasa¹	1.Kyushu Univ.
15p-PA01-12	電気化学的にエッチングされた Fe/Pt 二層膜におけるスピントルク強磁性共鳴	○鈴木 隆起¹, 白 怜土¹, 林 宏樹¹, 安藤 和也¹	1. 慶大理工
E 15p-PA01-13	Randomly generated magnetic wire for reservoir computing	○ Kohei Enju ¹ , Minori Goto ^{1, 2, 3} , Yoshishige Suzuki ^{1, 2, 3} , Hikaru Nomura ^{1, 2, 4}	1.Osaka Univ., 2.CSRN Osaka Univ., 3.OTRI Osaka Univ., 4.SRIS Tohoku Univ.
E 15p-PA01-14	Magnetization process of a single MTJ cell in artificial spin ice		1.AIST, 2.Osaka Univ., 3.CSRN-Osaka, 4.Tohoku Univ. SRIS
E 15p-PA01-15	Crystallographic analysis of SmFe ₂ /CoFeB/MgO/CoFeB magnetic tunnel junctions	○ (M1)Katsuki Masuda ¹ , Yasunobu Sasaki ¹ , Youta Takamura ¹ , Shigeki Nakagawa ¹	1.Tokyo Tech
15p-PA01-16	フェリ磁性 GdFeCo における単純/蓄積的な光誘起偏光 依存磁化反転	○大河内 拓雄 ^{1.9} , 高橋 龍之介 ² , 藤原 秀紀 ^{3.9} , 高橋	1.JASRI, 2.兵県大, 3.阪大, 4.東北大, 5.FZJ, 6.分子研, 7.東理大, 8.日本大, 9.理研, 10.東大
15p-PA01-17	レーザー照射による異常ネルンスト効果の四端子測定	○(B)望月 颯一郎¹,大林 尚文¹,杉浦 達²,塩田 陽 一²,森山 貴広²,小野 輝男²,佐藤 琢哉¹,山田 貴大¹	1. 東工大理, 2. 京大化研
15p-PA01-18	Gilbert damping in Pt/Co films with different capping layers	○(M2)一戸 優輔 ^{1,2} , 飯浜 賢志 ^{3,2} , マンダル ルマ ² , 水上 成美 ^{2,4}	1. 東北大応物, 2. 東北大 WPI-AIMR, 3. 東北大 FRIS, 4. 東北大 CSIS
E 15p-PA01-19	Spin dissipation in strained NiO (110) film	○ Yuta Kobayashi¹, Itaru Sugiura¹, Yoichi Shiota¹,², Teruo Ono¹,², Takahiro Moriyama¹,²,³	1.ICR, Kyoto Univ., 2.CSRN, Kyoto Univ., 3.PRESTO, JST
E 15p-PA01-20	Micromagnetic simulation of magnetic nano-particles detected using spin-wave	○ (M2)Shunki Nakamura ^{1, 2} , Satoshi Iihama ^{2, 3} , Shigemi Mizukami ^{2, 4}	1.Tohoku Univ., 2.AIMR,Tohoku Univ., 3.FRIS,Tohoku Univ., 4.CSIS,Tohoku Univ.
E 15p-PA01-21	Observation of mode splitting by magnon-magnon coupling in synthetic antiferromagnets	○ (DC)Daiju Hayashi¹, Yoichi Shiota¹.², Mio Ishibashi¹, Ryusuke Hisatomi¹.², Takahiro Moriyama¹.², Teruo Ono¹.²	1.ICR, Kyoto Univ., 2.CSRN, Kyoto Univ.
E 15p-PA01-22	Low spin-orbit torque efficiency at the Pt/Gd interface	○ (M2)Kyosuke Kuwano¹, Shinsaku Funada¹, Tomoya Ito¹, Yoichi Shiota¹², Ryusuke Hisatomi¹², Takahiro Moriyama¹², Teruo Ono¹.²	1.ICR, Kyoto Univ., 2.CSRN, Kyoto Univ.
15p-PA01-23	イオン注入した白金薄膜の外因性スピンホール効果	○ (M1) 草場 優 ¹ , シャシャンク ウトカシュ ¹ , 友田 好郁 ¹ , ノンジャイ ラジア ² , ムルム ビーター ³ , ケネ ディー ジョン ³ , カンダサミー アソカン ² , メドワル ロヒット ⁴ , グプタ スルビ ⁴ , ラワット ラジディープ ⁴ , 福間 康裕 ¹	1. 九州工大情工, 2.IUAC, 3.GNS サイエンス, 4. 南陽工 科大学
E 15p-PA01-24	Spin-orbit torque in Pt/NiO/Co structures deposited using Ar and Xe process gases for NiO layer	○ Toshiaki Morita¹, Tomohiro Koyama¹¹.².³.⁴, Daichi Chiba¹¹.².³.⁵	1.SANKEN, Osaka Univ., 2.CSRN, Osaka Univ., 3. OTRI, Osaka Univ., 4.JST PRESTO, 5.SRIS, Tohoku Univ.
E 15p-PA01-25	Spin-orbit torque induced magnetization switching in perpendicularly magnetized MnGa/Fe bilayer grown on GaAs	○ Mineto Ogawa¹, Takuya Hara¹, Michihiko Yamanouchi¹, Tetsuya Uemura¹	1.IST, Hokkaido Univ.
15p-PA01-26	Current Induced Magnetization Switching in Perpendicularly Magnetized (Mn-Cr)AlGe/W Bilayer Samples	○窪田 崇秀 ¹ , 加藤 剛志 ² , 本多 周太 ³ , 國部 義明 ^{2.4} , 高梨 弘毅 ^{5,1}	1. 東北大, 2. 名古屋大, 3. 関西大, 4. 早稲田大, 5. 原子力機構
15p-PA01-27	金属/強磁性絶縁体界面における磁気層間結合の電圧制 御	○日高 温志¹, 柳原 英人¹, 介川 裕章²	1. 筑波大, 2. 物材機構
15p-PA01-28	強磁性金属/電子正孔補償金属接合におけるスピン蓄積 II	○酒井 政道¹, 鯉沼 将大¹, 長谷川 繁彦²	1. 埼大院理工, 2. 阪大産研
E 15p-PA01-29	Spin injection based on spin pumping in microfabricated ferromagnetic metal/nonmagnetic semiconductor junctions	○ (M2)Theo Sasha Balland ^{1, 2} , Takeshi Seki ^{2, 3} , Takumi Yamazaki ² , Rie Umetsu ² , Mineto Ogawa ⁴ , Tetsuya Uemura ⁴ , Koki Takanashi ^{2, 5}	1.Grad. Sch. of Eng. Tohoku Univ., 2.IMR, Tohoku Univ., 3.CREST, JST, 4.Hokkaido Univ., 5.ASRC, JAEA
E 15p-PA01-30	Electrically tunable magnon FET driven by dynamic redox reaction	•	1.Tokyo Univ
E 15p-PA01-31	The Effect of External Electric Field on Electronic and Spin Properties of MoS ₂ -graphene van der Waals Heterostructures	\bigcirc (DC)Dian Putri Hastuti $^{\rm l}$, Kenji Nawa $^{\rm l-2}$, Kohji Nakamura $^{\rm l}$	1.Mie Univ., 2.NIMS
E 15p-PA01-32	Optical properties of MgO implanted with Ce and Li with different annealing conditions	○ (B)Manato Kawahara ^{1, 2} , Yuichiro Abo ^{1, 3} , Shun Kanai ^{1, 3, 4, 5, 6, 7} , Jun Ishihara ⁸ , Yusuke Aoki ⁸ , Makoto Kohda ^{3, 5} , Shunsuke Fukami ^{1, 3, 6, 7, 9, 10} , Hideo Ohno ^{1, 6, 7, 9}	1.RIEC, Tohoku Univ., 2.School Eng., Tohoku Univ., 3.Grad.School Eng., Tohoku Univ., 4.JST PREST, 5. DEFS Tohoku Univ., 6.CSIS Tohoku Univ., 7.WPI- AIMR Tohoku Univ., 8.Department of Applied Physics, Tokyo Univ.of Science, 9.CIES Tohoku Univ., 10.InaRIS
E 15p-PA01-33	First-principles calculation of the persistent spin helix on an OH-terminated diamond surface	○ (D)Hana Pratiwi Kadarisman¹, Naoya Yamaguchi², Fumiyuki Ishii²	1.Grad.Sch.Nat.Sci.Technol., Kanazawa Univ., 2. NanoMaRi, Kanazawa Univ.
15p-PA01-34	CdTe 自己形成ドット中のCrの荷電状態のESRによる検出		
•	フェリ磁性体Gd25Fe55Co20を用いた補償金属YH2へのスピン注入とハンル効果測定	花尻 達郎 ² , 清水 正章 ² , 中村 修 ³ , 鷲見 聡 ⁴ , Sina Ranjbar ⁴ , 栗野 博之 ⁴ , 長谷川 繁彦 ⁵	1. 埼大院理工, 2. 東洋大, 3. 岡山理大, 4. 豊田工大, 5. 阪大産研
	アンビボーラ伝導体における非平衡スピン・電荷輸送の 固有モード		1. 埼大院理工, 2. 阪大産研
	$(Fe_{ss}Co_{1t})_{1:x}Ag_{x}$ の組成傾斜薄膜の磁気円二色性 (MCD) スペクトル解析	Alexandre 1 , Varun Kumar Kushwaha 2 , 桜庭 裕弥 2 , 岩崎 悠真 2 , 小谷 佳範 3 , 小嗣 真人 1	1. 東理大先進工, 2.NIMS, 3.JASRI
15p-PA01-38	磁気円二色性を用いた ${ m Fe/Co/Fe/Ni}$ 多層膜の電子スピン 状態解析	〇中村 航平 1 , 古矢 大悟 1 , 小谷 佳範 2 , 山崎 貴大 1 , 小嗣 真人 1	1. 東理大先進工, 2.JASRI

	15p-PA01-39	磁気円二色性 (MCD) を用いた高飽和磁化 Fe_s Co- Ir 合金における磁気モーメントの起源の解析	○ (B) 河崎 崇広¹, 山崎 貴大¹, Foggiatto Lira Alexandre¹, 遠山 諒², Varun K. Kushwaha², 桜庭 裕 弥², 岩崎 悠真², 小谷 佳範³, 大河内 拓雄³, 小嗣 真 人¹	1. 東理大先進工, 2.NIMS, 3.JASRI
	15p-PA01-40	Structure and magnetic properties of epitaxial Fe-Ga thin films		1. 東北大院工, 2. 東北大金研, 3. 原子力機構
	E 15p-PA01-41	Tunnel magnetoresistance in ultrathin Mn-based perpendicular magnetic tunnel junctions grown on highly mismatched sapphire substrate	○ (M1C)Naoki Kamata ^{1, 2} , Shigemi Mizukami ^{2, 3} ,	1.Dept. Appl Phys, Tohoku Univ., 2.WPI AIMR, Tohoku Univ., 3.CSIS, Tohoku Univ., 4.ASRC, JAEA
	15p-PA01-42	Non-off Axis Sputtering Deposition of Ferrimagnetic Insulator Film with Perpendicular Magnetic Anisotropy	○山下 尚人 ^{1,2} , A Agustrisno ¹ , 奧村 賢直 ¹ , 鎌滝 晋 礼 ¹ , 板垣 奈穂 ¹ , 古閑 一憲 ^{1,3} , 白谷 正治 ¹ , Christopher Marrows ²	1. 九大シス情, 2. リーズ大学, 3.NINS
	15p-PA01-43	NiO(001)上のFe極薄膜における磁気異方性の電界制御		1. 筑波大, 2. 物材機構
		磁性ガーネット薄膜におけるコンビナトリアルFMR測定		1.NEC
		垂直磁気異方性を有するコバルトフェライト薄膜の導電性制御	下 大輔 ¹ , 本多 周太 ² , 岡林 潤 ³ , 壬生 攻 ¹	
		LSMO/ SrTiO₃(011) における界面格子歪み相と緩和相の 磁気特性		
	15p-PA01-47	Co/Ru/Co 人工反強磁性体における磁気異方性への電界 効果	○久田 優一', 小森 祥央', 井村 敬一郎', 谷山 智康'	1. 名大理
	15p-PA01-48	MA 法で作製した磁性 FeCo 合金及びフェライト粉末の 衝撃圧縮効果	○(M1)久能 北斗¹,下野 聖矢¹,岸村 浩明¹	1.防大理工
	15p-PA01-49	層状磁性体CrBr3のエピタキシャル成膜制御	\bigcirc (M2) 東田 大樹 ¹ , 森 由紀江 ² , 高橋 有紀子 ² , 山田 豊和 ^{1,3}	1.千葉大院工, 2.NIMS, 3.千葉大分子キラ研
	15p-PA01-50	計算と実験による積層型ナノコンポジット軟磁性薄膜の 磁化過程解析	○(B) 谷春菜¹, 山崎 貴大¹, Alexandre Foggiatto¹, 三 俣 千春¹, 小嗣 真人¹	1. 東理大先進工
	15p-PA01-51	MBE法により作製した磁性半導体二層構造MnTe/ FeTe		1. 筑波大院数物
	15p-PA01-52	界面での交換バイアスの発現 磁性細線における電流駆動磁壁移動のレーザ光検出	○鷲見 聡¹,鈴木 紀行¹,田辺 賢士¹,粟野 博之¹	1. 豊田工大
		New methods for measuring thermal conductivity in thin magnetic films		1. Toyota Tech. Inst., 2.Univ. of Leeds
	15p-PA01-54	Diamagnetic levitation of solid powder by permanent	○鈴木 智明¹, 菅谷 将之¹, 池添 泰弘¹	1.日工大院工
	15p-PA01-55		○(B)今枝 寬人¹,小田切 美穂¹,坂本 美雨¹,鷲見	1. 豊田工大
	15p-PA01-56	サの高感度化 異方性磁気インダクタンス効果	聡¹, 粟野 博之¹, 田辺 賢士¹ ○(B) 荘加 勇翔¹, 岡野 元基², 須藤 裕之², 鷲見 聡¹,	1. 豊田工大, 2. トヨタ自動車(株)
	15p-PA01-57	TMRセンサによるプロトンNMR信号計測	粟野 博之¹,田辺 賢士¹ ○高野 星哉¹,伊藤 淳¹,アルマダウィ ミフタ²,大兼	1. 東北大院工, 2. 東北大CSIS
	15p-PA01-58	Fe 中の Co 原子拡散における強磁場効果	幹彦¹ ○武石 仁美¹,服部 航士¹,樋岡 拓磨¹,小野寺 礼尚¹,	1. 茨城高專, 2. 東北大金研
			髙橋 弘紀 ²	
		(作製・評価技術)/ Emerging materials in spintronics and	magnetics (including fabrication and characterizati	on methodologies)
3/15(\ 5:45		口頭講演 (Oral Presentation) D704会場 (Room D704) B添加によるフェリ磁性 Mn ₄ N 薄膜の誘電率テンソルへ の影響	○坂口 穂貴¹, 磯上 慎二², 新美 信¹, 石橋 隆幸¹	1. 長岡技科大, 2. 物材機構
6:00	E 15p-D704-2	Operando XMCD for magnetic anisotropy control by reversible strain at Fe ₃ Si/PMN-PT interface	○ Jun Okabayashi¹, Takamasa Usami², Kohei Hamaya³,²	1.UTokyo, 2.CSRN, Osaka Univ., 3.Osaka Univ.
6:15	E 15p-D704-3	Transverse magneto-thermoelectric conversion in sintered Co_2MnGa slab	Kenta Takamori¹, ○ Koichi Oyanagi¹.¹², Takumi Imamura¹, Ren Nagasawa²³, Krishnan Mahalingam², Takamasa Hirai², Satoru Kobayashi¹, Ken-ichi Uchida².³.⁴	1.Iwate Univ., 2.NIMS, 3.Univ. of Tsukuba, 4.IMR, Tohoku Univ.
5:30	E 15p-D704-4	Photo-excited precession of magnetization in ultra-thin Co/Pd multilayers at low laser fluence regime	○ Hiro Munekata ^{1, 2} , Nicholas W. Smith ¹ , Yannick Pleimling ¹ , Brenden A. Magill ¹ , Rathsara R. Herath Mudiyanselage ¹ , Shunta Ogawa ² , Nozomi Nishizawa ^{2, 3} , Giti A. Khodaparast ¹	1.Virginia Tech, 2.Tokyo Tech., 3.Kitasato Univ.
6:45 7:00	E 15p-D704-5	休憩/Break Carbon-induced enhancement of anomalous Hall and negative anisotropic magnetoresistance effects in ferromagnetic thin films	○ Shinji Isogami¹, Yohei Kota², Hideyuki Yasufuku¹, Keiji Oyoshi¹, Masahiko Tanaka¹, Yukiko Takahashi¹	1.NIMS, 2.Fukushima KOSEN
7:15 7:30	15p-D704-6 15p-D704-7	磁壁幅計測を通した磁気交換スティフネスの決定法 ファンデルワールス型二次元材料 $EuSn_2P_2$ の元素選択的 な磁性	○新津甲大¹ ○神原陽一¹², 志村 岳栄¹, 劉 子豪¹, 的場 正憲¹², 北 尾 真司³, 瀬戸 誠³	1. 物材機構 1. 慶大物情, 2. 慶大スピン, 3. 京都大
7:45	15p-D704-8	フタロシアニン分子スペーサー膜を介する磁気抵抗	\bigcirc (M2) 東田 大樹 ¹ , 森 由紀江 ² , 葛西 伸哉 ² , 高橋 有紀子 ² , 山田 豊和 ^{1,3}	1. 千葉大院工, 2.NIMS, 3. 千葉大分子キラ研
3/17	(Fri.) 13:30 - 18:15	口頭講演 (Oral Presentation) D704会場 (Room D704)	₩C 1 , ECHEL 52/11	
3:30	招 17p-D704-1	「第44回優秀論文賞受賞記念講演」 トンネル磁気抵抗センサによるサブピコテスラ磁界検出	〇大兼 幹 $\hat{e}^{1.6}$, 藤原 耕輔 ² , 菅野 彰剛 ¹ , 中野 貴文 ¹ , 我妻 宏 ² , 有本 直 ⁴ , 水上 成美 ^{5.6} , 熊谷 静似 ² , 松崎 斉 ^{1.2} , 中里 信和 ³ , 安藤 康夫 ^{1.6}	1.東北大工, 2.スピンセンシングファクトリー, 3.東北 大医, 4.コニカミノルタ, 5.東北大 AIMR, 6.東北大 CSI
4:00	奨 E 17p-D704-2	Accelerating data-driven exploration of magnetocaloric materials by utilizing robotics	○ (M2)WeiSheng Wang ^{1,2} , Kensei Terashima ¹ , Pedro Baptista de Castro ^{1,2} , Yoshihiko Takano ^{1,2}	1.NIMS, 2.Univ. of Tsukuba
4:15	奨 E 17p-D704-3	CoFeVSb: A Promising Spintronic and Thermoelectric Material	○ (D)Jadupati Nag¹², Yukimi Nishioka², Yasumasa Takagi³, Akira Yasui³, Aftab Alam¹, K. G. Suresh¹, Akio Kimura²	1.IIT Bombay, 2.Hiroshima Univ., 3.JASRI
4:30	奨 E 17p-D704-4	Observation of large anomalous Nernst effect and quantum-critical scaling in the Weyl ferromagnet $Co_2MnGa\ thin\ films$	○ (D)Ryota Uesugi¹, Tomoya Higo¹,².³, Susumu Minami², Daisuke Nishio-Hamane¹, Zheng Zhu¹, Mihiro Asakura², Akito Sakai¹,².³, Yoshichika Otani¹,³.⁴, Ryotaro Arita³,⁴.⁵, Satoru Nakatsuji¹,².³,6.7	1.ISSP, Univ. of Tokyo, 2.Dep. of Phys, Univ. of Tokyo, 3.JST CREST, 4.RIKEN CEMS, 5.RCAST, Univ, of Tokyo, 6.TSQS, Univ. of Tokyo, 7.Johns Hopkins Univ.
4:45 5:00	奨 E 17p-D704-5	Growth of $Mn_{4-x}Ga_xN$ epitaxial films and analysis of their magnetic structure by X-ray magnetic circular dichroism 体態/Break		1.Univ. of Tsukuba, 2.KEK
5:00 5:15	E 17p-D704-6	怀恕/Break Electronic Structures of ferromagnetic Heusler Alloys	○ (D)Jakub Lustinec¹.², Masao Obata¹, Ko Hyodo¹,	1.Kanazawa Univ., 2.Czech Tech. Univ., 3.Tottori Univ.
5:30	E 17p-D704-7	Ni ₂ MnX (Al, Ga, In) and Magnetic shape memory effect Minority-spin Dominated Band Structure of Fe ₄ N Thin Films Revealed by Spin- and Angle-Resolved	Takao Kotani ³ , Ladislav Kalvoda ² , Tatsuki Oda ¹ Karen Nakanishi ¹ , Kiyotaka Ohwada ¹ , Kenta Kuroda ¹ , Kazuki Sumida ² , Hitoshi Sato ¹ , Koji	1.Hiroshima Univ., 2.JAEA, 3.NIMS, 4.PRESTO
		Photoelectron Spectroscopy	Miyamoto ¹ , Taichi Okuda ¹ , Shinji Isogami ³ , Keisuke Masuda ³ , Yuya Sakuraba ^{3, 4} , \bigcirc Akio Kimura ¹	

15:45	E 17p-D704-8	Growth of Au-doped $\mathrm{Mn_4N}$ epitaxial films: substrate dependence	○ Takumi Horiuchi ¹ , Taro Komori ¹ , Tomohiro Yasuda ¹ , Kenta Amemiya ² , Kaoru Toko ¹ , Takashi Suemasu ¹	1.Tsukuba Univ., 2.KEK
16:00	17p-D704-9	$Mn_{4-x}Ge_xN$ 薄膜のエピタキシャル成長と磁気輸送特性評価	○安田 智裕¹, 小森 太郎¹, 堀内 拓海¹, 旗手 蒼¹, 都甲 薫¹, 末益 崇¹	1. 筑波大
16:15 16:30	17p-D704-10	ノンコリニア反強磁性体Mn ₃ GaNの局所構造と磁気特性 休憩/Break		1.名大工
16:45	E 17p-D704-11	Converse magnetoelectric effect in bcc Co ₃ Mn/PMN-PT(001) multiferroic heterostructures	○ (M1) Yuichi Murakami¹, Takamasa Usami², Yu Shiratsuchi³, ²,⁴, Yuya Sanada¹, Shinya Yamada², ¹,⁴,	1.GSES, Osaka Univ., 2.CSRN, Osaka Univ., 3.GSE, Osaka Univ., 4.OTRI, Osaka Univ.
17:00	17p-D704-12	Anomalous Hall effect in Pt/Al-doped Cr ₂ O ₃ epitaxial thin		1. 阪大工, 2. 阪大OTRI, 3. 阪大CSRN
17:15	E 17p-D704-13	films $Room\ temperature\ ferromagnetism\ Ti_2O_3\ nanoparticles$ prepared by a planetary ball mill	谷亮一. ^{1,2,3} , 白土 優 ^{1,2,3} ○ Akihiro Fukawa ¹ , Takuto Nakazawa ¹ , Josuke Tamura ¹ , Chiehisa Takeoka ¹ , Taiga Yamanouchi ¹ , Toshinori Kodama ¹ , Naruya Serizawa ¹ , Kouichi Takase ²	1.Graduate School of Sci. and Tech., Nihon Univ., 2. College of Sci. and Tech., Nihon Univ.
17:30	E 17p-D704-14	Room temperature ferromagnetism of indium oxide islands	○ Chiehisa Takeoka¹, Takuto Nakazawa¹, Akihiro Fukawa¹, Josuke Tamura¹, Kouichi Takase²	1.Graduate School of Sci. and Tech., Nihon Univ., 2. College of Sci. and Tech., Nihon Univ.
17:45	奨E 17p-D704-15	Development of BiFeO ₃ -Based Multiferroic Thin Films with Excellent Magnetic Properties and Investigation of Their Etching Resistance for Magnetic Nano Device Applications	○ (DC)Soumyaranjan Ratha¹, Riku Suzuki¹, Kotaro Takeda¹, Daichi Yamamoto¹, Munusamy Kuppan¹, Genta Egawa¹, Satoru Yoshimura¹	1.Akita Univ.
18:00	•	(Bi,La)(Fe _{1-y} M_y)O ₃ (M = Co,Ni) 強磁性・強誘電性薄膜における B サイト置換元素種および置換量が磁気特性に及ぼす影響		1. 秋田大理工
		的デバイス技術 / Fundamental and exploratory device te 口頭講演 (Oral Presentation) D419会場(Room D419)	chnologies for spin	
9:00	招 E 16a-D419-1	[The 44th Young Scientist Award Speech]	○Juyoung Yoon¹, Takeuchi Yutaro¹, Itoh Ryuuichi¹,	1.Tohoku Univ.
0.15	Not make the control	Sputter-deposited non-collinear antiferromagnetic Mn ₃ Sn thin films with controlled crystal orientation	Kanai Shun ¹ , Fukami Shunsuke ¹ , Ohno Hideo ¹	1DD 711 1 11 22 21 71 71 71
9:15	奨 E 16a-D419-2	Helimagnet-based spintronics: control and detection of magnetic chirality	○ Hidetoshi Masuda ¹ , Takeshi Seki ¹ , Jun-ichiro Ohe ² , Yoichi Nii ^{1, 3} , Hiroto Masuda ¹ , Koki Takanashi ^{1, 4, 5} , Yoshinori Onose ¹	1.IMR, Tohoku Univ., 2.Dep. Phys., Toho Univ., 3.JST PRESTO, 4.CSIS, Tohoku Univ., 5.ASRC, JAEA
9:30	E 16a-D419-3	Direct observation of interfacial AFM spin reversal in Pt/ $\mbox{Cr}_2\mbox{O}_3/\mbox{Pt}$ epitaxial film	○ (M1)Kakeru Ujimoto¹, Hiroki Sameshima¹, Kentaro Toyoki¹.².³, Yoshinori Kotani⁴, Ryoichi Nakatani¹.².³, Yu Shiratsuchi¹.².³	1.Grad. Sch. Eng. Osaka Univ., 2.OTRI Osaka Univ, 3.CSRN Osaka Univ, 4.JASRI/SPring-8
9:45	E 16a-D419-4	Temperature Dependence of Spin-Charge Conversion Efficiency for ${\rm Co_3Sn_2S_2}$ Thin Film	○ Takeshi Seki¹, Yong-Chang Lau¹.², Junya Ikeda¹, Kohei Fujiwara¹, Akihiro Ozawa¹, Satoshi Iihama³.⁴, Kentaro Nomura¹.⁵, Atsushi Tsukazaki¹.6	1.IMR, Tohoku Univ., 2.IOP, CAS, 3.FRIS, Tohoku Univ., 4.WPI-AIMR, Tohoku Univ., 5.Dept. of Phys., Kyushu Univ., 6.CSIS, Tohoku Univ.
10:00	奨 E 16a-D419-5	Gate-tunable and chirality-dependent charge-to-spin conversion in Tellurium nanowires	○ (P)Francesco Calavalle ^{1,2} , Manuel Suarez- Rodriguez ¹ , Beatriz Martin-Garcia ^{1,5} , Annika Johansson ^{3,4} , Diogo Vaz ¹ , Haozhe Yang ¹ , Igor V. Maznichenko ³ , Sergey Ostanin ³ , Aurelio Mateo- Alonso ^{5,6} , Andrey Chuvilin ^{1,5} , Ingrid Mertig ³ , Marco Gobbi ^{1,5,7} , Felix Casanova ^{1,5} , Luis E. Hueso ^{1,5}	1.CIC nanogune BRTA, 2.Kyoto University, 3.Martin Luther Univ. Halle-Wittenberg, 4.Max Planck Institute of Microstructure Physics, 5.IKERBASQUE, 6. POLYMAT (UPV/EHU), 7.CFM CSIC-UPV/EHU
10:15	E 16a-D419-6	Effective magnetic field from chiral phthalocyanine with no net current		1.ISSP, Univ. Tokyo, 2.TSQS, Univ. Tokyo, 3.CEMS, RIKEN
10:30 10:45	16a-D419-7	休憩/Break Magnetization switching by circularly polarized x-ray free electron laser	○山田 貴大¹, 泉 瞭², 池渕 徹也³, 岡部 純幸², 久保 壮 生², 小輔 竜世², 小林 玲⁴, 久保田 雄也⁵.6, 大河內 拓 雄⁵.6, 塩田 陽一³, 森山 貴広³, 小野 輝男³, 松田 巌², 富樫 格⁵.6, 田中 義人², 鈴木 基寬¹	
11:00	奨 E 16a-D419-8	Numerical study on skyrmion transport with small size and high speed	○Ryuta Satone ¹ , Yuichiro Kurokawa ¹ , Hiromi Yuasa ¹	1.Kyushu Univ.
11:15	16a-D419-9	スピン軌道トルクによるスキルミオンの生成・駆動ダイ ナミクスの理論研究	○(M2)上保 友人¹, 望月 維人¹	1.早大先進理工
11:30		Control of distribution and motion of skyrmions by sloped electric field	Nomura ^{2, 3, 4} , Yoshishige Suzuki ^{2, 3, 4}	1.ULVAC, Inc., 2.Osaka Univ., 3.CSRN Osaka Univ., 4.OTRI Osaka Univ.
11:45	英E 16a-D419-11	High-speed observation of the chiral properties in the diffusion of magnetic skyrmions	○ (DC)Soma Miki ^{1,2,3} , Ryo Ishikawa ⁴ , Minori Goto ^{1,2,3} , Yoichi Shiota ^{5,6} , Eiiti Tamura ^{1,2,3} , Hikaru Nomura ^{1,2,3} , Yoshishige Suzuki ^{1,2,3}	1.Osaka Univ., 2.OTRI Osaka Univ., 3.CSRN Osaka Univ., 4.ULVAC, Inc., 5.Kyoto Univ., 6.CSRN Kyoto Univ.
		口頭講演 (Oral Presentation) D419会場(Room D419) Large anomalous Nernst effects in Ge-doped Co thin films	○ (M1)Takuya Tsujimoto¹, Takeshi Fujita², Toshio	1.Nagoya Univ., 2.Kochi Univ. Tech.
13:45	E 16p-D419-2	Thermoelectric effect in YIG/Co-Ru/Pt systems	Miyamachi¹, Masaki Mizuguchi¹ ○ (M1)Yuka Ikeda¹, Hamada Yuki¹, Kurokawa Yuichiro¹, Carmen Valderrama², Andreas Berger²,	1.Kyushu Univ., 2.CIC nanoGUNE BRTA
14:00	16p-D419-3	GdFe フェリ磁性薄膜におけるゼーベック効果に由来する異常ネルンスト効果の検討	Hiromi Yuasa¹ ○小林 祐希¹, 笠谷 雄一², 吉川 大貴², 塚本 新²	1.日大院理工, 2.日大理工
14:15	E 16p-D419-4	Crystalline orientation dependence of spin current transmission in epitaxial NiO film probed by thermo-spin effects	○ (P)Takumi Yamazaki¹, Takeshi Seki¹.², Takahide Kubota³, Koki Takanashi¹.⁴	1.IMR, Tohoku Univ., 2.NIMS, 3.Tohoku Univ., 4.ASRC JAEA
14:30	E 16p-D419-5		○ Zaizhou Jin ^{1, 2} , Mandal Mandal ² , Shigemi Mizukami ^{2, 3}	1.Tohoku Univ., 2.AIMR,Tohoku Univ., 3.CSIS,Tohoku Univ.
14:45	奨 E 16p-D419-6	Control of magnetization damping in ultrathin $Co_{25}Fe_{75}$ film via the change of interfacial magnetic anisotropy at the capping layer/FM layer interface	○ (D)Shugo Yoshii ^{1,2} , Manuel Muller³, Ryo Ohshima ^{1,2} , Matthias Althammer³, Hans Huebl³, Masashi Shiraishi ^{1,2}	1.Kyoto Univ., 2.CSRN, Kyoto Univ., 3.Walther- Meissner-Institute
15:00 15:15	16p-D419-7	休憩/Break Mode-tunable magnon-phonon interaction in a phononic crystal cavity magnomechanics	○畑中 大樹¹, 浅野 元紀¹, 岡本 創¹, 山口 浩司¹	1.NTT物性研
15:30	E 16p-D419-8	Magneto-elastic coupling and spin wave dynamics in	○ (M2)Lihao Yao¹, Siyi Tang¹, Md Shamim Sarker¹,	1.The Univ. of Tokyo

15:45	奨 E 16p-D419-9	Microwave spectroscopy for field dispersions in \mbox{MnCO}_3	○ Takahiko Makiuchi ¹ , Takashi Kikkawa ¹ , Thanaporn Sichanugrist ¹ , Junki Numata ¹ , Saburo Takahashi ² , Eiji Saitoh ^{1,2,3,4}	1.Univ. Tokyo, 2.AIMR Tohoku Univ., 3.BAI Univ. Tokyo, 4.JAEA
16:00	E 16p-D419-10	Real space observation of microwave excited spin wave modes in a magnetic disk	○ Tomosato Hioki ^{1, 2} , Tomonao Araki ² , Kosuke Umemura ² , Koujiro Hoshi ^{2, 3} , Eiji Saitoh ^{2, 1, 3, 4}	1.AIMR, Tohoku Univ., 2.Dept. Appl. Phys. Univ. Tokyo, 3.Inst. AI and Beyond, Univ. Tokyo, 4.JAEA
16:15 16:30		人工格子によるスピン波複数波源の生成と伝搬検出 波数の異なる蛇行アンテナを用いたスピン波の励起およ	○ (M2) 田中 博規¹, 根津 昇輝¹, 関口 康爾¹ ○ (M2) 原 大賀¹, 笠原 健司¹, 眞砂 卓史¹	1. 横浜国大 1. 福岡大理
		び検出		
16:45	₩ F 1/ D410 12	休憩/Break	○(D)H 11: M V C 1:2 V V 1:3	1 T 1 T 1 ONIME OFFI V . II '
17:00	英 E 10p-D419-13	Spintronic THz emitter with $L1_2$ -ordered antiferromagnetic Mn_3Ir	○ (D)Huiling Mao ¹ , Yuta Sasaki ² , Yuta Kobayashi ³ , Shinji Isogami ² , Teruo Ono ³ , Takahiro Moriyama ³ , Yukiko K. Takahashi ² , Kihiro T. Yamada ¹	1.Tokyo Tech, 2.NIMS, 3.ICR, Kyoto Univ.
17:15	E 16p-D419-14	Non-linear mode coupling mediated by three-magnon	○ Aakanksha Sud ^{3, 1} , Satoshi Iihama ^{4, 1} , Hidekazu	1.Tohoku Univ., 2.UCL, 3.WPI-AIMR, 4.FRIS, 5.CSIS
17:30	E 16p-D419-15	interaction in synthetic antiferromagnets Parametric amplification of magnetization dynamics in	Kurebayashi ^{2,3,1} , Shigemi Mizukami ^{3,1,5} ○ (D)Geil Emdi ¹ , Tomosato Hioki ^{1,2} , Eiji	1.Dept. Appl. Phys., Univ. Tokyo, 2.AIMR Tohoku Univ.,
		magnetic thin disks	Saitoh ^{1, 2, 3, 4}	3.Inst. AI and Beyond, Univ. Tokyo, 4.JAEA
17:45	E 16p-D419-16	Power dependence of magnetization dynamics in magnetic parametron	O Hiroki Shimizu ¹ , Tomosato Hioki ^{2, 1} , Eiji Saitoh ^{1, 2, 3, 4}	 Dept. Appl. Phys. Univ. Tokyo, 2.AIMR Tohoku Univ., Inst. AI and Beyond, Univ. Tokyo, 4.JAEA
18:00	E 16p-D419-17	Nano-scale reservoir computing based on propagating	O Satoshi Iihama ^{1,2} , Yuya Koike ^{3,2,5} , Shigemi	1.FRIS, Tohoku Univ., 2.AIMR, Tohoku Univ., 3.Tohoku
18:15	E 16p-D419-18	spin-waves in a ferromagnetic thin film Room temperature spin cluster glass mediated spin wave	Mizukami ^{2,4} , Natsuhiko Yoshinaga ^{2,5} ○ (P)Kaijie Ma ¹ , Kenyu Terao ¹ , Zhiqiang Liao ¹ ,	Univ., 4.CSIS, Tohoku Univ., 5.MathAM-OIL, AIST 1.The Univ. of Tokyo
		for reservoir computing	Hitoshi Tabata ¹	
		口頭講演 (Oral Presentation) D704会場 (Room D704) Theoretical investigation of cavity magnomechanics with	OM . 1' A 1 II' 1' M 2 M	1 NET DDI 9 TI II' (T. I
9:00	E 18a-D704-1	a synthetic antiferromagnet	○ Motoki Asano¹, Hiroki Matsumoto², Masamitsu Hayashi², Daiki Hatanaka¹	1.NTT BRL, 2.The Univ. of Tokyo
9:15	E 18a-D704-2	Phonon-magnon coupling in a synthetic antiferromagnet	○Hiroki Matsumoto¹, Daiki Hatanaka², Motoki	1.The Univ. of Tokyo, 2.NTT-BRL
		integrated into a surface acoustic wave cavity	Asano ² , Takuya Kawada ¹ , Masashi Kawaguchi ¹ , Masamitsu Hayashi ¹	
9:30	奨 E 18a-D704-3	Electrical detection of antiferromagnetic dynamics in	○ Shinsaku Funada¹, Yuya Ishikawa², Motoi Kimata³,	1.ICR, Kyoto Univ., 2.FIR, Univ. of Fukui, 3.IMR,
		\mbox{GdCo} thin films by using a 154 GHz gyrotron irradiation	Yuusuke Yamaguchi ² , Kanata Hayashi ² , Tomonori Sano ² , Koki Sugi ¹ , Yutaka Fuji ² , Seitaro Mitsudo ² , Yoichi Shiota ^{1,4} , Teruo Ono ^{1,4} , Takahiro	Tohoku Univ., 4.CSRN, Kyoto Univ., 5.PRESTO, JST
9:45	E 18a-D704-4	Observation of superfluid-like spin transport in NiO	Moriyama ^{1, 4, 5} (M2)Itaru Sugiura ¹ , Yuta Kobayashi ¹ , Koki Sugi ¹ ,	1.ICR, Kyoto Univ., 2.CSRN, Kyoto Univ., 3.PRESTO,
			Ryusuke Hisatomi 1,2,3 , Yoichi Shiota 1,2 , Teruo Ono 1,2 , Takahiro Moriyama 1,2,3	JST
10:00	18a-D704-5	表面金属状態を有するSrTiO ₃ におけるイオンゲーティングによる円偏光ガルバノ効果の変調	○山本 真央¹, 西嶋 泰樹¹.², 大島 諒¹.², 安藤 裕一郎¹.², 白石 誠司¹.²	1.京大工, 2.CSRN 京都大学
10:15		休憩/Break		
10:30	招 E 18a-D704-6	[The 53rd Young Scientist Presentation Award Speech]		1.The Univ. of Tokyo, 2.Nagoya Univ.
10:45	奨 E 18a-D704-7	The origin of the acoustic spin Hall effect Research on Spin Hall Angle in CuBi Alloys by Spin Torque Measurement	Kawaguchi ¹ , Hiroshi Kohno ² , Masamitsu Hayashi ¹ (B) Katsuhiro Tatsuoka ¹ , Ryo Ohshima ^{1, 2} , Yuichiro Ando ^{1, 2} , Masashi Shiraishi ^{1, 2}	1.Kyoto Univ., 2.CSRN, Kyoto Univ.
11:00	18a-D704-8	リンイオンを注入した白金薄膜のスピンホール効果	Ando , Masasin Sinraisin ○ (M2) 友田 好郁¹, シャシャンク ウトカッシュ¹, 草 場 優¹, 堀部 陽一¹, 石丸 学¹, 浅田 裕法², 福間 康裕¹	1. 九工大, 2. 山口大工
11:15	奨 E 18a-D704-9	Emergence of large spin-charge interconversion at an		1.CIC nanoGUNE BRTA, 2.Kyoto Univ., 3.Univ.
		oxidized Cu/W interface	Won Young Choi ¹ , Andrey Chuvilin ^{1,6} , Edurne Sagasta ¹ , Diogo C. Vaz ¹ , Isabel C. Arango ¹ , Nerea Ontoso ¹ , F. Sebastian Bergeret ^{4,5} , Luis E. Hueso ^{1,6} , Ilya V. Tokatly ^{5,6,7} , Felix Casanova ^{1,6}	Grenoble Alpes, CNRS, Institut Neel, 4.CFM-MPC, 5.DIPC, 6.IKERBASQUE, 7.ETSF, Basque Univ.
11:30	E 18a-D704-10	Orbital torque modulation by oxygen accumulation	○ Junyeon Kim¹, Jun Uzuhashi², Dongwook Go³.⁴, Daegeun Jo⁵, Tadakatsu Ohkubo², Seiji Mitani², Hyun-Woo Lee⁵, YoshiChika Otani⁴.¹	1.RIKEN-CEMS, 2.NIMS, 3.PGI-IAS, 4.Univ. Mainz, 5.POSTECH, 6.ISSP, Univ. Tokyo
11:45	E 18a-D704-11	Current-induced domain-wall motion in synthetic	○ Hiroto Masuda ^{1, 2} , Yuta Yamane ^{3, 4} , Takeshi Seki ^{1, 5} ,	1.IMR, Tohoku Univ., 2.Grad. Sch. Eng., Tohoku Univ.,
		antiferromagnets with antisymmetric interlayer exchange coupling	Takaaki Dohi ⁴ , Takumi Yamazaki ¹ , Rajkumar Modak ⁵ , Ken-ichi Uchida ^{1,5} , Jun'ichi Ieda ⁶ , Mathias	3.FRIS, Tohoku Univ., 4.RIEC, Tohoku Univ., 5.NIMS, 6.ASRC, JAEA, 7.Institute of Physics, Johannes
10 2 7	プレンデバイフ・磁気	メモリ・ストレージ技術 / Spin devices, magnetic memo	Klaui ⁷ , Koki Takanashi ^{1,6}	Gutenberg Univ. Mainz
		口頭講演 (Oral Presentation) D704会場 (Room D704)		
9:15		Post-annealing effect on voltage induced coercivity change		1.AIST, 2.UTokyo
		in Pt/Ru/Co/CoO/TiO _x system	Tamaru ¹ , Makoto Konoto ¹ , Takayuki Nozaki ¹ , Shinji Yuasa ¹	
9:30	E 16a-D704-2	Reduction of Write-Error Rates in Voltage-Induced	ORie Matsumoto ¹ , Shinji Yuasa ¹ , Imamura Hiroshi ¹	1 AICT
		Dynamic Precessional Switching by Elliptical Cylinder	The Matsunioto , onling Tuasa , manura mirosin	1.4101
9:45	16a-D704-3	Dynamic Precessional Switching by Elliptical Cylinder Recording Layers Perpendicular magnetic anisotropy obtained by inserting an ultrathin LiF layer at an Fe/MgO interface: a	○北岡 幸恵¹, 今村 裕志¹	1. 産総研
9:45	16a-D704-3 奨E 16a-D704-4	Dynamic Precessional Switching by Elliptical Cylinder Recording Layers Perpendicular magnetic anisotropy obtained by inserting an ultrathin LiF layer at an Fe/MgO interface: a first-principles calculations Increased orbital magnetic moment and perpendicular	○北岡幸恵¹, 今村 裕志¹ ○Shoya Sakamoto¹, Takayuki Nozaki², Shinji Yuasa²,	1. 産総研 1.ISSP, Univ. of Tokyo, 2.AIST, 3.IMSS, KEK, 4.TSQS,
		Dynamic Precessional Switching by Elliptical Cylinder Recording Layers Perpendicular magnetic anisotropy obtained by inserting an ultrathin LiF layer at an Fe/MgO interface: a first-principles calculations	○北岡幸恵¹, 今村裕志¹	1. 産総研
10:00 10:15	奨 E 16a-D704-4	Dynamic Precessional Switching by Elliptical Cylinder Recording Layers Perpendicular magnetic anisotropy obtained by inserting an ultrathin LiF layer at an Fe/MgO interface: a first-principles calculations Increased orbital magnetic moment and perpendicular magnetic anisotropies at the Fe/LiF interface Influence of alkali halide insertions on magnetic anisotropy	○北岡幸恵¹, 今村 裕志¹ ○Shoya Sakamoto¹, Takayuki Nozaki², Shinji Yuasa², Kenta Amemiya³, Shinji Miwa¹.⁴	1. 産総研 1. ISSP, Univ. of Tokyo, 2. AIST, 3. IMSS, KEK, 4. TSQS, Univ. of Tokyo
10:00	奨 E 16a-D704-4	Dynamic Precessional Switching by Elliptical Cylinder Recording Layers Perpendicular magnetic anisotropy obtained by inserting an ultrathin LiF layer at an Fe/MgO interface: a first-principles calculations Increased orbital magnetic moment and perpendicular magnetic anisotropies at the Fe/LiF interface Influence of alkali halide insertions on magnetic	○北岡幸恵¹, 今村 裕志¹ ○ Shoya Sakamoto¹, Takayuki Nozaki², Shinji Yuasa², Kenta Amemiya³, Shinji Miwa¹.⁴ ○ (M1)Jieyi Chen¹, Shoya Sakamoto¹, Hidetoshi	1. 産総研 1. ISSP, Univ. of Tokyo, 2. AIST, 3. IMSS, KEK, 4. TSQS, Univ. of Tokyo
10:00 10:15 10:30	奨E 16a-D704-4 E 16a-D704-5	Dynamic Precessional Switching by Elliptical Cylinder Recording Layers Perpendicular magnetic anisotropy obtained by inserting an ultrathin LiF layer at an Fe/MgO interface: a first-principles calculations Increased orbital magnetic moment and perpendicular magnetic anisotropies at the Fe/LiF interface Influence of alkali halide insertions on magnetic anisotropy 休憩/Break	○北岡 幸恵¹, 今村 裕志¹ ○ Shoya Sakamoto¹, Takayuki Nozaki², Shinji Yuasa², Kenta Amemiya³, Shinji Miwa¹.⁴ ○ (M1) Jieyi Chen¹, Shoya Sakamoto¹, Hidetoshi Kosaki¹, Shinji Miwa¹.²	1. 産総研 1.ISSP, Univ. of Tokyo, 2.AIST, 3.IMSS, KEK, 4.TSQS, Univ. of Tokyo 1.ISSP-UTokyo, 2.TSQS-UTokyo
10:00 10:15 10:30 10:45 11:00	奨E 16a-D704-4 E 16a-D704-5 16a-D704-6	Dynamic Precessional Switching by Elliptical Cylinder Recording Layers Perpendicular magnetic anisotropy obtained by inserting an ultrathin LiF layer at an Fe/MgO interface: a first-principles calculations Increased orbital magnetic moment and perpendicular magnetic anisotropies at the Fe/LiF interface Influence of alkali halide insertions on magnetic anisotropy 休憩/Break スピントルク MRAMの書き込みエラー率分布 Diameter and thickness dependence of magnetization reversal in shape-anisotropy magnetic tunnel junctions TaFeB spacer for soft magnetic composite free layer in	○北岡 幸恵¹, 今村 裕志¹ ○ Shoya Sakamoto¹, Takayuki Nozaki², Shinji Yuasa², Kenta Amemiya³, Shinji Miwa¹·⁴ ○ (M1) Jieyi Chen¹, Shoya Sakamoto¹, Hidetoshi Kosaki¹, Shinji Miwa¹·² ○ 今村 裕志¹, 荒井 礼子¹, 松本 利映¹ 五十嵐 純太¹², ○陣内 佛霖³, 渡部 杏太¹, エバンスリチャード⁴, 深見 俊輔¹.³.⁵.6⁻, 大野 英男¹.³.⁵.6	1. 産総研 1.ISSP, Univ. of Tokyo, 2.AIST, 3.IMSS, KEK, 4.TSQS, Univ. of Tokyo 1.ISSP-UTokyo, 2.TSQS-UTokyo 1. 産総研 1. 東北大通研, 2. ロレーヌ大学 IJL, 3. 東北大WPI-AIMR, 4. ヨーク大物理, 5. 東北大CSIS, 6. 東北大CIES,
10:00 10:15 10:30 10:45 11:00	奨E 16a-D704-4 E 16a-D704-5 16a-D704-6 16a-D704-7	Dynamic Precessional Switching by Elliptical Cylinder Recording Layers Perpendicular magnetic anisotropy obtained by inserting an ultrathin LiF layer at an Fe/MgO interface: a first-principles calculations Increased orbital magnetic moment and perpendicular magnetic anisotropies at the Fe/LiF interface Influence of alkali halide insertions on magnetic anisotropy 休憩/Break スピントルク MRAMの書き込みエラー率分布 Diameter and thickness dependence of magnetization reversal in shape-anisotropy magnetic tunnel junctions TaFeB spacer for soft magnetic composite free layer in CoFeB/MgO/CoFeB-based magnetic tunnel junction Noise characteristics of tunnel magnetoresistance sensors	○北岡 幸恵¹, 今村 裕志¹ ○ Shoya Sakamoto¹, Takayuki Nozaki², Shinji Yuasa², Kenta Amemiya³, Shinji Miwa¹¹⁴ ○ (M1)Jieyi Chen¹, Shoya Sakamoto¹, Hidetoshi Kosaki¹, Shinji Miwa¹¹² ○ 今村 裕志¹, 荒井 礼子¹, 松本 利映¹ 五十嵐 純太¹², ○陣內 佛霖³, 渡部 杏太¹, エバンス リチャード⁴, 深見 俊輔 ¹³³, 表示, 大野 英男 ¹³³, 5.6° ○ Takafumi Nakano¹, Kosuke Fujiwara², Seiji Kumagai², Yasuo Ando¹¹, Mikihiko Oogane¹¹³ ○ Tomoya Nakatani¹, Hirofumi Suto¹, Prabhanjan	1. 産総研 1. ISSP, Univ. of Tokyo, 2. AIST, 3. IMSS, KEK, 4. TSQS, Univ. of Tokyo 1. ISSP-UTokyo, 2. TSQS-UTokyo 1. 産総研 1. 東北大通研, 2. ロレーヌ大学 IJL, 3. 東北大WPI-AIMR, 4. ヨーク大物理, 5. 東北大 CSIS, 6. 東北大 CIES, 7. 稲盛科学研究機構
10:00 10:15 10:30 10:45 11:00	奨 E 16a-D704-4 E 16a-D704-5 16a-D704-6 16a-D704-7 奨 E 16a-D704-8 E 16a-D704-9	Dynamic Precessional Switching by Elliptical Cylinder Recording Layers Perpendicular magnetic anisotropy obtained by inserting an ultrathin LiF layer at an Fe/MgO interface: a first-principles calculations Increased orbital magnetic moment and perpendicular magnetic anisotropies at the Fe/LiF interface Influence of alkali halide insertions on magnetic anisotropy 休憩/Break スピントルク MRAMの書き込みエラー率分布 Diameter and thickness dependence of magnetization reversal in shape-anisotropy magnetic tunnel junctions TaFeB spacer for soft magnetic composite free layer in CoFeB/MgO/CoFeB-based magnetic tunnel junction	○北岡 幸恵¹, 今村 裕志¹ ○ Shoya Sakamoto¹, Takayuki Nozaki², Shinji Yuasa², Kenta Amemiya³, Shinji Miwa¹·⁴ ○ (M1) Jieyi Chen¹, Shoya Sakamoto¹, Hidetoshi Kosaki¹, Shinji Miwa¹·² ○ 今村 裕志¹, 荒井 礼子¹, 松本 利映¹ 五十嵐 純太¹², ○陣内 佛霖³, 渡部 杏太¹, エバンスリチャード⁴, 深見 俊輔¹³.3.5.6.7, 大野 英男¹.3.5.6 ○ Takafumi Nakano¹, Kosuke Fujiwara², Seiji Kumagai², Yasuo Ando¹·³, Mikihiko Oogane¹.3	1. 産総研 1. ISSP, Univ. of Tokyo, 2. AIST, 3. IMSS, KEK, 4. TSQS, Univ. of Tokyo 1. ISSP-UTokyo, 2. TSQS-UTokyo 1. 産総研 1. 東北大通研, 2. ロレーヌ大学 IJL, 3. 東北大WPI-AIMR, 4. ヨーク大物理, 5. 東北大CSIS, 6. 東北大CIES, 7. 稲盛科学研究機構 1. Tohoku Univ., 2. SSF Corp., 3. CSIS

3/17 9:00	7(Fri.) 9:00 - 12:00 奨 17a-D704-1	口頭講演 (Oral Presentation) D704会場 (Room D704) イットリウム鉄ガーネットと非磁性金属を用いた二次元 マグノニック結晶の設計	○森 冠太 ^{1,2} , 高口 拓己 ^{1,2} , 渡邉 聡明 ³ , 井上 光輝 ¹ , 石 山 和志 ¹ , 後藤 太一 ¹	1. 東北大通研, 2. 東北大工学研究科, 3. 信越化学工業(株)
9:15	奨 E 17a-D704-2	Double heterostructure introduction in Pt/Ni/Co system for skyrmion with small size and fast transport	○ Lin Zhang¹, Kazuhiko Tokunaga¹, Yuichiro Kurokawa¹, Ryuta Satone¹, Takehiro Tamaoka¹, Yuto Tomita¹, Yasukazu Murakami¹, Hiromi Yuasa¹	1.Kyushu Univ.
9:30	奨 E 17a-D704-3	Development of a vertical domain wall motion memory with perpendicular magnetic anisotropy	○ Feifan Ye¹, Heechan Jang¹, Yoichi Shiota¹, Satoshi Sugimoto², Shinya Kasai², Teruo Ono¹	1.Kyoto Univ., 2.NIMS
9:45	奨 E 17a-D704-4	Detection of spin-orbit torque on magnetostrictive SmFe ₂ thin films with perpendicular magnetic anisotropy for piezoelectronic magnetic tunnel junctions	9 . , ,	1.Tokyo Tech
10:00	E 17a-D704-5	Large tunnel magnetoresistance in (111)-oriented junctions with a ${\rm SrTiO_3}$ barrier	○ Keisuke Masuda ¹ , Hiroyoshi Itoh ² , Yoshiaki Sonobe ³ , Hiroaki Sukegawa ¹ , Seiji Mitani ¹ , Yoshio Miura ¹	1.NIMS, 2.Kansai Univ., 3.Waseda Univ.
10:15	招 17a-D704-6	休憩/Break 「第23回業績賞(研究業績)受賞記念講演」 酸化マグネシウム磁気トンネル接合の先駆的研究	○湯浅 新治12	1. 産総研, 2. 筑波大
11:15	17a-D704-7	面内スピンバルブ型 CoFeB/MgO/CoFeB 強磁性トンネル接合における高効率データ取得と多層構造最適化	○介川 裕章¹, Scheike Thomas¹, Wen Zhenchao¹, 葛西 伸哉¹, 三谷 誠司¹	1. 物材機構
11:30	E 17a-D704-8	$Staircase-like tunnel \ resistance \ increase \ with \ barrier \\ thickness \ in \ epitaxial \ Fe/Mg_tAl-Ox/Fe(001) \ magnetic \\ tunnel \ junctions$	○ Thomas Scheike¹, Zhenchao Wen¹, Shinya Kasai¹, Hiroaki Sukegawa¹, Seiji Mitani¹	1.NIMS
11:45	奨 E 17a-D704-9	Large magnetoresistance ratio in polycrystalline silicon vertical spin valve	○ (M2)Tatsuki Watanabe ¹ , Minori Goto ^{1,2,3} , Ando Yuichiro ⁴ , Nomura Hikaru ^{1,2,3} , Suzuki Yoshishige ^{1,2,3}	
10.4 半	≚導体・トポロジカル	・超伝導・強相関スピントロニクス / Spintronics in semi	conductor, topological material, superconductor, and	d multiferroics
3/16(13:30		口頭講演 (Oral Presentation) D704会場(Room D704) 超格子バリアを用いた電界効果型量子ドット光スピンデ	○木瀬 寛都¹, 朴 昭暎¹, 樋浦 諭志¹, 高山 純一¹, 末岡	1.北大院情報科学
13:45	奨 E 16p-D704-2	バイスの作製 Proposal of electron spin wave filter in semiconductor	和久¹, 村山 明宏¹ ○ (M1)Keito Kikuchi¹, Kai Nakajima¹, Shutaro	1.Grad. Sch. of Eng., Tohoku Univ., 2.FRIS, Tohoku
		two-dimensional electron gas	Karube ¹ , Chaoliang Zhang ² , Makoto Kohda ^{1, 3, 4, 5}	Univ., 3.CSIS, Tohoku Univ., 4.FRiD, Tohoku Univ., 5.QUARC, QST
14:00	16p-D704-3	(001)GaAs/AlGaAs量子井戸における電子スピン空間分布の光制御	〇時光 遼 1 , 鈴木 拓也 1 , 森 貴親 1 , 石原 淳 1 , 大野 裕 三 2 , 宮島 顕祐 1	1. 東理大理, 2. 筑波大
14:15	16p-D704-4	GaAsBi エピタキシャル薄膜におけるスピン軌道相互作用 パラメータの定量評価	〇国橋 要司 ¹, 篠原 康 ¹, 長谷川 将 ², 西中 浩之 ², 吉本昌広 ², 小栗 克弥 ¹, 後藤 秀樹 ¹ ³, 好田 誠 ⁴, 新田 淳作 ¹ ⁴, 真田 治樹 ¹	1.NTT物性研, 2.京都工繊大, 3.広島大, 4.東北大工
14:30	奨 E 16p-D704-5	Investigation of spin conversion using two-dimensional hole gas at the hydrogen-terminated diamond surface	○ Fujio Sako ¹ , Ryo Ohshima ^{1,2} , Yuichiro Ando ^{1,2} , Naoya Morioka ^{2,3} , Hiroyuki Kawashima ³ , Norikazu Mizuochi ^{2,3} , Masashi Shiraishi ^{1,2}	1.Kyoto Univ., 2.CSRN, Kyoto Univ., 3.ICR, Kyoto Univ.
14:45 15:00	16p-D704-6	InGaAs/InAlAs(110) 多重量子井戸における面直 Dresselhaus 有効磁場評価 休憩/Break	〇佐藤 翔太 ¹, 菅谷 恭兵 ¹, 中西 晃一 ¹, 横田 信英 ², 好田 誠 ², 森田 健 ¹	1. 千葉大院工, 2. 東北大院工
15:15	招 16p-D704-7	「第53回講演奨励賞受賞記念講演」 ハーフホイスラー型トポロジカル半金属を用いた配線工 程耐性を有する超高効率純スピン流源の開発	〇白倉 孝典 1 , 脱 凡 1 , グエン フン ユイ カン 1 , ファム ナム ハイ 1	1.東工大
15:30	奨 E 16p-D704-8	Magnetic-field-controllable resistive-switching and spin-valve-like behavior in an Fe/MgO/Ge-based two-terminal device	○ Masaya Kaneda ¹ , Shun Tsuruoka ¹ , Hiroshi Yoshida ² , Tatsuro Endo ¹ , Yuriko Tadano ¹ , Masaaki Tanaka ^{1, 2} , Shinobu Ohya ^{1, 2}	1.Department of Electrical Engineering and Information Systems, The University of Tokyo, 2.Center for Spintronics Research Network (CSRN), The University of Tokyo
15:45	奨 E 16p-D704-9	Change of the band structure in a freestanding $La_{0.67}Sr_{0.33}MnO_3 \ thin \ film$	○ (M1) Takuma Arai¹, Shingo Kaneta-Takada¹, Le Duc Anh¹.².³, Masaki Kobayashi¹.³, Masaaki Tanaka¹.³, Shinobu Ohya¹.³	1.Univ. of Tokyo, 2.PRESTO, 3.CSRN, Univ. of Tokyo
16:00	E 16p-D704-10	Effect of carrier concentration on low-temperature spin transport in strained $n\text{-Si}_{0.1}\text{Ge}_{0.9}$	○ (M1) Kazuaki Kawashima¹, Takahiro Naito¹, Michihiro Yamada².³, Takuya Okada¹, Youya Wagatsuma⁴, Kentarou Sawano⁴, Kohei Hamaya¹.².⁵	1.GSES, Osaka Univ., 2.CSRN, Osaka Univ., 3.JST-PRESTO, 4.Tokyo City Univ., 5.OTRI, Osaka Univ.
16:15	奨 E 16p-D704-11	Gate modulation of current in the metal-insulator transition region of $La_{0.67}Sr_{0.33}MnO_3$	○ Tatsuro Endo ¹ , Shun Tsuruoka ¹ , Yuriko Tadano ¹ , Shingo Kaneta-Takada ¹ , Le Duc Anh ^{1,2} , Masaaki Tanaka ^{1,2} , Shinobu Ohya ^{1,2}	1.EEIS, Univ. of Tokyo, 2.CSRN, Univ. of Tokyo
16:30	16p-D704-12	Spin polarization and magnetoresistance in a back-gated spin MOSFET structure with Fe/Mg/MgO/SiOz/ η^+ -Si junctions	○ (PC) 佐藤 彰一 ^{1,2} , 田中 雅明 ^{1,2} , 中根 了昌 ¹	1. 東大院工, 2.CSRN
16:45	162 p. 4 c. p. = - :	休憩/Break	OK : 112 1 B : 1122 = 1	10 1 . 01 1 (7)
17:00	英 E 16p-D704-13	Nanofabrication of Sn-based superconductor / topological Dirac semimetal planar heterostructures	O Ketta Ishihara', Le Duc Anh "", Tomoki Hotta', Kohdai Inagaki ¹ , Masaki Kobayashi ^{1,3} , Masaaki Tanaka ^{1,3}	1.Graduate School of Electrical Engineering and Information System, The University of Tokyo, 2.PRESTO, JST, 3.Center for Spintronics Research Network
17:15		Giant superconducting diode effect in β -Sn nanowires embedded in topological Dirac semimetal α -Sn thin films		1.Dept. of EEIS, Tokyo Univ., 2.PRESTO, JST, 3.CSRN, Tokyo Univ.
17:30	<u> </u>	ワイル半金属WTe ₂ 母体結晶の偏光依存光電流評価	○(M1)岩瀬 篤広¹, Liu Weizhen¹, 庄司 雄哉², 佐藤 琢哉¹, 宗片 比呂夫¹	1.東工大理, 2.東工大工
17:45	E 16p-D704-16	Flux-periodic supercurrent oscillations in GaAs/InAs/Al core/shell/halfshell nanowire Josephson junctions	○ (PC)Patrick Zellekens ¹ , Russell Deacon ^{1,2} , Pujitha Perla ^{3,4} , Mihail Lepsa ^{3,4} , Detlev Gruetzmacher ^{3,4} , Thomas Schaepers ^{3,4} , Koji Ishibashi ^{1,2}	1.RIKEN CEMS, 351-0198 Saitama, Japan, 2.ADL, RIKEN, 351-0198 Saitama, Japan, 3.PGI, Forschungszentrum Juelich, 52428 Juelich, Germany, 4.JARA-FIT, Fundamentals of Future Information Technology
18:00	奨 16p-D704-17	磁性トポロジカル絶縁体 $V_y(Bi_xSb_{1:x})_{2:y}Te_3$ の MBE 成長における $GaAs$ バッファ層導入の効果	○中澤 佑介¹, 秋保 貴史¹, 蟹澤 聖¹, 入江 宏¹, 熊田 倫 雄¹, 村木 康二¹	1.NTT物性研
18:15	奨 E 16p-D704-18	Demonstration of Ferroic Behavior of Berry Curvature Dipole in a Topological Crystalline Insulator at 300 K	○ (D)Taiki Nishijima¹, Takuto Watanabe², Hiroaki Sekiguchi², Yuichiro Ando¹, Ei Shigematsu¹, Ryo Ohshima¹, Shinji Kuroda², Masashi Shiraishi¹	1.CSRN, Kyoto Univ., 2.Univ. Tsukuba
	兹場応用 / Application			
3/150 9:30	(Wed.) 9:30 - 12:15 15a-D704-1	口頭講演 (Oral Presentation) D704会場 (Room D704) リボソームに内包された磁性ナノ粒子の交流磁場応下で		1. 阪大院理, 2. 阪大院基礎工
9:45	15a-D704-2	の配向挙動 Fe基アモルファス合金の低温熱処理における強磁場効果	雅頼 ¹ ○小野寺 礼尚 ¹ , 廣原 明 ¹ , 高橋 弘紀 ²	1. 茨城高専, 2. 東北大金研
		(2)		

10:00	15a-D704-3	In situ X 線回折測定による磁場下での 2 軸性結晶	○木村 史子¹, 足立 伸太郎¹, アリ ビン ワリド¹, 堀井	1. 京都先端大, 2. 福井工大
10:15	F 152-D704-4	$Y_2Ba_4Cu_7O_y$ $(14 < y < 15)$ の配向挙動 Improvement of Orientation Degree of Dy123 via	滋¹, 木村 恒久² ○(D)Walid Bin Ali¹, Shintaro Adachi¹, Fumiko	1.Kyoto University of Advanced Science
		Linear-Drive Type Modulated Rotating Magnetic Field	Kimura ¹ , Shigeru Horii ¹	· · · · ·
10:30	奨 15a-D704-5	溶解 DNP への応用を指向した偏極源粉末の三次元磁場配向化	○古西 辰光 ⁺ , 小林 加代子 ⁺ , 和田 昌久 ⁺ , 香川 晃德 [*] , 根来 誠 ² , 久住 亮介 ³	1. 京大農, 2. 阪大工, 3. 森林総研
10:45 11:00	奨 15a-D704-6	休憩/Break Mn-Bi-Sb三元系における磁場中反応	○小林 領太¹, 三井 好古¹, 梅津 理恵², 高橋 弘紀², 小	1. 鹿児島大学院理工, 2. 東北大金研
11:15		MnPt/Bi コンポジットの磁場中反応	山 佳一 1 〇三井 好古 1 , 竹原 功康 1 , 小林 領太 1 , 末吉 由育 1 ,	1. 鹿児島大, 2. 九工大
			佐々木巌²,小山佳一1	
11:30	E 15a-D704-8	Solute Concentration Distribution Uniformity near Side Part of Solid-Liquid Interface under Imposition of Current and Magnetic Field	○ Guangye Xu¹, Kazuhiko Iwai¹	1.Hokkaido Univ.
11:45	15a-D704-9	9	〇安藤 努 1 , 西窪 大悟 1 , 野本 大翔 1 , 伊東 兵馬 1 , 小池 修 2 , 辰巳 怜 3 , 廣田 憲之 4	1.日本大学, 2.PIA, 3.東大環安セ, 4.物材機構
12:00		Magnetic Condensation of Rare Earth Ions V	○山本 勲¹, 齋藤 綺人¹, 堀井 揺心¹, 池田 澤菜¹	1.横国大院理工
	伝導/Superco ジウムのプログラム	onductivity はプログラム冒頭にございます。		
	Thu.) 9:30 - 11:30	ポスター講演 (Poster Presentation) PB 会場(Room PB)		
	16a-PB03-1	Heyd-Scuseria-Ernzerhof交換相関汎関数を用いた FeSe の第一原理バンド計算	○川井 弘之 ¹ , 大野 義章 ²	1. 新潟大院自然, 2. 新潟大理
	16a-PB03-2	ハイエントロピー合金 (TaNb) _{0.7} (ZrHfTi) _{0.3} の磁場中超伝 導特性	○ (M1) 川崎 佑太¹, 西嵜 照和¹, 末吉 哲郎¹, 北川 二郎², 石津 直樹², 加藤 勝³, 野鳥 勉⁴, 淡路 智⁴, 佐々木 孝彦⁴	1. 九産大, 2. 福工大, 3. 大阪公大, 4. 東北大
	16a-PB03-3		○丸山 光一¹, 入江 晃亘¹, 八巻 和宏¹	1. 宇都宮大工
	16a-PB03-4	の合成 Bi系酸化物高温超伝導体Bi ₂ Sr ₂ Ca ₂ Cu ₃ O _y の短時間合成に Bi+2 TUA	○青木 草生¹, 鄭 雨萌¹, 佐藤 祐喜¹, 吉門 進三¹	1.同志社大理工
	E 16a-PB03-5	関する研究 Microstructural Investigation of Ag-added	○(M1)Nur Rahmawati Ayukaryana¹, Yuta	1. Tokyo Univ. of Agri. & Tech.
	16a-PB03-6	BaFe _{1.84} Co _{0.16} As ₂ Bulk Superconductor 極限環境での駆動を目指した電気二重層トランジスタの _{PB 28}	Hasegawa¹, Akiyasu Yamamoto¹ ○松本 凌¹, 足立 伸太郎³, 新名 亨⁴, 入舩 徹男⁴, 高野 義彦¹.²	1. 物材機構, 2. 筑波大, 3. 京都先端大, 4. 愛媛大GRC
	16a-PB03-7	開発 全工程KOHフラックス法によるYBCO/LaNiO ₃ 積層膜	豊嶋 健瑠¹,○舩木 修平¹,山田 容士¹	1.島根大自然
	16a-PB03-8	の低温成膜 KOHフラックス法により作製したRE123の超伝導性改	〇鷦鷯 瑛介 1 ,河田 浩一郎 1 ,舩木 修平 1 ,山田 容士 1	1. 島根大自然
	16a-PB03-9	善に向けた検討 MOD法による無限層ニッケル酸化物薄膜の作製条件の	○(M2)後藤 大知¹,永嶋 佑紀¹,加瀬 直樹¹,宮川 宣	1. 東理大理
	16a-PB03-10	確立 磁性ジョセフソン接合作製に向けたニッケル薄膜の作成	明 ¹ ○赤池 宏之 ¹ , 梶田 一真 ¹ , 浅井 勇人 ¹	1.大同大工
	礎物性 / Fundamen	tal properties		
3/16(T 13:30		口頭講演 (Oral Presentation) D209会場(Room D209) Synthesis of Au-12(n-1)n superconductor under high	○ZHENLEI FENG¹	1.Nagaokaut
13:45	16p-D209-2	pressure 低 Pb ドープ Bi2223 焼結体の作製と物性	○佐藤 修平¹,元木 貴則¹,宮本 能伸¹,下山 淳一¹	1.青山学院大学
14:00 14:15		異種銅酸化物超伝導体間の超伝導接合体開発 SDMG法REBCO溶融凝固バルクの中低温捕捉磁場特性	○井上太希¹,元木貴則¹,下山淳一¹	1. 青山学院大学 1. 寿学ナ理エ 2 京ナエマルギー理エ
	•		井俊輝²,下山淳一¹	
14:30	16p-D209-5	単一 a 軸成長ドメイン RE123 溶融凝固バルクの物性	〇仙波 実怜¹, 元木 孝則¹, 三輪 将也¹, 近藤 莉帆¹, 下山 淳一¹	1. 青学大
14:45 15:00	16p-D209-6	休憩/Break \Pr_{z} Ba $_{t}$ Cu $_{t}$ O $_{15-\delta}$ の超伝導 IV : 二重鎖が超伝導である実験的証拠	中川 俊作 1 , 西岡 颯太郎 2 , 八島 光晴 1 , 椋田 秀和 3 , 與 儀 護 2 , 池田 宏輔 4 , ○佐々木 進 4 , 下山 淳 -5	1. 阪大院基, 2. 物材機構, 3. 琉球大理, 4. 新潟大工, 5. 青学大理工
15:15	16p-D209-7	Ba-122多結晶バルクの粒界組織における新規結晶方位解 析法開発		1. 東北大金研, 2. 農工大工, 3. 九大総理工, 4. 名大院情
15:30	16p-D209-8	鉄系超伝導体 $Ca_5(Sc,Ti)_4Fe_2As_2O_{11}$ の単結晶作製	谷津 雄大 1,2 , 志村 玲子 4 , 石田 茂之 2 , Sugali Pavan Kumar Naik 3 , 坂井 直道 1 , 岡 徽雄 1 , 村上 雅人 1 , 〇荻	1. 芝浦工大理工, 2. 産総研電子光, 3. 東理大理, 4. 東北大 多元研
15:45	16p-D209-9	物性測定機能付き高圧合成装置の開発と水素化物超伝導	野 拓 ² ○松本 凌 ¹ , 山根 和樹 ^{1,2} , 新名 亨 ³ , 入舩 徹男 ³ , 清水	1. 物材機構, 2. 筑波大, 3. 愛媛大 GRC, 4. 阪大基極セ
16:00	奨 16p-D209-10	体探索への応用 高圧合成とその場電気抵抗測定によるIn-S系超伝導体の		1. 物材機構, 2. 筑波大
16:15		発見 休憩/Break	野 義彦 ^{1.2}	
16:30	•	X線回折データと機械学習による REBCO 薄膜の Tc予測	一¹, 堀出 朋哉¹, 一瀬 中⁴	
16:45	16p-D209-12	機械学習を用いた超伝導 Tc 予測におけるデータセット・ 特徴量の影響	○松本 要¹, 堀出 朋哉¹, 美藤 正樹¹	1.九工大
17:00		$(La,Th)H_{10}\mbox{: the potential high-Tc superconductors} \\ \mbox{stabilized thermodynamically below 200 GPa}$	○ HOU SOU¹, Kenta Hongo², Ryo Maezono¹	1.Inf. Sci. JAIST, 2.RCACI. JAIST
17:15 3/17(第一原理計算による新規黒鉛層間化合物超伝導体の探索 口頭講演 (Oral Presentation) D209 会場(Room D209)	○(D)川口 直登¹, 柴田 基洋¹², 溝口 照康¹²	1.東大院工, 2.東大生研
9:30		界面超伝導の FeSe/STO における電気二重層トランジスタによる膜厚制御	○(M2)小川浩生¹,小林友輝¹,中川大輝¹,鍋島冬樹¹,前田京剛¹	1.東大院総合
9:45	奨 17a-D209-2	PLD 法で作製した FeSe/STO における完全反磁性の観測	(n) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	1. 東大院総合
10:00	17a-D209-3	鉄系超伝導体NdFeAs(O,H)の異方性の水素置換量依存性	○日比野 絢斗¹, 今中 宏哉¹, 吉川 淳朗¹, 櫻井 謙真¹, 畑野 敬史¹, 生田 博志¹	1.名大工
			\bigcirc (M2) 吉川 淳朗 1 , 今中 宏哉 1 , 日比野 絢斗 1 , 畑野	1.名大工
10:15	17a-D209-4	性評価	敬史1,生田博志1	
10:15 10:30 10:45			○池田 愛¹, Krockenberger Yoshiharu¹, 谷保 芳孝¹,	1.NTT 物性研
10:30	17a-D209-5	性評価 休憩/Break	○池田 愛¹, Krockenberger Yoshiharu¹, 谷保 芳孝¹, 山本 秀樹¹	

11:15	17a-D209-7	Mn/Ir 置換を施した $(La,Sr)(Mn,Ir)O_3$ 薄膜の作製と電気抵抗の変化		1. 名大工, 2. 電中研
11:30	E 17a-D209-8	Search for superconductivity in Ir doped LSMO thin films	○ Alok Kumar Jha¹, Kento Ryuzouji¹, Kaname Matsumoto¹, Tomoya Horide¹, Masaki Mito¹, Ataru Ichinose²	1.Kyushu Instt. Tech., 2.CRIEPI
3/17(F 13:30		口頭講演 (Oral Presentation) D209 会場(Room D209) 3次元斜め磁場中のオーバーラップ接合における直流臨 界電流	○原岡 壮馬¹, 上田 天馬¹, 小田部 荘司¹, 馬渡 康徳²	1.九工大情報工,2.産総研
13:45	17p-D209-2		○井本 隆哉 ^{1.5} , 松尾 貞茂 ^{1.2} , Aranya Goswami ³ , Connor Dempsey ³ , Mihir Pendharkar ³ , Joon Sue Lee ^{3.4} , Christopher Palmstrom ³ , 樽茶 清悟 ^{1.5}	1.理研, 2.JST さきがけ, 3.カリフォルニア大学, 4.テネシー大学, 5.東京理科大
14:00	17p-D209-3		〇立木 実 1 , 大井 修 $^{-1}$, 及筑 高 $\pm ^{1}$, 井藤 隼 $(-1, -1)$, 中森 健成 2 。	1.物材機構, 2.高エネ研
4:15	奨 17p-D209-4		〇中明 育 1 , 櫻井 敬博 1 , 太田 仁 1 , 瀬戸 雄介 2 , 大井 修 $-^3$, 立木 実 3 , 有沢 俊一 3 , 内野 隆司 1	1. 神戸大学, 2. 大阪公立大学, 3.NIMS
14:30		休憩/Break		
4:45	奨 17p-D209-5	有効媒質近似を用いた超伝導テラヘルツ光源の解析およ び設計	○(M2) 小林 亮太¹, 巴山 顕¹, 掛谷 一弘¹	1.京大院工
5:00	17p-D209-6	Bi2212-THz波発振素子の周波数特性に及ぼす誘電体構造の効果	〇齋藤 佑真¹, 南 英俊¹, 菊池 隆太¹, 中川 駿吾¹.², 山 口 啄弥¹, 山田 籽太郎¹, 榎本 裕樹¹, 鈴木 祥平¹.², 辻	1. 筑波大学数理物質, 2. 産総研
15:15	17p-D209-7	Bi2212-THz 波発振器の材料と発振特性に関する研究 II	本学 ^{1,2} , 柏木隆成 ¹ 〇柏木隆成 ¹ , 中川 駿吾 ^{1,3} , 山口 啄弥 ¹ , 山田 将太郎 ¹ , 榎本 祐樹 ¹ , 山内 悠希 ¹ , 齋藤 佑真 ¹ , 鈴木 祥平 ¹ , 菊池隆太 ¹ , 中尾 裕則 ² , 石田 茂之 ³ , 永崎 洋 ³ , 茂筑 高	1. 筑波大数理物質 , 2.KEK 物構研 PF, 3. 産総研 , 4.NIM
5:30	17p-D209-8	Bi2212メサアレイの大型化とパルス駆動の研究	士 4 , 辻本 2 1 3 , 南英俊 1 0 南英俊 1 7 , 南英俊 1 7 , 中川 駿吾 1 , 山口 啄称 1 , 山田 将太郎 1 , 榎本 裕樹 1 , 鈴木 祥平 1 , 辻本 学 2 , 柏木 隆成 1	1. 筑波大数理物質, 2. 産総研
		製プロセスおよび結晶成長 / Thin and thick superconduc	ting films, coated conductors and film crystal growtl	1
3/16(TI 14:00		口頭講演 (Oral Presentation) D221会場 (Room D221) Observation of superconducting transition in MTO/STO heteroepitaxial multilayer films	○ Alok Kumar Jha¹, Kaname Matsumoto¹, Sota Fujimoto¹, Tomoya Horide¹, Masaki Mito¹, Ataru	1.Kyushu Instt. Tech., 2.CRIEPI
14:15	16p-D221-2	As-grown MgB₂薄膜の短時間アニール効果	Ichinose ² 山﨑輝 ¹ , 田代 達哉 ¹ , 川山 巌 ¹ , ○土井 俊哉 ¹	1.京大
14:30		実験的に決定した水素置換型鉄系超伝導体 SmFeAsOの 上部臨界磁場と磁気異方性	〇半沢 幸太 1 , 松本 惇平 1 , 飯村 壮史 2 , 小濱 芳允 4 , 平松 秀典 1,3 , 細野 秀雄 2 .	1.東工大フロンティア研, 2.物質・材料研究機構, 3.東 工大MDX元素セ, 4.東大物性研
4:45	奨 16p-D221-4	金属保護膜で被覆した NdFeAsO 薄膜に対する水素置換プロセス	\bigcirc (M1) 櫻井 謙真 1 , 今中 宏哉 1 , 日比野 絢斗 1 , 畑野 敬史 1 , 生田 博志 1	1. 名大工
15:00 15:15	16p-D221-5	休憩/Break ホットプレス処理によるBi-2223超伝導接合の作製	○武田 泰明¹, 西島 元¹, 小林 賢介²¹, 北口 仁¹	1.物材機構, 2. 理研
5:30		酸素アニールが Au イオン照射 $GdBa_2Cu_3O_y$ 線材の超伝導特性に与える影響		
5:45	16p-D221-7	データ駆動型研究に向けた微細組織画像の取扱い	〇一瀬 中 1 , 堀尾 恵 $-^{2}$, 松本 要 2 , 吉田 隆 3 , 一野 祐 亮 4	1. 電中研, 2. 九工大, 3. 名大, 4. 愛工大
6:00 6:15	16p-D221-8	休憩/Break デブスカメラによるブルーム高さモニタリング及びその 場高さ制御	○山崎 春太朗¹, 長田 智樹¹, 一野 祐亮², 吉田 隆¹	1.名大工, 2.爱工大
16:30	16p-D221-9	PLD法で作製した YBCO 薄膜の組成変化に対するレーザーブルーム像の変化	○山崎 春太朗¹, 長田 智樹¹, 一野 祐亮², 吉田 隆¹	1. 名大工, 2. 愛工大
16:45	16p-D221-10	$BaMO_3$ 添加 VLS-RE Ba_2 Cu $_3$ O $_y$ 膜のシミュレーションと組成偏析	○有田 知徳 ¹ , 一野 祐亮 ² , 吉田 隆 ¹	1.名大工, 2.愛工大
17:00	<u> </u>	RE123薄膜に対するAgコートと後熱処理による積層欠 陥導入	堀口 佳吾1,中村 新一2,下山 淳一1	1. 青学大理工, 2. TEP
		一応用 / Critical Current, Superconducting Power Applic 口頭講演 (Oral Presentation) D215会場 (Room D215)	ations	
3/17(F 13:30		回頭講演 (Oral Presentation) DZ15 会場(Room DZ15) 膜厚の異なる VLS-YBCO 厚膜の臨界電流密度	○伊藤 駿汰¹, 木内 勝², 美和 虎之介¹, 尾崎 壽紀³, 吉	1. 名大工, 2. 九工大, 3. 関学大工
			田隆1	
3:45	<u> </u>	超伝導層の厚いY系コート線材の臨界電流密度特性 人工ピン入り高温超伝導線材に対する照射追加ピン止め	○木内 勝 ¹ , 竹内 竜徳 ¹ , 伊藤 駿汰 ² , 尾崎 壽紀 ³ , 吉田 隆 ²	
14:15		効果 磁気光学法を用いた放電プラズマ焼結法Kドープ	和 ¹ , 石川 法人 ⁵ ○石渡 翔大 ¹ , 卞 舜生 ² , 為ヶ井 強 ² , 菊池 慎次郎 ¹ , 長	子力機構
		BaFe ₂ As ₂ 多結晶バルクの臨界電流特性評価	谷川 友大1,池田 直生1,山本 明保1	
14:30	17p-D215-5	量子渦の運動を記述する時間依存グロス・ビタエフスキー 方程式のための幾何学的数値積分法	○松野 哲也¹, 小田部 荘司², 馬渡 康徳³	1.有明高専, 2.九工大, 3.産総研
14:45 15:00	17p-D215-6	休憩/Break 高温超伝導ダイオードにおける T _c 近傍での整流効果	○土屋 雄司¹, 鶴田 彰宏², 尾崎 壽紀³, 吉田 隆⁴, 岡田 達典¹, 淡路 智¹	1. 東北大金研, 2. 産総研, 3. 関学大工, 4. 名大工
15:15	奨 17p-D215-7	リール式磁気顕微鏡を用いたダイナミック磁化測定による長尺REBCOテープ線材の局所電界一電流密度特性の連続測定に関する検討		1.九大院シス情
15:30	17p-D215-8	希土類系高温超伝導コート線材のループ状曲げ特性解析 と新規連続曲げ試験法の検討	○木須 隆暢¹, 張 佩宏¹, 川崎 啓太¹, 小田 祐輔¹, 呉 澤 宇¹, 東川 甲平¹, 鈴木 賢次²	1. 九大院シス情, 2. 鉄道総研
15:45		直流送電用超伝導ケーブルコアの自己磁界分布測定(2)	○(M2)大倉 大佑¹, 筑本 知子¹	1.中部大工
6:00		高温超伝導誘導同期モータにおける最適巻線構成に関す る検討		1.京大工
		連技術 / Analog applications and their related technolog 口頭講演 (Oral Presentation) D221会場(Room D221)	ies	
3/17(F 9:00		山頭講演 (Oral Presentation) DZZI 会場 (Room DZZI) メンブレンを用いた STJ 検出器の基板除去によるノイズ	○野口 剛志 ^{1,2} , 柴﨑 大我 ¹ , 藤井 剛 ² , 志岐 成友 ² , 菊	1.埼玉大院, 2. 産総研
0.15		低減評価	地 貴大², 田井野 徹¹	
9:15		Ti/Au 二層薄膜を用いた超伝導転移端センサの解析 SISミキサ増幅器励起用100 GHz帯ジョセフソンアレイ	○(D)加藤 晶大 ^{1,2} ,服部 香里 ^{2,3} ,鷹巢 幸子 ² ,福田 大 治 ²	
9:30 9:45		SISミキサ増幅器励起用 100 GHz帯ショセフソンアレイ 発振器 単一Cooper対トランジスタによるフォノンの高感度検出		 情通機構, 2. 国立天文台, 3. 総研大, 4. 産総研 電通大基盤理工
10:00		平一Cooperガトノンンステによるフォノンの高恋及映立 超伝導細線クライオトロンのデザイン要素に関する感度 解析	•	1. 東理大理, 2. 産総研

10:15		休憩/Break		
10:30	奨 17a-D221-6	高 J_c 薄膜を用いた超伝導アンテナの耐電力特性向上の検討	○ (B) 武田 航太郎¹, 作間 啓太¹, 關谷 尚人¹	1.山梨大工
10:45		超伝導量子回路を評価するためのパルスシステムの構築		1.産総研
11:00	奨 17a-D221-8	2つの周波数コンバータおよび位相遅延回路を用いた広 帯域アイソレータの概念実証実験	○ (D) 增井 翔 ^{1,2} , 小嶋 崇文 ¹ , 鵜澤 佳徳 ¹ , 大西 利和 ²	1.国立天文台, 2.大阪公大
11:15	奨 17a-D221-9	高Q値超伝導ソレノイダルコイルを用いた小型コイルへ の高効率無線電力伝送	○ (M1) 海老原 魁¹, 内田 孝紀¹, 作間 啓太¹, 關谷 尚 人¹	1.山梨大
11:30	17a-D221-10	高空間分解能化に向けた走査型SQUID顕微鏡の改良	○河合 \bar{p}^1 , 小田 啓邦 2 , 福與 直人 2 , 谷元 瞭太 2 , 河端 美樹 1	1. 金沢工大電子研, 2. 産総研, 3. 茨城大
11.5 接行	合,回路作製プロセ	スおよびデジタル応用 / Junction and circuit fabrication	process, digital applications	
3/16(T	hu.) 13:30 - 18:00	口頭講演 (Oral Presentation) D215会場 (Room D215)		
13:30	招 16p-D215-1	「第53回講演奨励賞受賞記念講演」 超伝導非線形非対称誘導素子を用いた擬似的ホーキング 輻射の理論的研究 II	〇片山 春菜 ^{1.2} , 畠中 憲之 ¹ , 藤井 敏之 ³ , Miles P. Blencowe ²	1.広大院先進理工, 2.ダートマス大物理, 3.旭川医大物理
13:45	16p-D215-2	π -SQUID に基づくインパルス駆動メモリセルの動作実 証	竹下 雄登 1 , 藤澤 日向 1 , 東 正志 1 , 李 峰 1 , 田中 雅光 1 , ○藤巻 朗 1	1. 名大
14:00	E 16p-D215-3	Superconducting Diode Using π -JJ-based Arbitrary Phase Shifter	○ Feng Li¹, Taichi Sato¹, Hinata Fujisawa¹, Yuto Takeshita¹, Masamitsu Tanaka¹, Akira Fujimaki¹	1.Nagoya Univ.
14:15	奨 16p-D215-4	【注目講演】2次元接続されたジョセフソン接合を用いた リザバー計算の画像分類応用における性能について	○ (M2) 渡邊 紘基¹, 水柿 義直², 守谷 哲¹, 山本 英明¹, 佐藤 茂雄¹	1. 東北大, 2. 電通大
14:30	奨 16p-D215-5	単一磁束量子回路によるベイジアンネットワークの設計	○(B)山中 陸央¹,山梨 祐希¹.²,吉川 信行¹.²	1.横国大院理工, 2.横国大IAS
14:45	16p-D215-6	ArF液浸露光装置を用いて大面積な超伝導量子回路を作製するための技術検討	〇大舘 暁¹, 齋藤 直洋¹, 鈴木 広介¹, 青山 肇¹, 塚本 宏 之¹, 楠山 幸一², 中村 泰信².3	1.ニコン, 2.理研, 3.東大
15:00		休憩/Break		
15:15	· ·	小型機械式冷凍機に実装した大規模超伝導集積回路への 直流バイアス電流供給方法の検討	寺井 弘高1	
15:30	•	インパルス駆動型メモリの拡張性に関する検討	〇佐藤 太一¹, 藤澤 日向¹, 竹下 雄登¹, 李 峰¹, 田中 雅 光¹, 藤巻 朗¹	
15:45	16p-D215-9	半磁束量子回路の安定動作に向けた回路構成法に関する 研究	○ (M2) 袁 磊¹, 竹下 雄登¹, 東 正志¹, 中山 彪之助¹, 李 峰¹, 田中 雅光¹, 藤巻 朗¹	1.名大院工
16:00	奨 16p-D215-10	個別の動作点制御を廃し並列化させた超伝導乱数生成器 の出力乱数列の評価	○近藤 亮太¹, 山梨 裕希¹.², 吉川 信行¹.²	1. 横国大院理工, 2. 横国大IAS
16:15	16p-D215-11	1kA/cm² Josephson集積回路プロセスを用いた量子ビット操作用出力振幅可変マイクロ波生成器の設計	○佐々木修¹, 竹内 尚樹², 山梨 裕希¹², 吉川 信行¹²	1. 横国大院理工, 2. 横国大IAS
16:30		休憩/Break		
16:45	•	SFQ-CMOSハイブリッドシステムを用いたニューラル ネットワークオンチップ学習		
17:00		超伝導回路を用いたボルツマンマシンの動作安定化	○伊東 征悟¹,山梨 裕希¹.²,吉川 信行¹.²	1.横国大院理工, 2.横国大IAS
17:15		ジョセフソンインダクタンスを用いた小型 AQFP 回路の 提案		1. 横浜国大理工, 2. 産総研 RCECT
17:30	•	0-0- π SQUID の非対称性が半磁束量子回路に及ぼす影響	光¹, 藤巻 朗¹	
17:45	16p-D215-16	微小信号領域における π -SQUIDの巨大インダクタンスとしての挙動解析	○東 正志¹, 竹下 雄登¹, 李 峰¹, 田中 雅光¹, 藤巻 朗¹	1.名大院工

	としての挙動解析			
12 有機分子・ハ	イオエレクトロニクス / Organic	Molecules and	d Bioelectronics	
シンポジウムのプログ	ラムはプログラム冒頭にございます。			
12.1 作製・構造制御	Fabrications and Structure Controls			
3/15(Wed.) 16:00 - 3	3:00 ポスター講演 (Poster Presentation)	PA会場(Room PA)		
15p-PA(3-1 ジナフトチエノチオフェン (DNTT)		\bigcirc 廣芝 伸哉 1,2 , 河野 裕太 1,2 , オンコ リチャード 1,2 ,	1.大阪工大工,2.大阪工大ナノ材研,3.静岡大工,4.舞鶴
	構造評価		小池 一步 1.2, 松原 亮介 3, 久保野 敦史 3, 小島 広孝 4	高専
15p-PA0	3-2 ペンタセン薄膜成長初期過程の低温域 依存性	域における基板温度	井櫻 泰雅¹, ○松原 亮介¹, 久保野 敦史¹	1.静岡大工
15p-PA0	3-3 真空下熱重量測定を利用した直鎖状7 定とアルカン等量混合物の単離蒸発等		○高橋 大樹 ¹ , 堀家 匠平 ^{1.2.3} , 小柴 康子 ^{1.3} , 石田 謙 司 ^{1.3}	1. 神戸大院工, 2.JST さきがけ, 3. 神戸大学先端膜工学 研究センター
15p-PA0	3-4 非対称BTBT誘導体薄膜の相転移に作 ンフォメーション変化	半うアルキル鎖のコ	○塩谷 暢貴¹, 下赤 卓史¹, 丸山 伸伍², 長谷川 健¹	1. 京大化研, 2. 東北大院工
15p-PA(3-5 ナフタレンジイミド誘導体蒸着膜の構	構造と物性	○(M1) 倉富 駿¹, 臼井 博明¹, 帯刀 陽子¹, 臼井 聡²	1. 東京農工大, 2. 新潟大
15p-PA(3-6 <i>p</i> -ヘキサデシルスチレンの電子アシフ	スト蒸着重合	○佐々木 青葉¹, 北澤 悠人², 臼井 聡², 臼井 博明¹	1. 東京農工大工, 2. 新潟大理
			○玉木 善也¹, 岡本 舞衣¹, 富永 洋一¹, 臼井 博明¹	1.農工大工
15p-PA0	3-8 ポリジメチルシロキサンとアミド基を 表面偏析単分子膜の形成	と有する分子による	○(P)横山 高穂¹, 但馬 敬介¹	1.理研 CEMS
15p-PA0	3-9 LB法を用いて作製するハロゲン化鉛: ブリッドペロブスカイト超薄膜の元素		〇赤城 嘉也 1 , 三浦 康弘 1 , 田中 利彦 1 , 青山 哲也 2 , 山下 翔太郎 3 , 竹岡 裕子 3	1. 浜松医大医, 2. 理研RAP, 3. 上智大理工
15p-PA0	3-10 有機薄膜形成のためのインクジェット パターニングを用いた液摘挙動制御	、法による親水疎水	○津田 真太朗¹, 服部 吉晃¹, 井上 聡¹, 北村 雅季¹	1. 神戸大院工
15p-PA(3-11 電気泳動法による PEDOT-PSS 薄膜の	O作製	○(M1)大山 敦史¹, 下村 武史¹, 臼井 博明¹	1. 農工大工
15p-PA	3-12 溶液塗布熱分解法による酸化バナジウ	カム薄膜の作製と高	\bigcirc (B) 楯 凱貴 1 , 道端 涼 1 , 牧野 賀成 1 , 広藤 裕一 1 , 小	1.大阪工大ナノ材研
	感度pHセンサー応用		池一歩¹,廣芝伸哉¹	
15p-PA0	3-13 Gabor フィルタ搭載ロボットカーの動 開発		\bigcirc (M2) 坂本 海里 $^{1.2}$, 長谷川 裕之 $^{1.2}$, 笠井 克幸 2 , 山田 俊樹 2 , 田中 秀吉 2 , 大友 明 2 , 岡田 佳子 3	1. 島根大院自然, 2. 情報通信研究機構, 3. 電通大院情報 理工
15p-PA0	3-14 ナノダイヤモンド粒子吸着のためのた 表面	カップリング剤処理	○小熊 涼太¹, 田中 邦明¹, 臼井 博明¹, 大石 不二夫²	1. 農工大院工, 2. 神奈川大
15p-PA0	3-15 ナノ電解法による有機イオンラジカル 製		〇織部 太智 $^{1.3}$, 布村 甲斐 2 , 長谷川 裕之 $^{1.2.3}$, 山田 俊 樹 3 , 大友 明 3 , 芥川 智行 4	1. 島根大院自然, 2. 島根大教育, 3. 情報通信研究機構, 4. 東北大多元研
15p-PA0	3-16 グラファイト状窒化炭素で修飾したオ スセンサ特性	k晶振動子の水素ガ	○石黒 康志¹, 西谷 平¹, Li Can², 平栗 健二¹	1. 東京電機大, 2. 中国計量大
15p-PA0	3-17 金属イオンとタンニン酸のネットワー 性ナノ粒子の作製	-クによるpH応答	○ (M1C) 佐藤 称央¹, 龔 子涵¹, 加藤 徳剛¹	1. 明大理工
15p-PA0	3-18 シンチレータ材料として利用する発光 子の作製		冨永 征宏 1 , 〇鈴木 龍樹 1 , 小関 良卓 1 , 藤本 裕 2 , 越水 正典 3 , 笠井 均 1	1. 東北大多元研, 2. 東北大院工, 3. 静岡大電子研
3/17(Fri.) 9:00 - 11	30 口頭講演 (Oral Presentation) B409会			
9:00 17a-B40	-1 高分子スタンプによる有機ホモ接合ト	・ランジスタの作製	○井形 幸史郎¹, 野田 啓¹, 高山 和輝¹	1.慶應大工
9:15 17a-B40	-2 PEG系架橋剤を用いた有機電気化学 作製	トランジスタ素子の	〇山本 俊介 1 , 金田一 修平 1 , 松原 亮介 2 , 三ツ石 方 也 1	1. 東北大院工, 2. 静岡大工
9:30 17a-B40	-3 P(VDF/TrFE) 薄膜キャパシタのアニ 加による分極制御	ール処理時電界印	○酢谷 陽平¹, 平瀬 龍二¹, 石原 マリ¹	1. 兵庫県立工業技術センター

9:45	17a-B409-4	上部ITO電極の結晶性制御による透明有機デバイスの特性改善	○末森 浩司¹	1. 産総研
10:00	17a-B409-5	ナフタレンフラックス法による五員環構造を有する芳香 族分子の単結晶育成と FET 特性	〇横倉 聖也 1 , 田野口 丈彦 1 , 結城 拓真 1 , 長浜 太郎 1 , 島田 敏宏 1	1.北大院工
10:15 10:30	17a-B409-6	休憩/Break 銅フタロシアニン単結晶上に作製した p-n ヘテロ界面の	○山西 優生 ¹ 伊藤 新世 ¹ 宣木 迫う介 ¹ 小林 俊経 ¹	1 車押士院理工 2 車押士理工 3 真羅度平科学ャ
10.50	114 15407 0	結晶構造	杉村 理恵 ¹ , 宮田 哲 ² , ロシャンタ クマーラ ³ , 小金澤 智之 ³ , 中山 泰生 ^{1,2}	1.水在八侧在上,5.水在八在上,5.间降区几门;
10:45	17a-B409-7	ジナフトチエノチオフェン単結晶上にペリレン誘導体を		
11:00	17a-B409-8	積層した界面の結晶構造評価 配列したポリテトラフルオロエチレン表面に生成する 色素分子の高配向 J 会合体	平本 昌弘 ³ , クマーラ ロシャンタ ⁴ , 小金澤智之 ⁴ 〇田中 利彦 ^{1,2,3,4} , 青山 哲也 ² , 石飛 昌光 ⁴ , 村中 厚 哉 ² , 梅澤 洋史 ³ , 余 建 ⁵ , 松本 真哉 ⁵ , 三浦 康弘 ¹ , 山形 豊 ² , 内山 真伸 ²	3.分子研, 4.高輝度光科学セ 1.浜松医大, 2.理研, 3.福島高専, 4.ASET住友科学研, 5.横浜国大
11:15	17a-B409-9	分子配向ビスアゾ色素 J 会合体薄膜における超長波長シフト (II)		1. 理研 RAP, 2. 横国大院環情, 3. 理研 CSRS, 4.ASET 住友 化学研, 5. 福島高専, 6. 東大院薬, 7. 浜松医大医
3/17(F	ri.) 13:00 - 18:00	口頭講演 (Oral Presentation) B409会場 (Room B409)	12	
13:00	奨 17p-B409-1	回転型ケルビンプローブによる水素結合を持つ極性分子 蒸着薄膜の自発配向分極の観察	○(B) 井上 太陽 ¹ , 吉澤 雅弘 ² , 大原 正裕 ² , 田中 有 弥 ⁵ , 石井 久夫 ^{1,2,3,4}	1. 千葉大工, 2. 千葉大融合理工, 3. 千葉大先進, 4. 千葉大MCRC, 5. 群馬大理工
13:15		C ₃ N ₅ の構造解析と光触媒水素生成の評価	○(DC)伊藤 皇聖¹, 野田 啓¹	1.慶應理工
13:30	奨 17p-B409-3	低ドーズ電子線ホログラフィー技術による有機 EL 発光素 子内部に形成された電位分布変化の直接観察	○(D) 佐々木 祐聖¹, 山本 和生¹², 穴田 智史², 吉本 則之¹	1. 岩大院理工, 2.JFCC
13:45	奨 17p-B409-4	中内部に形成された電位分布変化の直接観察 軸性キラル分子による自己組織化膜作製と表面キラリ	□四野 史¹,福谷 圭祐¹², Brandhoff Jonas³,	1.総合研究大学院大学, 2. 分子科学研究所, 3. Friedrich-
		ティの創出	Gruenewald Marco³, Fritz Torsten³, 解良 聡 ^{1,2}	Schiller-University Jena
14:00	奨 17p-B409-5	Ph-BTBT-C』が薄膜中で示す構造再配列	○岡 昂徹¹,塩谷 暢貴¹,下赤 卓史¹,長谷川 健¹	1.京大化研
14:15 14:30	17p-B409-6	体憩/Break PVD法で成長する $Co(\Pi)$ フタロシアニン螺旋超分子の 磁性基板を用いたキラル分割	○(D) 相澤 洋紀 ^{1,2} , 佐藤 拓郎 ^{1,2} , 米倉 功治 ³ , 眞木 -米倉 沙織 ³ , 濱口 祐 ³ , 高場 圭章 ³ , 湊 丈俊 ² , 山本 浩 史 ^{1,2}	1. 総研大, 2. 分子研, 3. 理研
14:45	17p-B409-7	キラル分子内包低次元ペロブスカイト単結晶の作製	○福森智子¹, グンベル ルーカス², クレメント フィリップ², 渡邉望美¹, 鈴木修一¹, チャタリー サンガ	1. 阪大院基礎工, 2. Justus-Liebig University
15:00	17p-B409-8	LB法とインターカレーション法を用いるハロゲン化鉛系 有機無機層状ハイブリッドベロブスカイト超薄膜の作製		1. 浜松医大医, 2. 理研 RAP, 3. 上智大理工
15:15	17p-B409-9	(III) 蒸着重合法を用いたナノ多孔質材料へのコンフォーマル コーティング	○田畑 諒¹, 松原 亮介², 久保野 敦史²	1. 静岡大院自然科学, 2. 静岡大工
15:30	17 D400 10	休憩/Break	O 사 사 쌍크리 고 대 전 2 '寒 바 교 놧 3 '於 사 ㅎ 4	
5:45	17p-B409-10	ミストデポジション法による質量イオン化支援剤の形成 と質量分析イメージングへの応用	○忡怀 俗可',山田 怡",泗升 平布",舜不 是一	1.北陸先端大, 2.石川高専, 3.国士舘大, 4.金沢工大
16:00	17p-B409-11	微小共振器と強結合した有機分子の蛍光アップコンバー ジョン	○(M1)角谷 聡太¹,田中 菜月²,石田 真敏²,杉浦 健 一²,古田 弘幸³,神野 莉衣奈¹,深津 晋¹	1. 東大院総合文化, 2. 都立大理, 3. 立命大総合科学
16:15	17p-B409-12	CeO_2 ナノ粒子自己組織化膜を利用したプラズモニックナ		1. 九大先導研, 2. 東北大
16:30	E 17p-B409-13	ノキャビティ構造の作製 Effect of Salt Concentration on the Formation of 2D Self-Assembled Networked Structure with Gold	明,門乃雅文,玉田 無 ○ (M2)Ema Baliunaite¹, Shinya Shinjo¹, Yukiko Aida¹, Yuto Kajino¹, Yusuke Arima¹, Kaoru Tamada¹	1.IMCE, Kyushu Univ.
16:45		Nanoparticles 休憩/Break		
17:00	E 17p-B409-14	Effect of the spin coating time on the morphology and electronic properties of semiconducting polymer thin films	○Adam Pander¹, Satoshi Kawahara¹, Daisuke Kitayama¹, Hiroyuki Takahashi¹	1.NTT Dev. Tech. Labs
17:15	17p-B409-15	浮遊薄膜転写法によるドナー・アクセプターブレンド薄 膜の形成	中道 龍信¹, パンディ シャム², ○永松 秀一¹	1. 九工大情工, 2. 九工大生命体
17:30	17p-B409-16	エラスティック分子結晶ファイバーのための液相単結晶 成長法の開発	○渡邉智¹,佐藤翔太¹,小野恵瑚¹,林正太郎²,國武雅司¹	1.熊本大工, 2.高知工科大環境理工
17:45	17p-B409-17	インクジェット法とイオン液体によるマイクロ試料の溶 解度測定法		1.熊本大工
2.2 評価	曲・基礎物性 / Chai	#接側定在 racterization and Materials Physics		
3/15(W	/ed.) 9:15 - 11:45	口頭講演 (Oral Presentation) B508会場 (Room B508)		
9:15	15a-B508-1	フェロセン誘導体膜の帯電に及ぼす鏡像電荷の寄与:電気 化学と真空環境による差異	、○宮本 卓英¹, 横田 泰之², 金 有洙¹²	1. 東大工, 2. 理研
9:30	15a-B508-2	有機半導体/カーボンナノチューブ界面からの電界放出 と光電子放出の同時測定	○(B)館農 真斗 ¹ , 中澤 遼太郎 ² , 貝森 亮太 ² , 大原 正裕 ² , 石井 久夫 ^{1,2,3,4}	1. 千葉大工, 2. 千葉大融合理工, 3. 千葉大先進, 4. 千葉大MCRC
9:45	15a-B508-3	溶媒和エネルギーを考慮したサイクリック・ボルタンメ トリーと低エネルギー逆光電子分光による電子親和力の		1.千葉大院融合, 2.千葉大院工, 3.千葉大MCRC
10:00	E 15a-B508-4	関係 Observation of electronic band dispersion in polycrystalline PTCDI-C8 thin film	○ (D)Jaseela Palasheriithikkal ^{1,2} , Keisuke Fukutani ^{1,2} , Seiichiro Izawa ^{1,2} , Taketoshi Minato ¹ ,	1.Institute for Molecular Science, 2.The graduate university for advanced studies, SOKENDAI
10:15	15a-B508-5	$TiSe_2$ 上に成膜した F_6TCNNQ 分子結晶膜の界面電子状態	Masahiro Hiramoto ^{1,2} , Satoshi Kera ^{1,2} ○清沢 一真 ¹ , 福谷 圭祐 ² , 解良 聡 ^{1,2}	1. 千葉大院工, 2. 分子研
10:30		休憩/Break		
10:45		2,3,5,6-テトラフルオロ -7,7,8,8-テトラシアノ -キノジメタン (F4TCNQ) をドープした P3HT の膜構造と電子状態		1.千葉大院工, 2.千葉大院融合
11:00		水素結合性有機フレームワークの形成によるAu(111)表 面電子状態の変化	尾崎 文彦², 福島 優斗², 川口 海周², 森 亮², 近藤 猛², 原沢 あゆみ², 吉信 淳², 辛 埴³, 金井 要¹	1. 東理大理工, 2. 東大物性研, 3. 東大特別教授室
11:15	奨 15a-B508-8	Au(111) 基板上に製膜した三脚型分子の蛍光・励起スペクトル計測	○ (DC) 小林 柚子 ^{1,2} , 横田 泰之 ^{1,3} , 竹谷 純一 ² , Sanjayan Sajisha ⁴ , 庄子 良晃 ⁴ , 福島 孝典 ⁴ , 金 有洙 ^{1,5}	1. 理研, 2. 東大院新領域, 3.JST さきがけ, 4. 東工大化生研, 5. 東大応化
11:30	奨 15a-B508-9	オペランド光電子顕微鏡観測による有機アンチ・アンバ イポーラトランジスタのキャリア伝導評価		
3/15(W		ロ頭講演 (Oral Presentation) B508会場(Room B508) 逆エネルギー移動を考慮した三重項 - 三重項消滅光アッ	曲 注一 , 右山 柗 , 価本 思紀 嶋田 勝太 ^{1,2} , トリバティ ニーティ ¹ , ○鎌田 賢司 ^{1,2}	1.産総研ナノ材, 2.関西学院大理工
10.15	1E B500.0	プコンバージョン発光体の三重項ダイナミクス DET製管を用いたナルブチェノチナフ・ソに対けてより	○下片 未刊 1	1 产物用CD EM
13:15	13p-B308-2	DFT計算を用いたオリゴチエノチオフェンに対するキャリアのスピン状態と ESR g テンソル解析	○□生業場	1. 産総研 CD-FMat

13:30	15p-B508-3	表面張力波による層状有機半導体の界面自己凝集過程の	○(M2)飯塚 太一¹, 井上 悟¹, 長谷川 達生¹	1.東大院工
13:45	奨 15p-B508-4	観測と解析 表面ひずみのリアルタイム計測による高分子フィルムの	○(M1)于 佳芸¹, 岸野 真之¹, 久野 恭平¹, 宍戸 厚¹	1.1. 東工大化生研
14:00	奨 15p-B508-5	湾曲クリープ挙動解析 ポリエチレンテレフタラートフィルムの湾曲疲労挙動に	○農木 承騰 ¹ 農野 百之 ¹ 久野 恭平 ¹ 宍戸 厚 ¹	1.東工大化生研
		おける分子配向依存性		
14:15	奨 15p-B508-6	ひずみ解析と光弾性法による湾曲高分子フィルムの分子 配向挙動解析	〇大谷 友紀',于 佳芸',張 鈺吴',岸野 真之', 久野 恭 平', 宍戸 厚 ¹	1. 東工大化生研
14:30		休憩/Break		
14:45	15p-B508-7	単分子接合の電子状態の応力応答	一色 裕次¹, 西野 智昭¹, ○藤井 慎太郎¹	1.東工大院理
15:00	15p-B508-8	Si-2x2単分子トランジスタの高周波応答	〇土畑 瑛嗣 1 , 西之坊 拓海 1 , Yin Dongbao 1 , 石塚 風 羽 1 , 新谷 亮 2 , 真島 豊 1	
15:15	奨 15p-B508-9	単分子計測による小分子―核酸塩基の単一分子会合状態 の計数検出	〇小本 祐貴 1 , 高島 裕介 1 , 大城 敬人 1 , 中谷 和彦 1 , 谷 口 正輝 1	1. 阪大産研
15:30	奨 15p-B508-10	単分子接合の接続構造に起因する SERS 強度 blinking 現象		1. 東工大理, 2. 物材研 MANA
15:45	奨 15p-B508-11	の観測 窒素含有ペンタセンの高純度薄膜作製および構造評価	○小野 裕太郎¹,鶴田 諒平¹,延山 知弘¹,佐々木 正	1. 筑波大数理, 2. 東理大
16:00	奨 15p-B508-12	Cu ₃ (BTC) ₂ 単結晶に対するイミダゾリウム系イオン液体	洋¹,田所 誠²,中山 泰生²,山田 洋一¹ ○大平 一路¹,甲斐 洋行¹,木下 健太郎¹	1. 東理大理
16:15		の浸透機構の解明 休憩/Break		
16:30	15p-B508-13	トンネル - ホッピング共存領域における単分子デバイス		1.阪大院基礎工, 2.JST さきがけ, 3.高麗大理
16:45	15p-B508-14	の熱起電力を記述する理論モデルの構築 ナノギャップ電気化学発光セルの作製条件の検討と電気	Jang ³ , Hyo Jae Yoon ³ , 夛田 博一 ¹ ○(DC)米本 了 ¹ , 上田 理永子 ² , 大友 明 ² , 野口 裕 ¹	1.明治大理工, 2.情通機構
	•	光学特性		
17:00	•	窒素リッチな高分子状窒化炭素薄膜における光照射下で の表面電位像観察		1.慶大理工, 2.京大工
17:15	15p-B508-16	ポンププローブケルビンプローブフォース顕微鏡による 有機薄膜トランジスタにおけるキャリア挙動の可視化	○河野 祐紀¹, 有長 一輝¹, 小林 圭¹	1. 京大工
17:30	15p-B508-17	静電気力顕微鏡法によるフッ素含有自己組織化単分子膜		1. 阪大院理, 2. 阪大産研
17:45	15p-B508-18	の表面電位ダイナミクスの検出 周波数変調EFMによる多層膜中に配置したRu錯体のエ	家 裕隆 2 , 松本 卓也 1 〇 (M2) 中山 優弘 1 , 山田 剛司 1 , 大山 浩 1 , 松本 卓也 1	1. 阪大院理
		ネルギー準位決定		
		口頭講演 (Oral Presentation) B508会場 (Room B508)	OFFICE HOULD AND A STATE OF THE	A Thomas I Mad way on the same I M
9:00	16a-B508-1	多核有機ルテニウム単分子膜の熱起電力計測	〇田中 裕也 1 , パク ソヒュン 2 , ジャン ジウン 2 , ユンヒョジェ 2	1.東工大化生研, 2.高麗大化
9:15	16a-B508-2	有機薄膜トランジスタの膜構造に関する研究	\bigcirc (M1) 田上 功己 1 , 富田 雅希 1 , 石井 久夫 $^{1.2}$, 宮前 孝 行 $^{1.2}$	1.千葉大院, 2.千葉大分子キラリティ
9:30	16a-B508-3	ナノ・マランゴニ効果を用いたアモルファス・ジアリー ルエテン膜の表面Tg領域測定	○山林 恵士¹, 小谷 和馬¹, 辻岡 強¹	1.大阪教大
9:45	E 16a-B508-4	Fabrication of Dual-mode Miniature Surface Plasmon Resonance (SPR) Sensor Chips	$\bigcirc (D) Wisansaya\ Jaikeandee^1, Supeera\ Nootchanat^2, \\ Chutiparn\ Lertvachirapaiboon^1, Kazunari\ Shinbo^1,$	1.Niigata Univ., 2.Chulalongkorn Uni.
10:00	16a-B508-5	機械学習を用いた低エネルギー逆光電子分光スペクトル	Keizo Kato¹, Sanong Ekgasit², Akira Baba¹ ○草野 佑紀¹, 吉田 弘幸².³	1. 千葉大院融合, 2. 千葉大院工, 3. 千葉大 MCRC
10:15		の自動解析の 高精度化 休憩/Break		
10:30	E 16a-B508-6	Enhancement of electrical properties and emergence of	○ (D)Dong Han¹, Tsuyoshi Nakajima¹, Tomoki	1.Osaka University
		temperature dependence of PCBM network mediated	Misaka ¹ , Taiga Hirota ¹ , Takashi Yamada ¹ , Hiroshi Ohoyama ¹ , Takuya Matsumoto ¹	•
10:45	16a-B508-7	with Au dopants {Mo _{154/152} }-ring の持つ非線形性と記憶特性	○(M1)木元 克¹, 大山 浩¹, 松本 卓也¹	1. 阪大院理
11:00		Ru錯体を介した金微粒子ナノ架橋アレーの非線形電気特		
		性とその応用	卓也1	
11:15	16a-B508-9	サブフェーズにおけるイオン結合を用いた水溶性高分子 LB膜の形成	○村野 佑馬¹, 蔡 徳七¹, 永野 修作², 松本 卓也¹	1. 阪大院理, 2. 立教大院理
11:30	16a-B508-10	分子性メモリスタ候補物質 (Et-4BrT) [Ni(dmit) $_2$] $_2$ の物性		1. 理研, 2. 名大工, 3. 分子研
3/16/TI	hu) 16:00 19:00	ポスター講演 (Poster Presentation) PB会場(Room PB)	三 ¹ , 山本 浩史 ³ , 草本 哲郎 ³	
3/ 10(11		ボスター講演 (Poster Presentation) PB 芸場(Room PB 光電子収量分光 (PYS) スペクトルのデジタルデータベー		1.物材機構, 2.理研計器
	10p 1 DO1 1	ス構築	島功 ¹ ,劉雨彬 ² ,中島嘉之 ²	PATA DANIE 1 SANTER I HE
	16p-PB01-2	摩擦発電のためのpoly(vinylidenefluoride-	\bigcirc (M1C) 岡本 裕介 1 , 田口 大 1 , 間中 孝彰 1	1.東工大 間中・田口研
	16p-PB01-3	trifluoroethylene) スピンコート膜の熱刺激電流測定 電子波動関数に基づく記述子を用いた乱れた有機高分子	○(B)寺地 雄真¹,藤田 貴敏²,福島 孝治³,星 健夫¹	1. 鳥取大工, 2.QST, 3. 東大総合文化
	16p-PB01-4	系の主成分分析 WEB経由のHPCI基盤を使った単分子第一原理伝導計算	○前田 青也¹, 大戸 達彦¹, 山田 亮¹, 夛田 博一¹	1.大阪大基礎工研
	-	自動実行システム		
	16n-PR01-5	有機窓媒中 AFM を用いたカチオンな摘贈のい II カル 1 料	○ 森木 将行 ¹ 藤村 佑 ² Ⅲ 瞇 孝埔 ² 淺Ⅲ 珊 ¹	1 金大 2 専用工業
		有機溶媒中AFMを用いたカチオン交換膜のシリカナノ粒子除去機能評価		1.金大, 2.栗田工業
				1. 金大, 2. 栗田工業 1. 龍谷大理工
	16p-PB01-6	子除去機能評価 炭素鎖長が異なるホスホン酸自己組織単分子膜のナノ構 造形成 分子ワイヤーに向けた M-DNA(M=Mn,Co,Zn) 複合体の	○武石 康佑¹, 吉川 幸輝¹, 大竹 忠¹, 山本 伸一¹	
	16p-PB01-6	子除去機能評価 炭素鎖長が異なるホスホン酸自己組織単分子膜のナノ構造形成 分子ワイヤーに向けた M-DNA(M=Mn,Co,Zn) 複合体の 作製 真空蒸着で作成した低分子有機膜の表面エンタルビー状	 ○武石康佑¹,吉川幸輝¹,大竹忠¹,山本伸一¹ ○大須田竜樹¹,森田勇人¹,阪田知巳¹ 	1. 龍谷大理工
	16p-PB01-6 16p-PB01-7 16p-PB01-8	子除去機能評価 炭素鎖長が異なるホスホン酸自己組織単分子膜のナノ構造形成 分子ワイヤーに向けたM-DNA(M=Mn,Co,Zn)複合体の作製 真空蒸着で作成した低分子有機膜の表面エンタルビー状態とMg蒸着性	 ○武石康佑¹,吉川幸輝¹,大竹忠¹,山本伸一¹ ○大須田竜樹¹,森田勇人¹,阪田知巳¹ ○辻岡強¹,土肥愛実¹ 	1. 龍谷大理工 1. 城西大理 1. 大阪教育大学
	16p-PB01-6 16p-PB01-7 16p-PB01-8 16p-PB01-9	子除去機能評価 炭素鎖長が異なるホスホン酸自己組織単分子膜のナノ構造形成 分子ワイヤーに向けたM-DNA(M=Mn,Co,Zn) 複合体の作製 真空蒸着で作成した低分子有機膜の表面エンタルビー状態とMg蒸着性 真空蒸着形成されたジアリールエテン膜の巨大表面電位 有機発光ダイオードの静電容量スペクトルにおける再結	 ○武石康佑¹,吉川幸輝¹,大竹忠¹,山本伸一¹ ○大須田竜樹¹,森田勇人¹,阪田知巳¹ ○辻岡強¹,土肥愛実¹ ○辻岡強¹, 沈君偉²,中村振一郎² ○伊澤泰之¹,東博暢¹,永瀬隆¹²,小林隆史¹²,內藤 	1. 龍谷大理工 1. 城西大理 1. 大阪教育大学 1. 大阪教育大学, 2. 熊本大学院先導機構
	16p-PB01-6 16p-PB01-7 16p-PB01-8 16p-PB01-9 16p-PB01-10	子除去機能評価 炭素鎖長が異なるホスホン酸自己組織単分子膜のナノ構造形成 分子ワイヤーに向けたM-DNA(M=Mn,Co,Zn) 複合体の 作製 真空蒸着で作成した低分子有機膜の表面エンタルビー状態とMg蒸着性 真空蒸着形成されたジアリールエテン膜の巨大表面電位	○武石康佑¹,吉川幸輝¹,大竹忠¹,山本伸一¹ ○大須田竜樹¹,森田勇人¹,阪田知巳¹ ○辻岡強¹,土肥愛実¹ ○辻岡強¹,大君偉²,中村振一郎² ○伊澤泰之¹,東博暢¹,永瀬隆¹²,小林隆史¹²,内藤裕義¹² ○吉川幸輝¹,武石康佑¹,松田侑真¹,大竹忠¹,山本	1. 龍谷大理工 1. 城西大理 1. 大阪教育大学 1. 大阪教育大学 1. 大阪教育大学, 2. 熊本大学院先導機構 1. 大阪公大工, 2. 大阪公大分子エレクトロニック研
	16p-PB01-6 16p-PB01-7 16p-PB01-8 16p-PB01-9 16p-PB01-10	子除去機能評価 炭素鎖長が異なるホスホン酸自己組織単分子膜のナノ構造形成 分子ワイヤーに向けたM-DNA(M=Mn,Co,Zn) 複合体の作製 真空蒸着で作成した低分子有機膜の表面エンタルビー状態とMg蒸着性 真空蒸着形成されたジアリールエテン膜の巨大表面電位 有機発光ダイオードの静電容量スペクトルにおける再結 合過程の影響 溶媒の違いによる自己組織化単分子膜の評価	○武石康佑¹,吉川幸輝¹,大竹忠¹,山本伸一¹ ○大須田竜樹¹,森田勇人¹,阪田知巳¹ ○辻岡強¹,土肥愛実¹ ○辻岡強¹, 沈君偉²,中村振一郎² ○伊澤泰之¹,東博暢¹,永瀬隆¹²,小林隆史¹²,内藤裕義¹² ○吉川幸輝¹,武石康佑¹,松田侑真¹,大竹忠¹,山本伸一¹	1. 龍谷大理工 1. 城西大理 1. 大阪教育大学 1. 大阪教育大学 1. 大阪教育大学, 2. 熊本大学院先導機構 1. 大阪公大工, 2. 大阪公大分子エレクトロニック研 1. 龍谷大理工
	16p-PB01-6 16p-PB01-7 16p-PB01-8 16p-PB01-10 16p-PB01-11 16p-PB01-11	子除去機能評価 炭素鎖長が異なるホスホン酸自己組織単分子膜のナノ構造形成 分子ワイヤーに向けたM-DNA(M=Mn,Co,Zn) 複合体の作製 真空蒸着で作成した低分子有機膜の表面エンタルビー状態とMg蒸着性 真空蒸着形成されたジアリールエテン膜の巨大表面電位 有機発光ダイオードの静電容量スペクトルにおける再結 合過程の影響	○武石康佑¹,吉川幸輝¹,大竹忠¹,山本伸一¹ ○大須田竜樹¹,森田勇人¹,阪田知巳¹ ○辻岡強¹,土肥愛実¹ ○辻岡強¹, 沈君偉²,中村振一郎² ○伊澤泰之¹,東博暢¹,永瀬隆¹²,小林隆史¹²,内藤裕義¹² ○吉川幸輝¹,武石康佑¹,松田侑真¹,大竹忠¹,山本伸一¹ ○松田侑真¹,永井慈²,前田直輝²,山本伸一² ○(D)Supakeit CHANARSA¹², Kazunari SHINBO¹, Keizo KATO¹, Kontad OUNNUNKAD², Akira	1. 龍谷大理工 1. 城西大理 1. 大阪教育大学 1. 大阪教育大学, 2. 熊本大学院先導機構 1. 大阪公大工, 2. 大阪公大分子エレクトロニック研 1. 龍谷大理工 1. 龍大先理電子, 2. 龍大理工
	16p-PB01-6 16p-PB01-7 16p-PB01-8 16p-PB01-9 16p-PB01-10 16p-PB01-11 E 16p-PB01-13	子除去機能評価 炭素鎖長が異なるホスホン酸自己組織単分子膜のナノ構 造形成 分子ワイヤーに向けたM-DNA(M=Mn,Co,Zn) 複合体の 作製 真空蒸着で作成した低分子有機膜の表面エンタルビー状 態とMg蒸着性 真空蒸着形成されたジアリールエテン膜の巨大表面電位 有機発光ダイオードの静電容量スペクトルにおける再結 合過程の影響 溶媒の違いによる自己組織化単分子膜の評価 Ga 液体金属表面酸化膜への自己組織化単分子膜の成膜 Surface Plasmon Excitation-Enhanced Organic Schottky Photodiode	○武石康佑¹,吉川幸輝¹,大竹忠¹,山本伸一¹ ○大須田竜樹¹,森田勇人¹,阪田知巳¹ ○辻岡強¹,土肥愛実¹ ○辻岡強¹,沈君偉²,中村振一郎² ○伊澤泰之¹,東博暢¹,永瀬隆¹²,小林隆史¹²,内藤裕義¹² ○吉川幸輝¹,武石康佑¹,松田侑真¹,大竹忠¹,山本伸一¹ ○松田侑真¹,永井慈²,前田直輝²,山本伸一² ○(D)Supakeit CHANARSA¹², Kazunari SHINBO¹, Keizo KATO¹, Kontad OUNNUNKAD², Akira BABA¹	1. 龍谷大理工 1. 城西大理 1. 大阪教育大学 1. 大阪教育大学 1. 大阪教育大学, 2. 熊本大学院先導機構 1. 大阪公大工, 2. 大阪公大分子エレクトロニック研 1. 龍谷大理工 1. 龍大先理電子, 2. 龍大理工 1. Niigata Univ., 2. Chiang Mai Univ.
	16p-PB01-6 16p-PB01-7 16p-PB01-8 16p-PB01-9 16p-PB01-10 16p-PB01-11 E 16p-PB01-13	子除去機能評価 炭素鎖長が異なるホスホン酸自己組織単分子膜のナノ構造形成 分子ワイヤーに向けたM-DNA(M=Mn,Co,Zn) 複合体の作製 真空蒸着で作成した低分子有機膜の表面エンタルビー状態と Mg 蒸着性 真空蒸着形成されたジアリールエテン膜の巨大表面電位 有機発光ダイオードの静電容量スペクトルにおける再結 合過程の影響 溶媒の違いによる自己組織化単分子膜の評価 Ga 液体金属表面酸化膜への自己組織化単分子膜の成膜 Surface Plasmon Excitation-Enhanced Organic Schottky	○武石 康佑¹, 吉川 幸輝¹, 大竹 忠¹, 山本 伸一¹ ○大須田 竜樹¹, 森田 勇人¹, 阪田 知巳¹ ○辻岡 強¹, 土肥 愛実¹ ○辻岡 強¹, 辻 君偉², 中村 振一郎² ○伊澤 泰之¹, 東 博暢¹, 永瀬 隆¹², 小林 隆史¹², 内藤 裕義¹² ○吉川 幸輝¹, 武石 康佑¹, 松田 侑真¹, 大竹 忠¹, 山本 伸一¹ ○松田 侑真¹, 永井 慈², 前田 直輝², 山本 伸一² ○(D)Supakeit CHANARSA¹², Kazunari SHINBO¹, Keizo KATO¹, Kontad OUNNUNKAD², Akira BABA¹	1. 龍谷大理工 1. 城西大理 1. 大阪教育大学 1. 大阪教育大学, 2. 熊本大学院先導機構 1. 大阪公大工, 2. 大阪公大分子エレクトロニック研 1. 龍谷大理工 1. 龍大先理電子, 2. 龍大理工

12.3 機能	能材	料・萌芽的デバ	イス / Functional Materials and Novel Devices		
	Wed.		口頭講演 (Oral Presentation) B409会場 (Room B409)	OT 16 # A 1 /n # P = 2 # 1/4 1 2 3	1 ± 11, 1, 22 ADAD 0 AZUU D 45-4 A 0 ± 11, 1,
9:00		15a-B409-1	2V以上の電圧を生じる酸・アルカリ水系電解質タンデム セルによるレアメタルフリー亜鉛空気電池		1. 東北大学 AIMR, 2.AZUL Energy 株式会社, 3. 東北大学 多元研
9:15		15a-B409-2	高出力・高容量なディスポーザブルマグネシウム空気紙 電池の開発		1. 東北大学 AIMR, 2. AZUL Energy 株式会社, 3. 東北大学多元研
9:30		15a-B409-3	ー本鎖DNAで被覆した単層カーボンナノチューブを吸着させた珪藻土を用いたマイクロデバイスの作製	○井出 祐貴¹, 松川 雄二², 梅村 和夫¹	1.東京理科大, 2.(株) フューチャーアース研究所
9:45	奨	15a-B409-4	刺激応答性ハイドロゲルからなる誘電体共振器による生 体成分濃度定量手法の検討	○池田 あゆみ¹, 中村 昌人¹, 高橋 陸², 田島 卓郎¹, 林 勝義¹	1.NTT 先デ研, 2.NTT 物性研
0:00		15a-B409-5	線形および環状DNAの交流電場応答の直接観測	○藤 悠之介 1 , 高野 辰 1 , 山岸 聖 \mathbf{n}^{1} , 守山 裕大 1 , 三井 敏之 1	1. 青学大理工
0:15			休憩/Break	92.~	
0:30	Е	E 15a-B409-6	Fabrication and evaluation of polymer varactor diodes for		1.NTT Dev. Tech. Labs
0:45		15a-B409-7	sub-THz frequency band 配向マイクロファイバー/液晶複合体を用いた100GHz	Kitayama¹, Hiroyuki Takahashi¹ ○Lang Trong Nghia¹, 井上 曜¹, 森武 洋¹	1. 防衛大
1.00	402	15a-B409-8	帯可変移相器の特性評価 正弦波電圧により駆動される液晶の応答速度の評価方法	○唯四 冲並】 井 1. 四1 未平 ※1	1.防衛大
1:00 1:15	头	15a-B409-8	コレステリック液晶性オリゴ(p-フェニレンビニレン)誘	○森下 修平¹, 土井 淳平¹, 國廣 誠貴¹, 舟橋 正浩¹, 鶴	
2/15/W	(hal	13.00 - 16.15	導体の二光子励起円偏光発光特性 口頭講演 (Oral Presentation) B409 会場(Room B409)	町 徳昭 ¹	
3:00			「第53回講演奨励賞受賞記念講演」	○堀家 匠平 ^{1,2,3,4} , 衛 慶碩 ³ , 赤池 幸紀 ³ , 桐原 和大 ³ ,	1.神戸大院工, 2.神戸大先端膜工学研究センター, 3.産
			有機超塩基によるカーボンナノチューブの安定なn型 ドーピング	向田 雅一 ³ , 小柴 康子 ^{1,2} , 石田 謙司 ^{1,2}	総研ナノ材, 4.JST さきがけ
3:15		15p-B409-2	PET繊維上に担持したPEDOT:PTSAにおける熱起電力 増大	○藤間 卓也¹, 高木 凌¹, 長田 祐貴¹, 有松 英輝¹, 大平 洋輔¹, 土方 智希¹	1.東京都市大理工
3:30		15p-B409-3	分光エリプソメトリーによるPEDOT:PSS, SELFTRON 膜のキャリア濃度評価		1.埼玉大理工研, 2. 堀場製作所
3:45		15p-B409-4	導電性高分子PBTTTへの電気化学ドーピング:キャリア移動度	○劉 峻峰¹, 伊藤 駿一郎¹, 田中 久暁¹, 竹延 大志¹	1. 名大院工
4:00	奨	15p-B409-5	導電性高分子PBTTTへの電気化学ドーピング:熱電特性	○伊藤 駿一郎¹, 金橋 魁利¹, 田中 久暁¹, 陳 斌杰², 太 田 裕道³, 竹延 大志¹	1.名大院工, 2.北大院情報, 3.北大電子研
4:15	Е	E 15p-B409-6	Investigation of acid deprotonation in electrolyte thin film	○(P)Athchaya Suwansoontorn¹, Kentaro Aoki¹, Jun	1.JAIST, 2.Yamagata Univ.
4:30			through protonic field-effect transistor 休憩/Break	Matsui², Yuki Nagao¹	
4:45	奨 E	E 15p-B409-7	$\rm Ar/N_2\text{-}plasma$ nitridation process for $\rm LaB_xN_y$ tunnel layer	$\bigcirc (DC) EUNKI HONG^1, Shun-ichiro Ohmi^1$	1. Tokyo Inst. of Technology
			formation on pentacene-based floating-gate memory utilizing N-doped LaB ₆ metal and high-k LaB ₈ N ₉ insulator		
5:00	奨	15p-B409-8	### The state of		1. 東理大・理工物理
			と物性測定		
5:15 5:30			オクタシアノ鉄 (II) フタロシアニンの合成と物性評価 有機半導体薄膜中の自己加熱によって生じる負性微分抵	○磯部 桃花¹, 中山 頌太¹, 高木 俊輔¹, 金井 要¹ ○金澤 俊¹, 高山 和輝¹, 野田 啓¹	1. 東理大理工 1. 慶應大理
5:45		15p-B409-11	抗現象 昆虫の行動自由度を損なわない薄膜エレクトロニクス実 装設計論確立	○片山 俊平 ^{1,2} , 筧 裕二郎 ^{1,2} , 高桑 聖仁 ^{1,2} , イ シンヨン ² , 古澤 和也 ³ , 佐藤 裕崇 ⁴ , 梅津 信二郎 ¹ , 福田 憲二郎 ² , 染谷 隆夫 ^{2,5}	1.早稲田大, 2.理研, 3.福井工大, 4.南洋理工大, 5.東方
6:00	奨	15p-B409-12	Catechol誘導体薄膜を用いた銀ナノ粒子形成に基づくヤ ヌス光沢膜		1.山形大院理工,2.大阪有機化学工業,3.千葉大院工, 4.立教大理,5.山形大理
3/16(T	Thu.)	9:00 - 11:30	口頭講演 (Oral Presentation) B409 会場(Room B409)	形下,松开 仔	4. 立教入哇, 5. 田形入哇
9:00		16a-B409-1		〇煤孫 祐樹 1 ,星 匡朗 1 ,劉 暢 1 ,申 家屹 1 ,篠田 敦志 2 ,木野 久志 3 ,田中 徹 $^{1.3}$,福島 誉史 $^{1.3}$	1. 東北大院工, 2. 東北大工, 3. 東北大院医工
9:15	奨 E	E 16a-B409-2	Integration Technology for Smart Skin Display II: Bendability Enhancement of Multi-level Metallization on	○ (M2)Cho Ryu¹, Yuki Susumago¹, Tadaaki Hoshi¹,	1.Graduate School of Engineering, Tohoku Univ., 2. Graduate School of Biomedical Engineering, Tohoku
			a PDMS Elastomer	Fukushima ^{1, 2}	Univ.
9:30	奨	16a-B409-3	Smart Skin Display の要素技術研究 III: 銅ピラーのアセンブリによる TXV 形成とフレキシブル配線の細線化	○(B) 篠田 敦志¹, 煤孫 祐樹², 劉 暢², 星 匡朗², 申 家 屹², 木野 久志³, 田中 徹².³, 福島 誉史².³	1. 東北大工, 2. 東北大院工, 3. 東北大院医工
:45		16a-B409-4	金ナノ粒子のプラズモン共鳴と干渉を用いた伸縮性歪みセンサ		1. 東大生研, 2. 慶大理工, 3. 慶大医
0:00		16a-B409-5	電界紡糸ポリスチレンマイクロファイバ膜を用いたマス	○高垣 賢一¹, 高橋 京華¹, 林 知希¹, 武内 俊次¹, 桑原	1. 京工繊大
0:15			ク型マイクロフォン 休憩/Break	教彰 ¹ , 石井 佑弥 ¹	
0:30		16a-B409-6	電荷移動錯体を活用した新型有機熱電素子	○(M2)近藤 駿¹, 八尋 正幸¹², ラッシュ マティアス アンダーソン³, 後藤 博史³, 安達 千波矢¹	1. 九州大 OPERA, 2.ISIT, 3.GCE インスティチュート
0:45	奨	16a-B409-7	上部透明電極を適用した有機光電変換膜の低暗電流化	〇今村 弘毅 1 , 堺 俊克 1 , 薬師寺 秀典 2 , 青竹 達也 2 , 貞 光 雄 $-^2$, 佐藤 弘人 1	1.NHK 技研, 2. 日本化薬
1:00		16a-B409-8	アンチストークス蛍光を用いた微量液体の温度測定	○後藤 匠¹,當麻 真奈¹,梶川 浩太郎¹	1.東工大工
1:15		16a-B409-9	バリレン基板の低温直接接合のための加熱条件の検討	○高桑 聖仁 ^{1,2} , 井ノ上 大嗣 ² , 福田 憲二郎 ² , 横田 知 之 ³ , 梅津 信二郎 ¹ , 染谷 隆夫 ^{2,3}	1.早大創造理工, 2.理研, 3.東大工
3/17(Fri.)	9:30 - 11:30 17a-PA03-1	ポスター講演 (Poster Presentation) PA会場 (Room PA) 電解重合法による導電性高分子と金属有機構造体単結晶		1.東理大理
		17a-PA03-2	の複合化 自己推進型イオンゲルを用いた回転ビットの多体系に現	○久原 郁実¹, 久我 麻優子¹, 古川 一暁¹	1.明星大理工
			れる相互作用		
		17a-PA03-3	界面欠損の形成を抑制した Core-shell 型シリカナノ粒子		
			界面欠損の形成を抑制した Core-shell 型シリカナノ粒子 充填気体分離膜の創製 ハロゲン組成制御と量子サイズ効果を活用した高発光効	野 貴至³, 增原 陽人²,4	料シスセ
		17a-PA03-4	界面欠損の形成を抑制した Core-shell 型シリカナノ粒子 充填気体分離膜の創製 ハロゲン組成制御と量子サイズ効果を活用した高発光効 率ペロブスカイト量子ドット 分極バターニング CNT/P(VDF-TrFE) を利用した焦電・	野貴至³, 增原陽人².⁴ ○(M2)大下直晃¹, 浅倉 聡², 增原陽人¹.³ ○西村友我¹, 堀家 匠平¹.².³, 小柴康子¹.², 斎藤 毅⁴,	料シスセ 1.山形大院理工,2.伊勢化学,3.山形大有機材料シスセ 1.神戸大院工,2.神戸大学先端膜工学研究センター,
		17a-PA03-4 17a-PA03-5	界面欠損の形成を抑制した Core-shell 型シリカナノ粒子 充填気体分離膜の創製 ハロゲン組成制御と量子サイズ効果を活用した高発光効 率ペロブスカイト量子ドット	野貴至³,增原陽人².⁴ ○(M2)大下直晃¹,浅倉 聡²,增原陽人¹.³ ○西村友我¹,堀家匠平¹.²,亦柴康子¹.²,斎藤毅⁴,石田謙司¹.² ○小柴康子¹.²,譚帥¹,堀家匠平¹.²,吉村武⁴,石田	料シスセ 1.山形大院理工, 2. 伊勢化学, 3.山形大有機材料シスセ 1. 神戸大院工, 2. 神戸大学先端膜工学研究センター, 3.JST さきがけ, 4. 産総研ナノ材 1. 神戸大院工, 2. 神戸大先端膜工学研究センター, 3.JS
		17a-PA03-4 17a-PA03-5	界面欠損の形成を抑制した Core-shell 型シリカナノ粒子充填気体分離膜の創製 ハロゲン組成制御と量子サイズ効果を活用した高発光効率ペロブスカイト量子ドット 分極バターニング CNT/P(VDF-TrFE) を利用した焦電・熱電応答の単一素子同時検出	野貴至³,增原陽人².⁴ ○(M2)大下直晃¹,浅倉 聡²,增原陽人¹.³ ○西村友我¹,堀家匠平¹.²,亦柴康子¹.²,斎藤毅⁴,石田謙司¹.² ○小柴康子¹.²,譚帥¹,堀家匠平¹.²,吉村武⁴,石田謙司¹.²	料シスセ 1.山形大院理工, 2.伊勢化学, 3.山形大有機材料シスセ 1.神戸大院工, 2.神戸大学先端膜工学研究センター,

	17a-PA03-9	CNT サブモノレイヤー電界効果トランジスタによる CNT/タンパク質分子接合の電荷輸送特性評価	○ (M1C) 濱尾 爽一郎¹, 森岡 璃久¹, 趙 ヨンユン¹, 阿 部 竜¹, 剛本 尚文¹, Pandey Manish¹, 辨天 宏明¹, 中 村 雅一¹	1. 奈良先端大
	17a-PA03-10	抵抗率が異なるPEDOT:PSSを用いた有機位置検出センサの周波数特性	○森宗 太一郎¹, 高橋 涼¹, 瀧本 一斗¹, 藤田 鈴香¹, 村 上浩¹, 宮崎 貴大¹, 金澤 啓三¹, 高田 英治², 梶井 博 武³	1.香川高専, 2.富山高専, 3.大阪大学
	17a-PA03-11	PSSフリーPEDOT 基熱電変換材料の巨大ゼーベック効果と電気伝導機構	○有松 英輝¹, 長田 祐貴¹, 高木 凌¹, 藤間 卓也¹	1.東京都市大理工
	17a-PA03-12	米と电気伝導成性 フレキシブル有機圧電センサによる心臓拍動の多点測定 と臓器応力センシング	○久保 佑一郎 ¹ , 永山 佑作 ² , 小柴 康子 ^{2,3} , 堀家 匠 平 ^{2,3,4} , 高島 一登 ⁵ , 石田 謙司 ^{2,3}	1. 神戸大工, 2. 神戸大院工, 3. 神戸大学先端膜工学研究
	17a-PA03-13	る孔質型感圧層の細孔径と表面形状の関係性解析と圧力 センサ応用		センター, 4.JST さきがけ, 5.九工大 1.山形大工, 2.山形大院有機, 3.山形大ROEL
	17a-PA03-14	有機分子から成るマイクロメートルスケールの SPASER	〇高石 みなみ 1 , 亀田 章弘 2 , 田島 裕之 2 , 山田 順 $-^2$, 小簑 剛 2	1.兵庫県大理, 2.兵庫県大院理
		A サイト欠陥の補填によるペロブスカイト量子ドットの 高内部量子収率化	增原 陽人 ^{2,5}	機シス,5.山形大有機材料シスセ
		フルオロ安息香酸を混合した水素結合性液晶のTHz帯における光学特性	勢 敏明 1	
		液晶ミリ波位相変調器におけるバイアス磁場による動作 特性の改善効果		
		Au透明電極を用いた液晶THz波制御デバイス	○増山 啓太¹, 伊東 良太¹, 目黒 和幸², 鈴木 一孝², 須藤 裕太², 平原 英俊³, 桑 静³, 本間 道則¹, 能勢 敏明¹	
		ミリ波帯における液晶装荷フォトニック結晶の設計 直交ワイヤグリッド電極を有する液晶セルにおけるミリ	○田中 将樹¹, 佐藤 雅哉¹, 伊藤 桂一¹ ○(B) 岡本 太一¹, 八木 あすか¹, 本間 道則¹, 伊東 良	1.秋田高専 1.秋田県大シス
	174-17103-20	波透過特性	太1,能勢敏明1	1. 水山东人之人
	17a-PA03-21	双安定特性を有するマイクロラビング液晶セルの基礎的 検討		1.秋田県大シス
	17a-PA03-22	強誘電性ネマティック液晶の分子配向に及ぼすラビング 対称性の効果	\bigcirc (B) 上藤 大和 1 , 仲嶋 一真 1 , 塚本 脩仁 1 , 尾﨑 雅 則 1 , 菊池 裕嗣 2	1. 阪大院工, 2. 九大先導研
	17a-PA03-23	イオン液体の気液相転移相図の作成とヒートパイプ作動		1. 神戸大院工, 2. 神戸大先端膜工学研究センター, 3.JST
	17a-PA03-24	流体への応用可能性 針状強磁性体を用いた走査型ex-situ固体NMRによる高 分子薄膜材料のイメージング法の開発	子 ^{1,2} ,石田謙司 ^{1,2} ○河端夏輝 ¹ ,浅川直紀 ¹	さきがけ 1.群馬大院工
3/18	(Sat.) 9:00 - 11:30	分子海膜材料のイメーシング法の開発 口頭講演 (Oral Presentation) B409 会場(Room B409)		
9:00	奨 18a-B409-1	走査トンネル顕微鏡を用いたインジウム超薄膜からの発 光観測	○黒石 健太¹, 奥山 弘¹, 八田 振一郎¹, 有賀 哲也¹	1. 京大院理
9:15	奨 18a-B409-2	光応答性部位の協奏による高いイオン伝導度スイッチン グ材料の開発	○青木 健太郎¹, 長尾 祐樹¹	1.北陸先端大
9:30	18a-B409-3	バルクヘテロ有機半導体層を用いた光アドレス電位差セ ンサ	〇松井 弘之 1 , 郭 媛元 2 , バイラクタリス ヨーリオス 3	1.山形大ROEL, 2.東北大学際研, 3. サリー大ATI
9:45	18a-B409-4	WGM共振器における共振器内エネルギー移動と自然放射増幅光の関係	三ヶ尻智紀¹,田島裕之¹,山田順一¹,○小簑剛¹	1. 兵庫県大院理
10:00	18a-B409-5	一重項分裂材料に起因する光 WGM 共振器の雰囲気依存 性	〇戸川 恭輔 1 , 三ヶ尻 智紀 1 , 田島 裕之 1 , 山田 順一 1 , 小簑 剛 1	1. 兵庫県大院理
10:15 10:30	奨 18a-B409-6	休憩/Break 【注目講演】電気的にスイッチングが可能な有機液滴レー	○(B)加藤 雅都¹, 山岸 洋¹, 山本 洋平¹	1. 筑波大理工
10:45	奨 E 18a-B409-7	ザーの開発 Molecular Interactions in Donor-Acceptor-Donor	○ (P)Xun Tang ^{1, 2} , Chihaya Adachi ^{1, 2, 3}	1.Kyushu Univ., OPERA, 2.Kyushu Univ., Dept. Appl.
11:00	18a-B409-8	Skeletons Toward Near-Infrared Organic Lasers 有機結晶表面に同心円型回折格子を加工した分布帰還型 レーザーの発光特性	\bigcirc (M2) 勝村 健司 1 , 稲田 雄飛 1 , 山雄 健史 1 , 堀田 収 1	Chem., 3.Kyushu Univ., WPI-I2CNER 1.京工繊大
11:15	18a-B409-9	高分子薄膜中に形成されたエキシプレックスの発光特性	○高畠 聖弥¹, 川辺 豊¹	1.千歲科技大
		口頭講演 (Oral Presentation) B409 会場(Room B409)		a strang to see .
13:00	奨 18p-B409-1	Poly(heptazine imide) のフォトクロミズムのメカニズム の解明	○服部 真衣¹, 中道 美柚¹, 山口 愛佳¹, 宮崎 千紘¹, 瀬 尾豪一郎¹, 大貫 良輔¹, 吉岡 伸也¹, 金井 要¹	
13:15 13:30	18p-B409-2 18p-B409-3	機械的強度に優れる自立性PEDOT膜の熱電変換特性 高分子半導体を用いた印刷型温度センサの高安定化	○今榮 一郎¹, 上原 大輝¹, 今任 景一¹, 大山 陽介¹ ○(B) 新村 星河¹, 小林 亮太¹, 尾沢 昂輝¹, 松井 弘之¹	1.広島大院先進理工 1.山形大 ROEL
13:45	18p-B409-4	同かり十零件を用いたに印刷至血反センリの同女だれ 印刷法を用いた全カーボンベース印刷型フレキシブル湿 度センサの開発	○吉田 綾子¹, ワン イーフェイ¹, 関根 智仁¹, 竹田 泰 典¹, 熊木 大介¹, 時任 静士¹	
14:00	E 18p-B409-5	Flexible bending sensors using laser-induced graphene transferred onto PDMS	○ (D)YAN XUAN¹, Satoko Honda¹, Kuniharu Takei¹	1.Osaka Metropolitan University
14:15	18p-B409-6	Agインクと導電布を用いたシート型フレキシブル圧力センサ	○(B)近藤 芳樹¹,本田智子¹,竹井 邦晴¹	1.大阪公立大
14:30 14:45	18p-B409-7	休憩/Break 伸縮可能な触覚圧力センサの開発	○李 艷鵬¹, 若林 聖史¹, 宣 妍¹, 竹井 邦晴¹	1.大阪公大
15:00	18p-B409-8	熱膨張性微粒子を用いた高感度印刷型圧力センサの開発		1.山形大工, 2.山形大院有機, 3.山形大ROEL
15:15	18p-B409-9	界面活性剤の鎖長最適化による薄膜型高感度圧力センサ の高感度化	○(B)董海韵¹,奈良健汰¹,関根智仁¹.².³, Wang Yi-Fei³, 竹田泰典³, 熊木大介³, 時任静士¹.².3	1.山形大工, 2.山形大院有機, 3.山形大ROEL
15:30	18p-B409-10	上下電極に塗布形成したCNTを使用した全塗布型ポリイミド静電容量型湿度センサの作製		1.信州大工
15:45	18p-B409-11	ナノカーボン型複合材料によるソフトな硬さセンサの作製	○(B) 奈良 健汰¹, 董 海韵¹, 関根 智仁¹.2.³, Wang Yi-Fei³, 竹田 泰典¹.³, 熊木 大介¹.³, 時任 静士¹.2.3	1. 山形大工, 2. 山形大院有機, 3. 山形大 ROEL
16:00		植物用インピーダンスセンサ	○(B) 寺本 匡希¹, 竹井 邦晴¹	1.大阪公大
		7 / Organic light-emitting devices and organic transistors	5	
9:00	15a-E402-1	口頭講演 (Oral Presentation) E402 会場(Room E402) Cs ₂ NaInCl ₆ ダブルペロブスカイト量子ドットの赤色発光	○戸佐 圭汰¹, 丁 超¹, 早瀬 修二¹, 沈 青¹	1.電通大基盤理工
9:15	E 15a-E402-2	Enhanced Hot-Phonon Bottleneck Effect on Slowing Hot Carrier Cooling in Metal Halide Perovskite Quantum		1.Univ. of Electro-Communications
	E 15 E402.2	Dots With Alloyed A-Site Emission Color Tuning of CsPbI ₃ Nanocrystals by Mixing	○ (M2)Eimantas Bucmys¹, Yukiko Aida¹, Yuto Kajino¹, Yusuke Arima¹, Toshinori Matsushima²,	1.IMCE, Kyushu Univ., 2.I2CNER, Kyushu Univ.
9:30	E 15a-E402-3	with CsPbBr ₃ Nanocubes and Nanoplatelets	Kaoru Tamada ¹	

10:00	奨 15a-E402-5	緑色発光InP/ZnSe/ZnS量子ドット光学特性に対する ZnSe中間シェル膜厚の影響	〇岡本 彬仁 1 , 馬醫 春希 1 , 戸田 晋太郎 1,2 , 黄 毛蔚 1 , 山田 真聖 1 , 梶井 博武 1 , 川合 健太郎 1,2	1. 阪大院工, 2. アルバック協働研
10:15	15a-E402-6	緑色発光カドミウムフリーInP/ZnSe/ZnS量子ドット薄	面面 異奎,梶开 傳成,加古 健太郎 黄 毛蔚 1 ,○梶井 博武 1 ,山田 真聖 1 ,岡本 彬仁 1 ,馬醫	1 阪大院工 2 アルバック協働研
10.10	104 1102 0	膜の光学特性へのZnSe中間シェル層の影響とハイブリット発光デバイスへの応用		T. BANKPLAN, S. T. T. T. DUDBINI
0:30		休憩/Break		
0:45	15a-E402-7	青色量子ドット発光ダイオードの PL 温度特性	〇土江 貫洋', 角田 雅弘', 有田 宗貴', 両輪 達也', 岩田 昇', 和泉 真¹, 小椋 佑子³, 田中 雅典³, 宮永 昭治³, 荒川 泰彦²	1.シャープ, 2.東大ナノ量子機構, 3.NSマテリアルズ
1:00	15a-E402-8	交互イオン堆積法を用いたCdフリー量子ドット発光ダイオードの作製	岩田 昇², 和泉 真², 荒川 泰彦³, 立間 徹¹	
1:15	15a-E402-9	交互イオン堆積法を用いたCdフリー量子ドットのキャリア注入特性評価	○北野 圭輔¹, イスンヒョク², 土江 貴洋¹, 岩田 昇¹, 和泉 真¹, 荒川 泰彦³, 立間 徹²	1.シャープ, 2.東大生研, 3.東大ナノ量子機構
1:30	15a-E402-10	量子ドット/ポリマーブレンド発光層を有する全塗布多 層型逆構造発光ダイオード	○関野 太介¹, 伊東 栄次¹	1.信州大工
1:45	奨 15a-E402-11	インクジェット印刷を用いた高温アニール処理下でのペロブスカイト量子ドット LED の開発	○佐竹 康平 ¹ , 佐藤 勇輝 ¹ , 奈良崎 航平 ¹ , 千葉 貴 之 ^{1,2,3} , 城戸 淳二 ^{1,2,3}	1.山形大院有機, 2.山形大有機エレ研セ, 3.山形大有機 材料セ
3/15(W	/ed.) 13:00 - 18:00	口頭講演 (Oral Presentation) E402会場 (Room E402)		
3:00	招 15p-E402-1	「第53回講演奨励賞受賞記念講演」 Perhydropolysilazane を用いた塗布型ウルトラハイバリ ア膜	〇佐々木 樹 1 ,吉田 麗娜 2 ,黒澤 2 ,高橋 辰宏 1 ,硯里 善幸 2	1. 山形大院有機材料シス , 2. 山形大 INOEL
3:15	15p-E402-2	ト映 陽電子消滅法を用いたPHPS塗布型ガスバリア膜のナノ サイズ空隙評価		1. 山形大院有機材料シス , 2.Institute of Radiation Physics, HZDR, 3. 山形大 INOEL
3:30	15p-E402-3	アクセプター分子の電子状態制御による有機半導体への 正孔注入機構の解明	○大野 拓 1 ,岡田 拓也 1 ,佐々木 翼 1 ,清水 貴久 1 ,深川 弘彦 1	1.NHK技研
3:45	奨 15p-E402-4	マルチスケールシミュレーションによる有機非晶膜中の電荷トラップ解析	○佐藤 弘毅¹, 上田 駿¹, 梶 弘典¹	1. 京大化研
4:00	15p-E402-5	DCM-PL法によるリン光有機 EL素子の電荷蓄積挙動と 励起子消光機構の解析	○中野 正太郎¹, 野口 裕¹	1. 明治大理工
4:15	15p-E402-6	双極子ドープ正孔輸送層の電気伝導および励起子消光特性のホスト材料依存性	○武田 実宙¹, 野口 裕¹, Alexander Hofmann², Wolfgang Bruetting²	1.明治大理工, 2.アウクスブルク大学
4:30	E 15p-E402-7	Enhancing OLEDs Lifetime by Expanding CT Interface with TADF Assistant Dopant 休憩/Break	0 0	1.Kyushu Univ., 2.WPI I2-CNER2
4:45 5:00	15p-E402-8	が思/ Break 乾電池 1 本で光る青色有機 EL	○伊澤 誠一郎 ^{1,2} , 森本 勝大 ³ , 中 茂樹 ³ , 平本 昌宏 ^{4,5}	1.東工大フロンティア研, 2.JST さきがけ, 3.富山大,
5:15		ダイマー骨格による分子内三重項・三重項励起子アップ	○(M2) 佐々木 祥真¹, 合志 憲一¹.², 儘田 正史¹, 安達	4. 分子研, 5. 総研大
		コンバージョンと有機ELへの応用	千波矢 ^{1,2}	, ,
5:30	奨 15p-E402-10	λ 5 - ホスフィニン誘導体青色蛍光材料を用いた高効率有機 EL	〇杉山 遼 ¹, 岡田 陸 ⁴, 野田 泰登 ¹, 太田 英俊 ⁴, 林 実 ⁴, 笹部 久宏 ¹.².³, 城戸 淳二 ¹.².³	1.山形大院有機, 2.山形大有機エレ研セ, 3.山形大有 材料セ, 4.愛媛大院理工
5:45	E 15p-E402-11	Pyrimidine end-capped electron-injection/transport materials aiming for stable phosphorescent OLEDs	○ Yuhui Chen¹, Takeshi Sano², Hisahiro Sasabe¹,³, Junji Kido¹,²,²,³	1.Dept. of Organic Materials Science, Yamagata Univ. 2.Innovation Center of Organic Electronics, Yamagata Univ., 3.Frontier Center for Organic Materials, Yamagata Univ.
6:00	15p-E402-12	重原子効果を用いた熱活性型遅延蛍光における逆項間交 差の高速化	○志津 功将¹, Yongxia Ren¹, 梶 弘典¹	1. 京大化研
6:15	奨 15p-E402-13	多重共鳴型水色環状熱活性遅延蛍光材料群と高効率・高 色純度有機 EL	○熊田 健吾¹, 笹部 久宏¹.².³, 松家 実咲¹, 吉田 波音¹, 星 京吾¹, 中村 剛瑠¹, 年眞 遥生¹, 城戸 淳二¹.².³	1.山形大院有機材料シ, 2.山形大有機エレ研セ, 3.山形大有機材料セ
6:30	15p-E402-14	チオキサントンを用いた新規青色熱活性化遅延蛍光材料 の開発	明 ¹ , 志津 功將 ¹ , 和田 啓幹 ¹ , Geldsetzer Jan ¹ , 梶 弘	1. 京大化研
6:45		休憩/Break	д ¹	
7:00	奨 15p-E402-15	カルバゾールドナーを有する光安定性の高い発光ラジカ	○松田 健志郎¹, Stavrou Kleitos², 安楽 濕允¹, 中村	1. 九大院総理工. 2.Department of Physics, Durham
	X 10p 210 2 10	ルの創製	和宏 ¹ , Rui Xiaotian ¹ , 古郡 美紀 ³ , 中尾 晃平 ⁴ , 細貝 拓 也 ³ , Monkman Andrew ² , アルブレヒト 建 ⁴	
7:15	奨 15p-E402-16	塗布型有機EL素子の高性能化に資するフッ素置換したアルミニウム錯体をコアとするカルバゾールデンドリマー群	〇中尾 晃平 1 , 古郡 美紀 2 , 細貝 拓也 2 , 劉 冠廷 3 , 楊 旻	1. 九州大学先導研, 2. 産総研物質標準計測, 3. 九州大学高等研究院, 4. 九大院総理工
7:30	15p-E402-17	優れた円偏光発光特性を示す C_3 キラルトルキセン類の開発とデバイス応用	〇石割 文崇 1 , 大峰 拓也 1 , 廣瀬 崇至 2 , 森 正 1 , 相澤 直 矢 1 , 佐伯 昭紀 1	1. 阪大院工, 2. 京大化研
7:45	15- E402 10		○佐々木 史雄¹, 松尾 匠¹, 高田 徳幸¹, 椋橋 奈穂², 水	1. 産総研電子光, 2. 奈良先端大物質
	15p-£402-16	体微小結晶共振器を有したEL素子の開発	野斎²,柳久雄²	
3/16(T	Γhu.) 9:00 - 12:15	口頭講演 (Oral Presentation) E402会場 (Room E402)		
9:00	<u> </u>	口頭講演 (Oral Presentation) E402会場(Room E402) イオン液体LECの動作過程における直接分光観測 電気化学発光セルのドービング緩和過程における有機磁	保地 滉介¹, ○鐘本 勝一¹.², 坂上 知³, 米川 文広³	1.大阪公大院理, 2.南部研, 3.日本化学工業1.明治大理工
9:00 9:15	Thu.) 9:00 - 12:15 16a-E402-1	口頭講演 (Oral Presentation) E402会場(Room E402) イオン液体LECの動作過程における直接分光観測	保地 滉介¹, ○鐘本 勝一¹², 坂上 知³, 米川 文広³ ○矢崎 竜也¹, 野口 裕¹ ○(M1) 中島 美華¹, 山口 世力¹, 戸沢 日馨¹, 早川 慧¹, 羅 超然¹, 菊地 卓也¹, Balijapalli Umamahesh², 安達	 明治大理工 筑波大院数物, 2.Kyulux, 3. 九大 OPERA, 4. 筑波大-
0:00 0:15 0:30	Thu.) 9:00 - 12:15 16a-E402-1 16a-E402-2	口頭講演 (Oral Presentation) E402 会場(Room E402) イオン液体 LEC の動作過程における直接分光観測 電気化学発光セルのドーピング緩和過程における有機磁 気抵抗および EL 効果の観測 赤色熱活性化遅延蛍光 LEC 素子のスピン状態のオペラン ド ESR 研究 有機トランジスタメモリのプログラミング過程における	保地 滉介¹, ○鐘本 勝一¹.², 坂上 知³, 米川 文広³ ○矢崎 竜也¹, 野口 裕¹ ○(M1) 中島 美華¹, 山口 世力¹, 戸沢 日馨¹, 早川 慧¹, 羅 超然¹, 菊地 卓也¹, Balijapalli Umamahesh², 安達 千波矢³, 丸本一弘¹⁴ ○(M1) 塩川 凜人¹, 山口 世力¹, 稲井 聡志¹, 永瀬 隆²,	1. 明治大理工 1. 筑波大院数物, 2. Kyulux, 3. 九大 OPERA, 4. 筑波大 ネ物質科学セ 1. 筑波大数物, 2. 大阪公立大院工, 3. 筑波大エネ物質
0:00 0:15 0:30	Thu.) 9:00 - 12:15 16a-E402-1 16a-E402-2 16a-E402-3	口頭講演 (Oral Presentation) E402 会場 (Room E402) イオン液体 LEC の動作過程における直接分光観測 電気化学発光セルのドーピング緩和過程における有機磁 気抵抗および EL 効果の観測 赤色熱活性化遅延蛍光 LEC 素子のスピン状態のオペラン ド ESR 研究 有機トランジスタメモリのプログラミング過程における 電荷状態の ESR 研究 摩擦力顕微鏡による塗布型有機半導体層の秩序・無秩序	保地 滉介¹, ○鐘本 勝一¹.², 坂上 知³, 米川 文広³ ○矢崎 竜也¹, 野口 裕¹ ○(M1) 中島 美華¹, 山口 世力¹, 戸沢 日馨¹, 早川 慧¹, 羅 趙然¹, 菊地 卓也¹, Balijapalli Umamahesh², 安達 千波矢³, 丸本 一弘¹.⁴ ○(M1) 塩川 凜人¹, 山口 世力¹, 稲井 聡志¹, 永瀬 隆², 丸本 一弘¹.³	1. 明治大理工 1. 筑波大院数物, 2.Kyulux, 3. 九大 OPERA, 4. 筑波大 ネ物質科学セ
::00 ::15 ::30 ::45	Thu.) 9:00 - 12:15 16a-E402-1 16a-E402-2 16a-E402-3	口頭講演 (Oral Presentation) E402 会場 (Room E402) イオン液体 LEC の動作過程における直接分光観測 電気化学発光セルのドービング緩和過程における有機磁 気抵抗および EL 効果の観測 赤色熱活性化遅延蛍光 LEC 素子のスピン状態のオペランド ESR研究 有機トランジスタメモリのプログラミング過程における電荷状態の ESR研究 摩擦力顕微鏡による塗布型有機半導体層の秩序・無秩序 相マッピング	保地 滉介¹, ○鐘本 勝一¹.², 坂上 知³, 米川 文広³ ○矢崎 竜也¹, 野口 裕¹ ○(M1) 中島 美華¹, 山口 世力¹, 戸沢 日馨¹, 早川 慧¹, 羅 趙然¹, 菊地 卓也¹, Balijapalli Umamahesh², 安達 千波矢³, 丸本 一弘¹.⁴ ○(M1) 塩川 凜人¹, 山口 世力¹, 稲井 聡志¹, 永瀬 隆², 丸本 一弘¹.³	1. 明治大理工 1. 筑波大院数物, 2. Kyulux, 3. 九大 OPERA, 4. 筑波大之 补物質科学セ 1. 筑波大数物, 2. 大阪公立大院工, 3. 筑波大工补物質科学セ
::00 ::15 ::30 ::45 0::00	Thu.) 9:00 - 12:15 16a-E402-1 16a-E402-2 16a-E402-3 16a-E402-4 16a-E402-5	口頭講演 (Oral Presentation) E402 会場(Room E402) イオン液体 LEC の動作過程における直接分光観測 電気化学発光セルのドーピング緩和過程における有機磁 気抵抗およびEL 効果の観測 赤色熱活性化遅延蛍光 LEC 素子のスピン状態のオペランド ESR研究 有機トランジスタメモリのプログラミング過程における 電荷状態の ESR研究 摩擦力顕微鏡による塗布型有機半導体層の秩序・無秩序 相マッピング 休憩/Break	保地 滉介¹, ○鐘本 勝一¹.², 坂上 知³, 米川 文広³ ○ 矢崎 竜也¹, 野口 裕¹ ○ (M1) 中島 美華¹, 山口 世力¹, 戸沢 日馨¹, 早川 慧¹, 羅 超然¹, 菊地 卓也¹, Balijapalli Umamahesh², 安達 千波矢³, 丸本一弘¹.⁴ ○ (M1) 塩川 凜人¹, 山口 世力¹, 稲井 聡志¹, 永瀬 隆², 丸本一弘¹.³ ○ (D) 宮田 稜¹, 井上 悟¹, 中嶋 健², 長谷川 達生¹	1. 明治大理工 1. 筑波大院数物, 2. Kyulux, 3. 九大OPERA, 4. 筑波大之 补物質科学セ 1. 筑波大数物, 2. 大阪公立大院工, 3. 筑波大工补物質学セ 1. 東大工, 2. 東工大物質理工
9:00 9:15 9:30 9:45 0:00 0:15 0:30	Thu.) 9:00 - 12:15 16a-E402-1 16a-E402-2 16a-E402-3 16a-E402-4 16a-E402-5	口頭講演 (Oral Presentation) E402 会場 (Room E402) イオン液体 LEC の動作過程における直接分光観測 電気化学発光セルのドービング緩和過程における有機磁 気抵抗および EL 効果の観測 赤色熱活性化遅延蛍光 LEC 素子のスピン状態のオペランド ESR研究 有機トランジスタメモリのプログラミング過程における電荷状態の ESR研究 摩擦力顕微鏡による塗布型有機半導体層の秩序・無秩序 相マッピング	保地 滉介¹, ○鐘本 勝一¹.², 坂上 知³, 米川 文広³ ○ 矢崎 竜也¹, 野口 裕¹ ○ (M1) 中島 美華¹, 山口 世力¹, 戸沢 日馨¹, 早川 慧¹, 羅超然¹, 菊地 卓也¹, Balijapalli Umamahesh², 安達 千波矢³, 丸本一弘¹.⁴ ○ (M1) 塩川 張人¹, 山口 世力¹, 稲井 聡志¹, 永瀬 隆², 丸本一弘¹.³ ○ (D) 宮田 稜¹, 井上 悟¹, 中嶋 健², 長谷川 達生¹ ○森 健彦¹	1. 明治大理工 1. 筑波大院数物, 2. Kyulux, 3. 九大 OPERA, 4. 筑波大之 补物質科学セ 1. 筑波大数物, 2. 大阪公立大院工, 3. 筑波大工补物質科学セ
9:00 9:15 9:30 9:45 0:00 0:15 0:30 0:45	Thu.) 9:00 - 12:15 16a-E402-1 16a-E402-2 16a-E402-3 16a-E402-4 16a-E402-5 16a-E402-7	口頭講演 (Oral Presentation) E402 会場(Room E402) イオン液体 LEC の動作過程における直接分光観測 電気化学発光セルのドービング緩和過程における有機磁 気抵抗および EL 効果の観測 赤色熱活性化遅延蛍光 LEC 素子のスピン状態のオペラン ド ESR 研究 有機トランジスタメモリのプログラミング過程における 電荷状態の ESR 研究 摩擦力顕微鏡による塗布型有機半導体層の秩序・無秩序 相マッピング 休憩/Break ボテンシャルカーブによる有機半導体の結晶構造予測 アルキル置換有機半導体における層状液晶相の誘発と無	保地 滉介¹, ○鐘本 勝一¹.², 坂上 知³, 米川 文広³ ○ 矢崎 竜也¹, 野口 裕¹ ○ (M1) 中島 美華¹, 山口 世力¹, 戸沢 日馨¹, 早川 慧¹, 羅超然¹, 菊地 卓也¹, Balijapalli Umamahesh², 安達 千波矢³, 丸本一弘¹.⁴ ○ (M1) 塩川 張人¹, 山口 世力¹, 稲井 聡志¹, 永瀬 隆², 丸本一弘¹.³ ○ (D) 宮田 稜¹, 井上 悟¹, 中嶋 健², 長谷川 達生¹ ○森 健彦¹	1.明治大理工 1.筑波大院数物, 2.Kyulux, 3.九大 OPERA, 4.筑波大-
3/16(T 9:00 9:15 9:30 9:45 0:00 0:15 0:30 0:45 1:00	Thu.) 9:00 - 12:15 16a-E402-1 16a-E402-2 16a-E402-3 16a-E402-4 16a-E402-5 16a-E402-5 16a-E402-7 16a-E402-8	口頭講演 (Oral Presentation) E402 会場(Room E402) イオン液体LECの動作過程における直接分光観測電気化学発光セルのドービング緩和過程における有機磁気抵抗およびEL効果の観測赤色熱活性化遅延蛍光LEC素子のスピン状態のオペランドESR研究 有機トランジスタメモリのプログラミング過程における電荷状態のESR研究摩擦力顕微鏡による塗布型有機半導体層の秩序・無秩序相マッピング体想/Break ボテンシャルカーブによる有機半導体の結晶構造予測アルキル置換有機半導体における層状液晶相の誘発と無溶媒塗布製膜 BTBTT系半導体への非対称アルキル置換による層状分	保地 滉介¹, ○鐘本 勝一¹.², 坂上 知³, 米川 文広³ ○ 矢崎 竜也¹, 野口 裕¹ ○ (M1) 中島 美華¹, 山口 世力¹, 戸沢 日馨¹, 早川 慧¹, 羅 超然¹, 菊地 卓也¹, Balijapalli Umamahesh², 安達 千波矢³, 丸本 一弘¹.⁴ ○ (M1) 塩川 凜人¹, 山口 世力¹, 稲井 聡志¹, 永瀬 隆², 丸本 一弘¹.³ ○ (D) 宮田 稜¹, 井上 悟¹, 中嶋 健², 長谷川 達生¹ ○森 健彦¹ ○ (D) 二階堂 圭¹, 井上 悟¹, 長谷川 達生¹	1.明治大理工 1.筑波大院数物, 2.Kyulux, 3.九大OPERA, 4.筑波大二 木物質科学セ 1.筑波大数物, 2.大阪公立大院工, 3.筑波大エネ物質科学セ 1.東大工, 2.東工大物質理工 1.東工大物質理工 1.東工大物質理工 1.東大院工 1.産総研, 2.東大工, 3.物材機構
9:00 9:15 9:30 9:45 0:00 0:15 0:30 0:45	Thu.) 9:00 - 12:15 16a-E402-1 16a-E402-2 16a-E402-3 16a-E402-4 16a-E402-5 16a-E402-6 16a-E402-7 16a-E402-8 16a-E402-9	口頭講演 (Oral Presentation) E402 会場(Room E402) イオン液体 LEC の動作過程における直接分光観測電気化学発光セルのドーピング緩和過程における有機磁気抵抗およびEL 効果の観測赤色熱活性化遅延蛍光 LEC 素子のスピン状態のオペランド ESR研究 有機トランジスタメモリのプログラミング過程における電荷状態の ESR研究摩擦力顕微鏡による塗布型有機半導体層の秩序・無秩序相マッピング休憩/Break ボデンシャルカーブによる有機半導体の結晶構造予測アルキル置換有機半導体における層状液晶相の誘発と無溶媒塗布製膜 BTBTT 条半導体への非対称アルキル置換による層状分子配列の制御 In-silico crystallization (2): brickwork型構造シミュレー	保地 滉介¹, ○鐘本 勝一¹.², 坂上 知³, 米川 文広³ ○ 矢崎 竜也¹, 野口 裕¹ ○ (M1) 中島 美華¹, 山口 世力¹, 戸沢 日馨¹, 早川 慧¹, 羅 超然¹, 菊地 卓也¹, Balijapalli Umamahesh², 安達 子波矢³, 丸本一弘¹.⁴ ○ (M1) 塩川 凜人¹, 山口 世力¹, 稲井 聡志¹, 永瀬 隆², 丸本一弘¹.³ ○ (D) 宮田 稜¹, 井上 悟¹, 中嶋 健², 長谷川 達生¹ ○森 健彦¹ ○ (D) 二階堂 圭¹, 井上 悟¹, 長谷川 達生¹ ○東野 寿樹¹, 井上 悟², 荒井 俊人³, 都築 誠二², 長谷川 達生² ○ Bulgarevich Dmitrievich Kirill¹, 堀内 信吾¹², 瀧宮 和男¹.².³	1.明治大理工 1. 筑波大院数物, 2.Kyulux, 3. 九大OPERA, 4. 筑波大工 ネ物質科学セ 1. 筑波大数物, 2.大阪公立大院工, 3. 筑波大エネ物質科学セ 1. 東大工, 2. 東工大物質理工 1. 東工大物質理工 1. 東大院工 1. 産総研, 2. 東大工, 3. 物材機構

12:00	16a	-E402-12	化学ドーピングによるカーボン電極 - 有機半導体界面の キャリア注入特性の向上	○渡辺和誉¹,三浦直樹²,田口博章²,小松武志²,野坂秀之²,岡本敏宏¹,山下侑¹,渡邉峻一郎¹,竹谷純一¹	1.東大院新領域, 2.NTT 先端集積デバイス研
3/16(T 13:45			口頭講演 (Oral Presentation) E502 会場(Room E502) 有機半導体分子BTBTの緻密な分子配列制御によるキャ	○ (M2) 赤井 亮太¹, 岡 弘樹¹, 藤内 謙光¹	1. 阪大院工
14:00	奨 16p	-E502-2	リア輸送能の変調 高急峻スイッチング有機単結晶TFTにおけるゲート絶縁		1.東大院工, 2.産総研
14:15	奨 16p	-E502-3	膜材料に依存したキャリア注入 モノアルキルBTBT系層状有機半導体の段階的結晶構造		1.東大院工
14:30	16p	-E502-4	最適化と構造起源の解明 N型半導体開発に向けた有機電荷移動錯体の構造起源解 明	長谷川 達生¹ ○都築 誠二¹, 大野 亮汰¹, 井上 悟¹, 松岡 悟志¹, 長谷 川 達生¹	1. 東大物工
14:45	奨 16p	-E502-5	トナー型印刷により形成した電子材料パターンの光焼結		1. 千葉大院工
15:00	奨 16p	-E502-6	金ナノワイヤ電極を用いた柔軟有機薄膜トランジスタの 開発		1.阪大院工, 2.阪大産研, 3.産総研先端フォトバイオ
15:15	奨 16p	-E502-7	UHF帯レクテナ応用に向けたCNT薄膜トランジスタダイオードの高周波特性		1.東レ株式会社, 2.金沢工業大学
15:30	16p	-E502-8	イカートの同風の行任 フローティング・ト型アンチ・アンバイポーラトラン ジスタを用いたロジックインメモリの開発(1):3値ロ ジックインメモリ		1.物材機構
15:45	奨 16p	-E502-9	フローティングゲート型アンチ・アンバイボーラトラン ジスタを用いたロジックインメモリの開発(2):再構成可 能な論理演算素子		1. 物材機構, 2. 東理大
3/17(ポスター講演 (Poster Presentation) PA会場 (Room PA)		A LIBRORIUM O LIBRORIUM O TOMOS LIBRORIUM
	17a	-PA04-1	嵩高い置換基を有するカルバゾール - トリアジンデンド リマーTADF材料の創製	池辺 大樹¹, 中尾 晃平², 古郡 美紀³.⁴, 中山 泰生³.⁴, 細 貝 拓也³.⁴, ○アルブレヒト 建¹	1. 九大院総理工, 2. 九大先導研, 3. 東理科大, 4. 産総研物質計測標準
	17a	-PA04-2	反実仮想的機械学習による有機発光ダイオードの設計	(回田 淳之¹, 内藤 裕義².3	具 前側 保 年 1. 大阪府立大, 2. 大阪公大, 3. 大阪公大分子エレクトロニック研
			CsPbBr₃薄膜に対する CsBr キャッピング層の効果		1. 日大工, 2.SCT株式会社
	17a	-PA04-4	酸化アルミおよび酸化チタン多層膜を用いたガスバリア フィルム	○ (M1) 佐藤 隆盛', 齋藤 健太郎'², 鹿又 健作', 田中純一', 山口 裕之', 千葉 貴之', 城戸 淳二', 廣瀬 文 彦¹	
	17a	-PA04-5	オペランドESRによる電気化学発光セルのデバイス内部	~	1.大阪公大院理, 2.南部研
	17a	-PA04-6	状態の観測 CsPbI ₃ 量子ドット超格子の発光特性	○(M2) 增田 拓真¹, 濱中 泰¹, 葛谷 俊博², 武田 圭生²,	1.名工大院, 2.室工大
	17a	-PA04-7	ZnSe量子ドットの光電物性と発光ダイオード作製		1.大阪公立大,2.大阪公立大分子エレクトロニックデバ
	17a	-PA04-8	鉛錫ペロブスカイト単結晶の光学特性に関する研究	義 ^{1,2} ○劉東¹, 李花¹, 李玉勝¹, 豊田太郎¹, 早瀬 修二¹, 丁	1.電通大
	17a	-PA04-9	モノアルキルBTNT系有機半導体の長鎖置換による移動		1. 東大院工, 2. 産総研, 3. 埼工大
	17a	-PA04-10	度向上効果 II デュアルバルス法を用いた有機トランジスタの高精度・	人¹, 都築 誠二¹, 堀内 佐智雄², 長谷川 達生¹ ○(B) 小林 倫¹, 小林 亮太¹, 松井 弘之¹	1. 山形大ROEL
	17a	-PA04-11	高速移動度測定 ソース・ドレイン電極厚さによる貼り付け型有機単結晶	濱比嘉 勇人¹, ○野内 亮¹.²	1.大阪公立大工, 2.JST さきがけ
	17a	-PA04-12	FETの水誘起動作不安定性の制御 MoO ₃ の堆積を用いた非貴金属トップコンタクト電極の	○溝口 嶺¹, 小林 雅季¹, 惟村 直輝¹, 重森 海里¹, 松本峻誠¹, 徐 晋¹, 小野島 紀夫¹	1.山梨大
	17a	-PA04-13	形成 PET基板上へのPh-BTBT-10フレキシブル有機トランジ スタの作製		1.東工大未来研, 2.(株) ニコン
	17a	-PA04-14	プラスチック基板を用いた有機フォトトランジスタメモ リの特性評価		1.大阪府立大, 2.大阪公立大, 3.大阪公立大 分子エレクトロニックデバイス研
	17a	-PA04-15	両極性高分子半導体を用いた有機フローティングゲート メモリの特性改善		1.大阪公立大学, 2.大阪府立大学, 3.大阪公立大学 分 子エレクトロニックデバイス研
	17a	-PA04-16	アルミニウムシリケートを被膜した酸化チタン薄膜トランジスタのイオンセンサー応用	,	
	17a	-PA04-17	電荷蓄積層を用いたトップゲート有機トランジスタの閾 値電圧制御	~	1.大阪府立大, 2.大阪公立大, 3.大阪公立大 分子エレクトロニックデバイス研
	17a	-PA04-18	伝搬型・局在型表面プラズモン共鳴を利用したペンタセン薄膜ホトトランジスタの特性評価		
			陽電池 / Organic and hybrid solar cells		
9:00			口頭講演 (Oral Presentation) A401会場 (Room A401) 「第44回解説論文賞受賞記念講演」 ペロプスカイト半導体の光電変換における高電圧・高効 率化の材料開発	○宮坂 力12	1. 東大先端研, 2. 桐蔭大院工
9:30	15a	-A401-2	学にの何科研先 ペロプスカイト太陽電池とLEDからなる光電パワートランジスタ	○ (D) 岡本 賢一郎 1 , 岡本 研正 1 , 森下 和功 1 , 池上 和 志 2 , 宮坂 力 3,2	1.京都大, 2.桐蔭橫浜大, 3.東京大
9:45	15a	-A401-3	表面パッシベーションによる高い開放電圧をもつワイド バンドギャップペロブスカイト太陽電池の作製		1. 産業技術総合研究所, 2. 山形大学
10:00	15a	-A401-4	ワイドバンドギャップペロブスカイト太陽電池における 光相分離抑制		1. 東大先端研, 2. 桐蔭大院工
10:15 10:30	15a	-A401-5	休憩/Break ラマン分光による有機無機ペロブスカイト光誘起構造相		1. 東大院総合
10:45	E 15a	-A401-6	転移の観測 Minimizing Voltage Losses in Stable Wide Bandgap Mixed Halide Perovskite Solar Cells	晋 ¹ ○ Richard Murdey ¹ , Ai Shimazaki ¹ , Ryuji Kaneko ¹ , Minh Anh Truong ¹ , Tomoya Nakamura ¹ , Atsushi Wakamiya ¹	1.Kyoto Univ.
11:00	奨 15a	-A401-7	イオン混合型スズベロブスカイト単結晶の合成と物性	Wakamiya' ○中村 智也¹, 原田 布由樹¹, 山田 琢允¹, 金光 義彦¹, Truong Minh Anh¹, Murdey Richard¹, 若宮 淳志¹	1. 京大化研
11:15	奨 15a	-A401-8	PEAを含むSnベロブスカイト太陽電池における電荷移動と電子輸送層における電荷状態		1. 筑波大数物, 2. 京大化研, 3. 筑波大エネ物質科学セ
11:30	15a	-A401-9			1. 筑波大, 2. 東芝 ESS, 3. 東京理科大, 4. 筑波大 TREMS

3/15(V 13:00	Ved.) 13:00 - 18:00 E 15p-A401-1	口頭講演 (Oral Presentation) A401会場(Room A401) Sequential Passivation for Lead-Free Tin Perovskite Solar	○ (D)Zheng Zhang¹, Qing Shen¹, Shuzi Hayase¹	1.University of Electro-Communication
13:15	E 15p-A401-2	Cells with High Efficiency Assessment of the Role of Inorganic Electron Selective Layers in the Performance of Normal Structure Tin Halide	○ Ajay Kumar Baranwal¹, Tomohide Yabuki², Qing : Shen¹, Koji Miyazaki², Shuzi Hayase¹	1.Electro-Comm Univ, 2.Kyushu Inst Tech.
13:30	奨 15p-A401-3	Perovskite Solar Cells 塗布型酸化スズ膜を正孔輸送層に用いたスズペロブスカ	○北村 武史¹, Liang Wang¹, 沈 青¹, 早瀬 修二¹	1. 電通大
13:45	15p-A401-4	イト太陽電池 表面パッシベーションによるワイドバンドギャップ鉛フ		1. カーメイト, 2. 電通大, 3. 東芝ESS
14:00	15 4401.5	リー錫ペロブスカイトの粒界結晶化 休憩/Break	青 ² ,早瀬修二 ²	1 S. L. DDDC o Fight C L.
14:15	15p-A401-5	酸化亜鉛ナノワイヤ配向膜を電子輸送層としたヨウ化銀ビスマス - ペロブスカイト太陽電池		1. 電通大i-PERC, 2. 桐蔭横浜大学
14:30	奨 15p-A401-6	BA ⁺ とPEA ⁺ を含むスズペロブスカイト太陽電池の電荷 移動機構のESR解明	○陳 奕舟¹, 山口 世力¹, 佐藤 睦¹, 薛 冬¹, 丸本 一 弘¹.²	1. 筑波大数物, 2. 筑波大エネ物質科学セ
14:45	奨 15p-A401-7	ペロブスカイト人工葉におけるセル作成プロセスの構築 (II) -酸化チタン緻密層 -	○ (M1C) 鈴木 颯太¹, 藤田 正博¹, 竹岡 裕子¹, 陸川 政弘¹	1. 上智大理工
15:00	E 15p-A401-8	Interface Engineering for Achieving Efficient and Low Hysteretic Behavior Perovskite Solar Cells Based on ${\rm TiO_2}$ Mesopores Electron Extraction Layer		1.Chang Gung Univ., 2.Chang Gung Memorial Hospital at Linkou
15:15 15:30	奨 E 15p-A401-9	休憩/Break Dual TiO2 Electron Transport Layers Formed by Magnetron Sputtering and Spin Coating Methods for Planar Perovskite Solar Cells	○ (M2)Ali Raza¹, Nuth Sophal¹, Koji Tomita¹, Tetsuya Kaneko¹, Masao Isomura¹	1.Tokai Univ.
15:45	15p-A401-10	ベロブスカイト太陽電池の電子輸送層としての液相析出 TiO ₂ 薄膜の焼成温度の効果	○(M1)永田 佳大¹, 黒川 聖也¹, 青井 芳史¹	1. 龍谷大学理工
16:00	15p-A401-11	液相析出法で作製した金ナノ粒子含有酸化チタンを電子 輸送層として用いたペロブスカイト太陽電池の作製と評 価	○ (M2) 矢野 玲奈¹, 國吉 勇輝¹, 青井 芳史¹	1. 龍谷大理工
16:15 16:30	奨 15p-A401-12	本共役系高分子を正孔輸送材料に用いた太陽電池の作製(I)ーポリ(3-ヘキシルチオフェン)の検討ー 休憩/Break	\bigcirc (BC) 指田 結衣 ¹, 藤田 正博 ¹, 竹岡 裕子 ¹, 陸川 政 弘 ¹	1. 上智大理工
16:45	15p-A401-13	大気雰囲気下における高効率 - 20% - ペロブスカイト太陽 電池の作製	○春田 優貴¹, Muhammad Awais¹, Gangadharan Deepak¹, Saidaminov Makhsud¹	1. ビクトリア大学
17:00	奨 15p-A401-14	傾斜配向2次元/3次元積層構造を用いたペロブスカイト 太陽電池	•	1. 阪大院工, 2. 上智大理工
17:15	奨 15p-A401-15	ペロブスカイト太陽電池におけるCuSCN正孔輸送層へのLiイオンドープ効果	○駒澤 雄飛 ¹ , 内田 史朗 ¹ , 村上 拓郎 ² , 古郷 敦史 ²	1.千葉工大, 2. 産総研
17:30	15p-A401-16	イオン性液体を正孔輸送材ドーパントとして用いたペロ ブスカイト太陽電池の耐久性	○山本 晃平¹, 村上 拓郎¹	1. 産総研
17:45 3/16(ベロブスカイト太陽電池の材料自動成膜システムの開発 口頭講演 (Oral Presentation) A401 会場(Room A401)	○江口 直人¹, 山本 晃平¹, 村上 拓郎¹	1. 産総研
9:00	16a-A401-1	PM6とY6を用いた太陽電池:平面積層型とBHJ型の比較	〇中野 恭兵 1 , 加地 由美子 1 , 但馬 敬介 1	1. 理研 CEMS
9:15	奨 16a-A401-2	"汎用"光架橋剤による有機薄膜太陽電池の構造制御	〇鈴木 遼 1,2 , 宮坂 誠 2 , 中野 恭兵 1 , 落合 優登 1 , 加地 由美子 1 , 但馬 敬介 1	1. 理研 CEMS, 2. 東電大院工
9:30	16a-A401-3	チエノベンゾビスチアゾール系半導体ポリマーの開発と 高電圧有機薄膜太陽電池	○岩崎 洋斗 ¹ , 三木江 翼 ^{1,2} , 斎藤 慎彦 ^{1,2} , 尾坂 格 ^{1,2}	1. 広大工, 2. 広大院先進理工
9:45	16a-A401-4	分子配向のESR観測による3元系高分子太陽電池材料の 電荷蓄積状態の研究	〇王 佳曦 1 , 山口 世力 1 , 薛 冬 1 , 稲井 聡志 1 , 斎藤 慎 彦 2 , 尾坂 格 2 , 丸本 一弘 $^{1.3}$	1. 筑波大数物, 2. 広島大院工, 3. 筑波大エネ物質科学セ
10:00	16a-A401-5	ビニレン架橋アルコキシフルオロベンゾチアジアゾール を基盤とする有機薄膜太陽電池材料の開発	○森 裕樹¹, 山根 浩暉², 細木 龍智², 西原 康師¹	1. 岡山大基礎研, 2. 岡山大院自然
10:15 10:30	16a-A401-6	休憩/Break 有機太陽電池材料の最適なバンドギャップはいくらか?	〇吉田 弘幸 $^{1.2}$,中野 恭兵 3 ,杉江 藍 4 ,但馬 敬介 3 ,尾 坂 格 5	1.千葉大院工, 2.千葉大分子キラリテ, 3.理研, 4.千葉大院理工, 5.広大院工
10:45	16a-A401-7	非フラーレンアクセプターの置換基が太陽電池特性に及 ぼす影響	○斎藤 慎彦¹, 内藤 響生¹, 尾坂 格¹	1. 広大先進理工
11:00	16a-A401-8	四極子相互作用による高分子太陽電池における開放電圧 の向上	○Kim HyungDo¹, 石川 巧¹, 大北 英生¹	1.京大院工
11:15	16a-A401-9	真空下ゾル-ゲル法による低光触媒活性ZnOの作製と有機薄膜太陽電池への応用	Shahiduzzaman Md.², 辛川 誠 ^{1,2,3} , 當摩 哲也 ^{1,2,3}	1. 金沢大院自, 2. 金沢大 NanoMaRi, 3. 金沢大 Infiniti
11:30	16a-A401-10	金属イオン架橋 TEMPO酸化セルロース鎖間の相互作用 - 結合エネルギーおよび電子状態と蓄電性の関係 -		1. 静岡大工, 2. 東北大 NICHe
3/16(⁻ 13:00		口頭講演 (Oral Presentation) A401 会場(Room A401) P3HT/PCBM における電荷分離ダイナミクスと分光シグ	○藤田貴敏¹	1. 量研機構
13:15	<u> </u>	ナルの理論解析 光タイムドメインリフレクトメトリによる積層型有機太 陽電池の光電変換過程の時間分解解析 Π		
13:30	16p-A401-3	ナフタロシアニン誘導体を用いた近赤外領域に選択的に	文 ² ○林 洸斗¹, 相澤 直矢¹, 鈴木 充朗¹, 中山 健一¹	1.阪大院工
13:45	16p-A401-4	感度を持つ有機薄膜太陽電池 高分子ブレンド太陽電池における電荷回収ならびに再結		1. 京大院工
14:00	Not made a service	合ダイナミクス 休憩/Break	O(D)1 1 D1: "	
14:15	奨 E 16p-A401-5	Enhancement of $P3HT:PC_{61}BM$ Based Solar Cell Due to Comparative Concentrations of Plasmonic Gold Nanoplarticulates	○ (D)Joseph Baki Kaore, Akira Baba, Kazunari Shinbo, Keizo Kato	
14:30	16p-A401-6	Nanopiarticulates Siナノコーン/PEDOT:PSS太陽電池へのシランカップリング剤導入効果	○氷室 槙一¹, 佐藤 慶介¹	1.東京電機大
14:45 15:00	16p-A401-7 招 16p-A401-8	PWM照明下における色素増感型太陽電池の特性評価	○多田 和也¹ ○下野 麗¹, 西久保 綾佑¹, 石割 文崇¹, 佐伯 昭紀¹	1. 兵庫県立大工 1. 阪大院工
	3E 10h-W401-8	2次元ペロプスカイト太陽電池 の添加剤と成膜プロセス が光伝導度異方性と素子性能に与える効果	○ 1 幻 廊,臼八体 被怕,臼割 入宗,忙旧 咱能	▲・投入へ投ル →
15:15 15:30	E 16p-A401-9	休憩/Break Dopant and Interfacial Engineering giving Tin-Lead (SnPb) Perovskite Solar Cells with High Efficiency and	○ (P)Shahrir Razey Sahamir¹, Gaurav Kapil¹, Takeru Bessho², Hiroshi Segawa², Qing Shen¹, Shuzi	1.Univ. of Electro-Com, 2.Univ. of Tokyo
		Thermal Stability	Hayase ¹	

15:45	16p-A401-10	マルチポッド型正孔収集材料の導電性酸化物電極上での		1. 千葉大工, 2. 京大化研, 3. 千葉大院工, 4. 千葉大MCRC
16:00	奨 16p-A401-11		田 弘幸 1,3,4 〇中村 大介 1 , 劉 子豪 1 , 五月女 真人 2 , 松下 智紀 2 , 近	1. 東大工, 2. 東大先端研
16:15	奨 16p-A401-12	体の導電性制御 有機・無機ペロブスカイト結晶を用いた水素発生(I) - ペ		1.上智大理工
16:30		ロブスカイト化合物の次元性の影響 - 休憩/Break	弘1	
16:45	16p-A401-13	Cat-CVD SiN _x 保護層によるペロブスカイト太陽電池の 安定性の向上	○Huynh ThiCam Tu ¹ , 嶋﨑 愛 ² , 金子 竜二 ² , 若宮 淳 志 ² , 大平 圭介 ¹	1.北陸先端大, 2.京都大
17:00	16p-A401-14	Cat-CVD法で形成した単層および積層ガスバリア膜のペロブスカイト層の保護効果		1.北陸先端大, 2.金沢大
17:15	16p-A401-15	逆構造ペロブスカイト太陽電池における TiO_2 電子輸送層の開発		1.産総研
17:30	奨 16p-A401-16	の出た ヒドロキシルアミン系添加剤を用いた逆型ベロブスカイト太陽電池の特性及び信頼性向上	○長澤 佳祐¹, 佐野 健志¹, 榎本 健生¹, 奥山 豊¹, 荒木 祥太², 望月 敏光², 高遠 秀尚², 棚橋 克人², 城戸 淳 -1	1. 山形大院有機, 2. 産総研
17:45	16p-A401-17	高耐熱性の電子輸送層を用いた逆型トリプルカチオンベロブスカイト太陽電池の検討	一 ○望月 敏光 1 , 荒木 祥太 1 , 高遠 秀尚 1 , 棚橋 克人 1 , 奥 山 豊 2 , 佐野 健志 2	1. 産総研, 2. 山形大学
		口頭講演 (Oral Presentation) A401 会場 (Room A401)		1 1311111111111111111111111111111111111
9:00		電子輸送層 (PCBM/ZnO) をプッシュコート法及び転写 法で積層した逆構造ペロプスカイト太陽電池	○小池達也1,上田隆夫1,伊東栄次1	1.信州大学
9:15		高効率ペロブスカイト太陽電池の屋外発電特性	〇小長井 誠¹, 永松 和馬¹, 石川 亮佑¹, 柳田 真利², 白 井 康裕²	
9:30	17a-A401-3	電荷輸送層/ベロブスカイト層界面処理によるベロブス カイト太陽電池の性能向上	〇柳田 真利 1 , カダカ B. ドュラバ 1 , 白井 康裕 1 , 宮野 健次郎 1	1.物質·材料研究機構
9:45	17a-A401-4	ベロブスカイト太陽電池モジュールI-V特性の温度依存性	○菱川 善博 ¹ , 河野 悠 ¹ , Mavlonov Abdurashid ¹ , 根上卓之 ¹ , 峯元 高志 ¹	1.立命館大学
10:00	17a-A401-5	フィルム型ペロブスカイト太陽電池用集電スルーホール の評価	〇陶山 直樹 1 , 佐藤 嶺 1 , 家城 大輔 1 , 百瀬 裕也 1 , 石川 亮佑 1 , 小長井 誠 1	1.都市大総研
3/18(5		ポスター講演 (Poster Presentation) PB会場(Room PB)		a ble I Ble th Mettron
	18a-PB01-1	ベンズイミダゾール部位を有する非フラーレンアクセプ ターにおける異性体が構造と物性におよぼす影響	○(M1)大野 翔平', 三木江 翼', 尾坂 格'	1. 広大院先進理工
	18a-PB01-2	有機薄膜太陽電池における正孔移動度のドナー・アクセ ブター混合比依存性	○(M1)明里 直輝 ¹ ,杉田 椋哉 ¹ ,小林 隆史 ^{1,2} ,永瀬 隆 ^{1,2} ,内藤 裕義 ^{1,2}	1.大阪公立大, 2.大阪公立大分子エレクトロニックデバイス研
	18a-PB01-3	有機薄膜太陽電池における添加剤が電荷輸送特性に及ぼ す影響		
	18a-PB01-4	新しい電界紡糸法による透明なCNTフィルムの作製に関する研究		
	18a-PB01-5	ジチエノナフトビスチアジアゾールを有するπ共役系ポリマーにおけるハロゲン原子の導入が物性と太陽電池特		1. 広大院先進理工
		性に及ぼす影響		
	18a-PB01-6	ZnOへの有機分子ドーピングによる有機光電子デバイスのUVカット光に対する光応答性向上	○ (B) 小路 拓海', 中野 正浩', 金田 雅生', Shahiduzzaman Md.², 辛川 誠 ^{1,2,3} , 當摩 哲也 ^{1,2,3} , 飯 山 宏一 ¹	1. 金沢大理工, 2. 金沢大 NanoMaRi, 3. 金沢大 Infiniti
	18a-PB01-7	活性層にPbS量子ドットを添加した有機太陽電池	〇高橋 啓 ¹, 松本 大河 ¹, 魏 玉瑶 ¹, 丁 超 ¹, 豊田 太郎 ¹, 早瀬 修二 ¹, 沈 青 ¹	1. 電通大基盤理工
	18a-PB01-8	機械学習による雑音が重畳した太陽電池の電流 - 電圧特性からの等価回路定数の決定	奥野 友基 1 , 小林 隆史 2,3 , 永瀬 隆 2,3 , 福田 憲二郎 4 , \bigcirc 内藤 裕義 2,3	1.大阪府大工, 2.大阪公大工, 3.大阪公大RIMED, 4.理 研
	E 18a-PB01-9	Numerical optimizations of lead sulfide colloidal quantum dot solar cells	○ (D)DAN DAN WANG¹, Yusheng Li¹, Chao Ding¹, Shuzi Hayase¹, Qing Shen¹	1.Faculty of Informatics and Engineering, The University of Electro Communications
	18a-PB01-10	界面修飾によるペロブスカイト量子ドット太陽電池の光 電変換特性の向上	〇宝寺 峻吉¹, 丁 超¹, 李 花¹, 矢嶋 祥太¹, 豊田 太郎¹, 早瀬 修二¹, 沈 青¹	1. 電通大基盤理工
	E 18a-PB01-11	2-Chloroethyl Vinyl Ether Chain-Grafted Carbazole Derivatives Interlayer Enhances Power Conversion	○ (D) Yuan Yu Chiu¹, Ming-Chung Wu¹.², KaiChi Hsiao¹, ShihHsuan Chen¹, ChingMei Ho¹	1.Chang Gung Univ, 2.Chang Gung Memorial Hospital at Linkou
	E 10- DD01 12	Efficiency of Perovskite Solar Cells	O(D)DI II	1 The Heimenite of Floring Communications
	E 104-FD01-12	Multifunctional additive strategy to stabilize precursor solution and passivate film defects for MA-free perovskite solar cells with an efficiency of 22.75%	○ (D)BI Huan ¹ , QING SHEN ¹ , HAYASE SHUZI ¹	1.The University of Electro-Communications
	E 18a-PB01-13	Selective Damage of the Hybrid Perovskite Depending on the Electron Beam Direction	○ (M1)JongHun Yeo¹, Takashi Kondo², Tae Woong Kim¹	1.Konkuk Univ., 2.Univ. of Tokyo
	18a-PB01-14	蒸着法によるNiO _x 薄膜を正孔輸送層として用いたペロブ スカイト太陽電池の低照度特性		1. 奈良先端大
	E 18a-PB01-15	The modification of the electron transporting layer for decreased loss in open-circuit voltage in terms of tin	OLiu Jiaqi ¹ , Liang Wang ¹ , Qing Shen ¹ , Shuzi Hayase ¹	1.The University of Electro-Communications
	18a-PB01-16	perovskite solar cells ドーパミン塩酸塩添加による α -FAPbI ₃ の安定化	○大長 稜平 ^{1,3} , 柴山 直之 ² , 池上 和志 ² , 宮坂 力 ² , 宮	1.早稲田大, 2.桐蔭横浜大, 3.宇宙研
		A Study of Modified Metal Halide Template and Dipping	澤 優³, 小林 大輔³, 廣瀬 和之¹.³, 山本 知之¹ ○ (M2)sojeong Kim¹, Ji Hye Choi¹, Hee Jeong	1. Konkuk Univ.
		Temperature Control for Improvement of the Two-step Method	Jeong ¹ , Tae Woong Kim ¹	
	E 18a-PB01-18	Improvement of SnO ₂ Electron Transport Layer formed by ALD for High-Efficiency Hybrid Perovskite Solar Cells	○ (M2)sanggeun Cho¹, Ho Dong Son¹, Sang Ho Won¹, Tae Woong Kim¹	1.Konkuk University
	E 18a-PB01-19	Rough surface texture of high haze FTO improves the short circuit current density of Perovskite solar cells	○ (DC)Yulu He ^{1,3} , Chisato Niikura ¹ , Porponth Sichanugrist ² , Takeaki Sakurai ³ , Makoto Konagai ² , Ashraful Islam ¹	1.NIMS, 2.Tokyo City Univ., 3.Univ. of Tsukuba
	18a-PB01-20	時間分解ケルビンフォース顕微鏡によるペロプスカイト 太陽電池の局所電気特性評価	○沖野 翔太郎¹, 小林 圭¹, 山下 兼一², 岡 憲吾²	1.京大工, 2.京都工繊大工芸
	18a-PB01-21	塗布コーターRLCを利用した小面積ペロブスカイト膜の作製最適化	〇久保 雪史 1 ,鎌田 寛己 1 ,中島洋拓 2 ,一野 裕亮 2 ,清 家 善之 2 ,森 竜雄 2	1. 愛知工大, 2. 愛知工大院
	E 18a-PB01-22	W-doped ZnO as the Promising Electron-Transport Layer	$\bigcirc(D) \\ Munkhtuul \ Gantumur^1, \ M. \ Shahiduzzaman^1,$	
		for Efficient and Stable Perovskite Solar Cells	Masahiro Nakano ¹ , Makoto Karakawa ¹ , Jean Michel Nunzi ¹ , Md. Akhtaruzzaman ² , Tetsuya Taima ¹	
	18a-PB01-23	トリブルカチオンペロブスカイトのバーコート製膜と薄 膜物性評価	○(B)三宅 紹心¹, 鶉野 弦也¹, 阿部 健太郎¹, 齋藤 智 樹¹, 藤井 彰彦¹, 尾﨑 雅則¹	1. 阪大院工
	18a-PB01-24	前駆体 PbI_2 の製膜速度を変化させた際の $CH_3NH_3PbI_3$ 膜		1.岐阜高専
		への影響		

	E 18a-PB01-25	The reduction of Sn ⁴⁺ of Sn-based perovskite for high	○ Liang Wang¹, Qing Shen¹, Shuzi Hayase¹	1.UEC
[CS.7]	12.5 有機・ハイブリ	efficient Photovoltaic devices リッド太陽電池、13.9 化合物太陽電池、16.3 シリコン系太	陽電池のコードシェアセッション / Code-sharing Se	ssion of 12.5 & 13.9 & 16.3
	Sat.) 13:00 - 15:15	口頭講演 (Oral Presentation) A408 会場 (Room A408) 直列二端子ペロブスカイト/シリコンタンデム太陽電池		1. 産総研
13:15	18p-A408-2	の電流整合設計 【注目講演】ペロブスカイト/シリコンタンデム太陽電池	○塩川 美雪 ^{1,7} , 平野 樹 ¹ , 北村 武史 ² , 廣谷 太佑 ⁴ , 野	1.東芝エネルギーシステムズ, 2.電気通信大学, 3.産総
		の 1000 時間光耐久性	村 大志郎 4 , 林 雅博 5 , 野村 隆利 5 , 中村 雅規 6 , 平見 朋 之 6 , 早瀬 修二 2 , 齋 均 3 , 松井 卓矢 3 , 五反田 武志 $^{1.7}$	研, 4. フジコー, 5.CKD, 6. ウシオ電機, 7. 東芝
13:30	18p-A408-3	人工光合成反応のための電圧整合ペロブスカイト/結晶 シリコンタンデム太陽電池モジュール	○竹田 康彦¹, 山中 健一¹, 森川 健志¹, 加藤 直彦¹	1. 豊田中研
13:45 14:00	18p-A408-4	PEDOT:PSS/n-Si 接合を下部素子とした FA0.9Cs0.1Pbl3ペロプスカイト系モノリシック 2 接合太 陽電池の作製 休憩/Break	○ (M2) 鵜飼 隆一¹, 石川 良¹, 白井 肇¹	1. 埼玉大理工研
	奨 E 18p-A408-5	Optimization of the Morphological Structure of Spin-Coated on p-GaAs Substrates for Perovskite/ GaAs-based Photon Up-conversion Solar Cells	○ (D)Hambalee Mahamu¹, Matthias Bourzier², Shigeo Asahi¹, Takashi Kita¹	1.Kobe Univ., 2.INSA Lyon
14:30	18p-A408-6	ペロブスカイトタンデムセル用薄型へテロ接合Siボトムセルの作製(2)	○齊藤 公彦¹, 宍戸 寛崇¹, 石川 亮佑¹	1.東京都市大総研
14:45	E 18p-A408-7	~表面テクスチャの適用~ Optimization of wide-bandgap perovskite to improve the performance of all perovskite tandem solar cells	○ (PC)Gaurav Kapil ^{1,2} , Takeru Bessho ² , Qing Shen ¹ , Hiroshi Segawa ² , Shuzi Hayase ¹	1.Uni. of Electr.Comm., 2.Uni. of Tokyo
15:00	<u> </u>	Perovskite-perovskite タンデム用途に向けた Voc ~ 1.4V のトップセル材料の開発	〇白井 康裕 1 , カダカ ビ ドゥラバ 1 , 柳田 真利 1 , 宮野 健次郎 1	1.物材研
		ー / Nanobiotechnology ポスター講演 (Poster Presentation) PB 会場(Room PB)		
0, 20(1		円形と四角形ナノポア近傍における巨大環状 DNAの泳動	〇山岸 聖和 1 , 藤 悠之介 1 , 高野 辰 1 , 守山 裕大 1 , 三井 敏之 1	1. 青学大理工
	16p-PB02-2	低アスペクト比ポアを用いた粒子計測方式免疫分析システム		1.日立研開
	16p-PB02-3		○亀井 翔天¹, 渡邉 信嗣²	1. 金沢大・数物, 2. 金沢大・WPI-NanoLSI
	16p-PB02-4		\bigcirc (M1) 相山 恵理子 1 , 原 毅流 1 , 篠崎 真美 1 , 加藤 徳 剛 1	1.明大理工
		using scanning probe microscopy	○ (M2)Nguyen Gia Han¹, Linhao Sun², Shinya Kumagai³, Shinji Watanabe²	1.Grad. Sch. Nano Life Sci., Kanazawa Univ., 2. WPI-NanoLSI, Kanazawa Univ., 3.Meijo Univ.
		固体マイクロボアによる1細胞イオン輸送評価	場 嘉信 1.2.4	1.名大未来社会創造機構, 2.名大院工, 3. 阪大産研, 4.量研
		室温における生きた昆虫細胞の接着界面の可視化~バイオハイブリッド匂いセンサーへの応用を目指して~		1. 阪大院工, 2. 東北大院工, 3. 埼大院理工
		モデル誤差補償器による高速制御のためのスキャナ制御 の検討		1. 金沢大・数物, 2. 金沢大・WPI-NanoLSI
		タンバク質のFMO-DPDシミュレーション向け有効バラメータの算定 電気化学処理におけるグラファイト表面ペプチド自己組	望月 祐志 1.3	1. 東京工業大学
		織化膜の安定性評価 Polydiacetylene high-throughput assay for peptide	○(D)Zhu Qingzhen ¹	1. 不永二未入于 1. Tokyo Univ.
		screening 可塑的な足場上の接着細胞群への直接物質導入ーナノ		1.早大理工
		チューブスタンピングにおける物質導入量の均一化- ナノ注射器による細胞内活性物質の抽出と評価	洋¹, 三宅 丈雄¹, 谷井 孝至¹ ○水口 侑衣子¹, チョウ ハクブン¹, 小山 和洋¹, リュ ウ ビンフ¹, リュウ ユセン¹, リー チェンシイ¹, チョ	
	16p-PB02-14	機械学習による FMO-DPD シミュレーション向け有効パラメータの算定法の改良	ウ キン¹, リウ ティーンユイ¹, 三宅 丈雄¹.² ○松岡 壮太¹, 土居 英男¹, 奥脇 弘次¹, 畑田 崚¹, 南 聡 次朗¹, 栖原 涼輔¹, 望月 祐志¹.²	1. 立教大理, 2. 東大生研
	16p-PB02-15	インフルエンザウイルスのヘマグルチニンと Fab 抗体の 複合体 (PDB-ID: 1KEN) に関する MM-MD/FMO 連携計	〇北原 駿 1 ,秋澤 和輝 1 ,奥脇 弘次 1 ,土居 英男 1 ,山本	
3/17(Fri.) 9:00 - 12:00	算による統計的な解析 口頭講演 (Oral Presentation) E302 会場(Room E302)	室月 竹芯	
9:00		テンソル分解を用いた新型コロナウイルス変異株RBD複合体に関する MM-MD/FMO 連携シミュレーション結果の解析		
9:15	17a-E302-2		〇土居 英男 1 , 長田 優志 1 , 太刀野 雄介 1 , 弘次 奥脇 1 , メルヴィン ゴー 2 , 手老 龍吾 2 , 望月 祐志 $^{1.3}$	1. 立教大学, 2. 豊橋技科大, 3. 東大生研
9:30		FMO-DPD 法と内殻励起計算を用いた脂質二重膜親水基 へのイオン配位状態の評価	月 祐志 1.4	
9:45		脂質二重膜の水中X線吸収スペクトルの塩濃度依存性	○金城 ゆう¹, 長坂 将成², 奥脇 弘次³, 望月 祐志³, 手 老龍吾¹	
0:00		脂質二分子膜のプロトン透過の評価	○吉馴 悠人¹, 吉水 寬人¹, 乾 徳夫¹, 大嶋 梓², 山口 真 澄², 部家 彰¹, 住友 弘二¹	
0:15	奨 E 17a-E302-6	Fiber-based Biofuel Cells and Their Application in Cloth Face Masks 休憩/Break	○ (M2)Daniella Gatus¹, Shiqi Wu¹, Wenyao Lei¹, Yi Ding¹, Takeo Miyake¹.²	1.Waseda Univ., 2.JST-PRESTO
.0:45	招 17a-E302-7	「第53回講演奨励賞受賞記念講演」 蛍光一分子観察法による金属 - 有機溶媒界面における分 子挙動観察	〇松下 結依 1 ,手老 龍吾 1 ,山下 直輝 2 ,平山 朋子 2 ,天 野 健一 3 ,松本 拓也 4 ,大西 洋 $^{4.5}$	1. 豐橋技科大, 2. 京都大, 3. 名城大, 4. 神戸大, 5. 分子研
1:00		Advancements of the X-ray Light Sheet Microscope ($\rm I$); Introduction of the Hardware and Its Performances		1. 理研放射光セ
1:15	奨 E 17a-E302-9	Advancements of the X-ray Light Sheet Microscope (II); An Approach to 3D Super-Resolution by Localization of Single Particles		1.RIKEN SPring-8 Center
11:30		AFMを用いた高分解能分子認識サイトマッピング	○合原 岳¹,和田 隆佑¹,小林 圭¹	1.京大工
		Characterization of Drug landed Cold stabilized this lever	○ (D)Thisari Maleesha Gunathilaka ¹ , Masaru	1.Shizuoka University, Graduate School of Science and

3/18	(Sat.) 9:00 - 12:00	口頭講演 (Oral Presentation) E302会場 (Room E302)		
9:00 9:15	18a-E302-1 18a-E302-2	集束電子線照射を用いた神経細胞の葉状仮足の変形誘導 高屈折率誘電体ナノ構造の光増強効果を用いた高感度蛍		1. 静大光医工, 2. 静大電研 1. 徳島大pLED, 2. 理研
9:30	18a-E302-3	光バイオイメージング 神経細胞内シナプス小胞群の光捕捉過程における神経活	章 ^{1,2} 〇安田 健人 ¹ , 箕嶋 渉 ² , 增井 恭子 ¹ , 細川 千絵 ¹	1. 阪公大院理, 2. 情通研未来ICT
9:45	18a-E302-4	動バターン解析 抗体修飾ナノニードルを用いたネスチン・Clic1相互作用 の力学解析	千晶⁴, 山崎 智彦⁴, 上田 太郎⁵, 飯嶋 益巳⁶, 黒田 俊	オメディカル, 4.物材研機能性材料, 5.早大院先進理工
10:00	18a-E302-5	原子間力顕微鏡を用いたシロイヌナズナ植物細胞の力学 特性計測	一 ⁷ , 中村 史 ^{1,2} ○末原 大輝 ¹ , 大橋 俊朗 ²	6. 東農大応生科, 7. 阪大産研 1. 北海道大学大学院工学院, 2. 北海道大学大学院工学研究院
10:15	E 18a-E302-6	Preparation of carbon based PEDOT-redox polymer electrodes by electrochemical polymerization for microbial bioelectronics	○ Shenghan Gu ¹	9.991 1.WASEDA School of Information, Production and Systems
10:30 10:45	18a-E302-7	休憩/Break 特性膜容量評価のための人工細胞膜イメージング系の構 築	○(M2)陰山 弘典 ^{1,2} , 小宮 麻希 ² , 馬 騰 ³ , 平野 愛 弓 ^{1,2,3}	1. 東北大院医工, 2. 東北大通研, 3. 東北大AIMR
11:00	18a-E302-8	集光フェムト秒レーザーを用いた生体膜加工による細胞 由来人工生体膜の作製	•	1. 阪公大院理
11:15	18a-E302-9	Co ²⁺ イオンによる消光作用を用いた脂質分子の拡散評価	吉水 寛人 1 , 大嶋 梓 2 , 山口 真澄 2 , 部家 彰 1 , \bigcirc 住友 弘 二 1	1.兵庫県大工, 2.NTT物性基礎研・BMC
11:30		脂質二分子膜内部への単一高分子鎖閉じ込め:支持膜作製 法による差異		1.明星大理工
11:45 3/18(13:30		Quantitative detection of Force-Fluorescence correlation of Soft layered materials at Nanoscale 口頭講演 (Oral Presentation) E302 会場 (Room E302) ナノ多孔質パイオシリカを用いたマイクロバイオデバイ	○ (P)Bratati Das¹ ○梅村 和夫¹, 平山 航太¹, 北村 優樹¹, Nay San Lin¹,	1.Tokyo Univ. 1 車理大理 2 VNII Univ Sci 3 NACENTE 4 VNII
10,00	100 2002 1	スの作製	Minh Hieu Nguyen ² , Binh Duong Le ³ , Anh Tuan Mai ⁴ , 真山 茂樹 ⁵	Univ Eng, 5. 東京珪学研
13:45 14:00	18p-E302-2 18p-E302-3	ナノ柱状銅薄膜の抗ウイルス効果と表面酸化状態 バーチャル電極を用いた電気泳動堆積による酸化グラ フェン薄膜構造物の可逆的制御	○重藤 啓輔¹, 平尾 理恵¹, 石田 亘広¹ ○野村 建樹¹, 星野 隆行¹	1. 豊田中研 1. 弘前大院理工
14:15	18p-E302-4	imaging SPRを用いたグラフェン上におけるペプチド自 己組織化のリアルタイム観察	○ (DC) 本間 千柊¹, Storelli Daniele², Murugan Divagar², Khan Dibyendu², Pachauri Vivek², 早水 裕 平¹	1. 東京工業大学, 2. アーヘン工科大学
14:30	18p-E302-5	電気化学的測定による CNT 認識ペプチドの炭素面吸着評価	 ○山下 一郎¹, 清水 裕里¹, 岡本 尚文², 韓 煥文¹, 朱 鼎 傑¹, 中村 雅一²	1. 阪大工, 2. 奈良先端大
14:45	E 18p-E302-6	The adsorption measurement of CNT-binding peptide-modified cage-shaped proteins	○ TINGCHIEH CHU¹, Huanwen Han¹, Naofumi Okamto², Masakazu Nakamura², Ichiro Yamashita¹	1.Osaka Univ., 2.NAIST
15:00 15:15	18p-E302-7	休憩/Break マルチナノポア発電素子	○筒井 真楠¹, 横田 一道², Leong Iat Wai¹, ハー ユフ	1. 阪大産研, 2. 産総研, 3. 華中科技大
15:30	18p-E302-8	散乱光輝度情報に基づく液中ナノ粒子の形状分類の検討	イ ³ ,川合 知二 ¹ ○(B)山本 啓介 ¹ , 倉持 宏実 ¹ , 竹原 宏明 ^{1,2} , 澁田 靖 ¹ , 一木 隆範 ^{1,2}	1.東大工, 2.iCONM
15:45	18p-E302-9	単一イオンチャネル電流データに対する適応的自動解析 システムの開発		1. 東北大学医工学研究科, 2. 東北大学電気通信研究所, 3. 東北大学情報科学研究科
16:00	•	ミノ酸識別法の開発		1. 阪大産研
16:15	•	誘電率勾配による固体ナノポアセンサのイオン電流信号 増強		1. 阪大産研, 2. 産総研, 3. 華中科技大
		クノロジー、12.7 医用工学・バイオチップのコードシェア 口頭講演 (Oral Presentation) A307 会場(Room A307)	/ Code-sharing Session of 12.6 & 12.7	
9:00		金・酸化セリウム混合ナノ粒子からなる二次元シートを 利用した高感度プラズモニックセンサーの開発	○ (B) 林 結華 ¹ , 相田 裕輝子 ¹ , 梶野 祐人 ¹ , 有馬 祐 介 ¹ , 横 哲 ² , 成 基明 ² , 答居 高明 ² , 阿尻 雅文 ² , 玉田 薫 ^{1,2}	1. 九大先導研, 2. 東北大
9:15	16a-A307-2	アミロイド性タンパク質 α シヌクレインの高感度特異的 検出用LSPRナノ構造基板と表面固定化脂質膜の評価	○(B)木村 悠人¹, 紙谷 虎太郎¹, 高橋 悠矢¹, 安永 一 真¹, Werner Carl Frederik¹, 武田 実¹, 福澤 理行¹, 野 田 実¹	1. 京工繊大
9:30	16a-A307-3	マイクロ流路中での疾患マーカー生体ナノ物質の光濃縮 検出	· · · · ·	1.大阪公立大院理,2.大阪公立大LAC-SYS研,3.大阪公立大院工,4.阪大院基礎工
9:45	16a-A307-4	レーザ分子線堆積法によるナノメータ平坦 DNA 固体薄膜の創製とメタノール検知センサへの応用		1. 東大院新領域, 2. 物材機構, 3. 神奈川大, 4. エスシーティー (株)
10:00	E 16a-A307-5	Wearable and stretchable strain sensors for intraocular ocular pressure measurement	○ (M2C)Hanzhe Zhang¹, Te Xiao¹, Azhari Saman¹, Takeo Miyake¹	1.Waseda Univ.
10:15	16- 4207 6	休憩/Break SARS-CoV-2中和抗体活性と抗酸化活性をモニタリング	○ P 公 ☆ .1.2 → 紘 故 仁 1.3 → 孫 田 フ 4 小 自 カ 2	1.産総研フォトバイオ OIL, 2.阪大産研, 3.阪大工, 4.
10:30 10:45	16a-A307-6 16a-A307-7	する電気化学バイオセンサー 温度制御機構を組み込んだ半導体化学センサシステムに	ϕ^4 , 槻木 恵 $-^5$	BDT社,5.神奈川歯科大
11:00	16a-A307-8	よる微生物代謝の定量評価の試み 3-Glycidyloxypropyltrimethoxysilaneによる酸化インジウ	信達夫1	
11:15	奨 16a-A307-9	ム TFT 表面への probe 修飾と DNA 検出 臨床応用に向けた非増幅 RNA 検出装置の開発	高村 禅 ¹ ○飯田 龍也 ¹ , 安藤 潤 ¹ , 篠田 肇 ¹ , 渡邉 力也 ¹	1. 理研 開拓研究本部
11:30	奨 16a-A307-10	チオビスベンゼンチオール誘導体を賦与した有機トラン ジスタによる過酸化水素検出	〇大代 晃平 ¹, 張 亦婧 ¹, 佐々木 由比 ¹, 田中 光 ², 上野 芳敬 ², 南 豪 ¹	1. 東大生研, 2. 東洋紡
		Thermally drawn microelectronic fibers for all-in-one sweat sensing	○ (M2)Jingxuan Wu¹, Yuichi Sato², Yuanyuan Guo²	1.Tohoku Univ., 2.Tohoku FRIS.
	Thu.) 16:00 - 18:00	ブ / Biomedical Engineering and Biochips ポスター講演 (Poster Presentation) PB 会場 (Room PB) 微粒子の細胞内移行経路の粒子取り込み時間依存性		1.明大理工
		HeLa 細胞における PEG 化粒子の内在化および輸送経路	徳剛 ¹	1.明大理工
	16p-PB03-3	の粒径依存性 高密度多点電極アレイを用いたモジュール構造型培養神	○佐藤 有弥¹.², 山本 英明¹, 加藤 秀行³, 谷井 孝至⁴,	1. 東北大通研, 2. 東北大院医工, 3. 大分大理工, 4. 早大野
	16p-PB03-4	経細胞回路の構造機能相関の解析 高密度多点電極アレイ上にパターニングしたモジュール 構造型培養神経回路の刺激応答特性の解析	佐藤 茂雄 1 , 平野 愛弓 $^{1.2.5}$ \bigcirc 薗 勇輝 $^{1.2}$, 山本 英明 $^{1.2}$, 佐藤 有弥 $^{1.3}$, 谷井 孝至 5 , 平野 愛弓 $^{1.2.3.4}$, 佐藤 茂雄 $^{1.2}$	工, 5. 東北大AIMR 1. 東北大通研, 2. 東北大工, 3. 東北大院医工, 4. 東北大AIMR, 5. 早大理工

	16p-PB03	5 電気刺激による単一神経細胞回路の自発発火頻度の変化	○岸野 颯馬¹,望月 直樹¹,平野 愛弓²,山本 英明²,谷 井 孝至¹	1.早大理工, 2.東北大通研
	16p-PB03	6 キャピラリーを用いた層流制御システムによる単一細胞 刺激	○ (M2) 遠山 万理乃¹, 河西 奈保子¹, 中嶋 秀¹, 加藤 俊吾¹, 内山 一美¹, 毛 思鋒¹	1.都立大院都市環
	16p-PB03		○(B)長井 新 ¹ ,小島 快斗 ¹ ,城所 龍 ¹ ,野崎 庄太 ¹ , 佐々木 亜優 ¹ ,守山 裕大 ¹ ,三井 敏之 ¹	1.青学大
	16p-PB03	8 充電可能なペースメーカーの電源装置の開発	○ (B) 青竹 明香¹, 原本 春佳¹, 中川 大地¹, 寺重 隆 祝¹, 内山 陽介², 縄稚 典生², 山本 晃², 上月 具挙¹	1. 広島国際大学, 2. 広島県立総合技術研究所
	16p-PB03	9 In situ近赤外分光法による椎間板のプロテオグリカンと コラーゲンの定量分析		1. 千歲科技大理工, 2. 理研
	16p-PB03	10 カーボンナノチューブとフラビンアデニンジヌクレオチ ドグルコース脱水素酵素を用いる直接電子伝達型バイオ	斗米 太一², 岩佐 尚徳⁴, 田中 丈士³, 平塚 淳典³, 星野	1.順天堂大, 2.芝浦工大, 3.產総研, 4.東洋紡
	16p-PB03	センサストリップ第2報 - 11 マイクロバターン培養神経回路を用いた炎症性サイトカインによる神経活動変調効果のin vitroモデリング	○酒井原 一守 ^{1,2} , 山本 英明 ^{1,2} , 室田 白馬 ^{1,2} , 佐藤 茂 雄 ^{1,2} , 平野 愛弓 ^{1,2,3,4}	1. 東北大院工, 2. 東北大通研, 3. 東北大院医工, 4. 東北大AIMR
	16p-PB03	12 抗体修飾磁性粒子を用いたウイルスセンサ実用化のため の抗体長期安定性評価		
	16p-PB03	-13 唾液中コルチゾールを検出する EIS型バイオセンサの研究	·	1. 東京海洋大 , 2.NIMS, 3. ライオン
	16p-PB03	-14 3種の電気化学測定法を用いたコルチゾールバイオセン サの構築と比較		1.海洋大院海技研, 2.物質・材料研究機構
	16p-PB03	15 CNT 固定化ろ紙電極によるコルチゾールバイオセンサの 開発		1. 東京海洋大, 2. 産総研
	16p-PB03	16 低表面張力液体を輸送・収集可能なフラクタル開放型流		1.東理大理
	16p-PB03	路 ・	○米田 将太¹, 上村 英隆¹, 山田 哲也¹, 柳田 保子¹	1.東工大未来研
	16p-PB03	よる接着力制御 -18 微細構造を有するマイクロ流路デバイスの大腸菌リアル タイム観察への応用	〇坂内 雄太 1 , 山田 哲也 1 , 横山 友基 2 , 和地 正明 2 , 柳田 保子 1	1. 東工大未来研, 2. 東工大生命理工学院
	16p-PB03	74 ム戦祭への応用 19 口腔内ストレスマーカーモニタリングに向けたマイクロ 流路デバイス		1.東工大 未来研
0./4=1		20 矩形型マイクロ流路内流動における解析解の比較	〇古川 雄登¹, 坂本 憲児², 小林 孝一朗¹	1.大島商船高専, 2.九工大
3/17(9:00		0 口頭講演 (Oral Presentation) E102会場(Room E102) 1 セラソーム表面電子状態に対する多角形構造の影響	井口 楓梨¹, ○小田 将人¹	1.和歌山大シスエ
9:15	奨 17a-E102-	2 周期構造上のネマチック液晶理論に基づく細胞配向制御	○ (B) 松田 直樹 ¹ , 宮廻 裕樹 ² , 坂上 貴之 ³ , 奈良 高 明 ^{1,2}	1.東大工, 2.東大院情理, 3.京大院理
9:30	奨 17a-E102-	3 集光フェムト秒レーザー照射に伴う神経回路網の誘発応答バターン	○瀬川 夕海¹, 箕嶋 渉², 大谷 莞¹, 増井 恭子¹, 細川 千 絵¹	1. 阪公大院理, 2. 情通研未来 ICT
9:45	17a-E102-	4 集光フェムト秒レーザーの高頻度照射により誘発された 神経活動の評価	○大谷 売¹, 瀬川 夕海¹, 箕嶋 渉², 増井 恭子¹, 細川 千 絵¹	1. 阪公大院理, 2. 情通研未来 ICT
0:00	17a-E102-	5 大規模モジュール構造型培養神経回路の作製と自発活動 の解析		1. 東北大通研, 2. 東北大工, 3. 東北大院工, 4. 東北大院区工, 5. 東北大AIMR
10:15 10:30	17a-E102-	休憩/Break 6 ニワトリ初期胚の心筋細胞に対する力学的刺激の位相差	○城所 龍 ¹ , 野崎 庄太 ¹ , 佐々木 亜優 ¹ , 守山 裕大 ¹ , 三 井 敏之 ¹	1. 青学大理工
0:45	17a-E102-	による応答の違い 7 薄膜自己組立て技術を用いた三次元培養組織の形成と維持		1.NTT 物性基礎研, 2.NTT リサーチ
1:00	奨 17a-E102-	8 光応答性ゲルのオンチップ座屈変形による生体模倣アク チュエーション	○高橋 陸¹, 宮廻 裕樹², 田中 あや¹, 山口 真澄¹	1.NTT物性基礎研・BMC, 2.東大院情報理工
1:15		9 バーチャル電極によるYOYO-1標識DNAの蛍光増強	○佐々木 建¹, 星野 隆行¹	1. 弘前大院理工
1:30	17a-E102-	10 マイクロ流体デバイス一体化バイオセンサにおけるリオ ソーム固定化プロトコルとセンサ特性の検討	○ (M2) 高橋 悠矢¹, 宮岡 一輝¹, 紙谷 虎太郎¹, 水戸部 龍介², 長谷川 拓海², Werner Carl Frederik¹, 寒川雅之², 野田 実¹	1.京工繊大, 2.新潟大
1:45	17a-E102-	11 複数のカンチレバー型バイオセンサの並列計測を目的としたモバイル計測システムの開発		1. 京工繊大
	•	D頭講演 (Oral Presentation) E102会場 (Room E102)		
13:00	17p-E102	1 光重合反応下での拡散を利用したオンデマンドのマイク ロ流路デバイス作製技術における解像性能および流路断 面形状の改良		1. 徳島大 pLED
3:15	奨 17p-E102		容俊1, 野田 俊彦1, 澤田 和明1, 高橋 一浩1	
3:30	奨 17p-E102	3 差動計測による特異的バイオセンシングに向けたアプタマー機能化光干渉センサの特性評価	〇福岡 秀太 1 , 高橋 一浩 1 , 澤田 和明 1 , 野田 俊彦 1 , 崔 容俊 1	1. 豊橋技科大工
3:45	奨 E 17p-E102	4 Electrospun Sensing Materials for Monitoring Exhaled Diabetes Biomarker	\bigcirc (D) Chang YinHsuan ¹ , Hsieh TingHung ¹ , Hsiao KaiChi ¹ , Lin TingHan ¹ , Wu MingChung ^{1,2}	1.Chang Gung Univ., 2.Chang Gung Memorial Hospita at Linkou
4:00	奨 17p-E102	5 電気二重層変調イメージング法を用いたヒト小腸上皮様 細胞のタイトジャンクション形成過程の観察	堤 潤也 1.2	1. 産総研, 2. 東理大
4:15	奨 17p-E102		正樹1	1.東大工, 2.東大医
4:30	奨 17p-E102	タの創製とバイオセンシング応用	、 ○(M1)片山 律¹, 坂田 利弥¹	1.東大院工
4.45	17. E102	休憩/Break 8 格子結合型表面プラズモン共鳴を利用した高感度暗視野 検出法の開発	吉田 潤平¹, ○名和 靖矩¹, 田和 圭子¹	1. 関西学院大理工
	17p-E102		O(D) 41 Cl.W.T. 1 T. D.1: 2 T.1:	1.Univ. of Tokyo, 2.Poznan Univ. of Tech
5:00	E 17p-E102	9 Investigation of quinone dianion charge-transfer complex formation in PEDOT:lignosulfonate thin-films operating		1. Chiv. of Tokyo, 2.1 oznan Chiv. of Tech
14:45 15:00 15:15	E 17p-E102	9 Investigation of quinone dianion charge-transfer complex	Sakata ¹ (PC)Arpit Goyal ¹ , Toshiya Sakata ¹	1.The Univ. of Tokyo

16:00	17p-E102-12	マイクロ波マンモグラフィによる健常女性乳房内の誘電 率勾配分布計測	○稲垣 明里 ^{1.8} , 平井 綾華 ² , 木村 建次郎 ^{1.2.8} , 高尾 信 太郎 ³ , 佐久間 淑子 ³ , 田根 香織 ³ , 廣利 浩一 ³ , 金 昇 晋 ³ , 結縁 幸子 ⁴ , 松本 元 ⁴ , 田代 敬 ⁴ , 山神 和彦 ⁴ , 岡本 交二 ⁵ , 犬伏 祥子 ⁶ , 國久 智成 ⁶ , 谷野 裕一 ⁷ , 弓井 孝 佳 ⁸ , 中島 義晴 ⁸ , 木村 憲明 ⁸	記念病院,5.医療法人社団伍仁会,6.神大医学部附属病
16:15	17p-E102-13	唾液組成のモニタリングに向けたマイクロ流路とイオン 選択電極の統合		1.東工大未来研, 2.東北大歯学口腔生化学, 3.東北大国際連携歯学
16:30	17p-E102-14	交流インピーダンス法を用いた DNase の定量化に関する 研究		1.吳高專
16:45 17:00	17p-E102-15	休憩/Break 多結晶 LaF ₃ と PDMS 複合化によるフッ素イオンセンサ性 能の向上	〇神田 海都 1 , 山田 哲也 1 , 柳田 保子 1 , 真柳 弦 2 , 鷲尾 純平 2 . 高橋 真博 2	1.東工大, 2.東北大
17:15	17p-E102-16	ワイヤレス給電を用いた電気化学発光センサー	○民谷 栄一¹.², 大崎 脩仁¹.³	1. 産総研フォトバイオ OIL, 2. 阪大産研, 3. 阪大工
17:30		断片化した抗体を用いた G-FET バイオセンサの開発	〇山本 佳織 ¹ , 佐藤 夏岐 ¹ , 矢野 真美子 ¹ , 坂野 喜代治 ¹ , 小野 尭生 ^{1,2} , 金井 康 ¹ , 牛場 翔太 ³ , 宮川 成人 ³ , 品川 步 ³ , 谷 晋輔 ³ , 木村 雅彦 ³ , 渡邊 洋平 ⁴ , 中北 愼 $-$ ⁵ , 河原 敏男 ⁶ , 鈴木 康夫 ⁶ , 井上 恒 $-$ ¹ , 松本 和彦 ¹	1. 阪大産研, 2.JST さきがけ, 3.村田製作所, 4. 京都府立 医, 5. 香川大, 6. 中部大
17:45		汗中のイオン濃度測定用インピーダンスセンサ	○(B)田中 琉暉¹,本田 智子¹,竹井 邦晴¹	1.大阪公立大学工
18:00 18:15		ナノメッシュ電極を用いた皮膚インピーダンスの温度刺 激応答性の評価 加速度センサを利用した姿勢検知システムの開発	○(B)三室 真帆¹,海老原 祐輔¹,李 成薫¹,横田 知之¹,染谷 隆夫¹ ○松村 紅怜¹,本田 智子¹,中嶋 浩平²,竹井 邦晴¹	1. 末京大工
		口頭講演 (Oral Presentation) E102 会場 (Room E102)	○仏刊 紅印,本田 百 1 ,中喝 石干,日开 净明	1. 八败公人, 2. 宋八
9:00	奨 18a-E102-1	CMOS 制御光駆動による小型 CGMS センサの評価	○清水 尭之 1 ,深町 賢人 1 ,田崎 広都 1 ,横式 康史 1 ,德 田 崇 1 ,柴原 卓哉 2 ,河浦 大悟 2 ,工藤 寛之 2	1. 東工大, 2. 明治大理工
9:15	奨 E 18a-E102-2	Flexible Near-infrared Organic Photodetector with a Liquid Crystalline Phthalocyanine Derivative for Photoplethysmography	○ (D)Shahriar Kabir ¹ , Yukiko Takayashiki ¹ , Jun-ichi Hanna ¹ , Hiroaki Iino ¹	1.Tokyo Tech.
9:30	奨 18a-E102-3	CMOS 制御生体埋め込みマイクロデバイス向け光駆動システム	松 洸佑¹, 横式 康史¹, 德田 崇¹	
9:45	奨 18a-E102-4	植物の光合成産物を可視化するスクロース計測 CMOS センサの作製	崔 容俊¹, 高橋 一浩¹, 澤田 和明¹, 野田 俊彦¹	
10:00	奨 18a-E102-5	Development of compact chlorophyll measurement system by filter-free wavelength sensor for agriculture	○壬生 龍真 ', Ichikawa Ryosuke', Ide Tomoya', Choi Yong-Joon', Toda Seitaro', Takahashi Kazuhiro', Takayama Kotaro', Noda Toshihiko', Sawada Kazuaki'	1.Toyohashi Univ of Tech.
10:15 10:30	18a-E102-6	休憩/Break カラーセンサを用いた植物葉IoTモニタの開発および長 期屋外稼働による連続観察	○宮本 浩一郎¹, 上妻 馨梨²	1. 東北大工, 2. 東大理
10:45	18a-E102-7	知座が稼働による建筑販売 電気化学インビーダンス法を用いた生育環境が植物に与 える影響の直接モニタリング	岡嶋 真由¹, 中川 陽菜¹, ○杉山 睦¹.²	1.東京理科大理工, 2.東京理科大総研
11:00	18a-E102-8	植物のモニタリングに向けた茎における電気化学イン ビーダンス測定	○篠田 倫太郎¹, 内田 悠登¹, 岡嶋 真由¹, 杉山 睦¹.²	1. 東理大 理工, 2. 東理大 総研
11:15 11:30	18a-E102-9 18a-E102-10	マイクロニードルを利用する光計測の基礎的検討 生体電気計測に向けた生体吸収性マイクロニードルの開 発	○福原 真拓¹, 神田 循大¹, 竹原 宏明¹², 一木 隆範¹² ○島田 一輝¹, 竹原 宏明¹², 一木 隆範¹²	 1.東大工, 2.iCONM 1.東大工, 2.ナノ医療イノベーションセンター
11:45	18a-E102-11		〇有賀 優太 ¹, 中村 浩平 ¹, 梁 耀淦 ¹, 杜 邦 ¹, 王 勝瑋 ¹, 井上 文太 ¹, 木野 久志 ², 福島 誉史 ¹, 清山 浩司 ³, 田中 徽 ً ¹. ²	1. 東北大学院工, 2. 東北大学院医工, 3. 長崎総合科学大院工
3/18(13:30		口頭講演 (Oral Presentation) E102会場(Room E102) 【注目講演】「第53回講演奨励賞受賞記念講演」 人の視覚情報処理機能を有する三次元積層人工網膜チップの作製と評価	〇大西 青葉 1 , 番場 崚太郎 1 , 岸本 凌平 2 , 木野 久志 1 , 福島 誉史 1,2 , 田中 徹 1,2	1.東北大院医工, 2.東北大院工
13:45	<u> </u>	アレイ化に向けたフィルタフリー波長センサの画素構造 の検討と製作	飛沢 健1, 髙橋 一浩1, 野田 俊彦1, 澤田 和明1	
14:00	奨 18p-E102-3	ゴム系ネガレジストを用いた高分解能型マルチイオンイメージセンサの製作と海馬スライスの細胞外イメージング		
14:15		ナノポーラス構造を有するアルミナ薄板を用いた PVC 膜型 \mathbb{K}^+ イメージセンサの製作と空間解像度の検討	一浩¹, 野田 俊彦¹, 澤田 和明¹	
14:30	奨 18p-E102-5	経爪型集積化光電容積脈波計測システム向け ノイズキャンセル機能を有する I/V 変換回路のノイズ検討	〇井上文太',梁耀淦',杜邦',中村 皓平',王 勝瑋', 有賀 優太',木野 久志²,福島 誉史¹,清山 浩司³,田中 衛¹.²	1. 東北大院工, 2. 東北大院医工, 3. 長崎総科大
14:45	奨 18p-E102-6	骨髄用シリコン神経プローブの作製と評価	〇岩沼 尚樹 1 , 鈴木 志門 1 , 木野 久志 2 , 福島 誉史 1 , 田 中 徽 $^{1.2}$	1. 東北大院工, 2. 東北大院医工
15:00 15:15	奨 18p-E102-7	休憩/Break フレキシブル人工視覚CMOSスマート電極デバイスの多 電極化に向けた実装プロセス開発	〇吉田 成寿 ¹ , 萩原 隆仁 ¹ , 潘 愷為 ¹ , 須永 圭紀 ¹ , 春田 牧人 ¹ , 高野 拓郎 ² , 中野 由香梨 ² , 寺澤 靖雄 ² , 田代 洋 行 ^{1,3} , 竹原 浩成 ¹ , 笹川 清隆 ¹ , 太田 淳 ¹	
15:30	奨 18p-E102-8	刺入型蛍光イメージングデバイス用フロントライト構造 の試作		1. 奈良先端大, 2.DIT, 3. 九州大
15:45	奨 18p-E102-9		〇佐野 珠世 1 , 太田 安美 1 , 河原 麻実子 1 , 須永 圭紀 1 ,	1. 奈良先端大
16:00	奨 18p-E102-10	, IrOx薄膜を用いた溶存酸素イメージセンサの提案と評価		1. 豊橋技科大工
16:15	奨 18p-E102-11	マウスの自由行動実験に向けた参照電極内蔵型in-vivoイメージセンサの製作と評価		1. 豊橋技科大, 2. 生理研
16:30	奨 18p-E102-12	複数種の画素を混載した画像出力型 CMOS においセンサの設計と製作		1. 豊橋技術科学大学
			○十亀 龍星¹, 阪上 天斗¹, 崔 容俊¹, 野田 俊彦¹, 澤田	

[CS.8]	12.6 ナノバイオテク	7 ノロジー、12.7 医用工学・パイオチップのコードシェア	/ Code-sharing Session of 12.6 & 12.7	
[CS.8]	12.6 ナノバイオティ	クノロジー、12.7 医用工学・バイオチップのコードシェア	/ Code-sharing Session of 12.6 & 12.7	
3/16(Thu.) 9:00 - 12:00	口頭講演 (Oral Presentation) A307会場 (Room A307)		
9:00	16a-A307-1	金・酸化セリウム混合ナノ粒子からなる二次元シートを 利用した高感度プラズモニックセンサーの開発	〇(B) 林 結華 ¹, 相田 裕輝子 ¹, 梶野 祐人 ¹, 有馬 祐	1. 九大先導研, 2. 東北大
9:15	16a-A307-2	アミロイド性タンパク質αシヌクレインの高感度特異的 検出用LSPRナノ構造基板と表面固定化脂質膜の評価	(B) 木村 悠人 ¹ , 紙谷 虎太郎 ¹ , 高橋 悠矢 ¹ , 安永 一 真 ¹ , Werner Carl Frederik ¹ , 武田 実 ¹ , 福澤 理行 ¹ , 野 田実 ¹	1. 京工機大
9:30	16a-A307-3	マイクロ流路中での疾患マーカー生体ナノ物質の光濃縮 検出	〇小森 弘稀 1,2 3, 藤原 佳奈 1,2 3, 勝間田 麻美 1,2 , 高木 裕美子 1,2 , 田村 守 2,4 , 中瀬 生彦 1,2 , 床波 志保 2,3 , 飯田 琢也 1,2	1.大阪公立大院理, 2.大阪公立大 LAC-SYS 研, 3.大阪公立大院工, 4. 阪大院基礎工
9:45	16a-A307-4	レーザ分子線堆積法によるナノメータ平坦 DNA 固体薄膜の創製とメタノール検知センサへの応用	秀臣 ⁴ , 有賀 克彦 ^{2,1} , ○松木 伸行 ³	1.東大院新領域, 2.物材機構, 3.神奈川大, 4.エスシー ティー (株)
10:00	E 16a-A307-5	Wearable and stretchable strain sensors for intraocular ocular pressure measurement	○ (M2C)Hanzhe Zhang¹, Te Xiao¹, Azhari Saman¹, Takeo Miyake¹	1.Waseda Univ.
10:15		休憩/Break		
10:30	16a-A307-6	SARS-CoV-2中和抗体活性と抗酸化活性をモニタリング する電気化学バイオセンサー	〇民谷 栄 $-^{1.2}$, 大崎 脩仁 $^{1.3}$, 土橋 朋子 4 , 牛島 ひろ ϕ^4 , 槻木 恵 $-^5$	1. 産総研フォトバイオ OIL, 2. 阪大産研, 3. 阪大工, 4. BDT 社, 5. 神奈川歯科大
10:45	16a-A307-7	温度制御機構を組み込んだ半導体化学センサシステムに よる微生物代謝の定量評価の試み	渡邊 翼¹, ○宮本 浩一郎¹, Werner Carl Frederik², 吉信 達夫¹	1. 東北大工, 2. 京都工芸繊維大
11:00	16a-A307-8	3-Glycidyloxypropyltrimethoxysilane による酸化インジウム TFT 表面への probe 修飾と DNA 検出	○高橋 元気¹, 呉 維東¹, 廣瀬 大亮¹, Biyani Manish¹, 高村 禅¹	1.北陸先端大
11:15	奨 16a-A307-9	臨床応用に向けた非増幅RNA検出装置の開発	○飯田 龍也¹, 安藤 潤¹, 篠田 肇¹, 渡邉 力也¹	1. 理研 開拓研究本部
11:30	奨 16a-A307-10	チオビスベンゼンチオール誘導体を賦与した有機トラン ジスタによる過酸化水素検出	〇大代 晃平 1 , 張 亦婧 1 , 佐々木 由比 1 , 田中 光 2 , 上野 芳敬 2 , 南 豪 1	1. 東大生研, 2. 東洋紡
11:45	奨 E 16a-A307-11	Thermally drawn microelectronic fibers for all-in-one sweat sensing	○ (M2) Jingxuan Wu¹, Yuichi Sato², Yuanyuan Guo²	1.Tohoku Univ., 2.Tohoku FRIS.
	導体/Semico ジウムのプログラム	nductors はプログラム冒頭にございます。		
13.1 Si	系基礎物性・表面界	面・シミュレーション / Fundamental properties, surface	e and interface, and simulations of Si related materi	als
3/16(Thu.) 9:30 - 11:30	ポスター講演 (Poster Presentation) PB 会場 (Room PB))	
	16a-PB04-1	ナノスケール半導体中の電子の時間発展から不純物分布	○村口 正和¹,原田 和輝¹,小林 祐貴¹,伊藤 佳卓¹,須	1. 北科大工, 2. 早大社学
		を予測するモデル化	子統太2	
3/17((Fri.) 13:00 - 17:00	口頭講演 (Oral Presentation) B414会場 (Room B414)		
13:00	奨 17p-B414-1	平板上で相対運動する PVA プラシノジュールの変形及び 接触軌跡解析	○ (M1C) 鈴木 翔大¹, 水嶋 祐基¹, 濱田 聡美², 小篠 諒太², 福永 明², 真田 俊之¹	1. 静大工, 2. 荏原製作所
12,15	₩ 17 D414 0	- 本体ジュルト時射面に形成されて液膜頂き測定	○遊郊 直径1 山川 健翔1 水順 牡甘1 直播 广恕2 滚	1 整网上兴 9 共居制作式

		はプログラム冒頭にございます。		
		面・シミュレーション / Fundamental properties, surface		als
3/16(ポスター講演 (Poster Presentation) PB会場(Room PB)		
	16a-PB04-1	ナノスケール半導体中の電子の時間発展から不純物分布		1. 北科大工, 2. 早大社学
		を予測するモデル化	子統太 ²	
		口頭講演 (Oral Presentation) B414会場 (Room B414)		
3:00	奨 17p-B414-1	平板上で相対運動する PVA ブラシノジュールの変形及び	○ (M1C) 鈴木 翔大', 水嶋 祐基', 濱田 聡美 ² , 小篠 諒太 ² , 福永 明 ² , 真田 俊之 ¹	1.静大工, 2. 荏原製作所
0.15	16 15 D414 0	接触軌跡解析		1 热风 1.兴 0 共压制 1/2
3:15	樊 17p-B414-2	二流体ジェット噴射面に形成される液膜厚さ測定	〇渡部 真将 1 , 山川 健翔 1 , 水嶋 祐基 1 , 高橋 広毅 2 , 濱 田 聡美 2 , 今井 正芳 2 , 真田 俊之 1	1. 静岡大字, 2. 任原製作所
3:30		TMAH水溶液を用いた平坦化Ge(111)表面の作製	○松尾 一輝 ¹ , 鈴木 仁 ¹ , 坂上 弘之 ¹	1. 広島大先進理工
13:45	17p-B414-4	フッ硝酸Siエッチングプロセスの基板結晶面方位依存性 解析	○大井上 昂志¹, 黒木 佳奈¹, 平野 智暉¹, 西尾 賢哉¹, 齋藤 卓¹, 奥山 敦¹, 萩本 賢哉¹, 岩元 勇人¹	1.ソニーセミコンダクタ
14:00	奨 17p-B414-5	負バイアス条件での酸化グラフェンアシストシリコン エッチング	○ (M1) 後藤 雄太¹, 窪田 航¹, 宇都宮 徹¹, 一井 崇¹, 杉村 博之¹	1. 京都大院
14:15	E 17p-B414-6	The effect of post metallization annealing sequence on the	∴ Chang Xinyue¹, Joong-Won Shin¹, Tanuma	1. Tokyo Inst. of Technology
		Pt gate etching immunity of MFSFET with ferroelectric non-doped HfO ₂	Masakazu ¹ , Ohmi Shun-ichiro ¹	
14:30	17p-B414-7	AFM/KFMによる熱酸化SOI基板上に自己組織化形成し	○(D) 今井 友貴¹, 牧原 克典¹, 山本 裕司², Wen	1. 名大院工, 2.IHP
		たSi量子ドットの局所帯電特性評価	Wei-Chen ² , 田岡 紀之 ¹ , 大田 晃生 ¹ , 宮﨑 誠一 ¹	
4:45		休憩/Break		
5:00	17p-B414-8	平衡状態におけるマクロステップのファセティング・ダ イアグラム	○阿久津 典子¹, 阿久津 泰弘²	1.大阪電通大工, 2. 阪大院理
5:15	E 17p-B414-9	First-Principles Simulation of Electronic Structure of Bulk and Surfaces SnS	○ (D)Rohit Sanjay Dahule¹, Kenta Hongo¹, Ryo	1.JAIST
5:30	17p-B414-10	Si(111) p型空間電荷層のバンド湾曲形状の価電子量子化による平坦化	○武田 さくら¹, Nur Idayu Ayob², 大門 寬¹, 稲垣 剛¹	1. 奈良先端大, 2.IIUM
5:45	17p-B414-11	単層カーボンナノチューブ二端子対回路の熱電物性	○林 大介¹, 青柳 里果¹	1.成蹊大学 理工学部
6:00	17p-B414-12	界面準位を含むMOSキャバシタの回路モデリング	〇福田 浩一 1 , 服部 淳一 1 , 浅井 栄大 1 , 井手 利英 1 , 清水 三聡 1	1. 産総研
6:15	17p-B414-13	MONOS SiN膜中キャリア移動度の電界・温度依存性モデリング	○内藤 慶太郎¹, 竹田 裕¹, 大倉 孝之¹, 下川 淳二¹, 津田 宗幸¹, 山下 博幸¹, 澤 敬一¹, 来栖 貴史¹	1. キオクシア株式会社
6:30	17p-B414-14	異方性を有する自立シリコン板における音響フォノン散		1. 阪大院工
		乱		
6:45	17p-B414-15	3次元モンテカルロデバイスシミュレーションにおける 電界分布数値計算の機械学習による高速化	○ (M1C) 倉元 俊亮 ¹, 森 伸也 ¹	1. 阪大院工

		电介刀甲数胆計昇の傲慢子首による向迷化		
13.2 探郭	ぬい材料物性・基礎 かんかん かんかん かんかん かんかん かんかん かんかん かんかん かん	物性 / Exploratory Materials, Physical Properties, Device		
3/15(W	ed.) 13:00 - 17:15	口頭講演 (Oral Presentation) A403会場 (Room A403)		
13:00	招 15p-A403-1	「第53回講演奨励賞受賞記念講演」	○辻 昌武 ¹ , 飯村 壮史 ^{1,2,3} , 金 正煥 ^{1,3} , 細野 秀雄 ^{1,2}	1.東工大 元素戦略研, 2.物材機構, 3.さきがけ
		Zn置換によるCulのホール濃度低下とそのメカニズム		
13:15	15p-A403-2	BaSi ₂ 薄膜の結晶粒界とキャリア寿命の関係	○原 康祐¹, 有元 圭介¹, 宇佐美 徳隆²	1.山梨大クリスタル研, 2.名大院工
13:30	15p-A403-3	スパッタ法で作製した多結晶BaSi ₂ 膜へのBイオン注入に	○佐藤 匠¹, 木戸 一輝¹, 長谷部 隼¹, 竹中 晴紀¹, 青貫	1. 筑波大学, 2. 東ソー株式会社
		よる伝導型制御	翔¹, 召田 雅実², 都甲 薫¹, 末益 崇¹	
13:45	15p-A403-4	真空中ポストアニールによるBaSi₂膜中の特性変化と酸	○岩井 藍¹, 青貫 翔¹, 成田 隼翼¹, 髙柳 香織¹, 都甲	1. 筑波大学
		素の影響	薫¹, 末益 崇¹	
14:00	15p-A403-5	B-doped a-Siを用いたB-doped BaSi₂膜の熱反応堆積成長	○中村 新¹, 青貫 翔¹, 成田 隼翼¹, 高柳 香織¹, 岩井	1. 筑波大学
		と評価	藍¹,都甲薫¹,末益祟¹	
14:15	15p-A403-6	リン不純物添加が及ぼす溶融Mg ₂ Si結晶の熱電特性への	○宮後 大介¹, 鵜殿 治彦¹	1. 茨城大院
		影響		
14:30	15p-A403-7	CF_4/Ar による Mg_2Si 基板の反応性イオンエッチング特性	〇今泉 尚己 1 , 中村 陸斗 1 , 吉田 美沙 2 , 津谷 大樹 2 , 鵜	1. 茨城大院, 2.NIMS
			殿治彦1	
14:45	15p-A403-8	p -NiO/ n -BaSi $_2$ ヘテロ接合型太陽電池の設計およびガラ	○竹中 晴紀¹, 長谷部 隼¹, 木戸 一輝¹, 召田 雅実², 都	1. 筑波大学, 2. 東ソー株式会社
		ス基板上への作製	甲薫1,末益崇1	
15:00	奨 15p-A403-9	光学シミュレーションによる $\mathrm{HTL/BaSi}_2$ 太陽電池の構造	○(DC)青貫 翔¹, Tobon Carlos Mario Ruiz²,	1. 筑波大, 2. デルフト工科大
		設計	Santbergen Rudi ² , 都甲 薫 ¹ , Isabella Olindo ² , 末益	
			崇1	

15:15	E 15p-A403-10	Application of a-SiC Electron Transport Layer in ${\rm BaSi_2}$ Solar cells	○ (D)Rui Du¹, Sho Aonuki¹, Hayato Hasebe¹, Kazuki Kido¹, Haruki Takenaka¹, Masami Mesuda², Kaoru Toko³, Takashi Suemasu³	1.Univ. of Tsukuba, Graduate School of Science and Technology, 2.Tosoh Corp., Advanced Materials Research Laboratory, 3.Univ. of Tsukuba, Faculty of
15:30	15p-A403-11	$Zn_{1,x}Ge_xO_y$ 界面層を用いた n^+ -AZO/ p -BaSi $_2$ 太陽電池の検討	○高柳香織¹, 青貫 翔¹, 成田 隼翼¹, 都甲 薫¹, 末益 崇¹	Pure and Applied Sciences 1. 筑波大学
15:45 16:00	15p-A403-12	休憩/Break MgCl ₂ -Mg融液を用いて作製したMg ₂ Siナノシート及び Mg ₂ Si ₁ , Ge ₂ ナノ構造体の微細構造	佐々木 啓悟 1 , 関野 海斗 1 , 古賀 友也 1 , 志村 洋介 1,2 , 〇立岡 浩一 1	1. 静岡大院工, 2. 静大電研
16:15 16:30	15p-A403-14	近接蒸着法により作製した CaSi ₂ 薄膜の結晶配向性 SrSi _{2-x} の結晶構造	\bigcirc (BC)高垣 僚太 1 , 有元 圭介 1 , 山中 淳二 1 , 原 康祐 1 \bigcirc 今井 基晴 1 , 藤久 裕司 2	1. 物材機構, 2. 産総研
16:45 17:00		スズ化物Na ₂ CdSn ₅ の結晶構造と熱電特性 様々なSiGe原子組成比をもつII型SiGe合金クラスレー ト薄膜の結晶構造および光学特性評価	○山田 高広 ¹ , 浅宮 雄貴 ^{1,2} , 山根 久典 ¹ ○新谷 明宏, 栗田 詩織 ¹ , 大橋 史隆 ¹ , Jha Himanshu ¹ , Kumar Rahul ² , 久米 徹二 ¹	1. 東北大多元研, 2. 東北大院工 1. 岐阜大学, 2. 岐阜高専
3/16(T		ポスター講演 (Poster Presentation) PB 会場 (Room PB) Si結晶中の10原子空孔の特異な電子構造		1.京産大理
		三元系ウルツ鉱型酸化物半導体におけるイオン交換反応		1.東北大
		Mn 部分置換 CrSi ₂ の赤外線吸収効率化のためのアニール条件の検討	﨑譲1	
		4探針プローブ法による Mg_2Si 基板への Al 拡散深さの調査 Fe S_2 天然結晶を用いた低閾値ショットキーバリアダイ	〇尾鳴 海人,中村 座斗,稠敷 沿彦。 〇安藤 陸 ¹ ,前田 就彦 ¹	1. 茨城大学
13.3 絶縁	Right	オードの作製	○女際 咥,則田 机彦	1.東京工科大
		ポスター講演 (Poster Presentation) PA会場(Room PA)		
	<u> </u>	マンガンとバナジウムをドープしたシリコン窒化膜の電 荷捕獲特性	藤 勇十², 荒川 裕樹², 阿部 拓未², 小林 清輝 1,2	1. 東海大院工, 2. 東海大工
		堆積後その場熱処理による低温酸化 Si 膜中残留 OH 基量 の堆積温度依存性		1.北陸先端大
2.14=1		Si ₃ N ₄ 膜とSiO ₂ 膜中の2原子分子の安定位置での生成エネルギー	○奥 友希¹,戸塚 正裕¹,佐々木 肇¹	1.三菱電機
3/16(T) 13:00		口頭講演 (Oral Presentation) B508会場 (Room B508) 「第44回優秀論文賞受賞記念講演」 HfO ₂ -ZrO ₂ Nanolaminate 構造における強誘電相の生成促進	〇右田 真司 1 , 太田 裕之 1 , 浅沼 周太郎 1 , 森田 行則 1 , 鳥海 明 2	1. 産総研, 2. 東大
13:30	16p-B508-2	最初の電界印加によって誘起される $Hf_{0.5}Zr_{0.5}O_2$ 薄膜の伝導特性の変化および強誘電化	〇森田 行則 1 , 女屋 崇 2 , 浅沼 周太郎 1 , 太田 裕之 1 , 右 田 真司 1	1. 産総研, 2. 東大
13:45	16p-B508-3	分極疲労時の強誘電体 $\mathrm{Hf_xZr_{1-x}O_2/TiN}$ 界面反応に起因した酸素欠損生成の起源		1. 東大院新領域, 2. 物材機構, 3. 産総研, 4. 学振 PD
14:00	16p-B508-4	機械的な引張歪みの存在下での分極反転に伴う HfO ₂ 薄膜の残留分極値の増大の実証	○井上 辰哉¹, 女屋 祟², 喜多 浩之¹.²	1. 東大院工, 2. 東大院新領域
14:15	16p-B508-5	アニール時の機械的歪み導入によるHfO ₂ 薄膜の強誘電相安定化効果	○安田 滉¹, 女屋 崇², 喜多 浩之¹.²	1. 東大工, 2. 東大院新領域
14:30	16p-B508-6	$3.6\mathrm{nm}$ 厚極薄膜 $\mathrm{Hf_{0.5}Zr_{0.5}O_2}$ 強誘電体の wakeup 特性の周波数依存性	〇川野 麻琴 1 , トープラサートポン カシディット 1 , 竹中 $\hat{\pi}^1$, 高木 信 1	1.東大工
14:45	16p-B508-7	常誘電体キャパシタを接続した強誘電体キャパシタにおける"負性容量"に関する考察(2)	○鳥海明¹, 右田 真司²	1. 自由業, 2. 産総研
15:00	16p-B508-8	シリーズ抵抗をもった強誘電体キャパシタにおける"負性容量"に関する考察	○鳥海 明¹, 右田 真司²	1.自由業, 2.産総研
15:15 15:30	奨 16p-B508-9	休憩/Break ペロブスカイト酸化物エピタキシャル界面への 原子層挿	○田村 敦史 ¹ , 喜多 浩之 ^{1,2}	1.東大院工, 2.東大院新領域
15:45	奨 16p-B508-10	入による積層順序制御効果の検証 Al ₂ O ₃ 低温成膜化によるInGaAs界面準位密度低減メカニ		1.ソニーセミコンダクタソリューションズ
16:00	奨 16p-B508-11	ズムの解明 プラズマALDのPO _x 成膜によるInGaAs界面準位低減検		1.ソニーセミコンダクタソリューションズ
16:15	奨 16p-B508-12	計 非晶質材料のELNESスペクトル解釈における局所原子構		1.キオクシア
16:30	16n-B508-13	造の新指標 極薄積層絶縁膜の深さ方向膜質評価	島 大輔 ¹ , 田中 洋毅 ¹ ○棚橋 優策 ¹ , 井上 敬子 ¹ , 関 洋文 ¹	1.東レリサーチセンター
16:45		Si酸化における界面から酸化膜へのSi放出過程の理論検討		1. 島根大, 2. 三重大, 3. 名古屋大
17:00	16p-B508-15	シリコン窒化膜の電子捕獲特性に対する熱処理の影響	〇王 祖豪 ¹ , 木本 健嗣 ³ , 中川 宗一郎 ¹ , 指田 光弘 ² , 中村 健人 ² , 藤野 郁弥 ² , 前島 邦光 ³ , 小林 清輝 ^{1,2}	1. 東海大院工, 2. 東海大工, 3. 電子科学(株)
17:15 17:30		2段階酸化によるGeO₂膜の作製と評価 p型Ge基板上に低温堆積したAl₂O₃薄膜の電気特性	\bigcirc (M1) 斉藤 基 1 , 土屋 雄太 1 , 岩崎 好孝 1 , 上野 智雄 1 横平 達哉 1 , 山田 大地 1 , 大川 敦輝 2 , 佐藤 哲也 2 , ○王	
12 / C: 7	をプロ <u>セフ・C: を</u> ⇒	i膜・MEMS・装置技術/Si processing /Si based thin filn	谷洋平 ¹	
		- IRP・WEINIS・装直技術 / St processing / St based thin film 口頭講演 (Oral Presentation) B410会場(Room B410)	17 MEMS / Equipment technology	
9:00		Investigation of the Gate Oxide of Si MOS Devices Fabricated Using Minimal Fab Laser Annealing Tool	○ Mickael Lozach ¹ , Kazushige Sato ^{1, 2} , Sommawan Khumpuang ^{1, 3} , Shiro Hara ^{1, 3, 4}	1.Minimal Fab, 2.Sakaguchi E.H. VOC, 3.AIST, 4. Hundred
9:15	15a-B410-2	ミニマル液体ドーパント・プロセスを用いた MOSFET のシート抵抗のばらつき評価		1. ミニマルファブ, 2. 産総研, 3. (株) Hundred Semiconductors
9:30	15a-B410-3	ミニマルファブ SOI CMOS におけるオーバーラップ長縮 小の検討	マワン1.2, 柴 育成3, 原 史朗1.2.4	4.(株)Hundred Semiconductors
9:45	15a-B410-4	300~600℃の低温処理用ミニマルレーザ加熱装置の開発	○佐藤 和重 ^{1,3} , 千葉 貴史 ^{1,3} , 寺田 昌男 ^{1,3} , 濱田 健 吾 ^{1,3} , クンプアン ソマワン ^{1,2} , 原 史朗 ^{1,2,4}	1. ミニマルファブ推進機構, 2. 産総研, 3. 坂口電熱, 4.Hundred Semiconductors
10:00 10:15	15a-B410-5	休憩/Break シリコンピアホールエッチングにおけるテーバー角制御 の研究	ンプアン ソマワン ^{1, 4} , 原 史朗 ^{1, 4, 5}	1.産総研, 2.MTC, 3.SPPテクノロジーズ, 4. ミニマルファブ推進機構, 5.Hundred Semiconductors
10:30	15a-B410-6	スピンドロップレット洗浄技術における高効率なリンス 方法	プアン ソマワン ^{1, 2} , 原 史朗 ^{1, 2, 3}	Semiconductors
10:45	15a-B410-7	モールド樹脂上セミアディティブ再配線形成プロセス	〇居村 史人 $^{1,2},$ 大園 満 1, クンプアン ソマワン $^{1,3},$ 原 史朗 1,2,3	1. 産総研, 2. Hundred, 3. ミニマルファブ
11:00 11:15	15a-B410-8 15a-B410-9	ミニマルファブでのP-SOGによるリン拡散の安定化 ミニマルイオン注入装置の開発 (IV)	○加瀬 雅¹, クンプアン ソマワン¹², 原 史朗¹²³ ○三浦 典子¹, 橋本 直樹², 北村 是尊², 居村 史人³³⁴, 石田 夕起¹³, クンプアン ソマワン¹³, 原 史朗¹³³4	1. 産総研, 2. ミニマル, 3.Hundred Semiconductors 1. ミニマルファブ推進機構, 2. フジインバック, 3. 産総 研, 4.(株)Hundred Semiconductors

		口頭講演 (Oral Presentation) B410会場 (Room B410)		
13:00 13:15		ミニマルファブのロット間ばらつきの解析 ミニマルファブを用いた3軸ピエブ抵抗型加速度センサ		
13:30	15p-B410-3	の性能改善と MEMS デバイス歩留確認手法の検討 シリコン中の燐拡散において低温熱処理が与える影響	ソマワン ^{1,2} , 原 史朗 ^{1,2,3} ○古川 篤 ¹ , 佐藤 慎哉 ¹	1. 東芝デバイス&ストレージ
13:45		分子シミュレーションを活用したジシランの表面初期吸 着挙動考察		
4:00 4:15	15p-B410-5	休憩/Break MONOS型ポリシリコンTFTでのしきい値電圧制御に関 する検討	○後藤 哲也¹, 諏訪 智之¹, 須川 成利¹	1. 東北大未来研
4:30	15p-B410-6	ガラス基板上の多結晶 $Si_{1-x}Ge_x$ 薄膜トランジスタ特性の膜厚依存性	○佐川 達哉¹, 原 明人¹	1. 東北学院大工
4:45 5:00		Si薄膜のレーザ結晶化における線状Agglomeration CLC-Si-TFTにおけるGrain-boundaryの影響	〇佐々木 伸夫 1,2 , 高山 智之 2 , 笹井 陸杜 2 , 浦岡 行治 2 〇高山 智之 1 , 佐々木 伸夫 2,1 , 浦岡 行治 1	1.Sasaki Consulting, 2.NAIST 1.奈良先端大, 2.Sasaki Consulting
5:15 5:30	奨 15p-B410-9	休憩/Break 【注目講演】加熱その場高分解能TEMを用いた薄膜Si固相結晶化過程の原子レベルリアルタイム観察	〇手面	1.キオクシア(株)メモリ技術研究所
5:45 6:00		低温単結晶Si-TFTの諸特性とばらつきに関する考察 PL法によるSiトレンチ側壁の結晶欠陥評価	○葉 文昌¹, 大矢 雅人¹	1.島根大総合理工 1.明治大理工, 2.明大 MREL, 3.ソニーセミコンダクタ ソリューションズ (株)
6:15 6:30	奨 15p-B410-12	絶縁体上における高電子移動度 GeSn薄膜の低温合成 休憩/Break	○野沢 公暉¹, 西田 竹志¹.², 末益 崇¹, 都甲 薫¹	1. 筑波大院, 2. 学振特別研究員
6:45	15p-B410-13	急速熱処理法によるInSb薄膜/ガラス基板の高品位形成	梶原 隆司¹, 岡田 竜弥², コスワッタゲー チャリット ジェヤナダ², 野口 隆², ○佐道 泰造¹	1. 九大システム情報, 2. 琉大工
7:00	15p-B410-14	青色ダイレクトダイオードレーザを用いたスパッタ製膜a-Si膜の結晶化(その3)	〇岡田 竜弥 1 , 野口 隆 1 , 菱田 光起 2 , 宮野 謙太郎 2 , 小畑 直彦 2 , 信岡 政樹 2	1. 琉大工, 2. パナソニックコネクト
7:15		UV レーザー加工接着シートを用いた圧電バルブマイクロポンプ構造	〇岡本 有貴 1 , 山本 泰之 1 , 村本 智也 1 , 一木 正聡 1 , 小林 健 1	1. 産業技術総合研究所
3/16(T) 9:00		口頭講演 (Oral Presentation) B410会場(Room B410) バルス反転めっき法による Ni-W 膜の作製と特性評価	○顧 沢宇¹, Jiang Yiming¹, 栗岡 智行¹, Chen	1.東工大
9:15	奨 16a-B410-2	金めっき微小ビラー構造体の微小圧縮試験におけるひず み速度依存性とサンプルサイズ効果の解明	Chun-Yi¹, 曽根 正人¹, Tso-Fu Mark Chang¹ ○(B) 菅野 翔太¹, 大村 太郎¹, 栗岡 智行¹, Chun-Yi Chen¹, Parthojit Chakraborty¹, 町田 克之¹, 伊藤 浩 之¹, 三宅 美博¹, 曽根 正人¹, Tso-Fu Mark Chang¹	1.東工大
9:30	奨 16a-B410-3	単結晶金微小カンチレバーの曲げ強度に対する断面積の 影響	○ (M1) 保里 亮平¹, 藤田 一矢¹, Chun-Yi Chen¹, 栗 岡 智行¹, Tso-Fu Mark Chang¹, Parthojit Chakraborty¹, 町田 克之¹, 伊藤 浩之¹, 三宅 美博¹, 曽 根 正人¹	
:45	奨 16a-B410-4	Ti/Au 多層カンチレバーの実効ヤング率における構造因子の研究	○ (B) 渡邉 春海¹, Chun-Yi Chen¹, 栗岡 智行¹, Tso-Fu Mark Chang¹, 大西 哲¹, Parthojit Chakraborty¹, 町田 克之¹, 伊藤 浩之¹, 三宅 美博¹, 曽根 正人¹	1.東工大
0:00 0:15	奨 16a-B410-5	休憩/Break Ti/Au 積層構造有するマイクロカンチレバーの長期構造 安定性に対する幾何学構造の影響	○宮井 良介¹, 栗岡 智行¹, Chun-Yi Chen¹, Tso-Fu Mark Chang¹, 大西 哲¹, Parthojit Chakraborty¹, 町田 克之¹, 伊藤 浩之¹, 三宅 美博¹, 曽根 正人¹	
0:30	奨 16a-B410-6	Au 積層メタル技術による MEMS デバイスのための 九十九折ばね設計手法の検討	○(B)御宿 希枯¹,大西 哲¹, Tennteni Devi Srujana¹, 町田 克之¹, Chakraborty Parthojit¹, 曽根 正人¹, 三宅 美博¹, 伊藤 浩之¹	1.東工大
0:45		二酸化スズの吸光特性を利用した波長センサ ハーモニカリード型MEMS発電素子の振動特性	○太田 涼介¹, 割澤 伸一¹, 米谷 玲皇¹	1.東大工
1:00 1:15		MEMS両持ちはりの共振特性	 ○(B) 志水 駿文¹, 神田 健介¹, 前中 一介¹ ○(B) 赤松 儀優¹, 神田 健介¹, 前中 一介¹ 	1.兵庫県大工 1.兵庫県大工
3/16(Th		ポスター講演 (Poster Presentation) PA 会場(Room PA) ガラス基板上の縦型 Cu-MIC 多結晶ゲルマニウム薄膜ト		1.東北学院大工
	16p-PA03-2	ランジスタ Fe ナノドットへの SiH ₄ 照射による β -FeSi ₂ ナノドット の高密度形成	○斎藤陽斗¹,牧原克典¹,王子璐¹,田岡紀之¹,大田晃生¹,宮﨑誠一¹	1.名大院工
	16p-PA03-3	Fe 超薄膜への SiH ₄ 照射によるシリサイド化反応制御	光主, 宮崎 畝一 ○斎藤 陽斗¹, 牧原 克典¹, 王 子璐¹, 田岡 紀之¹, 大田 晃生¹, 宮崎 誠一¹	1. 名大院工
	16p-PA03-4	センサ応用に向けたPOF表面のドライエッチング技術の 検討		1.立命館大, 2. 芝浦工大, 3. 横浜国大
		常圧超高濃度オゾン水生成装置の開発 放射状に旋回戻りコイルを形成したMEMSロゴスキーコ イル型電流センサ	○三浦 敏徳 ¹, 加藤 直樹 ¹, 中川 彰利 ¹, 清家 聡 ¹	
		f化技術 / Semiconductor devices/ Interconnect/ Integrat		
3/16(T) 9:00		口頭講演 (Oral Presentation) A403会場 (Room A403) シリコン2 重単電子ポンプにおける単電子クーロン衝突	○山端 元音¹, Johnson Nathan¹, 藤原 聡¹	1.NTT 物性研
:15		高周波反射測定を用いた nMOSシリコン量子ドットの電荷ノイズ評価	〇荒川 雄登 ¹ , 中越 一真 ¹ , 松岡 竜太朗 ¹ , 土屋 龍太 ² , 峰 利之 ² , 久本 大 ² , 水野 弘之 ² , 溝口 来成 ¹ , 米田 淳 ¹ ,	1. 東工大, 2. 目立研開
:30	16a-A403-3	シリコン量子ドットにおけるデチューニングノイズの特 性評価	小寺哲夫 ¹ 中越一真 ¹ ,〇荒川 雄登 ¹ ,松岡 竜太郎 ¹ ,土屋 龍太 ² , 峰 利之 ² ,久本 大 ² ,水野 弘之 ² ,溝口 来成 ¹ ,米田 淳 ¹ , 小寺哲夫 ¹	
9:45	奨 16a-A403-4	物理形成量子ドットにおけるRF反射測定に適した単段整 合回路の設計・評価		1.東工大工
0:00	16a-A403-5	シリコンダブル量子ドットの作製と低温特性評価	\bigcirc (M2) 金 駿午 ¹ , 水谷 朋子 ¹ , 更屋 拓哉 ¹ , 岡 博史 ² , 森 貴洋 ² , 小林 正治 ^{1,3} , 平本 俊郎 ¹	1. 東大生研, 2. 産総研, 3. 東大 d.lab
0:15 0:30	16a-A403-6	休憩/Break 多数電子シリコン量子ドット中の電子スピンの磁場依存 性	○溝口来成¹,坂本剛¹,近藤知宏¹,松岡竜太郎¹,土屋龍太²,峰利之²,久本大²,水野弘之²,米田淳¹,小寺哲夫¹	
0:45	16a-A403-7	FinFET型スピン量子ビットの電子数制御に関する SPICE コンパクトモデルの提案	亏 哲大。 Elias Perez ^{1, 2} , Teresa Orvañanos-Guerrero ² , ○棚本 哲史 ¹	1.帝京大理工, 2. パンアメリカン大
1:00	16a-A403-8	スピンブロッケードを用いた室温動作量子磁気センサー 感度の向上		1. 理研, 2. 産総研, 3. 東電院工

11:15	16a-A403-9	MOS界面の単一欠陥チャージボンビンによって可能となった両性準位における電子捕獲素過程の直接観測 (6) - 欠陥構造緩和(II)-	○土屋 敏章¹, 堀 匡寛¹, 小野 行徳¹	1. 静大電研
11:30	16a-A403-10	MOS界面の単一欠陥チャージポンピングによって可能となった両性準位における電子捕獲素過程の直接観測 (7) - τ _n に関する考察 -	○土屋 敏章¹, 堀 匡寬¹, 小野 行徳¹	1. 静大電研
3/16(T 13:00		口頭講演 (Oral Presentation) A403 会場 (Room A403) 第14回シリコンテクノロジー分科会論文賞・研究奨励賞 授賞式	○遠藤 和彦 ^{1,2}	1.シリコンテクノロジー分科会幹事長, 2.東北大学
13:15	招 16p-A403-2	「第14回シリコンテクノロジー分科会論文賞受賞記念講演」 表面ラフネス散乱を抑制する為に電子谷の異方性を利用 した極薄膜nMOSFETのチャネル材料と面方位の最適設	〇隅田 \pm^1 , 陳 家聰 1 , トープラサートポン カシ ディット 1 , 竹中 $\hat{\pi}^1$, 高木 信 $-^1$	1.東大院工
		計		
13:45	招 16p-A403-3	「第14回シリコンテクノロジー分科会論文賞受賞記念講演」 シリコンスピン量子ピットの量子非破壊測定	〇米田 淳 ¹ , 武田 健太 ² , 野入 亮人 ² , 中島 峻 ² , Li Sen ² , 神岡 純 ¹ , 小寺 哲夫 ¹ , 樽茶 清悟 ²	1.東工大, 2.理研
14:15	招 16p-A403-4	「第14回シリコンテクノロジー分科会研究奨励賞受賞記念講演」 ZrS_2 symmetrical-ambipolar FETs with near-midgap TiN film for both top-gate electrode and Schottky-	〇濱田 昌也 1 ,松浦 賢太朗 1 ,濱田 拓也 1 ,宗田 伊理 也 1 ,角嶋 邦之 1 ,简并 一生 1 ,若林 整 1	1. 東京工業大学
14:30	招 16p-A403-5	barrier contact 「第14回シリコンテクノロジー分科会研究奨励賞受賞記 念講演」 Atomic Layer Etching 時に Si 基板に生成されるイオン侵	〇平田 瑛子 1 ,深沢 正永 1 ,釘宮 克尚 1 ,唐橋 一浩 2 ,浜 口 智志 2 ,萩本 賢哉 1 ,岩元 勇人 1	1.ソニーセミコンダクタソリューションズ(株), 2.阪大院工
14:45	E 16p-A403-6	入ダメージの解析 3D NAND Memory Operation of Oxide-Semiconductor	○ (M2)Junxiang Hao¹, Xiaoran Mei¹, Takuya	1.IIS, Univ. of Tokyo, 2.d.lab, Univ. of Tokyo
15:00	16p-A403-7	Channel FeFETs UV-LED を用いた HfO ₂ 系強誘電体キャパシタのアニー ルプロセス省電力化に関する研究	Saraya ¹ , Toshiro Hiramoto ¹ , Masaharu Kobayashi ^{1,2} ○山田 裕貴 ^{1,2} , 古江 悟 ¹ , 横森 岳彦 ¹ , 糸矢 祐喜 ² , 更 屋 拓哉 ² , 平本 後郎 ² , 小林 正治 ^{2,3}	1. ウシオ電機, 2. 東大生研, 3. 東大 d.lab
15:15	奨 E 16p-A403-8	A Simulation Study on Memory Characteristics of Oxide-Semiconductor Channel Antiferroelectric FETs Using Half-Loop Hysteresis	(M2)Xingyu Huang ¹ , Yuki Itoya ¹ , Zhuo Li ¹ , Takuya Saraya ¹ , Toshiro Hiramoto ¹ , Masaharu Kobayashi ^{1,2}	1.IIS., Univ. of Tokyo, 2.d.lab, Univ. of Tokyo
15:30	16p-A403-9	強誘電体トンネル接合の電荷トラップ影響シミュレー ション	*	1. 東大生研, 2. 東大 d.lab
15:45 16:00	16p-A403-10	休憩/Break TiO、系ReRAM特性におけるアニール温度の影響	○(B)池田 翔 ¹ , 大沢 遼輝 ¹ , 相川 慎也 ¹	1.工学院大
16:15		電気化学的酸化法による Ta酸化膜成長と ReRAM への適用		1.東京工科大工
16:30	16p-A403-12	液体金属合金とその選択的表面酸化膜を用いた抵抗変化 素子の作製と評価	\bigcirc (M1) 勝間 勇斗 1 , 番 貴彦 1 , 一宮 正義 1 , 柳澤 淳 $^{-1}$, 山本 伸 $^{-2}$	1. 滋賀県立大, 2. 龍谷大
16:45	16p-A403-13	SiO_2 に囲まれたナノスケール溶融塩の相変化シミュレー	○西村 祐亮¹, 山中 湧司¹, 渡邉 孝信¹	1.早大理工
17:00	E 16p-A403-14	ション Tuning of Conductance Values by Si Doping in GeTe for Artificial Synapse Characteristics	○ (D)Shinyoung Kang ¹ , Mihyeon Kim ¹ , Shuang Yi ^{1, 2} , Daisuke Ando ¹ , Yuji Sutou ¹	1.Tohoku.Univ, 2.Tohoku.Univ(AIMR)
17:15	16p-A403-15	高純度オゾンを用いたALDによるAl ₂ O ₃ 膜段差被覆性	↑, Dalsuke Ando, Tuji Sutou ○	1. 明電 NPI, 2. 産総研
17:30	奨 16p-A403-16	直接接合応用へ向けた低温堆積 CVD-SiO₂ 膜の界面近傍 解析	○北川 颯人¹, 大西 洸輝¹, 岩田 知也¹, 布施 淳也¹, 上 殿 明良², 井上 史大¹	1. 横国大, 2. 筑波大
17:45	奨 16p-A403-17	プラズマ活性化接合における SiCN表面の微視的変化に 関する解析	○蛯子 颯大¹, 大西 洗輝¹, 永野 風矢², 上殿 明良³, 井 上 史大¹	1. 横国大, 2.imec, 3. 筑波大
18:00	E 16p-A403-18	Effects of Annealing on Thermal Boundary Resistance of Low-k Interlayer Dielectrics	Zhan³	1.FIRST, Tokyo Tech, 2.Waseda Univ., 3.Toyo Univ.
18:15	16p-A403-19	Tiバリアメタルを適用した3次元フラッシュメモリ向け 高信頼性Cuデュアルダマシン配線の研究	○和田純弥¹, 中嶋章¹, 相澤 圭樹¹, 北村 政幸¹, 田中亮¹, 藤井 光太郎¹, 加藤 久詞¹, 田上 政由¹, 関根 克行¹, 大內 和也¹	1.キオクシア
18:30	E 16p-A403-20	Cu diffusion barrier property evaluation of 1-nm-thick PVD-Co(W) films by time-lag method	○ (D) Yubin DENG¹, Takeshi Momose¹, Yukihiro Shimogaki¹	1.The Univ. of Tokyo
		口頭講演 (Oral Presentation) A403会場 (Room A403)		, de tours
9:00 9:15		ナノシートの一次元電子ガスとキャリア量 ナノシート電界効果トランジスタにおける電子速度オー バーシュートの影響とゲート長との関係	○福田 浩一¹, 二宮 真理子¹, 服部 淳一¹ ○服部 淳一¹, 福田 浩一¹, 池上 努¹, 林 喜宏¹	1. 産総研 1. 産業技術総合研究所
9:30	17a-A403-3	至シリコンナノシートにおける有効質量変化に関する第 一原理計算	○(P) 掘井 耀¹, 植田 暁子¹, 林 喜宏¹	1.産総研
9:45	E 17a-A403-4	Self-heating and Short-Channel Effect Immunity with Partial-Bottom-Dielectric-Isolation for Gate-All-Around Nano-Sheet FETs	○ (D)Peilong Wang¹, Atsushi Hori¹, Iriya Muneta¹, Takamasa Kawanago¹, Kuniyuki Kakushima¹, Kazuo Tsutsui¹, Hitoshi Wakabayashi¹	1.Tokyo Institute of Technology
10:00	17a-A403-5	表面ラフネス散乱の非線形モデルにおける移動度と実効 電界の関係とユニバーサリティを説明する係数ηの解釈	\bigcirc (D) 隅田 \pm^1 , トープラサートポン カシディット 1 ,	1.東大院工
10:15 10:30	17a-A403-6	休憩/Break Steep SS"Dual-Gate型PN-Body Tied SOI-FET" の過渡 特性	○(M1)米崎 晴貴¹,井田 次郎¹,森 貴之¹	1.金沢工大
10:45	17a-A403-7	200 nm SOI MOSFET の極低温下における基板バイアス 効果及び履歴現象	○森 貴之¹, 杉井 辰吉¹, 李 龍聖¹, 岡 博史², 森 貴洋², 井田 次郎¹	1. 金沢工大, 2. 産総研
11:00	17a-A403-8	カネスの優産税象 セル面積極小化に向けた3D CFET SRAMの開発		1. 産総研, 2. 台湾半導体研, 3. 台湾成功大, 4. 台湾陽明交通大
11:15	17a-A403-9	GeSn/GeSiSn共鳴トンネルダイオードの室温動作に向けた構造設計		
11:30	17a-A403-10	バンド間トンネリングのソフトエラー信頼性予測への応 用可能性		1. 東大院工, 2. 宇宙研
		ナノ量子デバイス / Nanostructures, quantum phenomer	na, and nano quantum devices	
3/15(W 13:30		口頭講演 (Oral Presentation) D411会場(Room D411) モデルベース強化学習による量子ドットの自動調整	○近藤 知宏¹, 溝口 来成¹, 米田 淳¹, 小寺 哲夫¹	1. 東工大小寺研
13:45		(注目講演) 結晶相転移接合トランジスタの作製	○ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
14:00	15p-D411-3	近接積層InAs量子ドットにおける共鳴トンネル伝導	○(M2)中里 雄次 ¹ , 宮下 直也 ¹ , 山口 浩一 ¹	1. 電通大基盤理工

14:15	15p-D411-4	Si/CaF ₂ 四重障壁共鳴トンネル構造を用いた抵抗変化メ		1.東工大工学院
14:30	F 15p-D411-5	モリ素子の室温スイッチング特性 Electron cooling/heating behavior in quantum cascade	也¹,村上寬太¹,鄭源宰¹,渡辺正裕¹ ○(D)Xiangyu Zhu¹ Chloe Salbani¹ Marc Bescond²	1.IIS/INQIE,Univ. of Tokyo, 2.LIMMS-CNRS, 3.Ecole
14.50	E 13p-D411-3	cooling structures	Gerald Bastard ³ , Naomi Nagai ¹ , Kazuhiko Hirakawa ^{1,2}	Normale Superieure
14:45		休憩/Break		
15:00	15p-D411-6	Cu _{2-x} Sナノディスク超格子の偏光依存光学応答	〇山田 琢允 1 , 田原 弘量 2 , 猿山 雅亮 1 , 寺西 利治 1 , 金 光 義彦 1	1.京大化研, 2.京大白眉センター
15:15	15p-D411-7	TEOS熱強制分解を用いた2段階シリカコーティングによるPbS量子ドットのサイズ制御と高発光効率化	○六本木 陽登¹, 向井 剛輝¹	1. 横浜国大理工
15:30	奨 15p-D411-8	ナノ構造半導体での超微細相互作用の相関時間の磁場依 存性	○李 梓榕¹, 山本 壮太¹, 鍜治 怜奈¹, 足立 智¹	1.北大院工
15:45	15p-D411-9	(111) 単一量子ドットにおける価電子帯混合の効果:発 光の偏光状態と正孔 g因子の変化	○鍜治 怜奈¹, 陳 ジュアン¹, 足立 智¹	1.北大院工
16:00	15p-D411-10	表面弾性波を用いたErイオンのフォノンアシスト光励起	〇太田 竜一¹, Lelu Gregoire¹, 徐 学俊¹, 稲葉 智宏¹, 日達 研一¹, 谷保 芳孝¹, 眞田 治樹¹, 石澤 淳², 俵 毅 彦², 小栗 克弥¹, 山口 浩司¹, 岡本 創¹	1.NTT物性研, 2. 日大
16:15 16:30	F 15p-D411-11	休憩/Break Diethylzinc passivation of InAs surface quantum dots	○ (DC)Hanif Mohammadi¹, Ronel Roca¹, Hyunju	1.Toyota tech. inst.
16:45		室温における (100)GaAsBi/GaAs量子井戸のPLおよび	Lee ¹ , Yoshio Ohshita ¹ , Naotaka Iwata ¹ , Itaru Kamiya ¹ 〇鎌倉 広太郎 ¹ ,下村 哲 ¹ ,行武 幸将 ¹ ,張 成銘 ¹	1. 愛媛大院理工
17:00	·	PRスペクトル GaAs/AlAs積層多重量子井戸における励起子量子ビート	○外島 磨¹, Hogg Richard²	1. 千葉工大工, 2. グラスゴー大学
	<u> </u>	Gansy Ains 傾僧 夕里里丁升戸におりる励起丁里丁と一下の観測 半導体超格子における電場下での量子ビートダイナミク		
17:15		スの共存	○長谷川 尊之¹	1.大阪工大工
3/1/(ポスター講演 (Poster Presentation) PB 会場 (Room PB) Passivation on ZnO NWs to enhance the efficiency of) (D)YUYAO WEI ¹ , Chao Ding ¹ , Mako Nakamura ¹ ,	1 Faculty of Informatics and Engineering. The
	P 1/b-t pno-1	PbS/ZnO NW QDSCs	Shuzi Hayase ¹ , Qing Shen ¹	University of Electro- Communications
	17p-PB06-2	p+型ポーラスシリコンにおける鉄の電着	○ (M2) 佐藤 俊輔¹, 金 蓮花¹, ジェローズ ベルナール²	
	-	Abnormal Temperature Dependence of Photoluminescence Properties of In-Plane Ultrahigh- Density InAs/InAsSb Quantum-Dot Layer	○ (D)SIMJUI OON¹, Naoya Miyashita¹, Koichi Yamaguchi¹	1.UEC Tokyo
【CS.6】 13.6	8.3 プラズマナノテ	・クノロジー、9.2 ナノ粒子・ナノワイヤ・ナノシート、13.	.6 ナノ構造・量子現象・ナノ量子デバイスのコードシ	ィエアセッション / Code-sharing Session of 8.3 & 9.2 &
		口頭講演 (Oral Presentation) A202会場 (Room A202)		
13:00	招 18p-A202-1	「第53回講演奨励賞受賞記念講演」 GaAs/InGaAs/GaAsコアマルチシェルナノワイヤ共振器 における軸対称偏光ビームの生成	○国本 大雅 ^{1.2} , 原 真二郎 ^{1.2} , 本久 順一 ^{1.2}	1.北大情報科学院, 2.量集センター
13:15	18p-A202-2	半導体ナノワイヤレーザへの集束イオンビーム加工とそのダメージ抑制	〇滝口 雅人 $^{1.2}$, 章 国強 $^{1.2}$, 佐々木 智 2 , 舘野 功太 $^{1.2}$, John Caleb 2 , 小野 真証 $^{1.2}$, 角倉 久史 $^{1.2}$, 新家 昭彦 $^{1.2}$, 納富 雅也 $^{1.2.3}$	1.NTT NPC, 2.NTT 物性研, 3.東工大理
13:30	18p-A202-3	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性		1. 東北工大, 2. 東大生産研, 3. 東北大通研, 4. 理研 CEMS, 5. 東京農工大, 6. 東大院工
13:45	E 18p-A202-4	Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane	\bigcirc Yunzi Xin 1 , Yuping Xu 1 , Kunihiko Kato 1 , Takashi	
14:00 14:15	18p-A202-5	休憩/Break 炭素ナノウォール構造体の電界放出特性と電界分布シ ミュレーション	○原尻 駿吾¹, Huang Lei¹, 堤井 君元¹	1.九大総理工
14:30	奨 18p-A202-6	ダイヤモンドナノ粒子で修飾したナノウォール構造体の 電界放出特性と電界分布シミュレーション	○原尻 駿吾¹, Huang Lei¹, 堤井 君元¹	1. 九大総理工
14:45	E 18p-A202-7	Integration of surface engineered silicon quantum dots in formamidinium lead iodide perovskite solar cells	○ Svrcek Vladimir¹, Calum McDonald¹, Dilli Babu Padmanaban², Ruairi McGlynn², Ankur Kambley², Bruno Alessi¹, Davide Mariotti², Takuya Matsui¹	1.AIST Tsukuba, 2.Ulster University
15:00	奨 18p-A202-8	メカノケミカル反応による H_xWO_3 /カーボン複合ナノ粒子合成と光触媒応用		1.名工大セラ研
13.7 <u>化</u>	合物及びパワーデ <u>バ</u>	する// Compound and power devic	es, process technology and characterization	
3/16(Thu.) 9:30 - 12:00	口頭講演 (Oral Presentation) A301会場 (Room A301)		
9:30	招 16a-A301-1	「第44回論文奨励賞受賞記念講演」 SiC MOS 反転層における電子散乱過程およびHall 移動度	○田中 一 ¹ , 森 伸也 ¹	1. 阪大院工
9:45	16a-A301-2	のモデリング 酸窒化膜を用いた SiC MOSFET の反転層における主要	○野口 宗隆¹,渡邊 寛¹,喜多 浩之²,西川 和康¹	1. 三菱電機(株), 2. 東大院新領域
10:00	16a-A301-3	なキャリア散乱機構の検証 第一原理計算によるSiC側に導入された窒素の SiC(11.20)(SiC) 用売送機における電子(40.80)	○立木 馨大¹, 西谷 侑将¹.², 岩田 潤一¹.², 松下 雄一郎¹.².³	1.東工大, 2.Quemix Inc., 3.QST
10:15	16a-A301-4	SiC(11-20)/SiO ₂ 界面近傍における電子状態の計算 ステップを持つSiC MOS界面におけるNO窒化処理の移動度改善が思っ般だ。	〇舩木 七星斗 1 ,横田 知真 1 ,植本 光治 1 ,細井 卓治 2 ,	1. 神戸大工, 2. 関西学院大工
10:30	奨 E 16a-A301-5	動度改善効果の解析 Understandings of the kinetics of N-incorporation and N-removal reactions for the 4H-SiC surface using the SiC consumption rate as an essential factor	小野 倫也 ¹ ○ (D)Yang Tianlin ¹ , Koji Kita ^{1, 2}	1.School of Eng., The Univ. of Tokyo, 2.School of Frontier Sci. , The Univ. of Tokyo
10:45		休憩/Break		
11:00	奨 16a-A301-6	4H-SiC/ゲート絶縁膜界面への窒素導入プロセスの低温 化の検討	○佐々木 琉¹, 中島 辰海¹, 女屋 崇², 喜多 浩之 1.2	1.東大院工, 2.東大院新領域
11:15	奨 E 16a-A301-7	Subthreshold characteristics of 4H-SiC n- and p-channel MOSFETs at low temperature	○ Xilun Chi¹, Keita Tachiki¹, Kyota Mikami¹, Mitsuaki Kaneko¹, Tsunenobu Kimoto¹	1.Kyoto Univ.
11:30	奨 16a-A301-8	無極性面を用いた高移動度 SiC p チャネル MOSFET の作製と評価		1.京大院工
11:45	16a-A301-9	チャージポンピング法を用いたpチャネルSiC MOSFET の界面特性評価	○(M2)秋葉 淳宏¹, 矢野 裕司¹	1. 筑波大学
3/16(7	Γhu.) 13:30 - 15:30 16p-PA04-1	ポスター講演 (Poster Presentation) PA 会場(Room PA) 界面顕微光応答法による Au/Ni/p ⁺ -SiC ショットキー接触		1.福井大院工, 2.名工大
	•	の二次元評価 4H-SiC/SiO ₂ 界面におけるバンド配列の面方位依存性に	藤 正史², 塩島 謙次¹	
		関する理論検討	中山隆史4	理

	16p-PA04-3	4H-SiC(11-20)面 $(a$ 面) MOS界面欠陥の電子スピン共鳴分光 $(ESR/EDMR)$ 評価	○近藤 蓮¹, 染谷 満².³, 渡部 平司³, 梅田 享英¹	1. 筑波大数物, 2. 産総研, 3. 阪大工
	16p-PA04-4	ウェット酸化を利用した二重イオン注入4H-SiC MOSFETの製作プロセスに関する研究	○佐藤 勇介 ^{1,2} , 渡辺 聡 ² , 櫻庭 政夫 ^{1,2} , 佐藤 茂雄 ^{1,2}	1. 東北大工, 2. 東北大通研
	16p-PA04-5	4H-SiCへのチャネリングイオン注入における臨界角のシミュレーション	○西村 智朗 ¹	1.法政大
	16p-PA04-6	GaN および GaAs のプラズマ照射誘起欠陥の比較	○山谷 朱里¹, 大島 真弓¹, 桑山 優太¹, 田中 優太朗¹	1.都立大SD
		AlGaN/GaN ヘテロ構造の光電気化学エッチングと反応 速度の制御		
	16p-PA04-8	p-GaN 表面層に対する低損傷 PEC エッチングとその電気化学的評価		1.北大量集センター
	16p-PA04-9	光電子ホログラフィーによる GaN 表面の窒素原子に関する評価	○夏井 葉月 1 , 上沼 睦典 1 , 桑原田 進吾 1 , 富田 広人 1 , 橋本 由介 1 , 松下 智裕 1 , 浦岡 行治 1	1. 奈良先端大
	16p-PA04-10	基底状態原子支援化学気相堆積法によるシリコン酸化膜 の形成及び評価 (2)		1. 豊橋技科大, 2. アリエースリサーチ(有)
	16p-PA04-11	Mgドープp-GaNを用いたMOS構造のサブバンドギャップ光支援C-V特性	〇忽滑谷 崇秀 1 , 玉村 祐也 1 , 高津 海 1 , 佐藤 威友 1 , 赤澤 正道 1	1.北大量集センター
	16p-PA04-12	Mgイオン注入後超高圧アニールを行った GaNの MOS 界面近傍伝導帯付近禁制帯準位の評価	· ○畠山 優希¹, 赤澤 正道¹, 成田 哲生², Bockowski Michal³.⁴, 加地 徹³	1.北大量集センター, 2.豊田中研, 3.名大未来材料・システム研, 4.Unipress
	E 16p-PA04-13	Comparison of Thermal and ArF Excimer Laser Activation of Mg-doped GaN	○MariaEmma Castil Villamin¹, Naotaka Iwata¹	1.Toyota Tech Inst
	16p-PA04-14	GaNのマイクロ波アニーリングにおける加熱効率の評価 と考察	○中村 考志 ¹ , 鄭 恵貞 ² , 田中 敦之 ² , 天野 浩 ²	1. 産総研, 2. 名大
	16p-PA04-15	GaN縦型パワーデバイスにおけるFLR構造の設計に向けたトポロジー最適化の検討	○(M1)山口 拓真¹, 野村 勝也¹, 服部 佳晋²	1. 関西学院大学, 2. 大同大学
	16p-PA04-16	低オン電圧高電流特性を示す環境発電用 GaN ヘテロ接合 整流ダイオード	〇日野 晃貴 1 , マリアエマ ヴィリアミン 1 , 岩田 直高 1	1. 豊田工大
		MHz動作GaN-HEMT同期整流回路の検討 小型アクチュエータ駆動のための窒化物半導体集積回路	○井手 利英 ^{1,2} , 清水 三聡 ^{1,2} , 高田 徳幸 ¹ ○ (M1) 秋良 芳樹 ¹ , 赤松 龍弥 ¹ , 真下 智昭 ² , 岡田 浩 ¹	1. 産総研 電子光, 2. 産総研 GaN-OIL 1. 豊橋技科大, 2. 岡山大
		の検討 Agナノインクより作製したAg/Siショットキーバリアダ		1.大阪技術研
	E 16p-PA04-20	イオード:焼成条件がダイオード特性に及ぼす影響 Analysis of Lateral Superjunction Silicon Power Device	○ (M2)Peilin Ji¹, Munetoshi Fukui¹, Takuya Saraya¹,	1.The Univ. of Tokyo
	16p-PA04-21	with Multiple Layers by TCAD Simulation 超ワイドバンドギャップ酸化物混晶のバリガ性能指数の	Masaharu Kobayashi ¹ , Toshiro Hiramoto ¹ ○太田 優一 ¹ , 金子 健太郎 ² , 尾沼 猛儀 ³ , 藤田 静雄 ⁴	1. 都産技研, 2. 立命館大学, 3. 工学院大学, 4. 京都大学
	16p-PA04-22	評価 耐圧 650V パワーデバイスのボディダイオードのリカバ	○服部 佳晋¹,加地 徹²	1.大同大学, 2.名古屋大学 未来材料・システム研究所
	16p-PA04-23		○小柴 佳子 ^{1,2} , 巽 宏平 ^{1,2}	1.早大院情シス, 2.早大情シス研究センター
		応力緩和型実装		
	E 16p-PA04-24	Non-Destructive Failure Analysis Method for Semiconductor Packages Based on Dynamic Thermal Response	O Byongjin Ma ¹ , Taehee Jung ¹ , Sungsoon Choi ¹	1.KETI
3/16(Th		口頭講演 (Oral Presentation) A301会場(Room A301)		
16:00	招 16p-A301-7	「第53回講演奨励賞受賞記念講演」	○藤井 開¹, 鐘ヶ江 一孝¹, 金子 光顕¹, 木本 恒暢¹	1.京大院工
16:15	16p-A301-8	熱酸化 SiO_2/SiC 界面近傍に形成される SiC 中の深い準位 4H- $SiC(0001)$ 表面の CO_2 雰囲気中熱酸化機構に関する	出口 竜大¹, ○細井 卓治¹	1. 関学大工
6:30	16p-A301-9	考察 高濃度Pイオン注入による金属/SiC非合金化界面におけ るコンタクト抵抗低減	○原 征大¹, 金子 光顕¹, 木本 恒暢¹	1.京大院工
6:45	16p-A301-10	偏光を用いたチャネリングイオン注入の角度検出	丸橋 拓実¹, 佐藤 寿弥¹, 米澤 喜幸², ○加藤 正史¹	1.名工大, 2. 産総研
7:00			○望月 和浩¹, 西村 智朗¹, 三島 友義¹	1.法政大
7.00	16p-A301-11	4H-SiC(0001)へのAlチャネリングイオン注入に対する		
	·	4H-SiC(0001)へのAlチャネリングイオン注入に対する 電子阻止断面積の再評価		1 ギガフォトン (株)
7:15 3/17(F	16p-A301-12 Fri.) 9:00 - 11:30	4H-SiC(0001)へのAlチャネリングイオン注入に対する	○妹川 要¹, 納富 良一¹, 字佐見 康継¹ ○前田 拓也¹, 江間 研太郎², 佐々木 公平²	1. ギガフォトン (株) 1. 東大院工, 2. ノベルクリスタルテクノロジー
17:15 3/17(F	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1	4H-SiC(0001) への Al チャネリングイオン注入に対する電子阻止断面積の再評価 レーザードーピングによる低抵抗 4H-SiC n 型層の形成 口頭講演 (Oral Presentation) A301 会場(Room A301) β -Ga $_2$ O $_3$ ショットキーバリアダイオードにおける Franz-Keldysh 効果に起因した光電流	 ○妹川 要¹, 納富 良一¹, 宇佐見 康継¹ ○前田 拓也¹, 江間 研太郎², 佐々木 公平² 	1. 東大院工, 2.ノベルクリスタルテクノロジー
17:15 3/17(F 9:00 9:15	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1 17a-A301-2	4H-SiC(0001) への Al チャネリングイオン注入に対する電子阻止断面積の再評価 レーザードーピングによる低抵抗 4H-SiC n 型層の形成口頭講演 (Oral Presentation) A301 会場(Room A301) β -Ga $_2$ O $_3$ ショットキーバリアダイオードにおけるFranz-Keldysh 効果に起因した光電流1700V耐圧 β 型酸化ガリウムショットキーバリアダイオード	 ○妹川要¹,納富良一¹,字佐見康雜¹ ○前田拓也¹,江間研太郎²,佐々木公平² ○有馬潤¹,藤田実¹,川崎克己¹,平林潤¹ 	1.東大院工, 2.ノベルクリスタルテクノロジー 1.TDK
17:15 3/17(F 9:00 9:15 9:30	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1 17a-A301-2 17a-A301-3	4H-SiC(0001) への Al チャネリングイオン注入に対する電子阻止断面積の再評価 レーザードーピングによる低抵抗 4H-SiC n 型層の形成 口頭講演 (Oral Presentation) A301 会場 (Room A301) β -Ga $_2$ O $_3$ ショットキーバリアダイオードにおける Franz-Keldysh 効果に起因した光電流 1700V耐圧 β 型酸化ガリウムショットキーバリアダイオード アンペア級 β -Ga $_2$ O $_3$ ヘテロ JBS ダイオードの作製とスイッチング評価	 ○妹川 要¹, 納富 良一¹, 字佐見 康継¹ ○前田 拓也¹, 江間 研太郎², 佐々木 公平² ○有馬 潤¹, 藤田 実¹, 川崎 克己¹, 平林 潤¹ ○高塚 章夫¹, 宮本 広信¹, 佐々木 公平¹, 倉又 朗人¹ 	1.東大院工, 2.ノベルクリスタルテクノロジー 1.TDK 1.ノベルクリスタルテクノロジー
17:15 3/17(F 9:00 9:15 9:30 9:45	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1 17a-A301-2 17a-A301-3 17a-A301-4	4H-SiC(0001)への Al チャネリングイオン注入に対する電子阻止断面積の再評価 レーザードーピングによる低抵抗 4H-SiC n 型層の形成口頭講演 (Oral Presentation) A301 会場 (Room A301) β -Ga ₂ O ₃ ショットキーバリアダイオードにおける Franz-Keldysh 効果に起因した光電流 1700V 耐圧 β 型酸化ガリウムショットキーバリアダイオード アンペア級 β -Ga ₂ O ₃ ヘテロ JBS ダイオードの作製とスイッチング評価 (A l ₄ Ga ₁₋₂) ₂ O ₃ パックバリアを用いた横型 Ga ₂ O ₃ MOSFET の高周波特性	 ○妹川 要¹, 納富 良一¹, 宇佐見 康継¹ ○前田 拓也¹, 江間 研太郎², 佐々木 公平² ○有馬 潤¹, 藤田 実¹, 川崎 克己¹, 平林 潤¹ ○高塚 章夫¹, 宮本 広信¹, 佐々木 公平¹, 倉又 朗人¹ ○大槻 匠¹, 上村 崇史¹, 東脇 正高¹.² 	 1.東大院工, 2.ノベルクリスタルテクノロジー 1.TDK 1.ノベルクリスタルテクノロジー 1.情通機構, 2.大阪公立大院工
17:15 3/17(F 9:00 9:15 9:30 9:45 10:00	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1 17a-A301-2 17a-A301-3 17a-A301-4	4H-SiC(0001)への Al チャネリングイオン注入に対する電子阻止断面積の再評価 レーザードーピングによる低抵抗 4H-SiC n 型層の形成口頭講演 (Oral Presentation) A301 会場(Room A301) β -Ga $_2$ O $_3$ ショットキーバリアダイオードにおける Franz-Keldysh 効果に起因した光電流 1700V 耐圧 β 型酸化ガリウムショットキーバリアダイオード アンペア級 β -Ga $_2$ O $_3$ へテロ JBS ダイオードの作製とスイッチング評価 (Al $_4$ Ga $_{1:a}$) $_2$ O $_3$ バックバリアを用いた横型 Ga $_2$ O $_3$ MOSFET の高周波特性 界面形成手法による SiO $_2$ / β -Ga $_2$ O $_3$ (001) バンドアライメントの違いの考察	 ○妹川 要¹, 納富 良一¹, 宇佐見 康継¹ ○前田 拓也¹, 江間 研太郎², 佐々木 公平² ○有馬 潤¹, 藤田 実¹, 川崎 克己¹, 平林 潤¹ ○高塚 章夫¹, 宮本 広信¹, 佐々木 公平¹, 倉又 朗人¹ ○大槻 匠¹, 上村 崇史¹, 東脇 正高¹.² 	1.東大院工, 2.ノベルクリスタルテクノロジー 1.TDK 1.ノベルクリスタルテクノロジー
17:15	16p-A301-12 9:00 - 11:30 17a-A301-1 17a-A301-2 17a-A301-3 17a-A301-4 17a-A301-5	4H-SiC(0001) への Al チャネリングイオン注入に対する電子阻止断面積の再評価 レーザードーピングによる低抵抗 4H-SiC n 型層の形成 口頭講演 (Oral Presentation) A301 会場(Room A301) β -Ga $_2$ O $_3$ ショットキーバリアダイオードにおける Franz-Keldysh 効果に起因した光電流 1700V 耐圧 β 型酸化ガリウムショットキーバリアダイオード アンベア級 β -Ga $_2$ O $_3$ へテロ JBS ダイオードの作製とスイッチング評価 (Al $_4$ Ga $_{12}$) $_2$ O $_3$ バックバリアを用いた横型 Ga $_2$ O $_3$ MOSFET の高周波特性 界面形成手法による SiO $_2$ / β -Ga $_2$ O $_3$ (001) バンドアライメントの違いの考察 休憩/Break 窒素ドープウエル層を有するノーマリーオフ β -Ga $_2$ O $_3$ ト	 ○妹川 要¹, 納富 良一¹, 字佐見 康継¹ ○前田 拓也¹, 江間 研太郎², 佐々木 公平² ○有馬 潤¹, 藤田 実¹, 川崎 克己¹, 平林 潤¹ ○高塚 章夫¹, 宮本 広信¹, 佐々木 公平¹, 倉又 朗人¹ ○大槻 匠¹, 上村 崇史¹, 東脇 正高¹.² ○武田 大樹¹, 女屋 崇², 生田目 俊秀³, 喜多 浩之¹.² ○脇本 大樹¹, 林 家弘¹, ティユ クァントゥ¹, 宮本 広 	 1.東大院工, 2.ノベルクリスタルテクノロジー 1.TDK 1.ノベルクリスタルテクノロジー 1.情通機構, 2.大阪公立大院工 1.東大院工, 2.東大院新領域, 3.物材機構
17:15 3/17(F 9:00 9:15 9:30 9:45 10:00 10:15 10:30	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1 17a-A301-2 17a-A301-3 17a-A301-4 17a-A301-5	4H-SiC(0001) への Al チャネリングイオン注入に対する電子阻止断面積の再評価 レーザードーピングによる低抵抗 4H-SiC n 型層の形成 口頭講演 (Oral Presentation) A301 会場 (Room A301) β -Ga $_2$ O $_3$ ショットキーバリアダイオードにおける Franz-Keldysh 効果に起因した光電流 1700V耐圧 β 型酸化ガリウムショットキーバリアダイオード アンペア級 β -Ga $_2$ O $_3$ ヘテロ JBS ダイオードの作製とスイッチング評価 (Al, Ga $_1$ $_2$) $_2$ O $_3$ バックバリアを用いた横型 Ga $_2$ O $_3$ MOSFET の高周波特性 界面形成手法による SiO $_2$ / β -Ga $_2$ O $_3$ (001) バンドアライメントの違いの考察 体想/Break 窒素 ドープウェル層を有する ノーマリーオフ β -Ga $_2$ O $_3$ トレンチ MOSFET	 ○妹川 要¹, 納富 良一¹, 字佐見 康継¹ ○前田 拓也¹, 江間 研太郎², 佐々木 公平² ○有馬 潤¹, 藤田 実¹, 川崎 克己¹, 平林 潤¹ ○高塚 章夫¹, 宮本 広信¹, 佐々木 公平¹, 倉又 朗人¹ ○大槻 匠¹, 上村 崇史¹, 東脇 正高¹.² ○武田 大樹¹, 女屋 崇², 生田目 俊秀³, 喜多 浩之¹.² ○脇本 大樹¹, 林 家弘¹, ティユ クァン トゥ¹, 宮本 広信¹, 佐々木 公平¹, 倉又 朗人¹ 	 1.東大院工, 2.ノベルクリスタルテクノロジー 1.TDK 1.ノベルクリスタルテクノロジー 1.情通機構, 2.大阪公立大院工 1.東大院工, 2.東大院新領域, 3.物材機構 1.ノベルクリスタルテクノロジー
17:15 3/17(F 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1 17a-A301-2 17a-A301-3 17a-A301-4 17a-A301-5 17a-A301-6 17a-A301-7	4H-SiC(0001) への Al チャネリングイオン注入に対する電子阻止断面積の再評価 レーザードーピングによる低抵抗 4H-SiC n 型層の形成 口頭講演 (Oral Presentation) A301 会場 (Room A301) β -Ga $_2$ O $_3$ ショットキーバリアダイオードにおける Franz-Keldysh 効果に起因した光電流 1700V耐圧 β 型酸化ガリウムショットキーバリアダイオード アンペア級 β -Ga $_2$ O $_3$ ヘテロ JBS ダイオードの作製とスイッチング評価 (Al, Ga $_1$ $_2$) $_2$ O $_3$ バックバリアを用いた横型 Ga $_2$ O $_3$ MOSFET の高周波特性 界面形成手法による SiO $_2$ / β -Ga $_2$ O $_3$ (001) バンドアライメントの違いの考察 体想/Break 窒素ドープウェル層を有するノーマリーオフ β -Ga $_2$ O $_3$ トレンチ MOSFET	○妹川要¹, 納富良一¹, 宇佐見康継¹ ○前田拓也¹, 江間研太郎², 佐々木公平² ○有馬潤¹, 藤田実¹, 川崎 克己¹, 平林潤¹ ○高塚章夫¹, 宮本広信¹, 佐々木公平¹, 倉又朗人¹ ○大槻匠¹, 上村崇史¹, 東脇正高¹.² ○武田大樹¹, 女屋崇², 生田目俊秀³, 喜多浩之¹.² ○脇本大樹¹, 林家弘¹, ティユクァントゥ¹, 宮本広信¹, 佐々木公平¹, 倉又朗人¹ ○松本粟¹, 佐藤解¹, 中村勇斗¹, Traore Aboulaye², 牧野俊晴³, 加藤 宙光³, 小倉 政彦³, 市川公善², 林寛¹, 猪熊 孝夫¹, 山崎 聡¹, 徳田 規夫¹ サハニロイ チャンドラ¹, 白土 智基¹, 金聖祐², 小	 1.東大院工, 2.ノベルクリスタルテクノロジー 1.TDK 1.ノベルクリスタルテクノロジー 1.情通機構, 2.大阪公立大院工 1.東大院工, 2.東大院新領域, 3.物材機構 1.ノベルクリスタルテクノロジー 1.金沢大, 2.筑波大, 3.産総研
17:15 3/17(F 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1 17a-A301-2 17a-A301-3 17a-A301-4 17a-A301-5 17a-A301-6 17a-A301-7	4H-SiC(0001)へのAlチャネリングイオン注入に対する電子阻止断面積の再評価 レーザードーピングによる低抵抗4H-SiC n 型層の形成口頭講演 (Oral Presentation) A301 会場(Room A301) β -Ga ₂ O ₃ ショットキーバリアダイオードにおけるFranz-Keldysh効果に起因した光電流 1700V耐圧 β 型酸化ガリウムショットキーバリアダイオード アンペア級 β -Ga ₂ O ₃ 〜テロ JBS ダイオードの作製とスイッチング評価 (Al ₄ Ga _{1-x}) ₂ O ₃ バックバリアを用いた横型 Ga ₂ O ₃ MOSFET の高周波特性 界面形成手法によるSiO ₂ / β -Ga ₂ O ₃ (001) バンドアライメントの違いの考察 休憩/Break 窒素ドープウエル層を有するノーマリーオフ β -Ga ₂ O ₃ トレンチ MOSFET ダイヤモンド MOSFET におけるドリフト抵抗フリー構造の提案	○妹川要¹,納富良一¹,字佐見康継¹ ○前田拓也¹,江間研太郎²,佐々木公平² ○有馬潤¹,藤田実¹,川崎克己¹,平林潤¹ ○高塚章夫¹,宮本広信¹,佐々木公平¹,倉又朗人¹ ○大槻匠¹,上村崇史¹,東脇正高¹² ○武田大樹¹,女屋崇²,生田目俊秀³,喜多浩之¹² ○脇本大樹¹,林家弘¹,ティユクァントゥ¹,宮本広信¹,佐々木公平¹,倉又朗人¹ ○松本粟³,佐藤解¹,中村勇斗¹,Traore Aboulaye²,牧野俊晴³,加藤宙光³,小白政彦³,市川公善¹,林寛¹,猪熊孝夫¹,山崎聡¹,徳田規夫¹ サハニロイチャンドラ¹,白土智基¹,金聖祐²,小山浩司²,大石敏之¹,○嘉数誠¹ サハニロイチャンドラ¹,白土智基¹,金聖祐²,小山	 1.東大院工, 2.ノベルクリスタルテクノロジー 1.TDK 1.ノベルクリスタルテクノロジー 1.情通機構, 2.大阪公立大院工 1.東大院工, 2.東大院新領域, 3.物材機構 1.ノベルクリスタルテクノロジー 1.金沢大, 2.筑波大, 3.産総研 1.佐賀大院工, 2.Orbray (株)
17:15 3/17(F 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1 17a-A301-2 17a-A301-3 17a-A301-4 17a-A301-5 17a-A301-6 17a-A301-7 17a-A301-8 17a-A301-9	4H-SiC(0001)への AI チャネリングイオン注入に対する電子阻止断面積の再評価レーザードーピングによる低抵抗 4H-SiC n 型層の形成口頭講演 (Oral Presentation) A301 会場(Room A301) β -Ga $_2$ O $_3$ ショットキーバリアダイオードにおけるFranz-Keldysh 効果に起因した光電流 1700V耐圧 β 型酸化ガリウムショットキーバリアダイオード アンペア級 β -Ga $_2$ O $_3$ へテロ JBS ダイオードの作製とスイッチング評価 (Al、Ga $_1$ - $_2$ O $_3$ バックバリアを用いた横型 Ga $_2$ O $_3$ MOSFET の高周波特性 界面形成手法による SiO $_2$ / β -Ga $_2$ O $_3$ (001) バンドアライメントの違いの考察 休憩/Break 窒素ドープウエル層を有するノーマリーオフ β -Ga $_2$ O $_3$ トレンチ MOSFET がイヤモンド MOSFET におけるドリフト抵抗フリー構造の提案 ダイヤモンド MOSFET の長時間 (190h) ストレス測定	○妹川 要¹, 納富 良一¹, 宇佐見 康継¹ ○前田 拓也¹, 江間 研太郎², 佐々木 公平² ○有馬 潤¹, 藤田 実¹, 川崎 克己¹, 平林 潤¹ ○高塚 章夫¹, 宮本 広信¹, 佐々木 公平¹, 倉又 朗人¹ ○大槻 匠¹, 上村 崇史¹, 東脇 正高¹.² ○武田 大樹¹, 女屋 崇², 生田目 俊秀³, 喜多 浩之¹.² ○脇本 大樹¹, 林 家弘¹, ティユ クァン トゥ¹, 宮本 広信¹, 佐々木 公平¹, 倉又 朗人¹ ○松本 翼¹, 佐藤 解¹, 中村 勇斗¹, Traore Aboulaye², 牧野 俊晴³, 加藤 宙光³, 小倉 政彦³, 市川 公善¹, 林 寛¹, 绪熊 孝夫¹, 山崎 聡¹, 德田 規夫¹ サハニロイ チャンドラ¹, 白土 智基¹, 金 聖祐², 小 山 浩司², 大石 敏之¹, ○嘉数 誠¹	 1.東大院工, 2.ノベルクリスタルテクノロジー 1.TDK 1.ノベルクリスタルテクノロジー 1.情通機構, 2.大阪公立大院工 1.東大院工, 2.東大院新領域, 3.物材機構 1.ノベルクリスタルテクノロジー 1.金沢大, 2.筑波大, 3.産総研 1.佐賀大院工, 2.Orbray (株)
17:15 3/17(F 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 3/17(Fr	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1 17a-A301-2 17a-A301-3 17a-A301-4 17a-A301-6 17a-A301-7 17a-A301-7	4H-SiC(0001)への AI チャネリングイオン注入に対する電子阻止断面積の再評価 レーザードーピングによる低抵抗 4H-SiC n 型層の形成 口頭講演 (Oral Presentation) A301 会場 (Room A301) β -Ga $_2$ O $_3$ ショットキーバリアダイオードにおける Franz-Keldysh 効果に起因した光電流 1700V耐圧 β 型酸化ガリウムショットキーバリアダイオード アンペア級 β -Ga $_2$ O $_3$ ヘテロ JBS ダイオードの作製とスイッチング評価 (AI、Ga $_1$ $_2$) $_2$ O $_3$ バックバリアを用いた横型 Ga $_2$ O $_3$ MOSFET の高周波特性 界面形成手法による SiO $_2$ / β -Ga $_2$ O $_3$ (001) バンドアライメントの違いの考察 体想/Break 窒素ドープウェル層を有するノーマリーオフ β -Ga $_2$ O $_3$ トレンチ MOSFET でおけるドリフト抵抗フリー構造の提案 ダイヤモンド MOSFET で高速 (<10ns) スイッチング特性 ダイヤモンド MOSFET の長時間 (190h) ストレス測定 口頭講演 (Oral Presentation) A301 会場 (Room A301) サーマルロックインによる GaN HEMT のゲートリーク	○妹川要¹, 納富良一¹, 字佐見康継¹ ○前田拓也¹, 江間研太郎², 佐々木公平² ○有馬潤¹, 藤田実¹, 川崎克己¹, 平林潤¹ ○高塚章夫¹, 宮本広信¹, 佐々木公平¹, 倉又朗人¹ ○大槻匠¹, 上村崇史¹, 東脇正高¹² ○武田大樹¹, 女屋崇², 生田目俊秀³, 喜多浩之¹² ○脇本大樹¹, 林家弘¹, ティュクァントゥ¹, 宮本広信¹, 佐々木公平¹, 倉又朗人¹ ○松本翼¹, 佐藤解¹, 中村勇斗¹, Traore Aboulaye², 牧野俊晴³, 加藤亩光³, 小倉政彦³, 市川公善¹, 林寛¹, 猪熊孝夫¹, 山崎聡¹, 徳田規夫¹ サハニロイ チャンドラ¹, 白土智基¹, 金聖祐², 小山浩司², 大石敏之¹, ○嘉数誠¹ サハニロイチャンドラ¹, 白土智基¹, 金聖祐², 小山浩司², 大石敏之¹, ○嘉数誠¹ ○(B) 崎田由樹¹, 小林久雄², 馬強¹, 齊藤裕人¹, 大	1.東大院工, 2.ノベルクリスタルテクノロジー 1.TDK 1.ノベルクリスタルテクノロジー 1.情通機構, 2.大阪公立大院工 1.東大院工, 2.東大院新領域, 3.物材機構 1.ノベルクリスタルテクノロジー 1.金沢大, 2.筑波大, 3.産総研 1.佐賀大院工, 2.Orbray (株) 1.佐賀大院工, 2.Orbray (株)
17:15 3/17(F 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 3/17(Fr 13:00	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1 17a-A301-2 17a-A301-3 17a-A301-4 17a-A301-5 17a-A301-6 17a-A301-7 17a-A301-9 fri.) 13:00 - 18:00 獎 17p-A301-1	4H-SiC(0001)への AI チャネリングイオン注入に対する電子阻止断面積の再評価 レーザードーピングによる低抵抗 4H-SiC n 型層の形成口頭講演 (Oral Presentation) A301 会場(Room A301) β -Ga ₂ O ₃ ショットキーバリアダイオードにおけるFranz-Keldysh 効果に起因した光電流 1700V耐圧 β 型酸化ガリウムショットキーバリアダイオード アンペア級 β -Ga ₂ O ₃ 〜テロ JBS ダイオードの作製とスイッチング評価 (Al _x Ga _{1x}) ₂ O ₃ バックバリアを用いた横型 Ga ₂ O ₃ MOSFET の高周波特性 界面形成手法による SiO ₂ / β -Ga ₂ O ₃ (001) バンドアライメントの違いの考察 休憩/Break 窒素ドーブウェル層を有するノーマリーオフ β -Ga ₂ O ₃ トレンチ MOSFET におけるドリフト抵抗フリー構造の提案 ダイヤモンド MOSFET で高速 (<10ns) スイッチング特性 ダイヤモンド MOSFET の高速 (<10ns) スイッチング特性 グイヤモンド MOSFET の高速 (<10ns) スイッチング特性 グイヤモンド MOSFET の最速 (<10ns) スイッチング特性 グイヤモンド MOSFET の最適 (<10ns) スイッチング特性 グイヤモンド MOSFET の表面 (<10ns) スイッチング特性 グイヤモンド MOSFET の表面 (<10ns) スイッチング (<10ns) スイッグ (<10ns) スイッチング (<10ns) スイッグ (<10ns) スイッチング (<10ns) スイッチング (<10ns) スイッグ (<10ns) スイッチング (<10ns) スイック (<10ns) スイッチング (<10ns) スイッチング (<10ns) スイック (<10ns) スイッチング (<10ns) スイック (<10ns) スイッチング (<10ns) スイッチング (<10ns) スイック (<10ns) スイッグ (<10ns) スイック (<10ns) スイッチング (<10ns) スイッチング (<10ns) スイック (<10ns) スイック (<10ns) スイック (<10ns) スイッチング (<10ns) スイック (<10ns) スイッグ (<10ns) スイック (<10ns) スイッグ	○妹川要¹, 納富良一¹, 宇佐見康継¹ ○前田拓也¹, 江間研太郎², 佐々木公平² ○有馬潤¹, 藤田実¹, 川崎克己¹, 平林潤¹ ○高塚章夫¹, 宮本広信¹, 佐々木公平¹, 倉又朗人¹ ○大槻匠¹, 上村崇史¹, 東脇正高¹.² ○武田大樹¹, 女屋崇², 生田目俊秀³, 喜多浩之¹.² ○武田大樹¹, 女屋崇², 生田目俊秀³, 喜多浩之¹.² ○脇本大樹¹, 林家弘¹, ティユクァントゥ¹, 宮本広信¹, 佐々木公平¹, 倉又朗人¹ ○松本累¹, 佐藤解¹, 中村勇斗¹, Traore Aboulaye², 牧野俊晴³, 加藤宙光³, 小倉政彦³, 市川公善¹, 林寛¹, 猪熊孝夫¹, 山崎聡¹, 德田規夫¹ サハニロイ チャンドラ¹, 白土智基¹, 金聖祐², 小山浩司², 大石敏之¹, ○嘉数誠¹ サハニロイチャンドラ¹, 白土智基¹, 金聖祐², 小山浩司², 大石敏之¹, ○嘉数誠¹ ・サハニロイチャンドラ¹, 白土智基¹, 金聖祐², 小山浩司², 大石敏之¹, ○嘉数誠¹ ・サハニロイチャンドラ¹, 白土智基¹, 金聖祐², 小山浩司², 大石敏之¹, ○嘉数誠¹	 東大院工, 2.ノベルクリスタルテクノロジー 1.TDK 1.ノベルクリスタルテクノロジー 1.情通機構, 2.大阪公立大院工 1.東大院工, 2.東大院新領域, 3.物材機構 1.ノベルクリスタルテクノロジー 1.金沢大, 2.筑波大, 3.産総研 1.佐賀大院工, 2.Orbray (株) 1.佐賀大院工, 2.Orbray (株) 1.名工大工, 2.日本バーンズ
17:15 3/17(F 9:00 9:15 9:30 9:45 10:00 10:15 10:30 11:15 3/17(Fr 13:00 13:15	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1 17a-A301-2 17a-A301-3 17a-A301-4 17a-A301-5 17a-A301-6 17a-A301-7 17a-A301-7 17a-A301-9 fri.) 13:00 - 18:00 獎 17p-A301-1	4H-SiC(0001) への AI チャネリングイオン注入に対する電子阻止断面積の再評価レーザードーピングによる低抵抗4H-SiC n 型層の形成口頭講演 (Oral Presentation) A301 会場(Room A301) β -Ga ₂ O ₃ ショットキーバリアダイオードにおけるFranz-Keldysh 効果に起因した光電流 1700V耐圧 β 型酸化ガリウムショットキーバリアダイオード アンベア級 β -Ga ₂ O ₃ へテロ JBS ダイオードの作製とスイッチング評価 (Al ₄ Ga ₁₋₂) ₂ O ₃ バックバリアを用いた横型 Ga ₂ O ₃ MOSFET の高周波特性 界面形成手法による SiO ₂ / β -Ga ₂ O ₃ (001) バンドアライメントの違いの考察 休憩/Break 窒素ドープウエル層を有するノーマリーオフ β -Ga ₂ O ₃ トレンチ MOSFET がイヤモンド MOSFET におけるドリフト抵抗フリー構造の提案 ダイヤモンド MOSFET の高速 (<10ns) スイッチング特性 ダイヤモンド MOSFET の長時間 (190h) ストレス測定 口頭講演 (Oral Presentation) A301 会場(Room A301)サーマルロックインによる Gan HEMT のゲートリーク電流箇所の同定 HVPE 基板および OVPE 基板上 Gan エピ層に対する TR-PL 信号の相違 超高圧熱処理で活性化した Mg 注入横型 MOSFET のチャ	○妹川要¹,納富良一¹,字佐見康継¹ ○前田拓也¹,江間研太郎²,佐々木公平² ○有馬潤¹,藤田実¹,川崎克己¹,平林潤¹ ○高塚章夫¹,宮本広信¹,佐々木公平¹,倉又朗人¹ ○大槻匠¹,上村崇史¹,東脇正高¹² ○武田大樹¹,女屋崇²,生田目俊秀³,喜多浩之¹² ○脇本大樹¹,林家弘¹,ティユクァントゥ¹,宮本広信¹,佐々木公平¹,倉又朗人¹ ○松本翼³,佐藤解¹,中村勇斗¹,Traore Aboulaye²,牧野俊晴³,加藤亩光³,小倉政彦³,市川公善¹,林寛¹,猪熊孝夫¹,山崎聡³,徳田規夫¹ サハニロイチャンドラ¹,白土智基¹,金聖祐²,小山浩司²,大石敏之¹,○嘉数誠¹ サハニロイチャンドラ¹,白土智基¹,金聖祐²,小山浩司²,大石敏之¹,○嘉数誠¹ ・(B)崎田由樹¹,小林久雄²,馬強¹,齊藤裕人¹,大崎賢司¹,伊東俊祐¹,分島彰男¹ ○(B)崎田由樹¹,小林久雄²,馬強¹,齊藤裕人¹,大崎賢司¹,伊東俊祐¹,分島彰男¹ ○石井達也¹,字佐美茂佳²,勇介森²,渡邉浩崇³,新田州吾³,本田善史³,天野浩³,加藤正史¹ ○田中亮¹,高島信也¹,上野勝典¹,近藤剣¹,稲本拓	1.東大院工, 2.ノベルクリスタルテクノロジー 1.TDK 1.ノベルクリスタルテクノロジー 1.情通機構, 2.大阪公立大院工 1.東大院工, 2.東大院新領域, 3.物材機構 1.ノベルクリスタルテクノロジー 1.金沢大, 2.筑波大, 3.産総研 1.佐賀大院工, 2.Orbray (株) 1.佐賀大院工, 2.Orbray (株) 1.名工大工, 2.日本バーンズ 1.名工大に工, 2.阪大院工, 3.名大未来研
17:15 3/17(F 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15	16p-A301-12 Fri.) 9:00 - 11:30 17a-A301-1 17a-A301-2 17a-A301-3 17a-A301-4 17a-A301-5 17a-A301-6 17a-A301-7 17a-A301-8 17a-A301-9 Fri.) 13:00 - 18:00 髮 17p-A301-1 17p-A301-2	4H-SiC(0001)へのAIチャネリングイオン注入に対する電子阻止断面積の再評価レーザードーピングによる低抵抗4H-SiC n型層の形成口頭講演 (Oral Presentation) A301 会場(Room A301) β -Ga $_2$ O $_3$ ショットキーバリアダイオードにおけるFranz-Keldysh 効果に起因した光電流 1700V耐圧 β 型酸化ガリウムショットキーバリアダイオード アンベア級 β -Ga $_2$ O $_3$ へテロ JBS ダイオードの作製とスイッチング評価 (Al $_4$ Ga $_{12}$) $_2$ O $_3$ バックバリアを用いた横型 Ga $_2$ O $_3$ MOSFET の高周波特性 界面形成手法による SiO $_2$ / β -Ga $_2$ O $_3$ (001) バンドアライメントの違いの考察 休憩/Break 窒素ドープウエル層を有するノーマリーオフ β -Ga $_2$ O $_3$ トレンチ MOSFET ダイヤモンド MOSFET におけるドリフト抵抗フリー構造の提案 ダイヤモンド MOSFET の高速 (<10ns) スイッチング特性 ダイヤモンド MOSFET の長時間 (190h) ストレス測定 口頭講演 (Oral Presentation) A301 会場(Room A301)サーマルロックインによる GaN HEMT のゲートリーク電流筒所の同定 HVPE 基板および OVPE 基板上 GaN エピ層に対する TR-PL 信号の相違	○妹川要¹,納富良一¹,字佐見康継¹ ○前田拓也¹,江間研太郎²,佐々木公平² ○有馬潤¹,藤田実¹,川崎克己¹,平林潤¹ ○高塚章夫¹,宮本広信¹,佐々木公平¹,倉又朗人¹ ○大槻匠¹,上村崇史¹,東脇正高¹² ○武田大樹¹,女屋崇²,生田目俊秀³,喜多浩之¹² ○脇本大樹¹,林家弘¹,ティユクァントゥ¹,宮本広信¹,佐々木公平¹,倉又朗人¹ ○松本翼¹,佐藤解¹,中村勇斗¹,Traore Aboulaye²,牧野俊晴³,加藤亩光³,小倉政彦³,市川公善²,林寛¹,猪熊孝夫¹,山崎聡¹,徳田規夫¹ サハニロイチャンドラ¹,白土智基¹,金聖祐²,小山浩司²,大石敏之¹,○嘉数誠¹ サハニロイチャンドラ¹,白土智基¹,金聖祐²,小山浩司²,大石敏之¹,○嘉数誠¹ ・サハニロイチャンドラ¹,白土智基¹,金野祐²,小山浩司²,大石敏之¹,○嘉数誠¹ ・サハニロイチャンドラ¹,白土智基¹,金野花³,小山浩司²,大石敏之¹,○嘉数誠¹ ○(B)崎田由樹¹,小林久雄²,馬強¹,齊藤裕人¹,大崎賢司¹,伊東俊祐¹,分島彰男¹ ○石井達也¹,字佐美茂佳²,勇介森²,渡邉浩崇³,新田州吾³,本田善央³,天野浩³,加藤正史¹ ○田中亮¹,高島信也¹,上野勝典¹,近藤剣¹,稲本拓朗¹,江戸雅晴¹,Michal Bockowski²,加地徹³	1.東大院工, 2.ノベルクリスタルテクノロジー 1.TDK 1.ノベルクリスタルテクノロジー 1.情通機構, 2.大阪公立大院工 1.東大院工, 2.東大院新領域, 3.物材機構 1.ノベルクリスタルテクノロジー 1.金沢大, 2.筑波大, 3.産総研 1.佐賀大院工, 2.Orbray(株) 1.佐賀大院工, 2.Orbray(株) 1.名工大工, 2.日本バーンズ 1.名工大院工, 2.阪大院工, 3.名大未来研 1.富士電機, 2.Unipress, 3.名大

14:15	奨 17p-A301-6	電子線照射により窒素変位関連欠陥を選択的に導入した ホモエビタキシャル成長 GaN p-n接合ダイオードの再結 合電流解析	○遠藤 彗¹, 堀田 昌宏 ¹.², 須田 淳 ¹.²	1. 名大院工, 2. 名大未来研
14:30 14:45	17p-A301-7	休憩/Break 137 keVの電子線照射で意図的に窒素関連欠陥準位を導 入したn型GaNのホール効果測定	○小島 千寛 ¹, 堀田 昌宏 ¹.², 須田 淳 ¹.²	1.名大院工,2.名大未来研
15:00	17p-A301-8	GaN pn接合の容量過渡分光法においてフィリングバルス0 V印加にもかかわらず観測される少数キャリアシグナルの起源		1. 名大院工, 2. 名大 IMaSS
15:15	17p-A301-9	Mgイオン注入 GaN 中の自己欠陥と Mgの拡散に対する 静水圧の影響	○狩野 絵美 ¹ , 小林 功季 ¹ , 大築 立旺 ¹ , 片岡 恵太 ² , 成 田 哲生 ² , Sierakowski Kacper ³ , Bockowski Michal ³ , 加地 徹 ¹ , 五十嵐 信行 ¹	1. 名古屋大, 2. 豊田中研, 3.IHPP PAS
15:30	17p-A301-10	GaN における Mg アクセプターの拡散機構の理論的検討	○ (P) 制野 かおり ^{1,2} , 押山 淳 ¹ , 櫻井 亮介 ³ , 白石 賢 - ^{1,3}	1.名大未来研, 2.イエナ大物理, 3.名大院工
15:45	Î	GaN 基板の低コスト、低 CO_2 排出に寄与するリサイクルプロセス技術の開発 GaN リサイクル基板上に作製した縦型 PND と横型 $MOSFET$ の電気特性評価	一	1. ミライズテクノロジーズ, 2. 名古屋大学, 3. 浜松ホト
16:15	17 ₀ A201 12	休憩/Break N極性 GaN HEMTのデジタルエッチングによる素子分	○文磁 业亩 1 份 駅 表樹 1 由 Ⅲ 亩 1 百 路 甬 土 2 由 Ⅲ	1 亩工十 9 分五蛋与工类
16:30		離	健²,後藤 高寬¹,宮本 恭幸¹	
16:45	· ·	オーミック金属下 n-GaN における電子移動度の向上	○瓜生 和也 ^{1,2} , Deng Yuchen ¹ , Le Son Phuong ³ , 鈴木 寿一 ¹	
17:00	17p-A301-15	AlGaN/GaN HEMTs におけるフェルミレベルピンニング に対する PEC エッチングの効果	○越智 亮太¹, 富樫 拓也¹, 大澤 由斗¹, 堀切 文正², 福 原 昇², 赤澤 正道¹, 佐藤 威友¹	1.北大量集センター, 2.住友化学
17:15	17p-A301-16	エッチング停止位置検出層の導入によるゲートリセス構造 AlGaN/GaN HEMTのしきい値電圧制御性の向上		1.名大院工, 2.名大未来研, 3.名工大
17:30	17p-A301-17	InAIN/AIN/GaN構造中2DEGにおけるキャリア散乱機構のAIN層厚依存性		1.東工大電気電子系, 2.ニューフレアテクノロジー
17:45	17p-A301-18	ゲート電圧の観測によるパワーデバイスの熱時定数の導 出手法	·	1. 東大院工
		口頭講演 (Oral Presentation) A301会場 (Room A301)		
9:00		「第44回論文奨励賞受賞記念講演」 GaN 基板上 GaN-HEMT による高周波増幅器の高効率化	哲一1	
9:15	18a-A301-2	GaN-MOSFET における反転層移動度の酸化膜成膜方法 依存性	○(M1)幾田 大智¹, 佐藤 翔太¹, 大森 雅登¹	1.大分大工
9:30	18a-A301-3	GaN MOSFET の界面酸化抑制によるしきい値・移動度 特性改善	○近藤 剣¹, 上野 勝典¹, 田中 亮¹, 高島 信也¹, 江戸 雅 晴¹, 諏訪 智之²	1.富士電機, 2.東北大NICHe
9:45	18a-A301-4	表面にAl導入したGaN-MOSFETの特性	○上野 勝典¹, 近藤 剣¹, 田中 亮¹, 高島 信也¹, 江戸 雅 晴¹, 諏訪 智之²	1.富士電機(株), 2.東北大NICHe
10:00	18a-A301-5	EID AlGaN/GaN MOS-HEMT のスイッチング動作実証	○南條 拓真¹,山本 章太郎¹,品川 友宏¹,綿引 達郎¹, 古橋 壮之¹,西川 和康¹,江川 孝志²	1.三菱電機 先端総研, 2.名工大
10:15	奨 18a-A301-6	縦型 GaNトレンチ MOSFET のサブバンドギャップ光照 射によるしきい値変動		1.名大院工, 2.名大未来研, 3. 豊田合成
10:30 10:45	级 18a-A301-7	休憩/Break GaN/AlN共鳴トンネルダイオードの動作電圧低減・高電	○岩田 大暉 ¹ 隅部 兵瑠 ¹ 渡邉 浩崇 ² 出来 直斗 ³ 木	1 名大院工 2 名大夫來研 3 名大 VRL 4 赤崎証今研
11:00		流密度化	田 善央 ² , 天野 浩 ^{2,3,4}	究センター
11:15		の有無による逆方向リーク電流のメカニズム 高抵抗CドープGaNバッファ層を有するN極性GaN		ル,5.赤崎記念研究センター
		HEMT	人1	
11:30		マイクロ波帯Hi-Lo型GaN IMPATTダイオードの設計および作製	田中 敦之3,本田 善央3,新井 学3,天野 浩2.3	
11:45	18a-A301-11	マイクロ波整流用AlGaN/GaN ワイドリセス構造ゲー テッドアノードダイオードの高耐圧化に向けた中濃度コ ンタクト層の活用	○渡邉 智也¹, 高橋 英匡¹, 安藤 裕二¹², 分島 彰男³, 須田 淳¹²	1.名大院工,2.名大未来研,3.名工大
12:00	18a-A301-12	GaN HEMT の GaN トラップによる Y ₂₂ 信号と過渡応答特性の比較	· ○大石 敏之¹, 加地 大樹¹, 田渕 田渕¹, 大塚 友絢², 山 口 裕太郎², 新庄 真太郎², 山中 宏治²	1. 佐賀大学, 2. 三菱電機株式会社
12:15	18a-A301-13	GaN HEMT on-diamond 構造の作製及び特性評価	\bigcirc (M1) 早川 譲稀 ¹ , 大野 裕 ² , 永井 康介 ² , 重川 直輝 ¹ , 梁 剣波 ¹	1.大阪公大院工, 2.東北大学金研
		/ Optical properties and light-emitting devices		
3/16(T		ポスター講演 (Poster Presentation) PB 会場(Room PB) 赤色蛍光体 CaTiO ₃ :Pr, Al の残光特性に対する圧力効果		1. 日大文理
		CaS:Yb ²⁺ における近赤外光励起による赤色光刺激発光 ミリ秒残光を示すEu ²⁺ 添加蛍光体の残光特性	○ (M1) 西川 優大¹, 奥野 剛史¹, 井口 一秋¹ ○須田 順子¹.², 奥野 剛史²	1.電通大基盤理工 1.東京工科大, 2.電通大
	16a-PB06-4	ミリ砂残光を示す Eu* 添加重光体の残光特性 Gd₂Zr₂O ₇ : Er³+, Yb³+の UC 特性の温度挙動 赤外光照射下の Na₅R₄(SiO₄)₄F₅ (R = Y, Gd): Yb³+, Er³+の	○(M2) 岩崎 智志¹, 徐 宸星¹, 佐俣 博章¹	1. 果京工科大, 2. 电超大 1. 神戸大海事 1. 神戸大海事
		可視発光特性		
		XAFSによるEu,Mn共付活Sr ₃ MgSi ₂ O ₈ 蛍光体の発光中心 周辺構造の解析		1. 徳文大理工, 2. 高輝度光科学研究セ
		リンゴ酸由来カーボン・ナノコンポジット蛍光体の発光 特性に対する窒素含有量依存性		1.長岡技科大工
	16a-PB06-8	ブレードコート法によるZnO 蛍光体ナノロッド配向膜からの偏光発光	〇五十嵐 健斗 1 , 五十嵐 健太 1 , 高橋 美依奈 1 , 加藤 有 行 1	1. 長岡技科大工
	16a-PB06-9	金属前駆体をポスト硫化したマンガン添加硫化亜鉛薄膜の作製		1. 龍谷大理工
	16a-PB06-10	Ba2ZnS3:Mn 蛍光体の発光特性評価	○池田 隼人¹, 北脇 大靖¹, 和迩 浩一¹, 山本 伸一¹	1. 龍谷大理工

	16a-PB06-11	GaAsフレーク中の窒素不純物発光中心を用いたシングル モード光ファイバへの長期安定な光結合	○(DC)石田 峻之¹, 佐久間 芳樹², 池沢 道男¹	1. 筑波大物理, 2. 物材機構
3/16(³		口頭講演 (Oral Presentation) B410 会場 (Room B410) 遠隔線量計に用いられる Yb 添加 La ₂ Hf ₂ O ₇ 近赤外発光シ		1. 東北大金研, 2. 東北大 NICHe, 3. 阪大レーザー研,
13:45	16p-B410-2	ンチレータの発光特性 LaF ₃ -LaOF:Yb ³⁺ /Ho ³⁺ の光温度計測におけるYb ³⁺ 濃度の	〇野中 俊宏 1 , 天野 翔太 1 , 杉浦 藤虎 1 , 塚本 武彦 1 , 山	4.(株) C&A, 5.京都大複合研 1.豊田高専, 2.龍谷大理工
14:00	16- D410 2	影響 WASSR法による酸化物蛍光体の合成	本 伸一 ² ○戸田 健司 ¹ , 兼子 達朗 ¹ , 渋田 裕介 ¹	1.新潟大学
14:00		Eu賦活新規酸化物蛍光体の結晶構造解析		1. 新潟大院
14:30		機械学習を用いた新規緑色 Eu ²⁺ 賦活蛍光体の探索	〇小山 幸典 1 , 池野 豪 $-^2$, 原田 昌道 1 , 舟橋 司朗 1 , 武 田隆史 1 , 広崎 尚登 1	
14:45	16p-B410-6	局所構造の類似性を利用した狭帯蛍光体 $Na_2Cs_2Sr(B_9O_{15})_2$: Eu^{2+} の開発	〇武田 隆史 1 , 竹村 翔太 2 , 小山 幸典 1 , 中西 貴之 1 , 舟橋 司朗 1 , 広崎 尚登 1 , 池野 豪 $^{-3}$	1.物材機構, 2. 関学大, 3. 大阪公立大
15:00	16p-B410-7	生体イメージング用近赤外蛍光体 (Ca1-x,Mx)2GeO4:Mn5+ (M=Sr,Ba)	○三千 広人¹,谷口 コナン¹,大観 光徳¹	1. 鳥大工
15:15		ZnGa ₂ O ₄ :Cr ³⁺ 蛍光体薄膜の発光特性と光電流特性	○蓬莱 良太¹,谷口 明輝¹,山崎 彰久¹,大観 光徳¹	1.鳥大工
13:30		口頭講演 (Oral Presentation) B410会場 (Room B410) 窒化アルミニウムにイオン注入したランタノイドの室温 発光スペクトル	○佐藤 真一郎 ¹ , 正直 花奈子 ^{2,3} , 吉田 謙一 ⁴ , 南川 英 輝 ⁴ , 三宅 秀人 ²	1.量研, 2.三重大院工, 3.阪大院工, 4.イオンテクノセン ター
13:45	17p-B410-2	希土類イオン注入したGaNの超高圧熱処理による発光特性および結晶構造の変化	○伊藤 慎 ^{1, 2} , 佐藤 真一郎 ² , Michal Bockowski ³ , 出来	1.東京都市大, 2.量研, 3.ポーランド科学アカデミー, 4.名大VBL, 5.名大IMaSS, 6.イオンテクノセンター
14:00	17p-B410-3	高温アニール処理を施したEu,O共添加GaNの光励起・ 電流注入下における発光特性	〇岩谷孟学 ^{1,3} , 市川 修平 ^{1,2} , Dolf Timmerman ¹ , Volkmar Dierolf ³ , Hayley Austin ³ , Brandon Mitchell ^{1,3,4} , 舘林 潤 ¹ , 藤原 康文 ¹	1. 阪大院工 , 2. 阪大超高圧電顕センター, 3. Lehigh 大 , 4. West Chester 大
14:15	奨 17p-B410-4	Tb添加Al _x Ga _{1-x} N発光ダイオードにおける発光特性と電気的特性のAl原料供給量依存性		1.阪大院工, 2.阪大電顕センター
14:30	17p-B410-5	シリコンナノ結晶コロイドを充填した塩化リチウム結晶 の作製と評価	○丸山 将大¹, 中村 俊博¹, 豊田 紘平¹, 越田 信義²	1. 法政院理工, 2. 農工大工
14:45	17p-B410-6	溶液分散型 CdSeナノブレートレット微小共振器におけるボラリトンの室温発光特性	〇小田 勝 $^{\text{I}}$, 大和 千晃 $^{\text{I}}$, 江頭 潤哉 $^{\text{I}}$, 中石 勝之介 $^{\text{I}}$, 近藤 久雄 $^{\text{2}}$	1. 九工大院工, 2. 愛媛大院工
15:00 15:15	17p-B410-7	休憩/Break 有機無機2DペロブスカイトのLB膜における多重量子井		1.JAXA, 2. 上智大理工, 3. 浜松医大医
15:30	奨 17p-B410-8	戸ボラリトンの観測 侵入酸素による CsPbBr ₃ のバンドギャップの拡大	郎 2,3 , Yip Sen Po 4 , Meng You 5 , Ho Johnny C 4,5 , 村山	1. 九大総理工, 2. 東工大物質理工, 3. 量研, 4. 九大先導研, 5. 香港城市大, 6. バージニア工科大
15:45	奨 17p-B410-9	カソードルミネセンスを用いた Cs4PbBr6のナノスケール 発光寿命計測	光宏 ^{4,6} , 斉藤 光 ^{2,4} ○(M1) 久保田 哲矢 ¹ , 柳本 宗達 ¹ , 斉藤 光 ^{1,2} , 秋葉 圭一郎 ^{1,3} , 石井 あゆみ ⁴ , 三宮 エ ¹	1. 東工大, 2. 九大, 3. 量研, 4. 帝京科大
16:00	17p-B410-10	ハロゲン化鉛ペロブスカイトナノ粒子の結晶相転移:粒子 サイズ依存性		1. 京大化研
16:15	17p-B410-11	ガラスナノ多孔構造をテンプレートととした強固な有機 無機ペロブスカイトナノ結晶膜の形成と発光特性		1. 産総研, 2. 阪大, 3. 秋田大, 4. 長岡技科大, 5. 東京都市大
4 4 0 0			○上松 太郎¹, 平野 達也¹, 鳥本 司², 桑畑 進¹	
16:30	17p-B410-12	【注目講演】AgIn _x Ga _{1-x} S ₂ 量子ドットの高収率合成と GaS.シェル被覆による狭スペクトル幅緑色発光	○上伝 太郎,十野 廷也,局本 刊,秦畑 進	1. 阪大院工, 2. 名大院工
13.9 化	.合物太陽電池 / Con	GaS _y シェル被覆による狭スペクトル幅緑色発光 ipound solar cells	○上松 A.邱,干野 廷也,周 卒 刊,荣畑 连	1. W人阮上, 5. 石人阮上
13.9 化	· 合物太陽電池 / Con (Thu.) 9:30 - 11:30	GaS,シェル被覆による狭スペクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304会場(Room A304)		
13.9 化 3/16(合物太陽電池 / Con (Thu.) 9:30 - 11:30 16a-A304-1	GaS _y シェル被覆による狭スペクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP波状超格子 (WoW) 太陽電池構造のフォト ルミネセンススペクトルにおける励起光強度依存症	○碇哲雄¹,山本尚輝¹,駒場森太郎¹,杉山正和²,福山敦彦¹	
13.9 (b) 3/160 9:30 9:45	合物太陽電池 / Con (Thu.) 9:30 - 11:30 16a-A304-1 奨 16a-A304-2	GaS _、 シェル被覆による狭スペクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304会場(Room A304) InGaAs/GaAsP波状超格子(WoW)太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池における GaSb/GaAs量子リングの多積層化	〇碇 哲雄 1 , 山本 尚輝 1 , 駒場 森太郎 1 , 杉山 正和 2 , 福山 敦彦 1 〇樗木 悠亮 1,2 , 岡田 至崇 1,2	1. 宮崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研
13.9 (b) 3/160 9:30 9:45	合物太陽電池 / Con (Thu.) 9:30 - 11:30 16a-A304-1	GaS,シェル被覆による狭スペクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP波状超格子(WoW) 太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 消膜中間バンド型太陽電池におけるGaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○(P)Bernice Espaldon¹, Wipakorn Jevasuwan²,	1. 宫崎大学工, 2. 東大先端研
13.9 (b) 3/160 9:30 9:45	合物太陽電池 / Con (Thu.) 9:30 - 11:30 16a-A304-1 奨 16a-A304-2	GaS _、 シェル被覆による狭スペクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304会場(Room A304) InGaAs/GaAsP波状超格子(WoW)太陽電池構造のフォト ルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池における GaSb/GaAs量子リン グの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○ (P)Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ Hassanet Sodabanlu¹, Gan Li², Kentaroh	1. 宮崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研
13.9 化 3/160 9:30 9:45 10:00	合物太陽電池 / Con Thu.) 9:30 - 11:30 16a-A304-1 獎 16a-A304-2 獎 E 16a-A304-3	GaS,シェル被覆による狭スペクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304 会場 (Room A304) InGaAs/GaAsP波状超格子(WoW) 太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池におけるGaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells プロック共重合体を用いた裏面光散乱構造を有する極薄	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○ (P) Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹	1. 宮崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1.Univ. of Tokyo, 2.NIMS 1.RCAST, U.Tokyo, 2.School of Eng, U.Tokyo
13.9 (b) 3/160 9:30 9:45 10:00	合物太陽電池 / Con Thu.) 9:30 - 11:30 16a-A304-1 獎 16a-A304-2 獎 E 16a-A304-3	GaS、シェル被覆による狭スペクトル幅緑色発光 pound solar cells 「口頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP波状超格子(WoW) 太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池におけるGaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells ブロック共重合体を用いた裏面光散乱構造を有する極薄 GaAs太陽電池の作製 Low-temperature photoluminescence investigation of p-type C-doped AlGaAs grown by MOVPE on vicinal	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○ (P) Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ Hassanet Sodabanlu¹, Gan Li², Kentaroh Watanabe¹, Yoshiaki Nakano², Masakazu Sugiyama¹² ○ 土田 遼哉¹, 渡辺 健太郎², 中野 義昭¹, 杉山 正和¹² ○ Gan Li¹, Hassanet Sodabanlu², Maui Hino¹, Meita Asami¹, Kentaroh Watanabe², Masakazu Sugiyama¹²,	1. 宫崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1. Univ. of Tokyo, 2. NIMS 1. RCAST, U. Tokyo, 2. School of Eng, U. Tokyo 1. 東大工, 2. 東大先端研
13.9 (b) 3/160 9:30 9:45 10:00 10:15 10:30 10:45	合物太陽電池 / Con Thu.) 9:30 - 11:30 16a-A304-1 獎 16a-A304-2 獎 E 16a-A304-3 E 16a-A304-4	GaS,シェル被覆による狭スペクトル幅緑色発光 pound solar cells 「□頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP波状超格子(WoW) 太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間パンド型太陽電池におけるGaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells プロック共重合体を用いた裏面光散乱構造を有する極薄GaAs太陽電池の作製 Low-temperature photoluminescence investigation of	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○ (P)Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ Hassanet Sodabanlu¹, Gan Li², Kentaroh Watanabe¹, Yoshiaki Nakano², Masakazu Sugiyama¹¹² ○ 任田 遼哉¹, 渡辺 健太郎², 中野 義昭¹, 杉山 正和¹¹² ○ Gan Li¹, Hassanet Sodabanlu², Maui Hino¹, Meita Asami¹, Kentaroh Watanabe², Masakazu Sugiyama¹²², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu	1. 宫崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1. Univ. of Tokyo, 2. NIMS 1. RCAST, U. Tokyo, 2. School of Eng, U. Tokyo 1. 東大工, 2. 東大先端研
13.9 (b) 3/160 9:30 9:45 10:00 10:15 10:30 10:45	合物太陽電池 / Con Thu.) 9:30 - 11:30 16a-A304-1 奨 16a-A304-2 奨 E 16a-A304-3 E 16a-A304-4 16a-A304-5 E 16a-A304-6	GaS、シェル被覆による狭スベクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP波状超格子(WoW)大陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池におけるGaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells ブロック共重合体を用いた裏面光散乱構造を有する極薄 GaAs太陽電池の作製 Low-temperature photoluminescence investigation of p-type C-doped AlGaAs grown by MOVPE on vicinal substrates Optimization of base layer thickness in rear heterojunction InGaAs cell for four-junction applications 直接ウエハ接合によるInGaP/GaAs/In。GaI、As//	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○ (P)Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ Hassanet Sodabanlu¹, Gan Li², Kentaroh Watanabe¹, Yoshiaki Nakano², Masakazu Sugiyama¹²² ○ 任田 遼哉¹, 渡辺 健太郎², 中野 義昭¹, 杉山 正和¹²² ○ Gan Li¹, Hassanet Sodabanlu², Maui Hino¹, Meita Asami¹, Kentaroh Watanabe², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ 鳥崎 嵩士¹, 渡辺 健太郎², ソダーバンル ハッサ	1. 宫崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1. Univ. of Tokyo, 2.NIMS 1.RCAST, U.Tokyo, 2.School of Eng, U.Tokyo 1. 東大工, 2. 東大先端研 1.The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo
13.9 (b) 3/16(9:30) 9:45 10:00 10:15 10:30 10:45 11:00	合物太陽電池 / Con Thu.) 9:30 - 11:30 16a-A304-1 奨 16a-A304-2 奨 E 16a-A304-3 E 16a-A304-4 16a-A304-5 E 16a-A304-6 奨 E 16a-A304-7	GaS,シェル被覆による狭スベクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP波状超格子 (WoW) 太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池における GaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells ブロック共重合体を用いた裏面光散乱構造を有する極薄 GaAs 太陽電池の作製 Low-temperature photoluminescence investigation of p-type C-doped AlGaAs grown by MOVPE on vicinal substrates Optimization of base layer thickness in rear heterojunction InGaAs cell for four-junction applications	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○ (P)Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ Hassanet Sodabanlu¹, Gan Li², Kentaroh Watanabe¹, Yoshiaki Nakano², Masakazu Sugiyama¹²。○土田 遼哉¹, 渡辺 健太郎², 中野 義昭¹, 杉山 正和¹² ○ Gan Li¹, Hassanet Sodabanlu², Maui Hino¹, Meita Asami¹, Kentaroh Watanabe², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ 島崎 嵩士¹, 渡辺 健太郎², ソダーバンル ハッサ ネット², 中野 義昭¹, 杉山 正和¹²	1. 宮崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1. Univ. of Tokyo, 2.NIMS 1.RCAST, U.Tokyo, 2.School of Eng, U.Tokyo 1. 東大工, 2. 東大先端研 1.The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1.The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo
13.9 (b) 3/16(9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 3/16(合物太陽電池 / Con Thu.) 9:30 - 11:30	GaS、シェル被覆による狭スペクトル幅緑色発光 pound solar cells 「口頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP波状超格子(WoW)太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間パンド型太陽電池におけるGaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells ブロック共重合体を用いた裏面光散乱構造を有する極薄 GaAs太陽電池の作製 Low-temperature photoluminescence investigation of p-type C-doped AlGaAs grown by MOVPE on vicinal substrates Optimization of base layer thickness in rear heterojunction InGaAs cell for four-junction applications 直接ウエハ接合によるInGaP/GaAs/In _x Ga _{1-x} As//In _y Ga _{1-x} As 4接合太陽電池の開発 口頭講演 (Oral Presentation) A304会場(Room A304)	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○ (P)Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ Hassanet Sodabanlu¹, Gan Li², Kentaroh Watanabe¹, Yoshiaki Nakano², Masakazu Sugiyama¹²。○土田 遼哉¹, 渡辺 健太郎², 中野 義昭¹, 杉山 正和¹² ○ Gan Li¹, Hassanet Sodabanlu², Maui Hino¹, Meita Asami¹, Kentaroh Watanabe², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ 島崎 嵩士¹, 渡辺 健太郎², ソダーバンル ハッサ ネット², 中野 義昭¹, 杉山 正和¹²	1. 宮崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1. Univ. of Tokyo, 2.NIMS 1.RCAST, U.Tokyo, 2.School of Eng, U.Tokyo 1. 東大工, 2. 東大先端研 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. 東京大工, 2. 東大先端研 1. 産総研
13.9 (b) 3/16(9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 3/16(13:00	合物太陽電池 / Con Thu.) 9:30 - 11:30 16a-A304-1 奨 16a-A304-2 奨E 16a-A304-3 E 16a-A304-4 16a-A304-5 E 16a-A304-6 奨E 16a-A304-7 16a-A304-8 Thu.) 13:00 - 16:30 16p-A304-1 奨 16p-A304-2	GaS、シェル被覆による狭スベクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP波状超格子(WoW)太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池におけるGaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells ブロック共重合体を用いた裏面光散乱構造を有する極薄 GaAs 太陽電池の作製 Low-temperature photoluminescence investigation of p-type C-doped AlGaAs grown by MOVPE on vicinal substrates Optimization of base layer thickness in rear heterojunction InGaAs cell for four-junction applications 直接ウエハ接合によるInGaP/GaAs/In _* Ga _{1**} As//In _* Ga _{1**} As 4 接合太陽電池の開発 口頭講演 (Oral Presentation) A304 会場(Room A304) Cu(In,Ga)Se ₂ 太陽電池のエッチング素子分離による高効率化	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○ (P) Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ Hassanet Sodabanlu¹, Gan Li², Kentaroh Watanabe¹, Yoshiaki Nakano², Masakazu Sugiyama¹²² ○ Gan Li¹, Hassanet Sodabanlu², Maui Hino¹, Meita Asami¹, Kentaroh Watanabe², Masakazu Sugiyama¹²², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹²², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹²², Yoshiaki Nakano¹ ○ 鳥崎 嵩士¹, 渡辺 健太郎², ソダーバンル ハッサネット², 中野 義昭¹, 杉山 正和¹² ○ 西永 慈郎¹, 上川 由紀子¹, 柴田 肇¹, 石塚 尚吾¹ ○ 河西 竜輝¹, 船木 顕広¹, 福田 遼太郎¹, 西村 昂人¹, 山田 明¹	1. 宮崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1. Univ. of Tokyo, 2.NIMS 1.RCAST, U.Tokyo, 2.School of Eng, U.Tokyo 1. 東大工, 2. 東大先端研 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. 東京大工, 2. 東大先端研 1. 産総研
13.9 (b) 3/16(9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 3/16(13:00 13:15	合物太陽電池 / Con Thu.) 9:30 - 11:30 16a-A304-1 奨 16a-A304-2 奨E 16a-A304-3 E 16a-A304-4 16a-A304-5 E 16a-A304-6 奨E 16a-A304-7 16a-A304-8 Thu.) 13:00 - 16:30 16p-A304-1 奨 16p-A304-2	GaS、シェル被覆による狭スベクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP 波状超格子(WoW)太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池における GaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells ブロック共重合体を用いた裏面光散乱構造を有する極薄 GaAs 太陽電池の作製 Low-temperature photoluminescence investigation of p-type C-doped AlGaAs grown by MOVPE on vicinal substrates Optimization of base layer thickness in rear heterojunction InGaAs cell for four-junction applications 直接ウエハ接合による InGaP/GaAs/In。Ga1、As//In、Ga1、As 4接合太陽電池の開発 口頭講演 (Oral Presentation) A304 会場(Room A304) Cu(In、Ga) Se2 太陽電池のエッチング素子分離による高効率化 カーネル法を用いた CIGS 太陽電池の最適設計	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○(P)Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ Hassanet Sodabanlu¹, Gan Li², Kentaroh Watanabe¹, Yoshiaki Nakano², Masakazu Sugiyama¹²² ○ 任田 遼哉¹, 渡辺 健太郎², 中野 義昭¹, 杉山 正和¹²² ○ Gan Li¹, Hassanet Sodabanlu², Maui Hino¹, Meita Asami¹, Kentaroh Watanabe², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ 鳥崎 高士¹, 渡辺 健太郎², ソダーバンルハッサネット², 中野 義昭¹, 杉山 正和¹² ○ 西永 慈郎¹, 上川 由紀子¹, 柴田 肇¹, 石塚 尚吾¹ ○ 河西 竜輝¹, 船木 顕広¹, 福田 遼太郎¹, 西村 昂人¹, 山田明¹ ○ 植田 かな¹, 杉山 睦¹.²	1. 宫崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1. Univ. of Tokyo, 2.NIMS 1.RCAST, U.Tokyo, 2.School of Eng, U.Tokyo 1. 東大工, 2. 東大先端研 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. 東京大工, 2. 東大先端研 1. 産総研 1. 東工大工
13.9 (b) 3/16(9:30 9:45 10:00 10:15 10:30 10:45 11:00 13:15 13:30 13:30	合物太陽電池 / Con Thu.) 9:30 - 11:30	GaS、シェル被覆による狭スベクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP波状超格子(WoW)太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池におけるGaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells ブロック共重合体を用いた裏面光散乱構造を有する極薄 GaAs 太陽電池の作製 Low-temperature photoluminescence investigation of p-type C-doped AlGaAs grown by MOVPE on vicinal substrates Optimization of base layer thickness in rear heterojunction InGaAs cell for four-junction applications 直接ウエハ接合によるInGaP/GaAs/In。GaI、As//In、GaI、As 4 接合太陽電池の開発 口頭講演 (Oral Presentation) A304 会場(Room A304) Cu(In、Ga)Se2 太陽電池のエッチング素子分離による高効率化カーネル法を用いた CIGS 太陽電池の最適設計 同一基板上に試作した太陽電池・光電極一体型 Cu(In、Ga) Se2水分解デバイス 伝導帯下端を制御した Cu(In、Ga)Se2光電極による CO2 還元の検討 PGS カソードを用いたスパッタリング法による SnS 薄膜	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○ (P) Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ Hassanet Sodabanlu¹, Gan Li², Kentaroh Watanabe¹, Yoshitaki Nakano², Masakazu Sugiyama¹²² ○ 仕田 遼哉¹, 渡辺 健太郎², 中野 義昭¹, 杉山 正和¹²² ○ Gan Li¹, Hassanet Sodabanlu², Maui Hino¹, Meita Asami¹, Kentaroh Watanabe², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ 鳥崎 嵩士¹, 渡辺 健太郎², ソダーバンル ハッサ ネット², 中野 義昭¹, 杉山 正和¹²² ○西永 慈郎¹, 上川 由紀子¹, 柴田 肇¹, 石塚 尚吾¹ ○河西 竜輝¹, 船木 顕広¹, 福田 遼太郎¹, 西村 昂人¹, 山田 明¹ ○ 植田 かな¹, 杉山 睦¹²	1. 宮崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1. Univ. of Tokyo, 2.NIMS 1.RCAST, U.Tokyo, 2.School of Eng, U.Tokyo 1. 東大工, 2. 東大先端研 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. 東京大工, 2. 東大先端研 1. 東京大工, 2. 東大先端研 1. 東工大工 1. 東理大 理工, 2. 東理大 総研
13.9 (b) 3/16(9:30) 9:45 10:00 10:15 10:30 10:45 11:00 11:15 3/16(13:00) 13:15 13:30 13:45	合物太陽電池 / Con Thu.) 9:30 - 11:30	GaS、シェル被覆による狭スベクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP波状超格子 (WoW) 太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池におけるGaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells ブロック共重合体を用いた裏面光散乱構造を有する極薄 GaAs 太陽電池の作製 Low-temperature photoluminescence investigation of p-type C-doped AlGaAs grown by MOVPE on vicinal substrates Optimization of base layer thickness in rear heterojunction InGaAs cell for four-junction applications 直接ウエハ接合による InGaP/GaAs/In。Ga1、As//In、Ga1、As 4接合太陽電池の開発 口頭講演 (Oral Presentation) A304 会場(Room A304) Cu(In、Ga)Se2 太陽電池のエッチング素子分離による高効率化 カーネル法を用いた CIGS 太陽電池の最適設計 同一基板上に試作した太陽電池・光電極一体型Cu(In、Ga)Se2、水分解デバイス 伝導帯下端を制御した Cu(In、Ga)Se2、光電極による CO2 還元の検討 PGS カソードを用いたスパッタリング法による SnS薄膜の作製 太陽電池の光吸収層に向けた静電噴霧堆積法による SnS	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○ (P) Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ Hassanet Sodabanlu¹, Gan Li², Kentaroh Watanabe¹, Yoshitaki Nakano², Masakazu Sugiyama¹²², 仕田 遊哉¹, 渡辺 健太郎², 中野 義昭¹, 杉山 正和¹² ○ Gan Li¹, Hassanet Sodabanlu², Maui Hino¹, Meita Asami¹, Kentaroh Watanabe², Masakazu Sugiyama¹²², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹²², Yoshiaki Nakano¹ ○ Bepu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ 同志 然郎¹, 上別 健太郎², ソダーバンルハッサネット², 中野 義昭¹, 杉山 正和¹² ○西永 慈郎¹, 上川 由紀子¹, 柴田 肇¹, 石塚 尚吾¹ ○河西 竜輝¹, 船木 顕広¹, 福田 遼太郎¹, 西村 昂人¹, 山田明¹ ○ 植田 かな¹, 杉山 睦¹² ○ 岡田 一真¹, 植田 かな¹, 杉山 睦¹²	1. 宫崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1. Univ. of Tokyo, 2.NIMS 1.RCAST, U.Tokyo, 2.School of Eng, U.Tokyo 1. 東大工, 2. 東大先端研 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. 東京大工, 2. 東大先端研 1. 東京大工, 2. 東大先端研 1. 東北大工 1. 東理大 理工, 2. 東理大 総研 1. 東理大 理工, 2. 東理大 総研
13.9 (b) 3/16(9:30) 9:45 10:00 10:15 10:30 10:45 11:00 11:15 3/16(13:00) 13:15 13:30 13:45 14:00	たります。 たりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは、 はりは	GaS、シェル被覆による狭スベクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP 波状超格子 (WoW) 太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池における GaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells ブロック共重合体を用いた裏面光散乱構造を有する極薄 GaAs 太陽電池の作製 Low-temperature photoluminescence investigation of p-type C-doped AlGaAs grown by MOVPE on vicinal substrates Optimization of base layer thickness in rear heterojunction InGaAs cell for four-junction applications 直接ウエハ接合による InGaP/GaAs/In _x Ga _{1-x} As// In _x Ga _{1-x} As 4 接合太陽電池の開発 コ頭講演 (Oral Presentation) A304 会場(Room A304) Cu(In,Ga)Se ₂ 太陽電池のエッチング素子分離による高効率化カーネル法を用いた CIGS 太陽電池の最適設計 同一基板上に試作した太陽電池・光電極一体型 Cu(In,Ga)Se ₂ 水分解デバイス 伝導帯下端を制御した Cu(In,Ga)Se ₂ 光電極による CO ₂ 還元の検討 PGSカソードを用いたスパッタリング法による SnS薄膜の作製	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○ (P) Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ Hassanet Sodabanlu¹, Gan Li², Kentaroh Watanabe¹, Yoshitaki Nakano², Masakazu Sugiyama¹²², 仕田 遊哉¹, 渡辺 健太郎², 中野 義昭¹, 杉山 正和¹² ○ Gan Li¹, Hassanet Sodabanlu², Maui Hino¹, Meita Asami¹, Kentaroh Watanabe², Masakazu Sugiyama¹²², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹²², Yoshiaki Nakano¹ ○ Bepu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ 同志 然郎¹, 上別 健太郎², ソダーバンルハッサネット², 中野 義昭¹, 杉山 正和¹² ○西永 慈郎¹, 上川 由紀子¹, 柴田 肇¹, 石塚 尚吾¹ ○河西 竜輝¹, 船木 顕広¹, 福田 遼太郎¹, 西村 昂人¹, 山田明¹ ○ 植田 かな¹, 杉山 睦¹² ○ 岡田 一真¹, 植田 かな¹, 杉山 睦¹²	1. 宫崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1. Univ. of Tokyo, 2.NIMS 1.RCAST, U.Tokyo, 2.School of Eng, U.Tokyo 1. 東大工, 2. 東大先端研 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. 東京大工, 2. 東大先端研 1. 東京大工, 2. 東大先端研 1. 東北大工 1. 東理大 理工, 2. 東理大 総研 1. 東理大 理工, 2. 東理大 総研 1. 東北大 1. 東理大 理工, 2. 東理大 総研
13.9 (b) 3/16(9:30) 9:45 10:00 10:15 10:30 10:45 11:00 11:15 3/16(13:00) 13:15 13:30 13:45 14:00 14:15 14:30 14:45	を	GaS、シェル被覆による狭スベクトル幅緑色発光 pound solar cells 口頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP 波状超格子 (WoW) 太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池におけるGaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells ブロック共重合体を用いた裏面光散乱構造を有する極薄 GaAs 太陽電池の作製 Low-temperature photoluminescence investigation of p-type C-doped AlGaAs grown by MOVPE on vicinal substrates Optimization of base layer thickness in rear heterojunction InGaAs cell for four-junction applications 直接ウエハ接合による InGaP/GaAs/In、Ga1、As// In、Ga1、As 4 接合太陽電池の開発 ロ頭講演 (Oral Presentation) A304 会場(Room A304) Cu(In、Ga)Se2太陽電池のエッチング素子分離による高効率化カーネル法を用いた CIGS 太陽電池の最適設計 同一基板上に試作した太陽電池・光電極一体型Cu(In、Ga)Se、水分解デバイス 伝導帯下端を制御した Cu(In、Ga)Se2光電極による CO2 還元の検討 PGS カソードを用いたスパッタリング法による SnS 薄膜の堆積 SPS 法による Cu2ZnSnS4バルク結晶の作製と評価 VI	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○ (P)Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ Hassanet Sodabanlu¹, Gan Li², Kentaroh Watanabe¹, Yoshiaki Nakano², Masakazu Sugiyama¹²² ○ 仕田 遼哉¹, 渡辺 健太郎², 中野 義昭¹, 杉山 正和¹²² ○ Gan Li¹, Hassanet Sodabanlu², Maui Hino¹, Meita Asami¹, Kentaroh Watanabe², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ 鳥崎 嵩士¹, 渡辺 健太郎², ソダーバンル ハッサ ネット², 中野 義昭¹, 杉山 正和¹²² ○西永 慈郎¹, 上川 由紀子¹, 柴田 肇¹, 石塚 尚吾¹ ○河西 竜輝¹, 船木 頻広¹, 福田 遊太郎¹, 西村 昂人¹, 山田 明¹ ○ 植田 かな¹, 杉山 睦¹² ○ 岡田 一真¹, 植田 かな¹, 杉山 睦¹² ○ 町上 大一¹, 鈴木 一誓¹, 小俣 孝久¹ ○ 庄司 拓真¹, 友野 恵介¹, 大久保 慶人¹, 杉山 睦¹² ○ 吉井 葉月¹, 小倉 雅俊¹, 栗林 新¹, 大石 耕一郎¹, 青柳 成後¹, 鳥宗 洋介¹, 竹內 麻希子¹	1. 宫崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1. Univ. of Tokyo, 2.NIMS 1.RCAST, U.Tokyo, 2.School of Eng, U.Tokyo 1. 東大工, 2. 東大先端研 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. 東京大工, 2. 東大先端研 1. 東京大工, 2. 東大先端研 1. 東北大工 1. 東理大 理工, 2. 東理大 総研 1. 東理大 理工, 2. 東理大 総研 1. 東北大 1. 東理大 理工, 2. 東理大 総研 1. 東理大 理工, 2. 東理大 総研 1. 東理大 理工, 2. 東理大 総研
13.9 (b) 3/16(9:30) 9:45 10:00 10:15 10:30 10:45 11:00 11:15 3/16(13:00) 13:15 13:30 13:45 14:00 14:15 14:30	合物太陽電池 / Con Thu.) 9:30 - 11:30 16a-A304-1 奨 16a-A304-2 奨 E 16a-A304-3 E 16a-A304-5 E 16a-A304-6 奨 E 16a-A304-7 16a-A304-8 Thu.) 13:00 - 16:30 16p-A304-1 奨 16p-A304-2 16p-A304-3 16p-A304-4 16p-A304-5 16p-A304-6	GaS、シェル被覆による狭スペクトル幅緑色発光 pound solar cells 「D頭講演 (Oral Presentation) A304 会場(Room A304) InGaAs/GaAsP 波状超格子 (WoW) 太陽電池構造のフォトルミネセンススペクトルにおける励起光強度依存症 薄膜中間バンド型太陽電池におけるGaSb/GaAs量子リングの多積層化 Assessing Silicon Nanowires as a Bottom Cell Material for III-V Multijunction Solar Cells using Thin InGaP/GaAs Filter Polarity dependence of the properties of GaAs solar cells ブロック共重合体を用いた裏面光散乱構造を有する極薄 GaAs太陽電池の作製 Low-temperature photoluminescence investigation of p-type C-doped AlGaAs grown by MOVPE on vicinal substrates Optimization of base layer thickness in rear heterojunction InGaAs cell for four-junction applications 直接ウエハ接合によるInGaP/GaAs/In₂Ga1₂As//In₂Ga1₂As 4接合太陽電池の開発 口頭講演 (Oral Presentation) A304 会場(Room A304) Cu(In,Ga)Se2太陽電池のエッチング素子分離による高効率化 カーネル法を用いた CIGS 太陽電池の最適設計 同一基板上に試作した太陽電池・光電極一体型 Cu(In,Ga)Se2水分解デバイス 伝導帯下端を制御した Cu(In,Ga)Se2米電極による CO2還元の検討 PGS カソードを用いたスパッタリング法による SnS薄膜の作製 太陽電池の光吸収層に向けた静電噴霧堆積法による SnS 薄膜の作製	○碇 哲雄¹, 山本 尚輝¹, 駒場 森太郎¹, 杉山 正和², 福山 敦彦¹ ○樗木 悠亮¹², 岡田 至崇¹² ○(P)Bernice Espaldon¹, Wipakorn Jevasuwan², Naoki Fukata², Yoshitaka Okada¹ ○ 日本 選哉¹, 渡辺 健太郎², 中野 義昭¹, 杉山 正和¹²² ○ 石田 遊哉¹, 渡辺 健太郎², 中野 義昭¹, 杉山 正和¹²² ○ Gan Li¹, Hassanet Sodabanlu², Maui Hino¹, Meita Asami¹, Kentaroh Watanabe², Masakazu Sugiyama¹²², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹²², Yoshiaki Nakano¹ ○ Depu Ma¹, Gan Li¹, Meita Asami¹, Kentaroh Watanabe², Hassanet Sodabanlu², Masakazu Sugiyama¹², Yoshiaki Nakano¹ ○ 局崎 高士¹, 渡辺健太郎², ツダーバンル ハッサネット², 中野 義昭¹, 杉山 正和¹² ○ 西永 慈郎¹, 上川 由紀子¹, 柴田 肇¹, 石塚 尚吾¹ ○ 河西 竜輝¹, 船木 顕広¹, 福田 遼太郎¹, 西村 昂人¹, 山田明¹ ○ 植田 かな¹, 杉山 睦¹² ○ 岡田 一真¹, 植田 かな¹, 杉山 睦¹² ○ 町上 大一¹, 鈴木 一誓¹, 小俣 孝久¹ ○ 庄司 拓真¹, 友野 恵介¹, 大久保 慶人¹, 杉山 睦¹²	1. 宫崎大学工, 2. 東大先端研 1. 東大院工, 2. 東大先端研 1. Univ. of Tokyo, 2.NIMS 1.RCAST, U.Tokyo, 2.School of Eng, U.Tokyo 1. 東大工, 2. 東大先端研 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. The Univ. of Tokyo, 2.RCAST, the Univ. of Tokyo 1. 東京大工, 2. 東大先端研 1. 東京大工, 2. 東大先端研 1. 東北大工 1. 東理大 理工, 2. 東理大 総研 1. 東北大 1. 東理大 理工, 2. 東理大 総研 1. 東北大 1. 東理大 理工, 2. 東理大 総研

	E 16p-A304-10	Oxygen Partial Pressure Dependence Effect to Mo-doped ${\rm BiVO_4Thin\text{-}Film}$ Photoanode Performance Sputtered by Single Target Radio Frequency		1.University of Tsukuba, 2.Konan University
15:45	16p-A304-11	酸化物太陽電池の陽子線照射挙動	○川原田 義幸¹, 鹿野 文寿¹, 藤田 敏之¹, 塩川 美雪¹, 大西 春樹¹, 山下 勝也¹, 保西 祐弥², 芝崎 聡一郎², 山 本 和電²	1.東芝エネルギーシステムズ, 2.東芝
16:00	16p-A304-12	Cu_3N 薄膜及び Cu_2O 薄膜の O_2 アニール処理による電気抵抗低減		1. 芝浦工大, 2. グリーンエレクトロニクス国際研究研究 センター
16:15	<u> </u>	RF マグネトロンスパッタリング法による Cu_3N 薄膜の作製及び N_2 雰囲気アニールによる p 型伝導の観測		1. 芝浦工大, 2. グリーンエレクトロニクス国際研究研究 センター
3/17(ポスター講演 (Poster Presentation) PB会場(Room PB) スパッタガス圧力がフレキシブル基板上に成膜した Mo 導電膜の曲げ耐性に与える影響		1. 東理大 理工, 2. 東理大 総研
	17p-PB03-2	$Ge/(Ge+Sn)$ 組成比が $Cu_2(Sn,Ge)S_3$ 薄膜太陽電池の電気特性に与える影響	\bigcirc (M1) 大橋 零 1 , 金井 綾香 1 , 荒木 秀明 2 , 田中 久仁 $\ref{eq:condition}$	1. 長岡技大, 2. 長岡高専
	17p-PB03-3	同時蒸着法を用いた Cu ₂ Sn _{1-x} Ge _x S ₃ 薄膜太陽電池の作製	○田崎 傑士¹, 荒木 秀明¹	1.長岡高専
		同時蒸着法を用いた (Ge, Sn) S薄膜太陽電池の作製		1.長岡高専
		分子線エピタキシー法による ZnTeO 薄膜の成長と光電極 への応用	徹 ¹	1. 佐賀大院理工, 2. 甲南大
	17p-PB03-6	CIドープZnCdTeO中間バンド型太陽電池の光電変換特性の温度依存性	○谷 大樹¹, 齊藤 勝彦¹, 郭 其新¹, 田中 徹¹	1.佐大理工
	17p-PB03-7	ZnO/CuBr _{1:x} I _x 透明微細構造太陽電池の構造改善	〇辻本 直也 1 , 玉井 大吉 1 , 藤島 睦 1 , 金井 綾香 1 , 田中 久仁彦 1	1.長岡技大
CS.7]	12.5 有機・ハイブ!	リッド太陽電池、13.9 化合物太陽電池、16.3 シリコン系太	陽電池のコードシェアセッション / Code-sharing Se	ssion of 12.5 & 13.9 & 16.3
		口頭講演 (Oral Presentation) A408会場(Room A408)		
3:00	18p-A408-1	直列二端子ペロブスカイト/シリコンタンデム太陽電池 の電流整合設計		1.産総研
13:15	18p-A408-2	【注目講演】ベロブスカイト/シリコンタンデム太陽電池 の 1000 時間光耐久性	〇塩川美雪 ^{1,7} ,平野 樹 ¹ ,北村 武史 ² ,廣谷 太佑 ⁴ ,野 村 大志郎 ⁴ ,林 雅博 ⁵ ,野村 隆利 ⁵ ,中村 雅規 ⁶ ,平見 朋 之 ⁶ ,早瀬 修二 ² ,齋 均 ³ ,松井 卓矢 ³ ,五反田 武志 ^{1,7}	
13:30	18p-A408-3	人工光合成反応のための電圧整合ペロブスカイト/結晶 シリコンタンデム太陽電池モジュール	○竹田 康彦¹, 山中 健一¹, 森川 健志¹, 加藤 直彦¹	1. 豊田中研
13:45	18p-A408-4	PEDOT:PSS/n-Si 接合を下部素子とした FA0.9Cs0.1Pbl3ペロブスカイト系モノリシック 2 接合太 陽電池の作製		1. 埼玉大理工研
4:00 4:15	奨 E 18p-A408-5	休憩/Break Optimization of the Morphological Structure of Spin-Coated on p-GaAs Substrates for Perovskite/	○ (D)Hambalee Mahamu¹, Matthias Bourzier², Shigeo Asahi¹, Takashi Kita¹	1.Kobe Univ., 2.INSA Lyon
14:30	18p-A408-6	GaAs-based Photon Up-conversion Solar Cells ベロブスカイトタンデムセル用薄型へテロ接合 Si ボトム セルの作製(2) 〜表面テクスチャの適用〜	○齊藤 公彦¹, 宍戸 寛崇¹, 石川 亮佑¹	1.東京都市大総研
14:45	E 18p-A408-7	Optimization of wide-bandgap perovskite to improve the performance of all perovskite tandem solar cells	○ (PC)Gaurav Kapil ^{1, 2} , Takeru Bessho ² , Qing Shen ¹ , Hiroshi Segawa ² , Shuzi Hayase ¹	1.Uni. of Electr.Comm., 2.Uni. of Tokyo
15:00	18p-A408-8	Perovskite-perovskite タンデム用途に向けたVoc~1.4V のトップセル材料の開発	○白井 康裕¹, カダカ ビ ドゥラバ¹, 柳田 真利¹, 宮野 健次郎¹	1. 物材研
15 結	晶工学 / Crysta	al Engineering		
		はプログラム冒頭にございます。		
	ルク結晶成長 / Bull			
3/15(\ 9:00	Wed.) 9:00 - 11:30			
		口頭講演 (Oral Presentation) D419会場 (Room D419)	○根本 姚本1.2 士取 版件1.2 母田 七五1.2 士田 ×1.2	1 市业+NICII- 2 市业+IMD
	15a-D419-1	口頭調測 (Grai Presentation) ロ419 工場 (R00III 0419) Ce添加 YScO ₃ の単結晶育成と発光特性の Ce濃度依存性ホウ酸系光学材料 SrB ₄ O ₂ 結晶の大型・バルク化	〇野口 凌 1 ,関川 康太 1 ,田中 康教 1 ,村井 良多 2 ,高橋 義典 1 ,宇佐美 茂佳 1 ,今西 正幸 1 ,丸山 美帆子 1 ,森 勇	
9:15	15a-D419-1 奨 15a-D419-2	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性	〇野口 凌¹, 関川 康太¹, 田中 康教¹, 村井 良多², 高橋 義典¹, 宇佐美 茂佳¹, 今西 正幸¹, 丸山 美帆子¹, 森 勇介¹², 吉村 政志²³ 〇加藤 隆寬¹², 岩佐 祐希², 横田 有為³, 石田 茂之², Sugali Pavan Kumar Naik¹, 東 陽一², 長谷 泉², 本郷 研太⁴, 前園 涼⁴, 堀合 毅彦³, 吉川 彰³, 西尾 太一郎¹,	 版大院工,2.創晶超光,3.阪大レーザー研 東京理科大学,2.産総研,3.東北大学,4.北陸先端科学
9:15 9:30 9:45	15a-D419-1 獎 15a-D419-2 15a-D419-3	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性 ホウ酸系光学材料SrB $_4$ O $_7$ 結晶の大型・バルク化 層状複合アニオン化合物Sr $_2$ ZnCu $_2$ (S $_{1:x}$ Se $_x$) $_2$ O $_2$ (0 \leq x \leq 1) の単結晶育成 中性子検出用途のpyrene結晶の育成と発光特性評価	〇野口 凌¹, 関川 康太¹, 田中 康教¹, 村井 良多², 高橋 義典¹, 宇佐美 茂佳¹, 今西 正幸¹, 丸山 美帆子¹, 森 勇介¹², 吉村 政志²³ 〇加藤 隆寬¹², 岩佐 祐希², 横田 有為³, 石田 茂之², Sugali Pavan Kumar Naik¹, 東 陽一², 長谷 泉², 本郷	 版大院工,2.創晶超光,3.阪大レーザー研 東京理科大学,2.産総研,3.東北大学,4.北陸先端科学
9:15 9:30 9:45 10:00	15a-D419-1 獎 15a-D419-2 15a-D419-3 15a-D419-4	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性 ホウ酸系光学材料SrB4O7結晶の大型・バルク化	〇野口 凌¹, 関川 康太¹, 田中 康教¹, 村井 良多², 高橋 義典¹, 字佐美 茂佳¹, 今酉 正幸¹, 丸山 美帆子¹, 森勇 介¹², 吉村 政志²³ 〇加藤 隆寬¹², 岩佐 祐希², 横田 有為³, 石田 茂之², Sugali Pavan Kumar Naik¹, 東陽一², 長谷 泉², 本郷 研太⁴, 前園 涼⁴, 堀合 毅彦³, 吉川 彰³, 西尾 太一郎¹, 永崎 洋², 荻野 拓² 〇山路 晃広¹, 黒澤 俊介¹, 吉川 彰¹²	1. 阪大院工, 2. 創晶超光, 3. 阪大レーザー研 1. 東京理科大学, 2. 産総研, 3. 東北大学, 4. 北陸先端科学技術大学院大学 1. 東北大NICHe, 2. 東北大金研 1. 候福田結晶研, 2. オータスジャバン, 3. 立命館大, 4. カ
9:15 9:30 9:45 0:00 0:15	15a-D419-1 獎 15a-D419-2 15a-D419-3 15a-D419-4 15a-D419-5	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性 ホウ酸系光学材料SrB4O7結晶の大型・バルク化 層状複合アニオン化合物Sr2ZnCu2(S1-xSex)2O2(0 \leq x \leq 1) の単結晶育成 中性子検出用途のpyrene結晶の育成と発光特性評価 休憩/Break ScAlMgO4単結晶エピレディウェハの評価 VB法で育成したFe-Ga単結晶における熱処理と磁歪特性	○野口凌¹,関川康太¹,田中康教¹,村井良多²,高橋 義典¹,字佐美 茂佳¹,今酉 正幸¹,丸山美帆子¹,森勇介¹²,吉村 政志²³ ○加藤 隆寬¹²,岩佐 祐希²,横田 有為³,石田 茂之², Sugali Pavan Kumar Naik¹,東陽²²,長谷 泉²,本郷 研太⁴,前園 涼⁴,堀合 毅彦³,吉川 彰³,西尾 太一郎¹,永崎洋²,获野 拓² ○山路 晃広¹,黒澤 俊介¹,吉川 彰¹² ○白石 裕足¹,南都 十輝¹,安藤 宏孝¹,福田 承生¹,星生 伸一²,藤井 高志¹³,荒木 努³,石地 耕太朗⁴	1. 阪大院工, 2. 創晶超光, 3. 阪大レーザー研 1. 東京理科大学, 2. 産総研, 3. 東北大学, 4. 北陸先端科学技術大学院大学 1. 東北大NICHe, 2. 東北大金研 1. ㈱福田結晶研, 2. オータスジャパン, 3. 立命館大, 4. ナ州シンクロ
9:15 9:30 9:45 10:00 10:15	15a-D419-1 獎 15a-D419-2 15a-D419-3 15a-D419-4 15a-D419-5 15a-D419-6	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性ホウ酸系光学材料SrB4O2結晶の大型・バルク化 層状複合アニオン化合物 $Sr_2ZnCu_2(S_{1:x}Se_x)_2O_2(0 \le x \le 1)$ の単結晶育成 中性子検出用途のpyrene結晶の育成と発光特性評価 体態/Break $ScAlMgO_4$ 単結晶エビレディウェハの評価 VB 法で育成した Fe - Ga 単結晶における熱処理と磁歪特性の関係 VB法で育成した Fe - Ga 角柱単結晶の異なる加工方向での	○野口凌¹,関川康太¹,田中康教¹,村井良多²,高橋養典¹,字佐美茂佳¹,今西正幸¹,丸山美帆子¹,森勇介¹²,吉村政志²³ ○加藤隆寬¹²,岩佐祐希²,横田有為³,石田茂之²,Sugali Pavan Kumar Naik¹,東陽一²,長谷泉²,本鄉研太¹,前國涼⁴,堀合 毅彦³,吉川 彰³,西尾太一郎¹,永崎洋²,获野 拓² ○山路晃広¹,黒澤俊介¹,吉川 彰¹² ○白石 裕児¹,南都 十輝¹,安藤 宏孝¹,福田 承生¹,星生伸一²,藤井高志¹³,荒木 努³,石地 耕太朗⁴ ○西澤勇利¹,太子 敏則¹,大久保 和彦²,佐藤 昌明²,泉聖志²	1. 阪大院工, 2. 創晶超光, 3. 阪大レーザー研 1. 東京理科大学, 2. 産総研, 3. 東北大学, 4. 北陸先端科学技術大学院大学 1. 東北大NICHe, 2. 東北大金研 1. (株福田結晶研, 2. オータスジャバン, 3. 立命館大, 4. ナ州シンクロ 1. 信州大工, 2. 住友金属鉱山
9:15 9:30 9:45 10:00 10:15 10:30	15a-D419-1 獎 15a-D419-2 15a-D419-3 15a-D419-4 15a-D419-5 15a-D419-6 15a-D419-7	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性 ホウ酸系光学材料SrB4O2結晶の大型・バルク化 層状複合アニオン化合物Sr2ZnCu2($S_{1:x}Se_x$)2O2($0 \le x \le 1$)の単結晶育成 中性子検出用途のpyrene結晶の育成と発光特性評価 休憩/Break ScAlMgO4 単結晶エビレディウェハの評価 VB法で育成したFe-Ga単結晶における熱処理と磁歪特性 の関係 VB法で育成したFe-Ga角柱単結晶の異なる加工方向での 磁歪特性比較 TLZ法による組成均一SiGe結晶育成におけるPの偏析現	○野口凌¹,関川康太¹,田中康教¹,村井良多²,高橋養典¹,字佐美茂佳¹,今西正幸¹,丸山美帆子¹,森勇介¹²,吉村政志²³ ○加藤隆寬¹²,岩佐祐希²,横田有為³,石田茂之²,Sugali Pavan Kumar Naik¹,東陽一²,長谷泉²,本鄉研太⁴,前閩涼⁴,堀合 毅彦³,吉川 彰³,西尾太一郎¹,永崎洋²,获野 拓² ○山路晃広¹,黒澤俊介¹,吉川 彰¹² ○白石 裕児¹,南都 十輝¹,安藤 宏孝¹,福田 承生¹,星生伸一²,藤井 高志¹³,荒木 穷³,石地 耕太朗⁴ ○西澤勇利¹,太子 敏則¹,大久保 和彦²,佐藤 昌明²,泉聖志² ○泉 聖志¹,大久保 和彦¹,佐藤 昌明¹,藤井 源¹,北林健人¹	1. 阪大院工, 2. 創晶超光, 3. 阪大レーザー研 1. 東京理科大学, 2. 産総研, 3. 東北大学, 4. 北陸先端科学 技術大学院大学 1. 東北大NICHe, 2. 東北大金研 1. 俄福田結晶研, 2. オータスジャバン, 3. 立命館大, 4. カ 州シンクロ 1. 信州大工, 2. 住友金属鉱山
9:15 9:30 9:45 10:00 10:15 10:30 10:45	15a-D419-1 獎 15a-D419-3 15a-D419-4 15a-D419-5 15a-D419-6 15a-D419-7 15a-D419-8	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性 ホウ酸系光学材料SrB4O2結晶の大型・バルク化 層状複合アニオン化合物Sr2ZnCu2($S_{1:x}Se_x$)2O2($0 \le x \le 1$) の単結晶育成 中性子検出用途のpyrene結晶の育成と発光特性評価 体憩/Break ScAlMgO4 単結晶エビレディウェハの評価 VB法で育成したFe-Ga単結晶における熱処理と磁歪特性 の関係 VB法で育成したFe-Ga角柱単結晶の異なる加工方向での 磁歪特性比較	〇野口凌¹,関川康太¹,田中康教¹,村井良多²,高橋養典¹,字佐美茂佳¹,今酉 正幸¹,丸山美帆子¹,森勇介¹²,吉村政志²³ 〇加藤 隆寬¹²,岩佐 祐希²,横田 有為³,石田 茂之²,Sugali Pavan Kumar Naik¹,康陽一²,長谷 泉²,本郷研太⁴,前園 涼⁴,堀合 毅彦³,吉川 彰³,西尾 太一郎¹,永崎洋²,获野 拓² ○山路 晃広¹,黒澤 俊介¹,吉川 彰¹² ○白石 裕兄¹,南都 十輝¹,安藤 宏孝¹,福田 承生¹,星生 伸一²,藤井 高志¹³,荒木 努³,石地 耕太朗⁴ ○西澤勇利¹,太子 敏則¹,大久保 和彦²,佐藤 昌明²,泉聖志² ○泉 聖志¹,大久保 和彦¹,佐藤 昌明¹,藤井 源¹,北林健人¹ 塩原 滉太¹,○太子 敏則¹,荒井 康智²,木下 恭一³	 1. 阪大院工, 2. 創晶超光, 3. 阪大レーザー研 1. 東京理科大学, 2. 産総研, 3. 東北大学, 4. 北陸先端科学技術大学院大学 1. 東北大NICHe, 2. 東北大金研 1. (株福田結晶研, 2. オータスジャバン, 3. 立命館大, 4. ナ州シンクロ 1. 信州大工, 2. 住友金属鉱山 1. 住友金属鉱山 1. 信州大, 2. JAXA, 3. 明治大 1. 宇宙航空研究開発機構, 2. 明治大学, 3. 信州大学, 4. 東
99:15 99:30 99:45 00:00 00:15 00:30 00:45 11:00	15a-D419-1 獎 15a-D419-2 15a-D419-3 15a-D419-4 15a-D419-5 15a-D419-7 15a-D419-7 15a-D419-8 15a-D419-9	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性 ホウ酸系光学材料SrB4O2結晶の大型・バルク化 層状複合アニオン化合物Sr2ZnCu2(S_{1*} Se $_{x}$)2O2($0 \le x \le 1$)の単結晶育成 中性子検出用途のpyrene結晶の育成と発光特性評価 休憩/Break ScAlMgO4単結晶エビレディウェハの評価 VB法で育成したFe-Ga単結晶における熱処理と磁歪特性の関係 VB法で育成したFe-Ga角柱単結晶の異なる加工方向での磁歪特性比較 TLZ法による組成均一SiGe結晶育成におけるPの偏析現象 宇宙環境を利用したSiGe結晶育成実験	〇野口凌¹,関川康太¹,田中康教¹,村井良多²,高橋養典¹,字佐美茂佳¹,今酉 正幸¹,丸山美帆子¹,森勇介¹²,吉村政志²³ 〇加藤 隆寬¹²,岩佐 祐希²,横田 有為³,石田 茂之²,Sugali Pavan Kumar Naik¹,康陽一²,長谷 泉²,本鄉研太⁴,前園 涼⁴,堀合 毅彦³,吉川 彰³,西尾 太一郎¹,永崎洋²,获野 拓² 〇山路 晃広¹,黑澤 俊介¹,吉川 彰¹² 〇白石 裕兄¹,南都 十輝¹,安藤 宏孝¹,福田 承生¹,星生 伸一²,藤井 高志¹³,荒木 努³,石地 耕太朗⁴ ○西澤 勇利¹,太子 敏則¹,大久保 和彦²,佐藤 昌明²,泉 聖志²,泉 聖志¹,大久保 和彦¹,佐藤 昌明¹,藤井 源¹,北林 健人¹ 塩原 滉太¹,○太子 敏則¹,荒井 康智²,木下 恭一³	 1. 阪大院工, 2. 創品超光, 3. 阪大レーザー研 1. 東京理科大学, 2. 産総研, 3. 東北大学, 4. 北陸先端科学技術大学院大学 1. 東北大NICHe, 2. 東北大金研 1. 熊福田結晶研, 2. オータスジャバン, 3. 立命館大, 4. ナ州シンクロ 1. 信州大工, 2. 住友金属鉱山 1. 信州大, 2. JAXA, 3. 明治大
99:15 99:30 99:45 00:00 00:15 00:30 00:45 11:00 11:15	15a-D419-1 獎 15a-D419-3 15a-D419-4 15a-D419-5 15a-D419-6 15a-D419-7 15a-D419-8 15a-D419-9 Wed.) 13:30 - 16:45	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性ホウ酸系光学材料SrB4O2結晶の大型・バルク化 層状複合アニオン化合物Sr2ZnCu2($S_{1:x}Se_x$)2O2($0 \le x \le 1$)の単結晶育成 中性子検出用途のpyrene結晶の育成と発光特性評価 体態/Break ScAlMgO4 単結晶エピレディウェハの評価 VB法で育成したFe-Ga 単結晶における熱処理と磁歪特性の関係 VB法で育成したFe-Ga 角柱単結晶の異なる加工方向での磁歪特性比較 TLZ法による組成均一SiGe 結晶育成におけるPの偏析現象 宇宙環境を利用したSiGe結晶育成実験 口顕講演 (Oral Presentation) D419 会場(Room D419)「分科内招待講演」エピタキシーフリー三軸結晶配向技術としての磁場配向	〇野口凌¹,関川康太¹,田中康教¹,村井良多²,高橋養典¹,字佐美茂佳¹,今酉 正幸¹,丸山美帆子¹,森勇介¹²,吉村政志²³ 〇加藤 隆寬¹²,岩佐 祐希²,横田 有為³,石田 茂之²,Sugali Pavan Kumar Naik¹,康陽一²,長谷 泉²,本郷研太⁴,前園 涼⁴,堀合 毅彦³,吉川 彰³,西尾 太一郎¹,永崎洋²,获野 拓² ○山路 晃広¹,黒澤 俊介¹,吉川 彰¹² ○白石 裕兄¹,南都 十輝¹,安藤 宏孝¹,福田 承生¹,星生 伸一²,藤井 高志¹³,荒木 努³,石地 耕太朗⁴ ○西澤勇利¹,太子 敏則¹,大久保 和彦²,佐藤 昌明²,泉聖志² ○泉 聖志¹,大久保 和彦¹,佐藤 昌明¹,藤井 源¹,北林健人¹ 塩原 滉太¹,○太子 敏則¹,荒井 康智²,木下 恭一³	 1. 阪大院工, 2. 創晶超光, 3. 阪大レーザー研 1. 東京理科大学, 2. 産総研, 3. 東北大学, 4. 北陸先端科学技術大学院大学 1. 東北大NICHe, 2. 東北大金研 1. (株福田結晶研, 2. オータスジャバン, 3. 立命館大, 4. ナ州シンクロ 1. 信州大工, 2. 住友金属鉱山 1. 住友金属鉱山 1. 信州大, 2. JAXA, 3. 明治大 1. 宇宙航空研究開発機構, 2. 明治大学, 3. 信州大学, 4. 東
99:45 10:00 10:15 11:00 11:15 13:30 14:15	15a-D419-1 獎 15a-D419-3 15a-D419-4 15a-D419-5 15a-D419-6 15a-D419-7 15a-D419-8 15a-D419-9 Wed.) 13:30 - 16:45 招 15p-D419-1	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性ホウ酸系光学材料SrB4O2結晶の大型・バルク化 層状複合アニオン化合物Sr2ZnCu2($S_{1**}Se_*$)2O2($0 \le x \le 1$)の単結晶育成 中性子検出用途のpyrene結晶の育成と発光特性評価 体態/Break ScAlMgO4 単結晶エビレディウェハの評価 VB法で育成したFe-Ga単結晶における熱処理と磁歪特性 の関係 VB法で育成したFe-Ga角柱単結晶の異なる加工方向での磁歪特性比較 TLZ法による組成均一SiGe結晶育成におけるPの偏析現象 宇宙環境を利用したSiGe結晶育成実験 口頭講演 (Oral Presentation) D419会場(Room D419)「分科內招待講演」エビタキシーフリー三軸結晶配向技術としての磁場配向法「分科內招待講演」 交流電場印加によるソフトマテリアル材料の結晶化制御 交流電場印加によるソフトマテリアル材料の結晶化制御	○野口凌¹,関川康太¹,田中康教¹,村井良多²,高橋養典¹,字佐美茂佳¹,今酉正幸¹,丸山美帆子¹,森勇介¹²,吉村政志²³ ○加藤隆寬¹²,岩佐 祐希²,横田 有為³,石田 茂之², Sugali Pavan Kumar Naik¹, 康陽一²,長谷泉²,本郷研太⁴,前國涼⁴,場合 穀彦³,吉川 彰³,西尾 太一郎¹,永崎洋²,获野 拓² ○山路 晃広¹,黑澤俊介¹,吉川 彰¹¹² ○白石 裕兄¹,南都十輝¹,安藤宏孝¹,福田 承生¹,星生伸一²,藤井高志¹³,荒木 努³,石地 耕太朗⁴ ○西澤勇利¹,太子 敏則¹,大久保 和彦²,佐藤 昌明²,泉聖志² ○泉聖志¹,大久保 和彦¹,佐藤 昌明¹,藤井源¹,北林健人¹ 塩原 滉太¹,○太子 敏則¹,荒井康智²,木下 恭一³	1. 阪大院工, 2. 創晶超光, 3. 阪大レーザー研 1. 東京理科大学, 2. 産総研, 3. 東北大学, 4. 北陸先端科学技術大学院大学 1. 東北大NICHe, 2. 東北大金研 1. (株福田結晶研, 2. オータスジャバン, 3. 立命館大, 4. ナ州シンクロ 1. 信州大工, 2. 住友金属鉱山 1. 信州大, 2. JAXA, 3. 明治大 1. 宇宙航空研究開発機構, 2. 明治大学, 3. 信州大学, 4. 東北大学
99:45 99:45 10:00 10:15 11:00 11:15 3/15(V 13:30 14:15	15a-D419-1 獎 15a-D419-3 15a-D419-4 15a-D419-5 15a-D419-6 15a-D419-7 15a-D419-8 15a-D419-9 Wed.) 13:30 - 16:45 招 15p-D419-1	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性 ホウ酸系光学材料SrB4O2結晶の大型・バルク化 層状複合アニオン化合物Sr2ZnCu2($S_{1:x}Se_x$)2O2($0 \le x \le 1$)の単結晶育成 中性子検出用途のpyrene結晶の育成と発光特性評価 休憩/Break ScAlMgO4 単結晶エビレディウェハの評価 VB法で育成したFe-Ga単結晶における熱処理と磁歪特性 の関係 VB法で育成したFe-Ga角柱単結晶の異なる加工方向での磁歪特性比較 TLZ法による組成均一SiGe結晶育成におけるPの偏析現象 宇宙環境を利用したSiGe結晶育成実験 口頭講演 (Oral Presentation) D419会場(Room D419)「分科内招待講演」エビタキシーフリー三軸結晶配向技術としての磁場配向法 「分科内招待講演」	○野口凌¹,関川康太¹,田中康教¹,村井良多²,高橋養典¹,字佐美茂佳¹,今酉正幸¹,丸山美帆子¹,森勇介¹²,吉村政志²³ ○加藤隆寬¹²,岩佐 祐希²,横田 有為³,石田 茂之², Sugali Pavan Kumar Naik¹, 康陽一²,長谷泉²,本郷研太⁴,前園涼⁴,場合 毅彦³,吉川彰³,西尾太一郎¹,永崎洋²,获野 拓² ○山路 晃広¹,黑澤俊介¹,吉川彰¹² ○白石 裕児¹,南都 十輝¹,安藤 宏孝¹,福田 承生¹,星生伸一²,藤井高志¹³,荒木 努³,石地 耕太朗⁴ ○西澤勇利¹,太子 敏則¹,大久保 和彦²,佐藤 昌明²,泉聖志² ○泉 聖志¹,大久保 和彦¹,佐藤 昌明¹,藤井源¹,北林健人¹ 塩原 滉太¹,○太子 敏則¹,荒井康智²,木下 恭一³ ○荒井康智¹,木下 恭一²,塩原 滉太³,太子 敏則³,塚田隆夫⁴,久保 正樹⁴	 1. 阪大院工, 2. 創晶超光, 3. 阪大レーザー研 1. 東京理科大学, 2. 産総研, 3. 東北大学, 4. 北陸先端科学技術大学院大学 1. 東北大NICHe, 2. 東北大金研 1. (株福田結晶研, 2. オータスジャバン, 3. 立命館大, 4. ナ州シンクロ 1. 信州大工, 2. 住友金属鉱山 1. 住友金属鉱山 1. 信州大, 2. JAXA, 3. 明治大 1. 宇宙航空研究開発機構, 2. 明治大学, 3. 信州大学, 4. 東北大学 1. 京都先端科学大工
99:15 99:30 99:45 10:00 10:15 10:30 11:10 11:15 3/15(W 13:33 4:15 15:00 15:15	15a-D419-1 獎 15a-D419-3 15a-D419-4 15a-D419-5 15a-D419-6 15a-D419-7 15a-D419-7 15a-D419-9 Wed.) 13:30 - 16:45 招 15p-D419-1 招 15p-D419-2	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性ホウ酸系光学材料SrB4O2結晶の大型・バルク化 層状複合アニオン化合物Sr2ZnCu2(S1xSex)2O2(0 ≤ x ≤ 1)の単結晶育成 中性子検出用途のpyrene結晶の育成と発光特性評価体憩/Break ScAlMgO4単結晶エピレディウェハの評価 VB法で育成したFe-Ga単結晶における熱処理と磁歪特性の関係 VB法で育成したFe-Ga角柱単結晶の異なる加工方向での磁歪特性比較 TLZ法による組成均一SiGe結晶育成におけるPの偏析現象 宇宙環境を利用したSiGe結晶育成におけるPの偏析現象 「コ顕講演(Oral Presentation)D419会場(Room D419)「分科内招待講演」 エピタキシーフリー三軸結晶配向技術としての磁場配向法 「分科内招待講演」 エピタキシーフリー三軸結晶配向技術としての磁場配向法 「分科内招待講演」 交流電場印加によるソフトマテリアル材料の結晶化制御体憩/Break 表面成長速度の強い異方性の新たな起源:平衡状態近傍のファセット化ラフ面 ファセット化ラフ面のラフネス指数とスケーリング関数	○野口凌¹,関川康太¹,田中康教¹,村井良多²,高橋養典¹,字佐美茂佳¹,今酉正幸¹,丸山美帆子¹,森勇介¹²,吉村政志²³ ○加藤隆寬¹²,岩佐 祐希²,横田 有為³,石田 茂之², Sugali Pavan Kumar Naik¹,東陽一²,長谷泉²,本郷研太⁴,前國涼⁴,場合 毅彦³,吉川彰³,西尾太一郎¹,永崎洋²,获野拓² ○山路 晃広¹,黑澤俊介¹,吉川彰¹² ○白石 裕鬼¹,南都十輝¹,安藤宏孝¹,福田 承生¹,星生伸一²,藤井高志¹³,荒木 努³,石地 耕太朗⁴ ○西澤勇利¹,太子敏則¹,大久保和彦²,佐藤昌明²,泉聖志²,大久保和彦¹,佐藤昌明¹,藤井源¹,北林健人¹ 塩原 滉太¹,○太子 敏則¹,荒井康智²,木下 恭一³ ○荒井康智¹,木下 恭一²,塩原 滉太³,太子 敏則³,塚田隆夫⁴,久保 正樹⁴ ○堀井滋¹ ○小泉晴比古¹	 1. 阪大院工, 2. 創晶超光, 3. 阪大レーザー研 1. 東京理科大学, 2. 産総研, 3. 東北大学, 4. 北陸先端科学技術大学院大学 1. 東北大NICHe, 2. 東北大金研 1. (株福田結晶研, 2. オータスジャバン, 3. 立命館大, 4. ナ州シンクロ 1. 信州大工, 2. 住友金属鉱山 1. 住友金属鉱山 1. 信州大, 2. JAXA, 3. 明治大 1. 宇宙航空研究開発機構, 2. 明治大学, 3. 信州大学, 4. 東北大学 1. 京都先端科学大工 1. 広大院統合生命
9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15	15a-D419-1 獎 15a-D419-3 15a-D419-4 15a-D419-5 15a-D419-6 15a-D419-7 15a-D419-7 15a-D419-9 Wed.) 13:30 - 16:45 招 15p-D419-1 招 15p-D419-2	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性ホウ酸系光学材料SrB4O7結晶の大型・バルク化 層状複合アニオン化合物Sr2ZnCu2(S1xSex)2O2(0 ≤ x ≤ 1)の単結晶育成 中性子検出用途のpyrene結晶の育成と発光特性評価体態/Break ScAlMgO4単結晶エピレディウェハの評価 VB法で育成したFe-Ga単結晶における熱処理と磁歪特性の関係 VB法で育成したFe-Ga角柱単結晶の異なる加工方向での磁歪特性比較 TLZ法による組成均一SiGe結晶育成におけるPの偏析現象 宇宙環境を利用したSiGe結晶育成におけるPの偏析現象 宇宙環境を利用したSiGe結晶育成実験 口頭講演(Oral Presentation) D419会場(Room D419)「分科内招待講演」エピタキシーフリー三軸結晶配向技術としての磁場配向法 「分科内招待講演」 エピタキシーフリー三軸結晶配向技術としての磁場配向法 「分科内招待講演」 変流電場印加によるソフトマテリアル材料の結晶化制御体態/Break 表面成長速度の強い異方性の新たな起源:平衡状態近傍のファセット化ラフ面	○野口凌¹,関川康太¹,田中康教¹,村井良多²,高橋養典¹,字佐美茂佳¹,今酉正幸¹,丸山美帆子¹,森勇介¹²,吉村政志²³ ○加藤隆寬¹²,岩佐 祐希²,横田 有為³,石田 茂之², Sugali Pavan Kumar Naik¹,東陽一²,長谷泉²,本郷研太⁴,前國涼⁴,場合 毅彦³,吉川彰³,西尾太一郎¹,永崎洋²,获野拓² ○山路 晃広¹,黑澤俊介¹,吉川彰¹² ○白石 裕鬼¹,南都十輝¹,安藤宏孝¹,福田 承生¹,星生伸一²,藤井高志¹³,荒木 努³,石地 耕太朗⁴ ○西澤勇利¹,太子敏則¹,大久保和彦²,佐藤昌明²,泉聖志²,大久保和彦¹,佐藤昌明¹,藤井源¹,北林健人¹ 塩原 滉太¹,○太子 敏則¹,荒井康智²,木下 恭一³ ○荒井康智¹,木下 恭一²,塩原 滉太³,太子 敏則³,塚田隆夫⁴,久保 正樹⁴ ○堀井滋¹ ○小泉晴比古¹	1. 阪大院工, 2. 創晶超光, 3. 阪大レーザー研 1. 東京理科大学, 2. 産総研, 3. 東北大学, 4. 北陸先端科学技術大学院大学 1. 東北大NICHe, 2. 東北大金研 1. (株福田結晶研, 2. オータスジャバン, 3. 立命館大, 4. カ州シンクロ 1. 信州大工, 2. 住友金属鉱山 1. 信州大, 2. JAXA, 3. 明治大 1. 宇宙航空研究開発機構, 2. 明治大学, 3. 信州大学, 4. 東北大学 1. 京都先端科学大工 1. 広大院統合生命 1. 大阪電通大工
99:15 99:30 99:45 10:00 10:15 10:30 10:45 11:15 3/15(V 13:30 14:15 15:00 15:15 15:30	15a-D419-1 獎 15a-D419-3 15a-D419-4 15a-D419-5 15a-D419-6 15a-D419-7 15a-D419-7 15a-D419-9 Wed.) 13:30 - 16:45 招 15p-D419-1 招 15p-D419-1	Ce添加YScO3の単結晶育成と発光特性のCe濃度依存性ホウ酸系光学材料SrB4O2結晶の大型・バルク化 層状複合アニオン化合物Sr2ZnCu2(S12Se2)2O2(0 ≤ x ≤ 1)の単結晶育成 中性子検出用途のpyrene結晶の育成と発光特性評価体態/Break ScAlMgO4単結晶エピレディウェハの評価 VB法で育成したFe-Ga単結晶における熱処理と磁歪特性の関係 VB法で育成したFe-Ga角柱単結晶の異なる加工方向での磁歪特性比較 TLZ法による組成均一SiGe結晶育成におけるPの偏析現象 宇宙環境を利用したSiGe結晶育成実験 口頭講演(Oral Presentation) D419会場(Room D419) 「分科内招待講演」 エピタキシーフリー三軸結晶配向技術としての磁場配向法 「分科内招待講演」 を洗りを表しての磁場配向法 「分科内招待講演」 を洗りを表しての磁場配向法 「分科内招待講演」 で流したを表しての磁場配向法 「分科内招待講演」 で流したを表しての磁場配向法 「分科内招待講演」 で流したを表しての磁場配向法 「分科内招待講演」 で流したを表しての磁場配向法 「分科内招待講演」 で流地がある。 「分科内招待講演」 で流地がある。 「おりているなどのでは、またなと表して、またなどのである。 「おりているなどのでは、またなどのでは、またなどのでは、またなどのである。 「おりているなどのでは、またなどの	○野口凌¹,関川康太¹,田中康教¹,村井良多²,高橋養典¹,字佐美茂佳¹,今酉正幸¹,丸山美帆子¹,森勇介¹²,吉村政志²³ ○加藤隆寬¹²,岩佐 祐希²,横田 有為³,石田 茂之², Sugali Pavan Kumar Naik¹,康陽一²,長谷泉²,本郷研太⁴,前園涼⁴,堀合毅彦³,吉川彰³,西尾太一郎¹,永崎洋²,获野拓² ○山路晃広¹,黒澤俊介¹,吉川彰¹² ○白石裕足¹,南都十輝¹,安藤宏孝¹,福田承生¹,星生伸一²,藤井高志¹³,荒木努³,石地耕太朗⁴ ○西澤勇利¹,太子敏則¹,大久保和彦²,佐藤昌明²,泉聖志²,大久保和彦¹,佐藤昌明¹,藤井源¹,北林健人¹塩原滉太¹,○太子敏則¹,荒井康智²,木下恭一³ ○荒井康智¹,木下恭一²,塩原滉太³,太子敏則³,塚田隆夫⁴,久保正樹⁴ ○堀井滋¹ ○小泉晴比古¹	 1. 阪大院工, 2. 創品超光, 3. 阪大レーザー研 1. 東京理科大学, 2. 産総研, 3. 東北大学, 4. 北陸先端科学技術大学院大学 1. 東北大NICHe, 2. 東北大金研 1. 熊福田結晶研, 2. オータスジャパン, 3. 立命館大, 4. ナ州シンクロ 1. 信州大工, 2. 住友金属鉱山 1. 住友金属鉱山 1. 信州大, 2. JAXA, 3. 明治大 1. 宇宙航空研究開発機構, 2. 明治大学, 3. 信州大学, 4. 東北大学 1. 京都先端科学大工 1. 広大院統合生命 1. 大阪電通大工 1. 大阪電通大工 1. 大阪電通大工 1. 東北大学未来科学技術共同研究センター, 2. (株) C & A, 3. 九大応力研, 4. 東北大金研

17p-PB04-1 15.2 II-VI族結晶および多 3/16(Thu.) 9:00 - 9:45 9:00 E 16a-D221-1 9:15 16a-D221-2 9:30 奨 16a-D221-3 15.3 III-V族エピタキシャ 3/15(Wed.) 16:00 - 18:0 15p-PA05-1 15p-PA05-3	ポスター講演 (Poster Presentation) PB 会場(Room PB) 混晶バルク SiGe 結晶の赤外特性		
3/16(Thu.) 9:00 - 9:45 9:00 E 16a-D221-1 9:15 16a-D221-2 9:30 奨 16a-D221-3 15.3 III-V族エピタキシャ 3/15(Wed.) 16:00 - 18:0 15p-PA05-2 15p-PA05-3		〇元升 康曾,椿治二,万野 住义,内田 戊爾,万阿 正巳 3 ,佐々木 慎吾 3 ,佐藤 康則 3 ,松村 億久 3 ,小八重 竹夫 3 ,川崎 拓也 3	1.宇宙機構, 2.トブコン, 3.ティーディーワイ
9:00 E 16a-D221-1 9:15 16a-D221-2 9:30 奨 16a-D221-3 15.3 III-V族エピタキシャ 3/15(Wed.) 16:00 - 18:0 15p-PA05-1 15p-PA05-2	元系結晶 / II-VI and related compounds		
9:30 獎 16a-D221-3 15.3 III-V族エピタキシャ 3/15(Wed.) 16:00 - 18:0 15p-PA05-1 15p-PA05-3	口頭講演 (Oral Presentation) D221会場 (Room D221) Effect of P-doping in ZnTe thin films grown by molecular	○ (D)Muhamad Mustofa¹, Katsuhiko Saito¹, Qixin	1.Saga Univ.
9:30 獎 16a-D221-3 15.3 III-V族エピタキシャ 3/15(Wed.) 16:00 - 18:0 15p-PA05-1 15p-PA05-3	beam epitaxy under alternating supply GaTe 粉末を用いた近接昇華法による AgGaTe。太陽電池	Guo ¹ , Tooru Tanaka ¹ 〇 PARK GUNWOOK ¹ , PARK JUHYEON ¹ , 小林 正	1 日十朱准理工 2 日十廿四
15.3 III-V族エピタキシャ 3/15(Wed.) 16:00 - 18:0 15p-PA05-1 15p-PA05-2 15p-PA05-3	の作製	和1.2	
3/15(Wed.) 16:00 - 18:0 15p-PA05-1 15p-PA05-2 15p-PA05-3	成長温度の制御による MBE 成長 SnTe 薄膜の結晶性と表面状態の改善	○蘇 楠¹, 郭 洪甫¹, 杉本 昂太¹, 川島 勇人¹, 小林 正 和¹²	1.早大先進理工, 2.早大材研
15p-PA05-1 15p-PA05-2 15p-PA05-3	ル結晶・エピタキシーの基礎 / III-V-group epitaxial crystals	s, Fundamentals of epitaxy	
15p-PA05-3	0 ポスター講演 (Poster Presentation) PA会場(Room PA) アンチモン被覆 GaP 表面への窒素原子取り込み様式の理	○大根 駿¹, 彦坂 昌志¹, 若原 昭浩¹, 山根 啓輔¹	1. 豊橋技科大
	論的解析 InSb/Ga _{0.22} In _{0.78} Sb複合チャネルHEMT構造の電気的特	○(B) 神内 智揮¹, 羽鳥 小春¹, 海老原 怜央¹, 尾曽 雅	1. 東理大先進工
	性 ダブルTe ドープ GaInSb HEMT 構造の電気的特性	宗¹, 河野 亮介¹, 遠藤 聡¹, 藤代 博記¹ ○尾曽 雅宗¹, 羽鳥 小春¹, 怜央 海老原¹, 神内 智揮¹,	1. 東理大先進工
15p-PA05-4		河野 亮介¹, 遠藤 聡¹, 藤代 博記¹	
	成長	光1	1. 電通大基盤理工
15p-PA05-5	二層積層InAs量子ドットへのキャッピングレート制御に よる発光長波長化	○奥野 光基¹, 祝出 航佑¹, 尾崎 信彦¹	1.和歌山大シスエ
15p-PA05-6	低温 MBE 成長 GaAsBi 層の光電評価	\bigcirc (M1) 梅田 皆友 1 ,今林 弘殼 1 ,塩島 謙次 1 ,梅西 達 哉 2 ,富永 依里子 2 ,行宗 詳規 3 ,石川 史太郎 3 4 ,上田 修 5	1.福井大院工, 2.広大先進理工, 3.愛媛大理工, 4.北大量 子集積, 5.明治大
15p-PA05-7	ガリウム酸化膜を利用して形成されるナノピットのサイ	12	1.日工大
3/16(Thu.) 9:30 - 11:45	ズ制御 口頭講演 (Oral Presentation) A205 会場(Room A205)		
9:30 16a-A205-1	MOVPE選択成長法によるウルツ鉱型InPフィン構造の 作製	〇東 佑樹 1 , 木村 峻 1 , 蒲生 浩憲 1 , 本久 順 $^{-1}$, 冨岡 克 $\dot{\Gamma}^{1}$	1.北大情報科学院
9:45 16a-A205-2	パターン開口 Si 加工基板を用いた MBE 法による GaAs	○中間 海音 ^{1,2} , 行宗 詳規 ³ , 峰久 恵輔 ^{1,2} , 肥後 昭男 ⁴ ,	1.北大情科院, 2.北大量集セ, 3.愛媛大工, 4.東大 d.lab
10:00 16a-A205-3			1.北大情報科学院, 2.北大量集セ, 3.愛媛大工
10:15 E 16a-A205-4		瑠³, 行宗 詳規³, 石川 史太郎 ^{1,2} ○ Ronel Intal Roca¹, Itaru Kamiya¹	1. Toyota Tech. Inst.
10:30	Nanostructures at the 2D-3D Transition 休憩/Break		
10:45 16a-A205-5	AlGaAs 横方向閉じ込め層による InAs/GaAs 量子ドット レーザ閾値電流の温度安定性向上	○角田 雅弘 ¹, Morais Natalia¹, 權 晋寛 ¹, 荒川 泰彦 ¹	1.東大ナノ量子
11:00 16a-A205-6		〇矢野 裕子 1 , 高宮 健吾 1 , 藤川 沙千恵 1 , 八木 修平 1 , 矢口 裕之 1 , 小林 真隆 2 , 秋山 英文 2	1. 埼玉大院理工, 2. 東京大物性研
11:15 16a-A205-7	(001)GaAs 基板上のGaAs _{1-x} Bi _x 薄膜の構造評価 (1) 熱処理	〇上田 修 1 , 池永 訓昭 2 , 堀田 行紘 3 , 高垣 佑斗 3 , 西山	1.明治大,2.金沢工大,3.広島大,4.愛媛大,5.北海道大
11:30 16a-A205-8	長したGaAs _{1-x} Bi _x 薄膜中の欠陥のTEM評価	文隆 3 , 行宗 詳規 4 , 石川 史太郎 5 , 富永 依里子 3 〇上田 修 4 , 池永 訓昭 2 , 堀田 行紘 3 , 高垣 佑斗 3 , 西山 文隆 3 , 行宗 詳規 4 , 石川 史太郎 5 , 富永 依里子 3	1. 明治大, 2. 金沢工大, 3. 広島大, 4. 愛媛大, 5. 北海道大
	D頭講演 (Oral Presentation) A301会場 (Room A301) 「第53回講演奨励賞受賞記念講演」 フレキシブル多接合太陽電池に向けた多結晶InGaAs近	〇西田 竹志 1.2, 未益 崇 1, 都甲 薫 1	1. 筑波大院, 2. 学振特別研究員
13:45 奨 16p-A301-2		○勝部 涼司¹, 今宿 晋², 鳴海 大翔¹, 安田 秀幸¹	1. 京大院工, 2. 東北大金研
14:00 16p-A301-3	の展開 希薄窒化物結晶の結合状態制御に向けた GaPN 混晶への	○(M2)平井 健登¹, 山根 啓輔¹, 若原 昭浩¹, 大島 武²,	1. 豊橋技科大, 2. 量研, 3. 宇宙研
14:15 16p-A301-4	電子線照射試験 InP/GaPN系Type-II量子ドット太陽電池構造の作製	中村 徹哉³, 今泉 充³ ○(M2) 有本 岳史¹, 若原 昭浩¹, 山根 啓輔¹	1. 豊橋技科大
	2段階成長InAsバッファを用いたGaAs基板上InAsSb/	〇本部 好記 1 , 中川 翔太 1 , 岩切 優人 1 , 前田 幸治 1 , 荒	
14:45 奨E 16p-A301-6		井 昌和¹ ○(D)Tauhidul Islam¹, Masashi Akabori¹	1.JAIST
15 / III_V 族密化物紅貝 / I	grown InAs/MnAs Hybrid Structure on GaAs (111)B III-V-group nitride crystals		
	口頭講演 (Oral Presentation) B401会場 (Room B401)		
9:45 15a-B401-1	窒素 RF バワー変化によるナノコラム結晶の GaInN バッファ層形状均一化の検討	○赤川 広海¹, 山田 純平².³, 山口 智広¹, 富樫 理恵².³, 尾沼 猛儀¹, 野村 一郎².³, 本田 徹¹, 岸野 克巳².³	1. 工学院大, 2. 上智大ナノテク, 3. 上智大理工
10:00 15a-B401-2			1.工学院大学, 2.量子科学技術研究開発機構, 3.立命館大学
10:15 15a-B401-3	スパッタ法による高濃度Mg添加p型InGaN薄膜の成長		1. 東大生研
10:30 15a-B401-4	と評価 立方晶 InN ナノワイヤの配向性制御に向けた下地 GaN 層の厚膜化	○芦部 蓮¹, 八木 修平¹, 矢口 裕之¹	1.埼玉大院理工
10:45 15a-B401-5 11:00 15a-B401-6	{11-22}面GaN基板上InGaN系マイクロレンズ構造にお	○藤澤 孝博¹, 江川 孝志¹, 三好 実人¹ ○松田 祥伸¹, 船戸 充¹, 川上 養一¹	1. 名工大 1. 京大院工
11:15 奨 15a-B401-7		○福重 翔吾¹, 松田 祥伸¹, 船戸 充¹, 川上 養一¹	1.京大工
3/15(Wed.) 13:00 - 18:0	向けた作製条件の検討 O 口頭講演 (Oral Presentation) B401会場(Room B401)		
13:00 15p-B401-1	スパッタ法による格子緩和InGaN層上赤色発光InGaN/ AlGaN/GaN量子井戸LEDの作製	○高山 明都¹, 上野 耕平¹, 小林 篤¹, 藤岡 洋¹	1.東大生研
13:15 15p-B401-2	自在な発光波長集積を目指したInGaN系多面体構造にお	〇梅本 隆之介 1 ,松田 祥伸 1 ,船戸 $ ilde{\mathbf{n}}^1$,川上 養一 1	1. 京大院工
13:30	ける局所的オフ角制御 成長温度を変化させた GaInN/GaN 超格子 (SL) を用いた 多重量子殻 LED の発光特性	井 詩織¹, 高橋 美月¹, 山中 優輝¹, 上山 智¹, 竹内 哲	1. 名城大学, 2. 廈門大学
13:45 E 15p-B401-4	Improvement of InGaN-based LEDs efficiency by current- blocking region realized via hydrogen passivation	也¹, 岩谷 素質¹ ○ (DC)Pavel Sergeyevich Kirilenko¹, Cesur Altinkaya¹, Daisuke Iida¹, Kazuhiro Ohkawa¹	1.King Abdullah Univ. of Science and Technology

14:00	E 15p-B401-5	High crystallinity N-polar InGaN layers grown on	○ (DC)Pavel Sergeyevich Kirilenko¹, Mohammed	1.King Abdullah Univ. of Science and Technology,
		ScAlMgO4 substrates cleaved along its c-plane	Najmi¹, Bei Ma², Artem Shushanian¹, Martin Velazquez-Rizo¹, Daisuke Iida¹, Kazuhiro Ohkawa¹	2.Chiba Univ.
	奨E 15p-B401-6	Fabrication of low-forward voltage red InGaN LEDs	○ (DC)Pavel Sergeyevich Kirilenko¹, Daisuke Iida¹, Kazuhiro Ohkawa¹	1.King Abdullah Univ. of Science and Technology
14:30 14:45	奨 15p-B401-7	休憩/Break ナノビラー型メタ表面を用いた円偏光InGaN発光素子の 設計	○鈴木 恭平 ¹ , 村田 雄生 ¹ , 市川 修平 ^{1,2} , 戸田 晋太郎 ^{1,3} , 毎田修 ¹ , 小島 一信 ¹	1. 阪大院工, 2. 阪大電顕センター, 3. アルバック協働研
15:00	奨 15p-B401-8			1. 阪大院工, 2. 阪大超高圧電顕センター, 3. アルバック 協働研
15:15	15p-B401-9	φ 2.2μm 発光径 InGaN 系ナノコラム LED の作製	〇水野 愛 ¹, 本田 達也 ¹, 山田 純平 ¹, 富樫 理恵 ¹.², 野村 一郎 ¹.², 岸野 克巳 ¹	
15:30	•	同一基板上に2つの活性層を持つ高集積なGaInN系モノリシック型 μ LED アレイ	好伸 1 , 小出 典克 1 , 岩谷 素顕 1 , 竹内 哲也 1 , 上山 智 1	
15:45		一括転写技術のためのマイクロLEDの中空構造形成技術 熱酸化プロセス温度がマイクロLEDの発光特性に与える	Alexander ² , 関口 寛人 ¹	1. 豊橋技大, 2.ALLOS 1. 豊橋技大, 2.ALLOS
16:15		影響 マイクロ流路を同時集積したマイクロLED神経プローブ	Alexander ² , 関口 寛人 ¹	1. 豊橋技大, 2.ALLOS
16:30	X 10p B101 10	の開発 休憩/Break	Alexander ² , 関口 寛人 ¹	I. Eligitati, standoo
16:45	奨 15p-B401-14	AlInN/GaN DBR のその場反射率スペクトル測定	〇小林 憲汰 1 , 長澤 剛 1 , 柴田 夏奈 1 , 竹内 哲也 1 , 上山 智 1 , 岩谷 素顕 1	1. 名城大理工
17:00		ITO 電極と $\mathrm{Nb_2O_5}$ スペーサ層を含む GaN 面発光レーザー 共振器長の制御	哲也1,上山智1,岩谷素顕1	
17:15	奨 15p-B401-16	Si基板上ELO-GaNを用いた100 μ m共振器GaN系端面 発光LDの新規作製技術	○宇佐川 元久¹,川口 佳伸¹,村川 賢太郎¹,古茂田 晶子¹,青木 優太¹,横山 毅¹,外村 瑞基¹,武内 一真¹,神 川 剛¹	1.京セラ
17:30	奨 15p-B401-17	GaN 光導波路電界印加型マッハツェンダ干渉計の構造検 討と作製		1. 阪大院工
17:45	•	GaN系トポロジカルフォトニック結晶の作製と可視全域 でのフォトニックバンド制御		1.上智大理工, 2.上智大フォトニクス研究センター, 3.上智大半導体研究所
3/16(9:00		口頭講演 (Oral Presentation) B401会場 (Room B401) テラヘルツ放射測定による GaN:Eu/GaN 超格子構造の障 壁エネルギーとキャリア輸送特性の評価	: ○村上 史和¹, 竹尾 敦志², 藤原 康文², 斗内 政吉¹	1.阪大レーザー研, 2.阪大院工
9:15	16a-B401-2	GaN-n ⁺⁺ -GaNストライプ構造による中赤外放射の角度依存性に基づく放射メカニズムの解明	○ 林 伯金 ¹, Hnin Lai Lai aye¹, 折戸 春樹 ¹, 上野 耕 平², 藤岡 洋², 三宅 秀人 ³, 石谷 善博 ¹	1. 千葉大院, 2. 東京大院, 3. 三重大院
9:30	16a-B401-3	フォトルミネッセンス法による窒化ガリウム中 Si ドナーの濃度定量		1.大分大工, 2. ミライズテクノロジーズ
9:45	E 16a-B401-4	Thermal energy transport in different alloys composition with Raman Scattering	○ (D)KhaingShwe TheeEi¹, Tomoya Nakayama¹, Tatsuya Asaji¹, Daisuke Iida², Mohammed A. Najmi², Ryota Kimura¹, Yuki Kikuchi¹, Kazuhiro Ohkawa², Yoshihiro Ishitani¹	1.Chiba Univ., 2.KAUST
10:00	16a-B401-5	時間分解二光子光電子分光法によるInGaN (0001) の表面キャリア寿命測定	〇市川 修平 $^{1.2}$, 松田 祥伸 3 , 道上 平士郎 1 , 毎田 修 1 , 船戸 充 3 , 川上 養 3 , 小鳥 一信 1	1.阪大院工, 2.阪大電顕センター, 3.京大院工
10:15	奨 16a-B401-6	休憩/Break 一軸性応力印加によるc面上InGaN量子井戸の偏光制御	 ○森恵人¹,山口敦史¹,大原真穂²,牧野智大²,幸田倫太郎²,濱口達史² 	1. 金沢工大, 2. ソニー
10:45	奨 16a-B401-7	ヘルムホルツ共鳴を利用したInGaN量子井戸の光音響・ 発光同時計測のS/N改善		1. 金沢工大
11:00	16a-B401-8	赤色発光 In _{0.35} Ga _{0.65} N/GaN 量子井戸のフォトルミネッセ ンス寿命	重英1	
11:15	E 16a-B401-9	Spatial- and time-resolved photoluminescence at high temperatures on green-emitting InGaN/GaN single quantum well grown on epitaxially laterally overgrown GaN	○ (D)Zhaozong Zhang¹, Ryota Ishii¹, Mitsuru Funato¹, Yoichi Kawakami¹	1.Kyoto Univ.
		口頭講演 (Oral Presentation) B401会場 (Room B401)		
13:00	招 16p-B401-1	「第13回化合物半導体エレクトロニクス業績賞(赤﨑勇 賞)受賞記念講演」 Naフラックス法を活用した大口径高品質 GaN 結晶育成	〇森 男介*	1. 阪大工
13:30	招 16p-B401-2	技術の創成と社会実装 「第1回ダイバーシティ&インクルージョン賞 女性研究 者研究奨励賞 受賞記念講演」	○久志本 真希¹	1.名大院工
14:00	招 16p-B401-3	未踏波長帯域深紫外レーザーダイオード 「第44回論文奨励賞受賞記念講演」 屈折率導波構造を適用した低閾値電流(~85 mA)の AlGaN系 UV-B LD	〇田中 隼也 1 , 荻野 雄矢 1 , 山田 和輝 1 , 小椋 怜旺 1 , 手良村 昌平 1 , 下川 萌葉 1 , 石塚 彩花 1 , 岩山 章 1,2 , 佐藤恒輔 3 , 三宅 秀人 2 , 岩谷 素顕 1 , 竹内 哲也 1 , 上山 智 1	1.名城大学 理工, 2.三重大学, 3.旭化成
14:15 14:30	招 16n-R/I01-/	休憩/Break 「第44回優秀論文賞受賞記念講演」	○飯田 大輔 ¹ , 庄 喆 ¹ , Kirilenko Pavel ¹ , Velazquez-	1 KAUST
15:00		高効率InGaN系赤色LED 「第44回優秀論文賞受賞記念講演」	Rizo Martin ¹ , 大川 和宏 ¹ ○市川 修平 ^{1,2} , 塩見 圭史 ¹ , 森川 隆哉 ¹ , 佐々木 豊 ¹ ,	
		Eu添加GaNおよびInGaN量子井戸のハイブリッド積層 による同一サファイア基板上フルカラーLEDの作製と室 温動作	Dolf Timmerman ¹ , 舘林 潤 ¹ , 藤原 康文 ¹	
15:30	招 16p-B401-6	「第53回講演奨励賞受賞記念講演」 発光スペクトルの電気制御を目指したInGaN系多波長発 光構造の設計と作製	〇松田 祥伸 ¹ , 宮脇 啓嘉 ¹ , 船戸 充 ¹ , 川上 養一 ¹	1. 京大院工
15:45	16p-B401-7	過渡吸収測定によるInGaNナノコラムにおける歪緩和効 果の検証	〇大音 隆男 1 , 江目 宏樹 1 , 千葉 貴之 2 , 石沢 峻介 3 , 富 樫 理恵 3,4 , 岸野 克巳 4	1.山形大院理工, 2.山形大院有機, 3.上智大理工, 4.上智 大ナノテク
16:00 16:15	16p-B401-8	休憩/Break Experimental demonstration of the three-phase level Fresnel zone plates for deep-ultraviolet light-emitting	○韋 霊傑¹, 井上 振一郎¹	1. 情報通信研究機構
16:30	16p-B401-9	diodes 水素雰囲気異方性熱エッチング(HEATE)法による GaN ナノホールの加工特性	〇本多 卓人 1 ,米田 幸司 1 ,相川 健喜 1 ,倉邉 海史 1 ,秋 元 弥賴 1 ,菊池 昭彦 1,2,3	1.上智大理工,2.上智大フォトニックセンター,3.上智大半導体研究所

16:45	16p-B401-10	発光分光分析計を用いたエッチングプロセスにおける Eu 添加 GaN層の終点検知	○佐藤 陽子¹, 紺野 象二郎¹, 本山 敦史¹, 横井 雅樹¹, 松濱 誠², 市川 修平³, 宮永 和恒³, 神崎 伯夫³, 藤原 康 文³	
17:00	16p-B401-11	ヨウ化水素(HI)中性粒子ビームを用いたInGaN加工特性		1. 東北大流体研, 2. 産総研, 3. 名大 IMaSS, 4. 昭和電工, 5.NYCU
17:15	16p-B401-12	± c GaN極性面のアルカリ溶液選択エッチングに関する 理論計算		1. 物材機構, 2. 理研 AIP
17:30	•	アルカリ溶液を用いた多結晶窒化ガリウムのウェット エッチング	○高山 大希¹, 辻 幸洋¹, 中田 健¹, 牧山 剛三¹	1.住友電工
3/17(9:00		口頭講演 (Oral Presentation) B401 会場 (Room B401) ナノバターングラフェンマスクを用いた r面サファイア 基板上での a面 GaN マイクロチャンネルエピタキシーに 与える成長温度の効果	\bigcirc (M2) 加藤 雄騎人 1 , 野々垣 誠望 1 , 丸山 隆浩 1 , 成塚 重弥 1	1.名城大理工
9:15	奨 17a-B401-2	ScAlMgO ₄ 基板上 GaN の RF-MBE 成長における準安定相 混在の抑制	〇和田 邑 $-^1$, 黒田 悠弥 1 , 後藤 直樹 1 , 久保 祐太 1 , 出浦 桃子 2 , 藤井 高志 1 , 毛利 真一郎 1 , 荒木 努 1	1. 立命館大理工, 2.R-GIRO
9:30		AlN/n-SiC 高倍音バルク音響共振器の高周波動作	〇黒子 めぐみ 1 , 畑中 大樹 1 , 太田 竜 $-^1$, 山口 浩司 1 , 谷保 芳孝 1 , 岡本 創 1	
9:45	17a-B401-4	スパッタ法でエピタキシャル成長させたScAIN薄膜の特性評価 体類/Parak	〇小林 篤', 前田 拓也', 本田 善央', 上野 耕平', 藤岡 洋 ¹	1. 東大生研, 2. 東大院工, 3. 名大未来研
10:00 10:15	招 17a-B401-5	休憩/Break 「分科内招待講演」 BGaN半導体を用いた新奇中性子検出器の開発	〇中野 貴之 ^{1,2} , 青木 徹 ^{1,2}	1. 静大電研, 2. 静大院
10:45	17a-B401-6	陰極線励起による単層六方晶BNのバンド端発光の観測	〇嶋 紘平¹, Cheng Tin², Mellor Christopher², Beton Peter², Elias Christine³, Gil Bernard³, Cassabois Guillaume³, Novikov Sergei², 秩父 重英¹	1.東北大多元研, 2.ノッティンガム大, 3.CNRSモンベ リエ大
11:00	17a-B401-7	炭素フリー原料を用いてサファイア基板上に CVD 成長させた hBN 薄膜の発光ダイナミクス		1. 東北大多元研, 2. 静大電子研/創造科学院
11:15		マグネトロンスパッタリング法によるc-BN薄膜のエピ タキシャル成長	○平間 一行¹, 谷保 芳孝¹, 熊倉 一英¹	1.NTT物性研
2/17/6		MBEによる Cu(111) バッファ層を用いたサファイア基板 上BN 成長 口頭講演 (Oral Presentation) B401 会場 (Room B401)	籾山 貴 1 , 小豆畑 敬 1 , 中澤 日出樹 1 , 廣木 正伸 2 , 熊倉 一英 2 , ○小林 康之 1	1. 弘前大学, 2.NTT 物性基礎研
3/17(F 13:15		山蜆繭演 (Ural Presentation) B401 会場 (Room B401) AlGaN下地高品質化によるAlGaN系 UV-Bレーザーダイオードの特性向上	○(B) 井本 圭紀¹, 長谷川 亮太¹, 薮谷 步武¹, 服部 光 希¹, 近藤 涼輔¹, 西林 到真¹, 松原 衣里¹, 榊間 隆一郎¹, 山田 凌矢¹, 岩山 章¹², 岩谷 素顕¹, 竹内 哲也¹, 上山 智¹, 三宅 秀人²	1.名城大·理工, 2.三重大·院·工
13:30	奨 17p-B401-2	飽和蒸気圧水で AIN を処理することにより形成された変質層の解析		
13:45	奨 17p-B401-3	飽和蒸気圧水処理でAINを処理することによって形成される変質層の結晶面依存性		
14:00	奨 17p-B401-4	飽和蒸気圧水を用いたリフトオフプロセスによる縦伝導 AlGaN系 UV-Bデバイスの検討		1.名城大理工, 2.三重大院, 3. ウシオ電機
14:15	奨 17p-B401-5	AlGaN系 UV-B LD のキャリア注入効率向上に向けたp層 側構造の検討		1.名城大・理工, 2.三重大・院・工, 3. ウシオ電機
14:30 14:45	17p-B401-6	休憩/Break 【注目講演】スパッタアニールAINを用いた波長230 nm	○ F 杉 謙 宏郎 ^{1,2} 古田 終 亚 ^{3,4}	1 三重七井創機構 2 三重七陰地械イノベ 3 阪七陰工
14.43	17p-B401-0	帯UV-LEDの開発		4. 阪大電類センター, 5. 三重大院工, 6. 東大生研, 7. スタンレー電気
15:00	17p-B401-7	スパッタアニール AIN テンプレート上 AIGaN 薄膜の局在 発光特性の評価	〇市川 修平 $^{1.2}$, 上杉 謙次郎 $^{3.4}$, 齊藤 一輝 1 , 肖 世玉 5 , 正直 花奈子 $^{1.5}$, 中村 孝夫 $^{5.6}$, 毎田 修 1 , 三宅 秀人 5 , 小 島 一信 1	
15:15	17p-B401-8	280 nm帯AlGaN量子井戸LEDの劣化機構に関する考察		1. 東北大多元研, 2. 豊田合成, 3. 名城大理工
15:30	17p-B401-9	ドープ・高 Al 組成 (x > 0.8) Al GaN の電流による p 型活性化	○前田 哲利¹, 祝迫 恭², 平山 秀樹¹	1. 理研, 2. 日本タングステン
15:45 16:00	17p-B401-10	休憩/Break 265 nm 発光バルク AIN 基板上 AIGaN 量子井戸の内部量 ス物点と発光表合の温度体を使(10,500 K)	○田中 志樹¹, 石井 良太¹, 船戸 充¹, 川上 養一¹	1. 京都大学
16:15	17p-B401-11	子効率と発光寿命の温度依存性 (10-500 K) 230 nm 発光 AlGaN 量子井戸構造における偏光特性の温 度依存性	姫野 邦夫¹, 稲井 滉介¹, 谷 海智¹, 林 拓誠¹, ○室谷 英 彰², 倉井 聡¹, 岡田 成仁¹, 上杉 謙次郎³.⁴, 三宅 秀人⁵, 山田 陽一¹	1.山口大院・創成科学, 2.徳山高専, 3.三重大・共創機権 4.三重大院・地域イノベ, 5.三重大院・エ
16:30	17p-B401-12	利得スイッチ駆動させた青紫色 GaN 系半導体レーザからの 短パルス光の偏光多重とピークパワーの増強	山田 陽一 ¹ ○間測 勇多 ¹ , 太田 翔也 ¹ , 鈴木 晴道 ¹ , 今井 大地 ¹ , 宮 嶋 孝夫 ¹	1. 名城大理工
16:45	17p-B401-13	光熱偏向分光法によるAl _{1-x} In _x N.混晶薄膜のギャップ内光 吸収過程評価		
17:00	奨 17p-B401-14	直接遷移型半導体自立結晶における外部量子効率と自己 吸収の関係		1. 阪大工
17:15	17p-B401-15	GaN/AIN量子井戸における励起子ダイナミクスのフォノン・励起子・輻射モデルによる解析	\bigcirc (D) 地崎 匡哉 1 , 大木 健輔 1 , 石谷 善博 1	1. 千葉大院工
3/17(F		ポスター講演 (Poster Presentation) PB 会場(Room PB) 誘電体薄膜と紫外レーザー照射による InGaN/GaN 量子		1. 阪公大工, 2. 京大院工
	17p-PB07-2	井戸の高効率発光 c面活性層を持つInGaN/GaNナノコラム構造の検討	船户 允°,川上 養一°, 岡本 晃一° ○赤坂 康一郎¹,石沢 峻介¹,両角 浩一¹,赤塚 泰斗¹, 中川 洋平¹,野田 貴史¹,岸野 克巳²	1.セイコーエプソン(株), 2.上智大ナノテク

	17p-PB07-4	発光径Φ5μmのナノコラム発光デバイスの作製		1.上智大ナノテク, 2.上智大理工, 3.工学院大先進工
	17n-PB07-5	機械学習を用いた GaN:Euナノワイヤの底面積予測に関	昂司 ² , 富樫 理恵 ^{1,2} , 野村 一郎 ^{1,2} , 山口 智広 ³ , 本田 徹 ³ , 岸野 克巳 ¹ ○松山 健人 ¹ 太田原 崇也 ² 北村 恭子 ^{1,2} 館林 潤 ^{2,3}	1.京都工繊, 2.阪大院工, 3.量子情報・量子生命研究セ
	,	する研究	藤原 康文2	ンター
	17p-PB07-6	生体光刺激のためのマイクロ LED プローブへの生体保護 コーティング	○岡田 章吾 ¹ , 大屋 翔 ¹ , 安永 弘樹 ¹ , 西川 敦 ² , Loesing Alexander ² , 関口 寛人 ¹	1. 豊橋技大, 2.ALLOS
	17p-PB07-7	2段階ウェットエッチング法における陽極酸化n-GaNの電気伝導特性の通電時間依存性		1. 東京工科大工, 2. 東大生研
	17p-PB07-8	リセス構造形成による AlGaN/GaN構造の電気特性変化	〇木村 充晃¹, 高橋 智秀¹, 鶴巻 綾¹, 神尾 岳¹, 藤岡 洋². 前田 就彦¹	1. 東京工科大工, 2. 東大生研
	17p-PB07-9	Bイオン注入法を用いた針型マイクロLEDアレイの作製		1. 豊橋技大, 2.ALLOS
	17p-PB07-10	in-situアニールを用いたBGaN中性子検出器の評価	() (M1) 橋本 優作 ¹ , 夏目 朋幸 ¹ , 西川 瞬 ¹ , 川崎 晟也 ² , 者林 源一郎 ³ , 本田 善央 ⁴ , 天野 浩 ⁴ , 井上 翼 ¹ , 青木 徹 ⁵ , 中野 貴之 ^{1,5}	
	17p-PB07-11	高密度収束プラズマスパッタリング装置を用いて作製した窒化ガリウム薄膜の結晶性への放電パルス長の影響	○ (B) 御園 樹 ¹ , 本村 大成 ² , 奥山 哲也 ¹ , 上原 雅人 ² , 田原 竜夫 ² , 工藤 昌輝 ³	1. 久留米高専, 2. 産総研, 3. 九大
	17p-PB07-12	m面サファイア基板上でのGa吸着原子の表面拡散距離の グラフェン層数依存性	○(M1) 横井 稜也¹, 加藤 雄騎人¹, 野々垣 誠望¹, 丸 山 隆浩¹, 成塚 重弥¹	1. 名城大理工
	E 17p-PB07-13	Growth and Self-Separation of HVPE GaN on Sapphire Substrates Using Patterned Graphene buffer Layer	○Jeong JinWoo ¹ , Gyeongyeol Jo ¹ , Jinho Lee ¹ , Taejun Chang ¹ , Young-Zo Yoo ¹ , Roy Byung Kyu Chung ²	1. Jinhwa metal Co., Ltd, 2. Kyungpook National Univ.
	17p-PB07-14	THz-TDSEでの特性インピーダンスを用いた解析モデルによる ScAlMgO $_4$ 基板上 GaN 薄膜の非破壊・非接触電気	○渡邉 迅登¹, 王丁丁¹, 黒田 悠弥¹, 後藤 直樹¹, 藤井	1.立命館大理工, 2.R-GIRO, 3.PNP
	17p-PB07-15	特性評価の検討 THz-TDSEによるMg イオン注入したGaN単結晶の電気		1. 立命館大理工, 2.R-GIRO, 3. 日邦プレシジョン, 4. イオンテクノセンター
3/18(Sat.) 9:00 - 11:30	特性評価 口頭講演 (Oral Presentation) B401 会場(Room B401)	本	オンテクノセンダー
9:00	奨 18a-B401-1	アンモニアを用いた Face to face アニールによる InGaN の平坦性の改善	〇中田 敦士 1 ,俵迫 湧也 1 ,佐々木 彩乃 1 ,倉井 聡 1 ,岡 田 成仁 1 ,山田 陽 1	
9:15	18a-B401-2	リモートエピタキシーを目指した RF-MBEによる GaN の 低温成長	○野々垣 誠望 1 ,加藤 雄騎人 1 ,長村 皓平 1 ,横井 稜 也 1 ,丸山 隆浩 1 ,成塚 重弥 1	1. 名城大理工
9:30	18a-B401-3	偏光制御されたピコ秒レーザを用いた窒化ガリウムのパ ルスレーザ成膜	〇児玉 和樹 1 , 宮地 光彦 2 , 小田 修 1 , 堀 勝 1 , 上田 大 助 1	1.名古屋大, 2.アルファシステム
9:45	18a-B401-4	DCパルススパッタリング法による GaN の選択成長	○長谷川 大輔 1 , 本田 達也 1 , 上山 智 2 , 高橋 伸明 3 , 三浦 仁嗣 3 , 上向井 正裕 1 , 谷川 智之 1 , 片山 竜二 1	1.阪大院工, 2.名城大, 3.東京エレクトロン
10:00	18a-B401-5	Si含有GaNターゲットを用いたn型GaN薄膜の作製と評価		1.東ソー株式会社
10:15 10:30	18a-B401-6	休憩/Break GaN基板上GaNのMOVPE成長の表面モフォロジーと		
10:45	奨 18a-B401-7	キャリア濃度の相関 バルク GaN の低温最高移動度の更新:14300cm²/Vs	○金木 奨太¹, 今野 泰一郎¹, 木村 健司¹, 鐘ヶ江 一	VBL, 4.名大・赤崎記念研究センター 1.住友化学, 2.京大院工, 3.名大院工, 4.名大未来研
11:00	奨 18a-B401-8	OVPE法による GaN 超高速成長における水素分圧の影響		1. 阪大院工, 2. バナソニックホールディングス(株), 3. 阪大レーザー研, 4. 伊藤忠プラスチックス(株), 5. (株) 創風應心
11:15	奨 18a-B401-9	光ニードル顕微鏡法を用いたGaN結晶内転位の3次元可 視化における球面収差補正と空間分解能の評価		
3/18(S 13:00		口頭講演 (Oral Presentation) B401会場(Room B401) 多層極性反転 AIN 構造を用いた横型 QPM 導波路の設計	○本田 啓人 ¹ , 百崎 怜 ¹ , 玉野 智大 ² , 正直 花奈子 ^{1,3} , 三宅 秀人 ³ , 上向井 正裕 ¹ , 谷川 智之 ¹ , 片山 竜二 ¹	1.阪大院工, 2. 三重大工, 3. 三重大院工
13:15	18p-B401-2	マルチ・スパッタアニール法による多層極性反転 AlN 構造の作製		
13:30 13:45	18p-B401-3 18p-B401-4	RF-MBE法を用いたAIN成長のV/III比依存性 ビラー形成AINテンプレート上へのHVPE法によるAIN 厚膜成長	○河上 結馬¹, 杢谷 直哉¹, 出浦 桃子², 荒木 努¹	1.立命館大理工, 2.R-GIRO 1.三重大院工, 2.名城大理工, 3.三重大共創機構, 4.三重 大院地域イノベ
14:00	18p-B401-5	キンクおよびステップを含む AIN(0001) 表面の構造安定 性および吸着・脱離の挙動に関する理論的検討	○秋山 亨¹, 河村 貴宏¹, 伊藤 智徳¹	1.三重大院工
14:15	18p-B401-6	フラックス法による窒化アルミニウム単結晶育成 体類 /Perole	○川崎 克己¹, 大井戸 敦¹	1.TDK
14:30 14:45	18p-B401-7	休憩/Break 低ピット密度半極性r面 AlGaN 薄膜の低圧 MOVPE成長	○赤池 良太¹,船戸 充¹,川上 養一¹	1.京大院工
15:00	奨 18p-B401-8	超高温MOVPEを用いた AlGaN 成長	〇富田 敦之 1 , 宮川 拓己 1 , 平山 秀樹 2,3 , 髙島 祐介 1,2 , 直井 美貴 1,2 , 永松 謙太郎 1,2	1. 徳島大理工, 2. 徳島大pLED研, 3. 理研
15:15	奨 18p-B401-9	スパッタ法による高 Al 組成 $Al_xGa_{1:x}N$ への高濃度縮退 n 型ドーピング	\bigcirc (M2) 西川 祐人 1 , 前田 亮太 1 , 上野 耕平 1 , 小林 篤 1 , 藤岡 洋 1	1. 東大生研
15:30	18p-B401-10	N面 AlGaN/AlN構造の中間層最適化による電気 特性の改善	〇宮本 弥風¹, 松村 航¹, 奥野 椋¹, 松田 駿佑¹, 花咲 光 基¹, 小脇 岳土¹, 稲原 大輔¹, 倉井 聡¹, 岡田 成仁¹, 山田 陽一¹	1.山口大院・創成科学
15:45	18p-B401-11	AIN/AIGaN ヘテロ界面に誘起される 2次元電子ガスマル チチャネル構造の作製と評価	○小坂 鷹生¹, 上野 耕平¹, 小林 篤¹, 藤岡 洋¹	1. 東大生研
16:00	18p-B401-12	分極ドープ組成傾斜 AlGaN 構造形成による 3 次元電子スラブの生成	○廣木 正伸¹, 谷保 芳孝¹, 熊倉 一英¹	1.NTT物性研
16:15	奨 18p-B401-13	p型分極ドープAlGaN層中における正孔移動度の制限要 因	〇隈部 岳曜 1 ,川崎 晟也 1 ,渡邉 浩崇 2 ,本田 善央 2 ,天 野 浩 2,3	1. 名大院工, 2. 名大 IMaSS, 3. 名大 VBL
		計 / Group IV crystals and alloys		
3/15(W		ポスター講演 (Poster Presentation) PA 会場 (Room PA) X線逆格子空間マッピングによる方位が異なるカーボン	○広沢 一郎 ^{1,2} , 吉岡 和俊 ^{2,3} , 渡辺 剛 ⁴ , 横川 凌 ^{2,3} , 小	
	E 15p-PA06-2	ドープシリコンナノワイヤ格子歪分布の検討 Formation of SiO ₂ Layer on SiGe/Si Nano-structures using Plasma-enhanced Atomic Layer Deposition	椋厚志 ^{2,3} ○JIALUN CAI ¹ , NORIYUKI TAOKA ¹ , KATSUNORI MAKIHARA ¹ , AKIO OHTA ¹ , SEIICHI MIYAZAKI ¹	3.明治大理工, 4.高輝度光科学研究センター 1.Nagoya Univ.
	<u> </u>	Ge-on-Si(111) 上の歪み SiGe/Ge 多重量子井戸形成におけるクラック発生の抑制	〇金澤 伶奈¹, 我妻 勇哉¹, 菊岡 柊也¹, 杉浦 由和¹, 山 田 道洋³.⁴, 浜屋 宏平².⁴.⁵, 澤野 憲太郎¹	基礎工 CSRN, 5. 阪大 OTRI
	15p-PA06-4	Gd₂O₃-on-Si(111) 上へのSiGe/Ge ヘテロ構造の形成と評価	○杉本 翔悟', 我妻 勇哉', 井上 貴裕', 徐 学俊', 澤野 憲太郎 ¹	1. 果京都巾大総研, 2.NTT 物性研

		口頭講演 (Oral Presentation) D511会場 (Room D511)	O#5 E#1 57 401 EX + 201	1 1 1 2 2 2 1 12 17
0:00 0:15		絶縁基板上におけるSn添加Si薄膜の固相成長特性 Si基板上GeSn細線のレーザー溶融結晶化と光学特性評	○花房 佑樹¹, 岡本 絋汰¹, 佐道 泰造¹ ○近藤 優聖¹, 田淵 直人¹, 國吉 望月², 小林 拓真¹, 志	1.九大システム情報 1.阪大院工 2.アルバック協働研
		価	村 考功¹, 渡部 平司¹	
30		Optical properties of highly strained n-Ge films grown by CW laser annealing	Tatsuro Maeda³, Naoki Fukata¹, ²	1.NIMS, 2.Univ. of Tsukuba, 3.AIST
:45	16a-D511-4		〇居倉功汰¹,前田真太郎¹,石山隆光¹,末益崇¹,都 甲薫¹	
0:00		高速薄膜トランジスタに向けた GeSn 極薄膜の選択的核 生成	〇前田 真太郎 1 ,石山 隆光 1 ,茂藤 健太 2 ,山本 圭介 2 ,末益 崇 1 ,都甲 薫 1	
0:15	16a-D511-6	固相成長法による $Si(001)$ 基板上の伸長歪み $Ge_{1-x}Sn_x$ 薄膜の形成	〇平出 達磨 1 , 大岩 樹 1 , 柴山 茂久 1 , 坂下 満男 1 , 中塚 理 1,2 , 黒澤 昌志 1	1.名大院工, 2.名大未来研
0:30	16a-D511-7	非晶質 Ge/Mg/SiO₂積層構造の固相成長	\bigcirc (B) 森本 敦己¹, 平井 杜和¹, 高細工 彩斗¹, 小嶺 龍生¹, 高倉 健一郎¹, 角田 功¹	1.熊本高専
0:45	16a-D511-8	Al/Si _{0.2} Ge _{0.8} (111) 構造の熱処理による Si および Ge の表面 偏析	\bigcirc (M1) 酒井 大希 1 , 松下 圭吾 1 , 大田 晃生 1 , 田岡 紀 之 1 , 牧原 克典 1 , 山本 裕司 2 , 宮崎 誠一 1	1.名大院工, 2.IHP
1:00	E 16a-D511-9	Temperature dependence of GeS crystallization by vapor transport method	○ (P)Qinqiang Zhang¹, Ryo Matsumura¹, Naoki Fukata¹	1.NIMS
1:15	16a-D511-10	SiO₂上への極薄ニッケルシリサイド膜形成 -Si/Ni/Si初期構造における膜厚依存性-	〇木村 圭佑 1 ,田岡 紀之 1 ,西村 駿介 1 ,大田 晃生 1 ,牧 原 克典 1 ,宫崎 誠一 1	1.名大院工
3/16(⁻ 3:30		□頭講演 (Oral Presentation) D511会場 (Room D511) 「第44回論文奨励賞受賞記念講演」 熱電発電応用に向けたエピタキシャルGeH薄膜/Geの作 製と伝熱特性	〇上松 悠人 1 , 寺田 吏 1 , 佐藤 健人 1 , 石部 貴史 1 , 中村 芳明 1	1. 阪大院基礎工
3:45	16p-D511-2	半絶縁性基板上 Ge _{1-x} Sn _x 薄膜の低温熱電物性	今井 志明¹, 中田 壮哉¹, 木村 公俊², 片瀬 貴義², 神谷 利夫², 柴山 茂久¹, 坂下 満男¹, 中塚 理¹³, ○黒澤 昌 志¹	1.名大院工, 2.東工大フロ研, 3.名大未来研
4:00	奨 16p-D511-3	高濃度 n 型ドープ $Si_{1-x}Sn_x$ 薄膜で観測された巨大熱電能	〇大岩 樹 1 , 柴山 茂久 1 , 坂下 満男 1 , 中塚 理 1,2 , 片瀬 貴義 3 , 黒澤 昌志 1	1.名大院工, 2.名大未来研, 3.東工大フロ研
4:15		強磁性ホイスラー合金 Co ₂ FeSi 上への Ge エピタキシャル成長における Sn 添加の効果	○(M1)楠本 修平 ¹ ,山田 道洋 ^{2,3} ,山田 敦也 ¹ ,我妻 勇 哉 ⁴ ,澤野 憲太郎 ⁴ ,浜屋 宏平 ^{1,3,5}	4. 都市大総研, 5. 阪大 OTRI
4:30	16p-D511-5	高 Sn 組成 $Ge_{1-x}Sn_x(111)$ エピタキシャル薄膜の高品質形成	〇森 俊輔 1 ,柴山 茂久 1 ,加藤 芳規 2 ,坂下 満男 1 ,黒澤 昌志 1 ,中塚 理 $^{1.3}$	1.名大院工, 2.名大工, 3.名大未来研
4:45	E 16p-D511-6	Tensile lattice strain in embedded wire structures of Ge grown on Si substrate	○ (M1)JOSHUA CHOMBO¹, Bin Amin Mohd Faiz¹, Takeshi Hizawa¹, Jose A. Piedra-Lorenzana¹, Mingjun Jiang², Donghwan Ahn², Kazumi Wada³, Yasuhiko Ishikawa¹	1.Toyohashi Univ. Tech., 2.Kookmin Univ., 3.MIT
:00	E 16p-D511-7	CVD growth of Ge epitaxial layer on patterned Si substrate (2)	○ (M2) FAIZ FAIZ MOHD¹, Jose A. Piedra- Lorenzana¹, Takeshi Hizawa¹, Tetsuya Nakai², Yasuhiko Ishikawa¹	1.Toyohashi Uni of Tech, 2.SUMCO
5:15	•	歪み SiGe/Ge 量子井戸 LED のダイオード特性と室温 EL 発光	田 道洋 3.4, 浜屋 宏平 2.4.5, 澤野 憲太郎 1	基礎工 CSRN, 5. 阪大 OTRI
5:30	•	Ge-on-Insulator(111) 構造の作製におけるレーザーマーカを用いたエッチングレート向上の効果	〇高松海夕 ¹ , 我妻 勇哉 ¹ , 櫻井 優一 ¹ , 佐野 汐音 ¹ , 澤 野憲太郎 ¹	
5:45	•)PL法及びラマン分光法による3次元自己組織化多層SiGe ナノドットの評価	司 ³ , 寿川 尚 ¹ , 小椋 厚志 ^{1,2}	1.明治大理工, 2.明大MREL, 3.IHP
6:00	*	1 バルクSiGeを用いた無歪ラマンシフト全振動モードの導出 / Group IV Compound Semiconductors (SiC)	○傾川 後 ¹¹ ,寿川 向 ,柴山 俗頁 ,元升 康曾 ,木水 一郎 ⁴ ,小椋 厚志 ^{1,2}	1. 明大理工, 2. 明大 MREL, 3.JAXA, 4. 果北大字
		口頭講演 (Oral Presentation) A301会場 (Room A301)		
9:30	奨 15a-A301-1	電子線照射により形成した4H-SiC中シリコン空孔の荷電状態とドービング濃度の関係	〇張 盛杰 1,2 , 佐藤 真一郎 1 , 村田 晃 3 , 花輪 雅史 3 , 元木 秀 2,1 , 張 啓航 1,2 , 土田 秀 $^{-3}$, 土方 泰斗 2 , 大島 武 1	1. 量研, 2. 埼玉大院, 3. 電中研
9:45	奨 15a-A301-2	電子線照射による4H-SiC中窒素・空孔複合欠陥の高濃 度形成	○張 啓航 ^{1,2} , 佐藤 真一郎 ² , 村田 晃一 ³ , 花輪 雅史 ³ , 元木 秀 ^{1,2} , 張 盛杰 ^{1,2} , 土田 秀一 ³ , 土方 泰斗 ¹ , 大鳥 武 ²	1. 埼玉大院, 2. 量研, 3. 電中研
0:00	奨 15a-A301-3	SiO ₂ /SiC界面発光中心密度と電気的特性の相関	〇中沼 貴澄 1 , 田原 康佐 2 , 木村 大至 2 , 朽木 克博 2 , 志 村 考功 1 , 渡部 平司 1 , 小林 拓真 1	1. 阪大院工, 2. 豊田中研
0:15	奨 15a-A301-4	偏光観察による SiC 基板中の貫通混合転位の識別	○松原 康高¹, 村山 健太², 原田 俊太¹	1.名古屋大学, 2.Mipox
0:30	15a-A301-5	集光した偏光レーザーを用いたSiC内部の転位の3次元 観測	佐藤 寿弥¹, 加藤 智久², 原田 俊太³, ○加藤 正史¹	1. 名工大, 2. 産総研, 3. 名大
0:45	15a-A301-6	光学検査手法、フォトルミネッセンス法、X線トポグラフ法による3チャンネルSiCエピタキシャル層欠陥検出	○先崎 純寿¹, 西野 潤一¹, 小山内 努¹, 山口 浩¹	1. 産総研
1:00	15a-A301-7	技術開発 4H-SiC中の単一ショックレー型積層欠陥の拡張速度に与	○西尾 譲司¹,太田 千春¹,飯島 良介¹	1.東芝研開センター
1:15	奨 15a-A301-8	える基底面転位構造の影響 150 mm 径厚膜 SiCエピタキシャルウエハの反り・基底面		1. 電中研, 2. レゾナック
3/15/1	Wed) 13·00 - 16·40	転位の評価 i 口頭講演 (Oral Presentation) A301会場(Room A301)	雄一郎 ² , 土田 秀一 ¹	
3:00		SiC溶液成長法におけるパレート解に影響を与えるパラメータの考察	○霜田 大貴 ¹ , 沓掛 健太朗 ^{2,3} , 原田 俊太 ^{1,3} , 田川 美穂 ^{1,3} , 宇治原 徹 ^{1,3}	1. 名大院工, 2. 理研 AIP, 3. 名大未来研
3:15	15p-A301-2	メータの考察 SiC溶液成長における粘度が流体分布、温度分布および 成長速度に与える影響		1.名大院工, 2.名大未来研, 3.理研AIP
3:30	15p-A301-3	SiC溶液成長における炭素拡散場を介したステップ相互		1. 名大院工, 2. 理研AIP, 3. 名大未来研
3:45	15p-A301-4	作用の解析 SiC 溶液成長におけるマクロステップ高さがインクルー	○深見 勇馬¹, 周 惠琴¹, 竹本 玖生¹, 黨 一帆¹, 原田 俊	1.名大院工
4:00	奨 E 15p-A301-5	ジョン形成に及ぼす影響 Analysis of the Effect of Solvent Composition on Suppression of Inclusion in SiC Solution Growth by Phase Field Method	太¹, 田川 美穂¹, 宇治原 徹¹ ○ HUIQIN ZHOU¹, Yuma Fukami¹, Hisaki Takemoto¹, Yifan Dang¹, Miho Tagawa¹², Shunta Harada¹¹², Toru Ujihara¹¹²	1.Grad. Sch. Eng. Nagoya Univ., 2.IMaSS, Nagoya Uni
4:15	招 15p-A301-6	「第44回優秀論文賞受賞記念講演」 高温ガス法による高速4H-SiCバルク結晶成長における転 位密度低減	〇星乃 紀博 1 , 鎌田 功穂 1 , 神田 貴裕 2 , 徳田 雄一郎 2 ,	1. 電中研, 2. ミライズテクノロジーズ
4:45 5:00	奨 15p-A301-7	休憩 /Break 熱酸化処理を施した高純度半絶縁性 SiC 基板上 n 型およ	○金 祺民¹, 具 燦淳¹. 金子 光顕¹. 木本 恒暢¹	1.京大院工
-		びp型イオン注入層の電気的性質		·

15:15				
	奨 15p-A301-8	トランジスタ構造を用いて導出した4H-SiCの真性キャリア密度	○浅田 聡志¹, 村田 晃一¹, 土田 秀一¹	1.電中研
15:30	15p-A301-9		〇妹川 要 1 , 納富 良 $-^{1}$, 宇佐見 康維 1 , 保原 \mathbb{Z}^{2} , 長谷 川 修司 2	1. ギガフォトン(株), 2. 東京大学
15:45	15p-A301-10	Si面3C/4H-SiCへテロ接合のホール特性評価	○佐沢 洋幸¹, 窪谷 茂幸¹, 梅沢 仁¹, 加藤 智久¹, 田中保官¹	1. 産総研 ADPERC
16:00	15p-A301-11		○(B)水野 大誠¹, 小寺 慶太¹, 秋吉 翔太¹, 岩谷 素	1.名城大理, 2.Xianmen Univ., 3.Technical University o
16:15	15p-A301-12	件の検討 多枚数近接昇華(MCSS)法によりエピタキシャル成長	,	Denmark 1.株式会社 CUSIC, 2.山形大工, 3. ドライケミカルズ
16:30	15p-A301-13	した 4H-SiC の特性 4H-SiC on-axis エピタキシャル成長における 3C インク	○升本 恵子¹, 児島 一聡¹, 田中 保宣¹	1. 産総研
		ルージョンの発生と基板の螺旋転位密度の関係 ポスター講演 (Poster Presentation) PA会場(Room PA)		
3/10(1	,	第一原理計算による余剰電子・ホールがSiC結晶多形、 積層欠陥の構造安定性に与える影響の基礎検討	○榊間 大輝¹, 泉 聡志¹	1.東大工
		4H-SiC基板表面におけるステップアンバンチング現象		1.名大院工
	*	4H-SiCにおける電荷移動型原子間ポテンシャルの開発と 基底面部分転位対の収縮現象への適用		1.東大工
		晶欠陷 / Crystal characterization, impurities and crystal	defects	
9:00		口頭講演 (Oral Presentation) D511会場 (Room D511) 仮想弾性体上のクラドニパターンの有限要素解析	○稲垣 淳¹	1.無所属
9:15		窒素添加 CZ-Si 結晶育成中のボイド形成に与える酸素の 影響		
9:30	奨 15a-D511-3	Si結晶中の自己格子間原子の凝集に関するANNポテンシャル解析	1-22	1. 岡山県大院情報系工, 2. 名古屋大院工, 3. 岡山県大情報工
9:45	15a-D511-4	ANN ポテンシャルを用いた Si(100) 表面近傍の原子空孔	○(M2)佐藤 正義¹, 横井 達矢², 神山 栄治³, 野田 祐	1.岡山県大院情報系工, 2.名古屋大院工, 3.岡山県大情
10:00	15a-D511-5	クラスターに関する計算 Si単結晶中の真性点欠陥凝集の第一原理フェーズフィー	輔 ³ ,末岡浩治 ³ ○野田祐輔 ¹ 桑原 理一 ² 佐原 亮二 ³ 末岡浩治 ¹ 大	報工 1. 岡山県立大情報工、2. ダッソー・システムズ、3. 物材
10:15	100 2011 0	ルド計算 休憩/Break	野かおる4	機構構造材料, 4. 横浜国大院工
10:15	15a-D511-6	RTPウェーハの空孔・酸素複合体(VO4)と金属原子の 結合に関する理論的研究	〇岩城 浩也 1 , 須藤 治生 1 , 早川 兼 1 , 神山 栄治 1	1.グローバル・ウェーハズジャパン(株)
10:45	15a-D511-7	后古に関する理画的研究 Si結晶と各種SiO ₂ との結晶構造整合性	○神山 栄治 1.2, 末岡 浩治 2	1. グローバルウェーハズ・ジャパン(株), 2. 岡山県立大情報工
11:00	15a-D511-8	シリコン・炭素系混合分子イオン注入エピウェーハのゲッ	○廣瀬 諒¹, 柾田 亜由美¹, 奥山 亮輔¹, 門野 武¹, 小林	***
11:15	15a-D511-9	タリングメカニズム解析 シリコン・炭素系混合分子イオン注入誘起拡張欠陥の熱	弘治¹, 鈴木 陽洋¹, 古賀 祥泰¹, 栗田 一成¹ ○鈴木 陽洋¹, 奥山 亮輔¹, 門野 武¹, 小林 弘治¹, 廣瀬	1.株式会社 SUMCO
11.20	15 D511 10	処理挙動	京, 在田亜由美, 古賀祥泰, 栗田一成	1 CUMCO
11:30	15a-D511-10	シリコン・炭素系混合分子イオン注入エピタキシャルウェーハのSiO ₂ /Si界面準位欠陥に対するバッシベー	○奥山 亮輔¹,門野 武¹, 柾田 亜由美¹,鈴木 陽洋¹,小 林 弘治¹,重松 理史¹,廣瀬 諒¹,古賀 祥泰¹,栗田 一	1.SUMCO
11:45	15a-D511-11	ション効果の解析 炭化水素分子イオン注入ウェーハ表面における再結晶化		1.SUMCO
3/15(V	Ned) 13:30 - 16:45	挙動のTCADシミュレーション解析 口頭講演 (Oral Presentation) D511会場 (Room D511)	瀬 諒¹,鈴木 陽洋¹,古賀 祥泰¹,栗田 一成¹	
13:30		「第1回ダイバーシティ&インクルージョン賞 女性研究 者研究業績賞 受賞記念講演」 有機結晶およびバイオミネラルの結晶成長機構の解明と	〇丸山 美帆子1.2	1. 阪大院工, 2. 京都府大生命環境
14:00	奨 15p-D511-2	結晶成長制御技術の開発 陽極酸化を用いたSiワイヤ形成における転位とワイヤ断		1.東京電機大工
		面形状の関係	昭1,本橋光也1	1 C 1 C 1 E C : O 1 H : 2 IACDI
14:15	奨 E 15p-D511-3	A nanoXRD Based Analysis on HVPE GaN Structure Combined with Machine Learning	Hayashi ¹ , Tetsuya Tohei ¹ , Yasuhiko Imai ² , Kazushi	1.Grad. Sch. Eng. Sci., Osaka Univ., 2.JASRI
			Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 宇佐美 徳	
14:15 14:30 14:45	奨 15p-D511-4	Combined with Machine Learning	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 宇佐美 徳 隆¹ ○寺沢 大地¹, 趙 家銘¹, 末松 久幸¹, Thi Mai Dung¹,	1.名大院工
14:30 14:45	奨 15p-D511-4 15p-D511-5	Combined with Machine Learning SiGe 薄膜における歪み緩和と結晶傾斜への水素局在効果	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 宇佐美 徳隆¹ ○寺沢 大地¹, 趙家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○石地 耕太朗¹, 有田 誠², 足立 真理子³, 和田 邑一⁴,	1. 名大院工 1. 長岡技科大工学研究科
14:30 14:45 15:00	奨 15p-D511-4 15p-D511-5	Combined with Machine Learning SiGe 薄膜における歪み緩和と結晶傾斜への水素局在効果 α -MoO₃の熱処理による格子定数変化 高濃度イオン注入/アニールSiCの表面幾何学構造の解明	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 宇佐美 徳隆¹ ○寺沢 大地¹, 趙 家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹	1. 名大院工 1. 長岡技科大工学研究科
14:30 14:45	奨 15p-D511-4 15p-D511-5 15p-D511-6	Combined with Machine Learning $SiGe $	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 字佐美 德 隆¹ ○寺沢 大地¹, 趙 家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○石地 耕太朗¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 秦弘⁴, 荒木 努⁴	 1.名大院工 1.長岡技科大工学研究科 1.九州シンクロ, 2.九州大, 3.ナノフォトン, 4.立命館が
14:30 14:45 15:00 15:15 15:30	奨 15p-D511-4 15p-D511-5 15p-D511-6 15p-D511-7	Combined with Machine Learning SiGe 薄膜における歪み緩和と結晶傾斜への水素局在効果 α-MoO3の熱処理による格子定数変化 高濃度イオン注入/アニールSiCの表面幾何学構造の解明 休憩/Break シリコンのキャスト成長過程における非対称傾角粒界か	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 宇佐美 徳 隆¹ ○ 寺沢 大地¹, 趙 家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○ 石地 耕太朗¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 秦弘⁴, 荒木 穷⁴ ○ 大野 裕¹, 吉田 秀人², 横井 達矢³, 山腰 健太³, 小島 拓人⁴, 松永 克志³, Krenckel Patricia⁵, Riepe Stephan⁵, 宇佐美 徳隆³	1.名大院工 1.長岡技科大工学研究科 1.九州シンクロ,2.九州大,3.ナノフォトン,4.立命館力 1.東北大金研,2.阪大産研,3.名大院工,4.名大院情報,5.Fraunhofer ISE
14:30 14:45 15:00 15:15 15:30	奨 15p-D511-4 15p-D511-5 15p-D511-6 15p-D511-7	Combined with Machine Learning SiGe 薄膜における歪み緩和と結晶傾斜への水素局在効果 α -MoO₃の熱処理による格子定数変化 高濃度イオン注入/アニール SiC の表面幾何学構造の解明 休憩/Break シリコンのキャスト成長過程における非対称傾角粒界からの転位発生 転位発生源となるシリコン非対称傾角粒界の形成過程	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 宇佐美 徳隆¹ ○ 寺沢 大地¹, 趙 家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○ 石地 耕太朗¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 泰弘⁴, 荒木 努⁴ ○ 大野 裕¹, 吉田 秀人², 横井 達矢³, 山腰 健太³, 小島 拓人⁴, 松永 克志³, Krenckel Patricia⁵, Riepe Stephan⁵, 宇佐美 徳隆³ ○ 大野 裕¹, 斉藤 光², 梁 剣波³, 横井 達矢⁴, 松永 克志⁴, 重川 直輝³, 井上 耕治¹, 永井 康介¹, 波多 聰⁵	1. 名大院工 1. 長岡技科大工学研究科 1. 九州シンクロ, 2. 九州大, 3. ナノフォトン, 4. 立命館 1. 東北大金研, 2. 阪大産研, 3. 名大院工, 4. 名大院情報, 5. Fraunhofer ISE 1. 東北大金研, 2. 九大先導研, 3. 阪公大院工, 4. 名大院工, 5. 九大総合理工
14:30 14:45 15:00 15:15 15:30 15:45	奨 15p-D511-4 15p-D511-5 15p-D511-6 15p-D511-7 15p-D511-8 15p-D511-9	Combined with Machine Learning SiGe 薄膜における歪み緩和と結晶傾斜への水素局在効果 α-MoO₃の熱処理による格子定数変化 高濃度イオン注入/アニールSiCの表面幾何学構造の解明 休憩/Break シリコンのキャスト成長過程における非対称傾角粒界からの転位発生 転位発生源となるシリコン非対称傾角粒界の形成過程 シリコン結晶基板の品質と点欠陥(9) Avogadro crystalの格子定数と炭素濃度分布	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 字佐美 德隆¹ ○寺沢 大地¹, 趙家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○石地 耕太朗¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 泰弘⁴, 荒木 努⁴ ○大野 裕¹, 吉田 秀人², 横井 達矢³, 山腰 健太³, 小島 拓人⁴, 松永 克志³, Krenckel Patricia⁵, Riepe Stephan⁵, 宇佐美 德隆³ ○大野 裕¹, 斉藤 光², 梁 剣波³, 横井 達矢⁴, 松永 克志⁴, 重川 直輝³, 井上 耕治¹, 永井 康介¹, 波多 聰⁵ ○井上 直入¹, 川又 修一¹, 奥田 修一¹	1. 名大院工 1. 長岡技科大工学研究科 1. 九州シンクロ, 2. 九州大, 3. ナノフォトン, 4. 立命館が 1. 東北大金研, 2. 阪大産研, 3. 名大院工, 4. 名大院情報, 5. Fraunhofer ISE 1. 東北大金研, 2. 九大先導研, 3. 阪公大院工, 4. 名大院工, 5. 九大総合理工 1. 大阪公立大 放射線センター
14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15	奨 15p-D511-4 15p-D511-5 15p-D511-6 15p-D511-7 15p-D511-8 15p-D511-9 15p-D511-10	Combined with Machine Learning SiGe 薄膜における歪み緩和と結晶傾斜への水素局在効果 α -MoO3の熱処理による格子定数変化 高濃度イオン注入/アニールSiCの表面幾何学構造の解明 休憩/Break シリコンのキャスト成長過程における非対称傾角粒界からの転位発生 転位発生源となるシリコン非対称傾角粒界の形成過程 シリコン結晶基板の品質と点欠陥(9) Avogadro crystal の格子定数と炭素濃度分布 シリコン結晶の高感度赤外吸収と赤外欠陥動力学(22) 窒素複合体の濃度測定標準手続き	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 字佐美 德隆¹ ○寺沢 大地¹, 趙家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○石地 耕太朗¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 秦弘⁴, 荒木 努⁴ ○大野 裕¹, 吉田 秀人², 横井 達矢³, 山腰 健太³, 小島 拓人⁴, 松永 克志³, Krenckel Patricia⁵, Riepe Stephan², 字佐美 德隆³ ○大野 裕¹, 斉藤 光², 梁 剣波³, 横井 達矢⁴, 松永 克志⁴, 重川 直輝³, 井上 耕治¹, 永井 康介¹, 波多 聰⁵ ○井上 直久¹, 川又 修一¹, 奥田 修一¹	1. 名大院工 1. 長岡技科大工学研究科 1. 九州シンクロ, 2. 九州大, 3. ナノフォトン, 4. 立命館 1. 東北大金研, 2. 阪大産研, 3. 名大院工, 4. 名大院情報, 5. Fraunhofer ISE 1. 東北大金研, 2. 九大先導研, 3. 阪公大院工, 4. 名大院工, 5. 九大総合理工 1. 大阪公立大 放射線センター 1. 大阪府大 放射線研究センター
14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30	奨 15p-D511-4 15p-D511-5 15p-D511-6 15p-D511-7 15p-D511-8 15p-D511-9 15p-D511-10	Combined with Machine Learning SiGe薄膜における歪み緩和と結晶傾斜への水素局在効果 α-MoO₃の熱処理による格子定数変化 高濃度イオン注入/アニールSiCの表面幾何学構造の解明 休憩/Break シリコンのキャスト成長過程における非対称傾角粒界からの転位発生 転位発生源となるシリコン非対称傾角粒界の形成過程 シリコン結晶基板の品質と点欠陥(9) Avogadro crystal の格子定数と炭素濃度分布 シリコン結晶の高感度赤外吸収と赤外欠陥動力学(22) 窒素複合体の濃度測定標準手続き シリコン結晶中の低濃度炭素の測定(26) 単結晶多結晶の赤外吸収標準測定法とSIMSの較正	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 字佐美 德 隆¹ ○ 寺沢 大地¹, 趙 家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○ 石地 耕太朗¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 泰弘⁴, 荒木 穷⁴ ○ 大野 裕¹, 吉田 秀人², 横井 達矢³, 山腰 健太³, 小島 拓人⁴, 松永 克志³, Krenckel Patricia⁵, Riepe Stephan⁵, 字佐美 德隆³ ○ 大野 裕¹, 斉藤 光², 梁 剣波³, 横井 達矢⁴, 松永 克志⁴, 重川 直輝³, 井上 耕治¹, 永井 康介¹, 波多 聰⁵ ○ 井上 直久¹, 川又 修一¹, 奥田 修一¹ ○ 井上 直久¹, 则又 修一¹, 奥田 修一¹	1. 名大院工 1. 長岡技科大工学研究科 1. 九州シンクロ, 2. 九州大, 3. ナノフォトン, 4. 立命館力 1. 東北大金研, 2. 阪大産研, 3. 名大院工, 4. 名大院情報, 5. Fraunhofer ISE 1. 東北大金研, 2. 九大先導研, 3. 阪公大院工, 4. 名大院工, 5. 九大総合理工 1. 大阪公立大 放射線センター
14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15	獎 15p-D511-4 15p-D511-5 15p-D511-6 15p-D511-7 15p-D511-8 15p-D511-9 15p-D511-10 15p-D511-11 Thu.) 13:30 - 15:30 16p-PA06-1	Combined with Machine Learning SiGe 薄膜における歪み緩和と結晶傾斜への水素局在効果 α-MoO₃の熱処理による格子定数変化 高濃度イオン注入/アニールSiCの表面幾何学構造の解明 休憩/Break シリコンのキャスト成長過程における非対称傾角粒界からの転位発生 転位発生源となるシリコン非対称傾角粒界の形成過程 シリコン結晶基板の品質と点欠陥(9) Avogadro crystal の格子定数と炭素濃度分布 シリコン結晶中の低濃度炭素の測定(26)単結晶多結晶の赤外吸収標準測定法とSIMSの較正 ポスター講演 (Poster Presentation) PA会場(Room PA) UVC LED を用いた蛍光画像観察装置の開発	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 字佐美 德 隆¹ ○寺沢 大地¹, 趙 家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○石地 耕太朗¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 泰弘⁴, 荒木 努⁴ ○大野 裕¹, 吉田 秀人², 横井 達矢³, 山腰 健太³, 小島 拓人⁴, 松永 克志³, Krenckel Patricia⁵, Riepe Stephan⁵, 宇佐美 德隆³ ○大野 裕¹, 斉藤 光², 梁 剣波³, 横井 達矢⁴, 松永 克志⁴, 重川 直暉³, 井上 耕治¹, 永井 康介¹, 波多 聰⁵ ○井上 直久¹, 川又 修一¹, 奥田 修一¹ ○井上 直久¹, 则又 修一¹, 奥田 修一¹	1. 名大院工 1. 長岡技科大工学研究科 1. 九州シンクロ, 2. 九州大, 3. ナノフォトン, 4. 立命館 2. 東北大金研, 2. 阪大産研, 3. 名大院工, 4. 名大院情報, 5. Fraunhofer ISE 1. 東北大金研, 2. 九大先導研, 3. 阪公大院工, 4. 名大院工, 5. 九大総合理工 1. 大阪公立大 放射線センター 1. 大阪府大 放射線研究センター 1. 大阪府大 放射線研究センター 1. 東洋大院理工, 2. 東洋大工技研
14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 3/16(1	獎 15p-D511-4 15p-D511-5 15p-D511-6 15p-D511-7 15p-D511-8 15p-D511-9 15p-D511-10 15p-D511-11 Thu.) 13:30 - 15:30 16p-PA06-1 16p-PA06-2	Combined with Machine Learning SiGe薄膜における歪み緩和と結晶傾斜への水素局在効果 α-MoO₃の熱処理による格子定数変化 高濃度イオン注入/アニールSiCの表面幾何学構造の解明 休憩/Break シリコンのキャスト成長過程における非対称傾角粒界からの転位発生 転位発生源となるシリコン非対称傾角粒界の形成過程 シリコン結晶基板の品質と点欠陥(9) Avogadro crystal の格子定数と炭素濃度分布 シリコン結晶の高感度赤外吸収と赤外欠陥動力学(22) 窒素複合体の濃度測定標準手続き シリコン結晶中の低濃度炭素の測定(26)単結晶多結晶の赤外吸収標準測定法とSIMSの較正 ポスター講演 (Poster Presentation) PA会場(Room PA)	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 字佐美 德 隆¹ ○寺沢 大地¹, 趙 家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○石地 耕太朗¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 秦弘⁴, 荒木 努⁴ ○大野 裕¹, 吉田 秀人², 横井 達矢³, 山腰 健太³, 小島 拓人⁴, 松永 克志³, Krenckel Patricia⁵, Riepe Stephan⁵, 字佐美 德隆³ ○大野 裕¹, 斉藤 光², 梁 剣波³, 横井 達矢⁴, 松永 克志⁴, 重川 直輝³, 井上 耕治¹, 永井 康介¹, 波多 聰⁵ ○井上 直久¹, 川又 修一¹, 奥田 修一¹ ○井上 直久¹, 则又 修一¹, 奥田 修一¹ ○井上 直久¹, 奥田 修一¹, 川又 修一¹	1. 名大院工 1. 長岡技科大工学研究科 1. 九州シンクロ, 2. 九州大, 3. ナノフォトン, 4. 立命館 2. 東北大金研, 2. 阪大産研, 3. 名大院工, 4. 名大院情報, 5. Fraunhofer ISE 1. 東北大金研, 2. 九大先導研, 3. 阪公大院工, 4. 名大院工, 5. 九大総合理工 1. 大阪公立大 放射線センター 1. 大阪府大 放射線研究センター 1. 大阪府大 放射線研究センター
14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 3/16(1	奨 15p-D511-4 15p-D511-5 15p-D511-6 15p-D511-7 15p-D511-8 15p-D511-9 15p-D511-10 15p-D511-11 Thu.) 13:30 - 15:30 16p-PA06-1 16p-PA06-2 晶質・微結晶 / ジウムのプログラム	Combined with Machine Learning SiGe 薄膜における歪み緩和と結晶傾斜への水素局在効果 α-MoO₃の熱処理による格子定数変化 高濃度イオン注入/アニールSiCの表面幾何学構造の解明 休憩/Break シリコンのキャスト成長過程における非対称傾角粒界からの転位発生 転位発生源となるシリコン非対称傾角粒界の形成過程 シリコン結晶基板の品質と点欠陥(9) Avogadro crystalの格子定数と炭素濃度分布 シリコン結晶の高感度赤外吸収と赤外欠陥動力学(22)窒素複合体の濃度測定標準手続き シリコン結晶中の低濃度炭素の測定(26) 単結晶多結晶の赤外吸収標準測定法と SIMSの較正ポスター講演 (Poster Presentation) PA会場(Room PA) UVC LEDを用いた電光画像観察装置の開発 半導体スピン素子のための高濃度p型Si層の作製 Amorphous and Microcrystalline Material はプログラム冒頭にございます。	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 字佐美 德 隆¹ ○寺沢 大地¹, 趙家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○石地 耕太朝¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 泰弘⁴, 荒木 努⁴ ○大野 裕¹, 吉田 秀人², 横井 達矢³, 山腰 健太³, 小島 拓人⁴, 松永 克志³, Krenckel Patricia⁵, Riepe Stephan⁵, 字佐美 德隆³ ○大野 裕¹, 斉藤 光², 梁 剣波⁵, 横井 達矢⁴, 松永 克志⁴, 重川 直輝³, 井上 耕治¹, 永井 康介¹, 波多 聰⁵ ○井上 直久¹, 川又 修一¹, 奥田 修一¹ ○井上 直久¹, 则又 修一¹, 奥田 修一¹ ○井上 直久¹, 则又 修一¹, 则田 修一¹	1. 名大院工 1. 長岡技科大工学研究科 1. 九州シンクロ, 2. 九州大, 3. ナノフォトン, 4. 立命館 2. 東北大金研, 2. 阪大産研, 3. 名大院工, 4. 名大院情報, 5. Fraunhofer ISE 1. 東北大金研, 2. 九大先導研, 3. 阪公大院工, 4. 名大院工, 5. 九大総合理工 1. 大阪公立大 放射線センター 1. 大阪府大 放射線研究センター 1. 大阪府大 放射線研究センター 1. 東洋大院理工, 2. 東洋大工技研
14:30 14:45 15:00 15:15 15:30 15:45 16:00 3/16(1 16:15 16:30 3/16(1 16:15	奨 15p-D511-4 15p-D511-5 15p-D511-6 15p-D511-7 15p-D511-8 15p-D511-9 15p-D511-10 15p-D511-11 Thu.) 13:30 - 15:30 16p-PA06-1 16p-PA06-2 晶質・微結晶/ジウムのプログラム 礎物性・評価・プロ	Combined with Machine Learning SiGe 薄膜における歪み緩和と結晶傾斜への水素局在効果 α-MoO3の熱処理による格子定数変化 高濃度イオン注入/アニールSiC の表面幾何学構造の解明 休憩/Break シリコンのキャスト成長過程における非対称傾角粒界からの転位発生 転位発生源となるシリコン非対称傾角粒界の形成過程 シリコン結晶基板の品質と点欠陥(9) Avogadro crystalの格子定数と炭素濃度分布 シリコン結晶の高感度赤外吸収と赤外欠陥動力学(22)窒素複合体の濃度測定標準手続きシリコン結晶中の低濃度炭素の測定(26)単結晶多結晶の赤外吸収標準測定法と SIMS の較正 ボスター講演 (Poster Presentation) PA会場(Room PA) UVC LED を用いた蛍光画像観察装置の開発 半導体スピン素子のための高濃度力型 Si層の作製 Amorphous and Microcrystalline Material はプログラム冒頭にございます。 セス・デバイス / Fundamental properties, evaluation, pr	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 字佐美 德 隆¹ ○寺沢 大地¹, 趙家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○石地 耕太朝¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 泰弘⁴, 荒木 努⁴ ○大野 裕¹, 吉田 秀人², 横井 達矢³, 山腰 健太³, 小島 拓人⁴, 松永 克志³, Krenckel Patricia⁵, Riepe Stephan⁵, 字佐美 德隆³ ○大野 裕¹, 斉藤 光², 梁 剣波⁵, 横井 達矢⁴, 松永 克志⁴, 重川 直輝³, 井上 耕治¹, 永井 康介¹, 波多 聰⁵ ○井上 直久¹, 川又 修一¹, 奥田 修一¹ ○井上 直久¹, 则又 修一¹, 奥田 修一¹ ○井上 直久¹, 则又 修一¹, 则田 修一¹	1. 名大院工 1. 長岡技科大工学研究科 1. 九州シンクロ, 2. 九州大, 3. ナノフォトン, 4. 立命館 1. 東北大金研, 2. 阪大産研, 3. 名大院工, 4. 名大院情報, 5. Fraunhofer ISE 1. 東北大金研, 2. 九大先導研, 3. 阪公大院工, 4. 名大院工, 5. 九大総合理工 1. 大阪公立大 放射線センター 1. 大阪府大 放射線研究センター 1. 大阪府大 放射線研究センター 1. 東洋大院理工, 2. 東洋大工技研
14:30 14:45 15:00 15:15 15:30 15:45 16:00 3/16(1 16:15 16:30 3/16(1 16:15	奨 15p-D511-4 15p-D511-5 15p-D511-6 15p-D511-7 15p-D511-8 15p-D511-9 15p-D511-10 15p-D511-11 Thu.) 13:30 - 15:30 16p-PA06-1 16p-PA06-2 品質・微結晶 ジウムのプログラム 礎物性・評価・プロ (Thu.) 9:00 - 12:00	Combined with Machine Learning SiGe 薄膜における歪み緩和と結晶傾斜への水素局在効果 α-MoO₃の熱処理による格子定数変化 高濃度イオン注入/アニールSiCの表面幾何学構造の解明 休憩/Break シリコンのキャスト成長過程における非対称傾角粒界からの転位発生 転位発生源となるシリコン非対称傾角粒界の形成過程 シリコン結晶基板の品質と点欠陥(9) Avogadro crystalの格子定数と炭素濃度分布 シリコン結晶の高感度赤外吸収と赤外欠陥動力学(22)窒素複合体の濃度測定標準手続き シリコン結晶中の低濃度炭素の測定(26) 単結晶多結晶の赤外吸収標準測定法と SIMSの較正ポスター講演 (Poster Presentation) PA会場(Room PA) UVC LEDを用いた電光画像観察装置の開発 半導体スピン素子のための高濃度p型Si層の作製 Amorphous and Microcrystalline Material はプログラム冒頭にございます。	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 字佐美 德 隆¹ ○寺沢 大地¹, 趙家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○石地 耕太朝¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 泰弘⁴, 荒木 努⁴ ○大野 裕¹, 吉田 秀人², 横井 達矢³, 山腰 健太³, 小島 拓人⁴, 松永 克志³, Krenckel Patricia⁵, Riepe Stephan⁵, 字佐美 德隆³ ○大野 裕¹, 斉藤 光², 梁 剣波⁵, 横井 達矢⁴, 松永 克志⁴, 重川 直輝³, 井上 耕治¹, 永井 康介¹, 波多 聰⁵ ○井上 直久¹, 川又 修一¹, 奥田 修一¹ ○井上 直久¹, 则又 修一¹, 奥田 修一¹ ○井上 直久¹, 则又 修一¹, 则田 修一¹	1. 名大院工 1. 長岡技科大工学研究科 1. 九州シンクロ, 2. 九州大, 3. ナノフォトン, 4. 立命館 1. 東北大金研, 2. 阪大産研, 3. 名大院工, 4. 名大院情報, 5. Fraunhofer ISE 1. 東北大金研, 2. 九大先導研, 3. 阪公大院工, 4. 名大院工, 5. 九大総合理工 1. 大阪公立大 放射線センター 1. 大阪府大 放射線研究センター 1. 大阪府大 放射線研究センター 1. 東洋大院理工, 2. 東洋大工技研
14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 3/16(1 16:15 16:30	奨 15p-D511-4 15p-D511-5 15p-D511-6 15p-D511-7 15p-D511-8 15p-D511-9 15p-D511-10 15p-D511-11 Thu.) 13:30 - 15:30 16p-PA06-1 16p-PA06-2 昌質・微結晶 ジウムのプログラム 礎物性・評価・プロ Thu.) 9:00 - 12:00 16a-D505-1	Combined with Machine Learning SiGe 薄膜における歪み緩和と結晶傾斜への水素局在効果 α-MoO3の熱処理による格子定数変化 高濃度イオン注入/アニールSiCの表面幾何学構造の解明 休憩/Break シリコンのキャスト成長過程における非対称傾角粒界からの転位発生 転位発生源となるシリコン非対称傾角粒界の形成過程 シリコン結晶基板の品質と点欠陥(9) Avogadro crystal の格子定数と炭素濃度分布 シリコン結晶の高感度赤外吸収と赤外欠陥動力学(22)窒素複合体の濃度炭素の測定(26)単結晶多結晶の赤外吸収標準測定法と SIMSの較正ポスター講演 (Poster Presentation) PA会場(Room PA) UVC LED を用いた蛍光画像観察装置の開発 半導体スピン素子のための高濃度 p型 Si層の作製 Amorphous and Microcrystalline Material はプログラム冒頭にございます。 セス・デバイス / Fundamental properties, evaluation, pr 口頭講演 (Oral Presentation) D505 会場(Room D505) 低光弾性スズリン酸塩ガラスの簡便な合成方法 化学強化ガラスにおける圧縮応力の熱力学的導出とラマ	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 字佐美 德 隆¹ ○寺沢 大地¹, 趙家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○石地 耕太朗¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 秦弘⁴, 荒木 努⁴ ○大野 裕¹, 吉田 秀人², 横井 達矢³, 山腰 健太³, 小島 拓人⁴, 松永 克志³, Krenckel Patricia⁵, Riepe Stephan², 字佐美 德隆³ ○大野 裕¹, 斉藤 光², 梁 剣波³, 横井 達矢⁴, 松永 克志⁴, 重川 直輝³, 井上 耕治¹, 永井 康介¹, 波多 聰⁵ ○井上 直入¹, 川又 修一¹, 奥田 修一¹ ○井上 直入¹, 川又 修一¹, 奥田 修一¹ ○井上 直入¹, 则又 修一¹, 奥田 修一¹ ○千上 直入¹, 與田 修一¹, 川又 修一¹	1.名大院工 1.長岡技科大工学研究科 1.九州シンクロ,2.九州大,3.ナノフォトン,4.立命館 1.東北大金研,2.阪大産研,3.名大院工,4.名大院情報,5.Fraunhofer ISE 1.東北大金研,2.九大先導研,3.阪公大院工,4.名大院工,5.九大総合理工 1.大阪公立大 放射線センター 1.大阪府大 放射線研究センター 1.大阪府大 放射線研究センター 1.東洋大院理工,2.東洋大工技研 1.日大工
14:30 14:45 15:00 15:15 15:30 15:45 16:00 16:15 16:30 3/16(7 16:1 シンボ: 16.1 基 シンボ:	奨 15p-D511-4 15p-D511-5 15p-D511-6 15p-D511-7 15p-D511-8 15p-D511-9 15p-D511-10 15p-D511-11 Thu.) 13:30 - 15:30 16p-PA06-1 16p-PA06-2 昌質・微結晶 / ジウムのプログラム 礎物性・評価・プロ Thu.) 9:00 - 12:00 16a-D505-1 16a-D505-2	Combined with Machine Learning SiGe 薄膜における歪み緩和と結晶傾斜への水素局在効果 α -MoO3の熱処理による格子定数変化 高濃度イオン注入/アニールSiCの表面幾何学構造の解明 休憩/Break シリコンのキャスト成長過程における非対称傾角粒界からの転位発生 転位発生源となるシリコン非対称傾角粒界の形成過程 シリコン結晶基板の品質と点欠陥(9) Avogadro crystalの格子定数と炭素濃度分布 シリコン結晶の高感度赤外吸収と赤外欠陥動力学(22)窒素複合体の濃度測定標準手続き シリコン結晶中の低濃度炭素の測定(26)単結晶多結晶の赤外吸収標準測定法とSIMSの較正ポスター講演(Poster Presentation) PA会場(Room PA) UVC LEDを用いた蛍光画像観察装置の開発 半導体スピン素子のための高濃度p型Si層の作製 Amorphous and Microcrystalline Material はプログラム冒頭にございます。 セス・デバイス/Fundamental properties, evaluation, pr	Hayashi¹, Tetsuya Tohei¹, Yasuhiko Imai², Kazushi Sumitani², Shigeru Kimura², Akira Sakai¹ ○ (M2) 加納 光樹¹, 宮本 聡¹, 黒川 康良¹, 字佐美 德隆¹ ○寺沢 大地¹, 趙家銘¹, 末松 久幸¹, Thi Mai Dung¹, 中山 忠親¹ ○石地 耕太朗¹, 有田 誠², 足立 真理子³, 和田 邑一⁴, 山田 泰弘⁴, 荒木 努⁴ ○大野 裕¹, 吉田 秀人², 横井 達矢³, 山腰 健太³, 小島 拓人⁴, 松永 克志³, Krenckel Patricia⁵, Riepe Stephan⁵, 字传美 德隆³ ○大野 裕¹, 斉藤 光², 梁 剣波³, 横井 達矢⁴, 松永 克志⁴, 重川 直輝³, 井上 耕治¹, 永井 康介¹, 波多 聰⁵ ○井上 直久¹, 川又 修一¹, 奥田 修一¹ ○井上 直久¹, 川又 修一¹, 奥田 修一¹ ○井上 直久¹, 则里 修一¹, 川又 修一¹	1.名大院工 1.長岡技科大工学研究科 1.九州シンクロ,2.九州大,3.ナノフォトン,4.立命館力 1.東北大金研,2.阪大産研,3.名大院工,4.名大院情報,5.Fraunhofer ISE 1.東北大金研,2.九大先導研,3.阪公大院工,4.名大院工,5.九大総合理工 1.大阪公立大 放射線センター 1.大阪府大 放射線研究センター 1.大阪府大 放射線研究センター 1.東洋大院理工,2.東洋大工技研 1.日大工

10.00				
10:00	奨 16a-D505-5	フラクタル構造を有するMg/MgO/MgB ₂ /Mg ₂ Siナノ複 合体の合成とその超伝導特性	○(M2)橋本 碧維¹, 櫻井 敬博¹, 太田 仁¹, 瀬戸 雄介², 内野 降司¹	1. 神戸大, 2. 大阪公立大
10:15	奨 16a-D505-6	音体の音板とその超広等行性 酸塩基反応を用いた六方晶窒化ホウ素(h-BN)の剥離膜 の作製と発光特性		1. 神大院理, 2. 物質材料・研究機構
10:30 10:45	奨 16a-D505-7	休憩/Break RMCモデリングによるLiMn ₂ O ₄ 中のMnO ₆ の局所歪み	○吉元 政嗣¹,表 和彦¹	1.リガク
11:00	奨 16a-D505-8	の評価 ガラス微小球および微結晶多面体の光マニピュレーショ ンのための離散双極子近似による電磁界シミュレーショ	○(M2)鍾 逸夫¹, 岸 哲生¹, 久保田 雄太¹, 矢野 哲司¹	1.東工大
11:15	奨 16a-D505-9	ン ナトリウムイオン伝導性 β -NaFeO $_2$ のレーザー誘起融解 と結晶成長	○(D)平塚 雅史¹,本間剛¹,小松 高行¹	1. 長岡技科大
11:30	奨 16a-D505-10	SnおよびFeSn ₂ ナノ結晶を含有する結晶化ガラスの創製	\bigcirc (M2) 佐藤 史隆 ¹, 本間 剛 ¹, 小松 高行 ¹, 本間 智之 ¹, A.A. Kaharudin ¹, 伊藤 滋啓 ², 篠崎 健二 ³, 4, 5	1.長岡技大, 2.鶴岡高専, 3.産総研, 4.阪大, 5.JST さきがけ
11:45	16a-D505-11	室温原子層堆積によるアルミニウムシリケートの紙繊維 上形成	○廣瀬 文彦¹, 齋藤 尊¹, 宮澤 諒¹, 齋藤 健太郎¹	1.山形大院理工
3/16(³		口頭講演 (Oral Presentation) D505会場(Room D505) Cat-CVD で形成した積層非晶質 Si 膜での FLA により形	\bigcirc (D) 王 觯 1 , Tu Thi Cam Huynh 1 , 大平 圭介 1	1.北陸先端大
13:45	16p-D505-2	成した多結晶 Si表面のパッシベーション 水熱合成法による ZnSe _x Te _{1-x} 量子ドットの合成	〇高橋 美枝 1 , 李 ョン信 1 , 吉田 大哲 1 , 中村 太一 1 , 福 田 一人 1	1.パナソニックHD(株)
14:00 14:15		Se; リング分子からなる結晶の構造解析 Ag-Ge-Sb-Te 系 CBRAM における RF 入力による DC 抵抗 変化	○匠 正治¹, 永田 潔文¹ ○ (DC) 殷 ユウヒ¹, 塚本 慶人¹, 林 等¹, 中岡 俊裕¹	1. 福岡大理 1. 上智大
14:30	16p-D505-5	アモルファス硫化ゲルマニウム膜への銀のフォトドーピ ングー 硫化ゲルマニウム膜アニール処理の効果	\bigcirc (M2) 能登 勇真 1 , 加茂 直紀 1 , 渋谷 猛久 2 , 村上 佳 久 3 , 坂口 佳史 4	1.東海大工, 2.東海大理系教育センター, 3.筑波技術大, 4.CROSS
14:45 15:00	•	休憩/Break 赤外光熱偏向分光法による $Ge_2Sb_2Te_5$ 薄膜のギャップ内 準位評価		1.群馬大理工
15:15	奨 16p-D505-7	サブバンドギャップのシングルフェムト秒パルス励起に よるMnTe 薄膜の相転移	○高橋 廣守 ¹ , 佐藤 守 ¹ , 森 竣祐 ² , 須藤 祐司 ^{2,4} , 谷村 洋 ³ , 斎木 敏治 ¹	1. 慶大工, 2. 東北大工, 3. 東北金属材料研, 4. 東北大材料 科学高等研
15:30		層状酸化物 $Sr_{2.5}Bi_{0.5}NiO_5$ における結晶相の熱的スイッチングが誘起する巨大な電気抵抗率変化	〇松本 俸汰 1 ,河底 秀幸 $^{1.2}$,西堀 英治 3 ,福村 知昭 $^{1.4}$	
15:45	16p-D505-9	金属 - 酸化物 - 相変化材料積層構造を利用したセレクタフ リーメモリ素子	○畑山 祥吾¹, 齊藤 雄太¹	1. 産業技術総合研究所
3/170		ポスター講演 (Poster Presentation) PB 会場(Room PB) YサイトにEr を 0.5~3.0% 置換した Y ₂ O ₃ の格子定数およ		1.埼玉大理工
		びラマンスペクトルの濃度依存性		
		低濃度 Yb $^{3+}$ 添加 Y_2O_3 セラミックスの合成条件の探索 3次元ボールミルを用いたメカノケミカルプロセスによるケイ素コンポジット負極活物質の合成		1. 埼大院理工 1. 東北工大工, 2. 亀山鉄工所
	17p-PB05-4	Fe-P系アモルファス合金の熱処理による結晶化シミュ レーション	○池淵 遼平¹,平山 尚美²	1. 島根大総合理工, 2. 島根大 NEXTA
	17p-PB05-5	非晶質薄膜への金属粒子分散により形成された固体ナノ ポアの形成機構	○(M2)杉本匠¹, 駒井 伶哉¹, 内藤 宗幸¹, 須藤 孝一²	1. 甲南大理工, 2. 阪大産研
			O. H. J. Jerman L. Co. J. Adv. J. L.	and the second s
16.2 I		ドロマイト焼成微細化とその効果 ング / Energy Harvesting	○梅山 規男¹, 谷口 健二¹	1.大志
3/160	ナジーハーベスティ (Thu.) 9:00 - 10:30	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215会場(Room D215)		
	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレット	○(M1)杉本 澤貴¹,川島 康介¹,李 睿宸¹,栢口 英之², 栗原 啓輔²,石井 久夫²,田中 有弥³,山根 大輔¹ ○小玉 拓海¹,西野 実沙¹,今嶋 航世¹,遠藤 勝義¹,山	1.立命館大, 2.千葉大, 3.群馬大
3/160 9:00	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレット の電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上	○(M1)杉本 澪貴¹,川島 康介¹,李 睿宸¹,栢口 英之²,栗原 啓輔²,石井 久夫²,田中 有弥³,山根 大輔¹	1. 立命館大, 2. 千葉大, 3. 群馬大
3/160 9:00 9:15	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレット の電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称TiO₂/PDMS複合フィルムを用いたトライボ発電	○(M1)杉本 澤貴¹,川島 康介¹,李 眷宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○(D)Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2.ORIST
3/160 9:00 9:15 9:30	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨 E 16a-D215-3	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレット の電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称 TiO₂/PDMS 複合フィルムを用いたトライボ発電 出力の改善 セルロースを用いた高強度トライボ発電フィルムの作製	○ (M1) 杉本 澤貴¹,川島 康介¹,李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 滝田 隆仁¹, 大河內 一輝¹, 生野 孝¹ ○原 航平¹, 長澤 倫太郎¹, 滝田 隆仁¹, 周 青陽¹, 生野	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工
3/160 9:00 9:15 9:30	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨E 16a-D215-3 奨 16a-D215-4	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレット の電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称 TiO₂/PDMS 複合フィルムを用いたトライボ発電 出力の改善	○ (M1) 杉本 澤貴¹,川島 康介¹,李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 滝田 隆仁¹, 大河內 一輝¹, 生野 孝¹	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工
9:00 9:15 9:30 9:45 10:00 10:15	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨 E 16a-D215-3 奨 16a-D215-4 16a-D215-5 16a-D215-6	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレット の電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称下iO ₂ /PDMS複合フィルムを用いたトライボ発電 出力の改善 セルロースを用いた高強度トライボ発電フィルムの作製 と評価 フッ素樹脂-PDMS混合材料を用いた高出力摩擦帯電型 発電シート Bulk, thin-film and other silicon-based solar cells	○ (M1) 杉本 澪貴¹, 川島 康介¹, 李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 淹田 隆仁¹, 大河內 一輝¹, 生野 孝¹ ○原 航平¹, 長澤 倫太郎¹, 淹田 隆仁¹, 周 青陽¹, 生野 孝¹	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工 1. 東理大先進工
9:00 9:15 9:30 9:45 10:00 10:15	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨 E 16a-D215-3 奨 16a-D215-4 16a-D215-5 16a-D215-6	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレット の電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称TiO₂/PDMS複合フィルムを用いたトライボ発電 出力の改善 セルロースを用いた高強度トライボ発電フィルムの作製 と評価 フッ素樹脂-PDMS混合材料を用いた高出力摩擦帯電型 発電シート Bulk, thin-film and other silicon-based solar cells ポスター講演 (Poster Presentation) PA 会場(Room PA) 異なる基板温度で堆積した Cat-CVDSiN _x 膜を有するp型	○ (M1) 杉本 澪貴¹, 川島 康介¹, 李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 淹田 隆仁¹, 大河內 一輝¹, 生野 孝¹ ○原 航平¹, 長澤 倫太郎¹, 淹田 隆仁¹, 周 青陽¹, 生野孝¹	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工 1. 東理大先進工 1. 名大未来研
9:00 9:15 9:30 9:45 10:00 10:15	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨 E 16a-D215-3 奨 16a-D215-4 16a-D215-6 リコン系太陽電池 / (Fri.) 9:30 - 11:30	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレット の電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称TiO₂/PDMS複合フィルムを用いたトライボ発電 出力の改善 セルロースを用いた高強度トライボ発電フィルムの作製 と評価 フッ素樹脂-PDMS混合材料を用いた高出力摩擦帯電型 発電シート Bulk, thin-film and other silicon-based solar cells ポスター講演 (Poster Presentation) PA会場(Room PA)	○ (M1) 杉本 澤貴¹,川島 康介¹,李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大人保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 滝田 隆仁¹, 大河內 一輝¹, 生野 孝¹ ○原 航平¹, 長澤 倫太郎¹, 滝田 隆仁¹, 周 青陽¹, 生野 孝¹ ○松永 正広¹, 大野 雄高¹ ○ (M2) 石川 凌一¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ 佐藤 亮汰¹, 伊達 仁基¹, 石川 良¹, 上野 啓司¹, 白井	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工 1. 東理大先進工 1. 名大未来研 1. 北陸先端大
9:00 9:15 9:30 9:45 10:00 10:15	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨E 16a-D215-3 奨 16a-D215-4 16a-D215-6 リコン系太陽電池/ (Fri.) 9:30 - 11:30 17a-PA05-1	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレット の電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称下iO₂/PDMS 複合フィルムを用いたトライボ発電 出力の改善 セルロースを用いた高強度トライボ発電フィルムの作製 と評価 フッ素樹脂・PDMS混合材料を用いた高出力摩擦帯電型 発電シート Bulk、thin-film and other silicon-based solar cells ボスター講演 (Poster Presentation) PA会場(Room PA) 異なる基板温度で堆積した Cat-CVDSiA,膜を有する p型 結晶 Si 太陽電池モジュールの電圧誘起劣化 導電性高分子 SELFTRON®H/n-Si接合太陽電池	○ (M1) 杉本 澤貴¹,川島 康介¹, 李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 淹田 隆仁¹, 大河內 一輝¹, 生野 孝¹ ○原 航平¹, 長澤 倫太郎¹, 淹田 隆仁¹, 周 青陽¹, 生野 孝¹ ○松永 正広¹, 大野 雄高¹ ○ (M2) 石川 凌一¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ 佐藤 亮汰¹, 伊達 仁基¹, 石川 良¹, 上野 啓司¹, 白井 肇¹ ○ (M1) 大橋 亮太¹, 沓掛 健太朗², Huynh Thi Cam	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工 1. 東理大先進工 1. 名大未来研 1. 北陸先端大 1. 埼玉大理工研
9:00 9:15 9:30 9:45 10:00 10:15	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨 E 16a-D215-3 奨 16a-D215-4 16a-D215-5 16a-D215-6 リコン系太陽電池/ (Fri.) 9:30 - 11:30 17a-PA05-1	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場 (Room D215) MEMS 振動発電応用に向けた自己組織化エレクトレットの電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称 TiO₂/PDMS 複合フィルムを用いたトライボ発電出力の改善セルロースを用いた高強度トライボ発電フィルムの作製と評価フッ素樹脂-PDMS混合材料を用いた高出力摩擦帯電型発電シート Bulk, thin-film and other silicon-based solar cells ボスター講演 (Poster Presentation) PA会場 (Room PA) 異なる基板温度で堆積した Cat-CVDSiN, 膜を有する p型結晶 Si 太陽電池モジュールの電圧誘起劣化 導電性高分子 SELFTRON®H/n-Si 接合太陽電池 ベイズ最適化を適用した Cat-CVD i-a-Si のバッシベーション性能の向上 MPATでのSi ウェハ表面の異方性エッチングにおける薬	○ (M1) 杉本 澪貴¹, 川島 康介¹, 李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 淹田 隆仁¹, 大河內 一輝¹, 生野 孝¹ ○原 航平¹, 長澤 倫太郎¹, 淹田 隆仁¹, 周 青陽¹, 生野 孝¹ ○ (M2) 石川 凌一¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ 佐藤 亮汰¹, 伊達 仁基¹, 石川 良¹, 上野 啓司¹, 白井 肇¹ ○ (M1) 大橋 亮太¹, 杏掛 健太朗², Huynh Thi Cam Tu¹, 大平 圭介¹ ○ (M1) 大橋 亮太¹, 杏掛 健太朗², Huynh Thi Cam Tu¹, 大平 圭介¹	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工 1. 東理大先進工 1. 名大未来研 1. 北陸先端大 1. 埼玉大理工研 1. 北陸先端大, 2. 理研
9:00 9:15 9:30 9:45 10:00 10:15	サジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨 E 16a-D215-3 奨 16a-D215-4 16a-D215-5 16a-D215-6 リコン系太陽電池 / (Fri.) 9:30 - 11:30 17a-PA05-1 17a-PA05-2	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレットの電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称TiO₂/PDMS複合フィルムを用いたトライボ発電出力の改善セルロースを用いた高強度トライボ発電フィルムの作製と評価フッ素樹脂-PDMS混合材料を用いた高出力摩擦帯電型発電シート Bulk, thin-film and other silicon-based solar cells ボスター講演 (Poster Presentation) PA 会場(Room PA)異なる基板温度で堆積した Cat-CVDSiN₂膜を有する p型結晶 Si 太陽電池モジュールの電圧誘起劣化 導電性高分子 SELFTRON®H/n-Si 接合太陽電池 ベイズ最適化を適用した Cat-CVD i-a-Si のバッシベーション性能の向上 MPATでの Si ウェハ表面の異方性エッチングにおける薬液の回転速度によるテクスチャサイズの変化 Optimization of 2-step deposition process of i-a-Si:H	○ (M1) 杉本 澪貴¹, 川島 康介¹, 李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 淹田 隆仁¹, 大河內 一輝¹, 生野 孝¹ ○原 航平¹, 長澤 倫太郎¹, 淹田 隆仁¹, 周 青陽¹, 生野 孝¹ ○ 松永 正広¹, 大野 雄高¹ ○ (M2) 石川 凌一¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ 佐藤 亮汰¹, 伊達 仁基¹, 石川 良¹, 上野 啓司¹, 白井 肇¹ ○ (M1) 大橋 亮太¹, 沓掛 健太朗², Huynh Thi Cam Tu¹, 大平 圭介¹	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工 1. 東理大先進工 1. 名大未来研 1. 北陸先端大 1. 埼玉大理工研 1. 北陸先端大, 2. 理研
9:00 9:15 9:30 9:45 10:00 10:15	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨 E 16a-D215-3 奨 16a-D215-4 16a-D215-5 16a-D215-6 リコン系太陽電池 / (Fri.) 9:30 - 11:30 17a-PA05-1 17a-PA05-3 17a-PA05-4	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭請漢 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレットの電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称TiO₂/PDMS複合フィルムを用いたトライボ発電出力の改善 セルロースを用いた高強度トライボ発電フィルムの作製と評価 フッ素樹脂-PDMS混合材料を用いた高出力摩擦帯電型発電シート Bulk, thin-film and other silicon-based solar cells ボスター講演 (Poster Presentation) PA 会場(Room PA)異なる基板温度で堆積した Cat-CVDSiN _。 膜を有する p型結晶 Si 太陽電池モジュールの電圧誘起劣化 導電性高分子SELFTRON®H/n-Si 接合太陽電池 ベイズ最適化を適用した Cat-CVD i-a-Si のバッシベーション性能の向上 MPATでのSi ウェハ表面の異方性エッチングにおける薬液の回転速度によるテクスチャサイズの変化 Optimization of 2-step deposition process of i-a-Si:H passivation layer deposited by facing target sputtering TNPCon 試料のμ-PCDマッピングにおける異常バター	○ (M1) 杉本 澪貴¹, 川島 康介¹, 李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 淹田 隆仁¹, 大河內 一輝¹, 生野 孝¹ ○原 航平¹, 長澤 倫太郎¹, 淹田 隆仁¹, 周 青陽¹, 生野 孝¹ ○松永 正広¹, 大野 雄高¹ ○ (M2) 石川 凌一¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ 佐藤 亮汰¹, 伊達 仁基¹, 石川 良¹, 上野 啓司¹, 白井 肇¹ ○ (M1) 大橋 亮太¹, 沓掛 健太朗², Huynh Thi Cam Tu¹, 大平 圭介¹ ○ (M1) 大橋 亮太¹, 沓掛 健太朗², Huynh Thi Cam Tu¹, 大平 圭介¹	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工 1. 東理大先進工 1. 名大未来研 1. 北陸先端大 1. 地陸先端大 1. 北陸先端大 1. 北陸先端大, 2. 理研 1. 北陸先端大
9:00 9:15 9:30 9:45 10:00 10:15	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨 E 16a-D215-3 奨 16a-D215-4 16a-D215-5 16a-D215-6 リコン系太陽電池 / (Fri.) 9:30 - 11:30 17a-PA05-1 17a-PA05-2 17a-PA05-3 17a-PA05-4 E 17a-PA05-5	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレットの電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称TiO₂/PDMS複合フィルムを用いたトライボ発電出力の改善セルロースを用いた高強度トライボ発電フィルムの作製と評価 フッ素樹脂-PDMS混合材料を用いた高出力摩擦帯電型発電シート Bulk、thin-film and other silicon-based solar cells ボスター講演 (Poster Presentation) PA 会場(Room PA)異なる基板温度で堆積した Cat-CVDSiNュ膜を有する p型結晶 Si 太陽電池モジュールの電圧誘起劣化 導電性高分子 SELFTRON®H/n-Si 接合太陽電池 ベイズ最適化を適用した Cat-CVD i-a-Si のパッシベーション性能の向上 MPATでの Si ウェハ表面の異方性エッチングにおける薬液の回転速度によるテクスチャサイズの変化 Optimization of 2-step deposition process of i-a-Si:H passivation layer deposited by facing target sputtering	○ (M1) 杉本 澪貴¹,川島 康介¹,李 睿宸¹,栢口 英之², 栗原 啓輔²,石井 久夫²,田中 有弥³,山根 大輔¹ ○小玉 拓海¹,西野 実沙¹,今嶋 航世¹,遠藤 勝義¹,山村 和也¹,大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹,淹田 隆仁¹,大河內 一輝¹,生野 孝¹ ○原 航平¹,長澤 倫太郎¹,淹田 隆仁¹,周 青陽¹,生野 孝¹ ○ 依藤 亮汰¹,大野 雄高¹ ○ (M2) 石川 凌一¹, Huynh Thi Cam Tu¹,大平 圭介¹ ○ (佐藤 亮汰¹,伊達 仁基¹,石川 良¹,上野 啓司¹,白井 肇¹ ○ (M1) 大橋 亮太¹, 沓掛 健太朗², Huynh Thi Cam Tu¹,大平 圭介¹ ○ (M1) Yang Pengyu¹, Huynh Thi Cam Tu¹,大平 圭介¹ ○ (M1) Yang Pengyu¹, Huynh Thi Cam Tu¹,大平 圭介¹	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工 1. 東理大先進工 1. 名大未来研 1. 北陸先端大 1. 埼玉大理工研 1. 北陸先端大 1. 北陸先端大 1. 北陸先端大 1. 北陸先端大 1. 北陸先端大 1. 北陸先端大
3/160 9:00 9:15 9:30 9:45 10:00 10:15 16.3 > 3/17	ナジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨 E 16a-D215-3 奨 16a-D215-4 16a-D215-6 リコン系太陽電池 / (Fri.) 9:30 - 11:30 17a-PA05-1 17a-PA05-3 17a-PA05-4 E 17a-PA05-5 17a-PA05-6 17a-PA05-7	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレットの電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称TiO₂/PDMS複合フィルムを用いたトライボ発電出力の改善 セルロースを用いた高強度トライボ発電フィルムの作製と評価 フッ素樹脂-PDMS混合材料を用いた高出力摩擦帯電型発電シート Bulk、thin-film and other silicon-based solar cells ボスター講演 (Poster Presentation) PA 会場(Room PA)異なる基板温度で堆積した Cat-CVDSiNュ膜を有する p型結晶 Si 太陽電池モジュールの電圧誘起劣化 導電性高分子 SELFTRON®H/n-Si 接合太陽電池 ベイズ最適化を適用した Cat-CVD i-a-Si のバッシベーション性能の向上 MPATでの Si ウェハ表面の異方性エッチングにおける薬液の回転速度によるテクスチャサイズの変化 Optimization of 2-step deposition process of i-a-Si:H passivation layer deposited by facing target sputtering TNPCの 試料のμ-PCD マッピングにおける異常バターンの出現 水素化アモルファスシリコン / 結晶シリコンへテロ構造の解析に向けた反応性力場分子動力学法による数値シュュレーション研究	○ (M1) 杉本 澪貴¹, 川島 康介¹, 李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 淹田 隆仁¹, 大河內 一輝¹, 生野 孝¹ ○原 航平¹, 長澤 倫太郎¹, 淹田 隆仁¹, 周 青陽¹, 生野 孝¹ ○ (M2) 石川 凌一¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ 佐藤 亮汰¹, 伊達 仁基¹, 石川 良¹, 上野 啓司¹, 白井 肇¹ ○ (M1) 大橋 亮太¹, 沓掛 健太朗², Huynh Thi Cam Tu¹, 大平 圭介¹ ○ (M1) Yang Pengyu¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ Shasha Li¹, Shinsuke Miyajima¹ ○ (D) Wen Yuli¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ (M1) 井上 和磨¹, 上根 直也²³, 後藤 和泰¹, 黒川 康良¹, 徳増 崇², 字佐美 徳隆¹	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工 1. 東理大先進工 1. 名大未来研 1. 北陸先端大 1. 埼玉大理工研 1. 北陸先端大 1. 北陸先端大 1. 北陸先端大 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
3/16(9:00 9:15 9:30 9:45 10:00 10:15 16.3 > 3/17(13:00)	サジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨 E 16a-D215-3 受 16a-D215-4 16a-D215-5 16a-D215-6 リコン系太陽電池/ (Fri.) 9:30 - 11:30 17a-PA05-1 17a-PA05-3 17a-PA05-4 E 17a-PA05-5 17a-PA05-6 17a-PA05-7 (Fri.) 13:00 - 17:45 17p-A403-1	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレットの電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称TiO₂/PDMS 複合フィルムを用いたトライボ発電出力の改善 出力の改善 と評価 フッ素樹脂・PDMS混合材料を用いた高出力摩擦帯電型発電シート Bulk、thin-film and other silicon-based solar cells ボスター講演 (Poster Presentation) PA会場(Room PA)異なる基板温度で堆積した Cat-CVDSiN₂膜を有する p型結晶Si 太陽電池モジュールの電圧誘起劣化 導電性高分子 SELFTRON®H/n-Si 接合太陽電池 ベイズ最適化を適用した Cat-CVD i-a-Si のバッシベーション性能の向上 MPATでのSi ウェハ表面の異方性エッチングにおける薬液の回転速度によるテクスチャサイズの変化 Optimization of 2-step deposition process of i-a-Si:H passivation layer deposited by facing target sputtering TNPCの試料のμ-PCDマッピングにおける異常パターンの出現 水素化アモルファスシリコン/結晶シリコンへテロ構造の解析に向けた反応性力場分子動力学法による数値シミュレーション研究 口頭講演 (Oral Presentation) A403 会場(Room A403)封止材を使用しないモジュールにおける結晶Si 太陽電池のレーザーカット端面が電気的特性に与える影響	○ (M1) 杉本 澪貴¹,川島 康介¹, 李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○ 小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 滝田 隆仁¹, 大河內 一輝¹, 生野 孝¹ ○原 航平¹, 長澤 倫太郎¹, 滝田 隆仁¹, 周 青陽¹, 生野 孝¹ ○ 松永 正広¹, 大野 雄高¹ ○ (M2) 石川 凌一¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ 佐藤 亮汰¹, 伊達 仁基¹, 石川 良¹, 上野 啓司¹, 白井 肇¹ ○ (M1) 大橋 亮太¹, 沓掛 健太朗², Huynh Thi Cam Tu¹, 大平 圭介¹ ○ (M1) Yang Pengyu¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ Shasha Li¹, Shinsuke Miyajima¹ ○ (D) Wen Yuli¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ (M1) 井上 和唐¹, 上根 直也²³, 後藤 和泰¹, 黒川 康良¹, 德增 崇², 宇佐美 徳隆¹ ○ (M2) 佐藤 滉太¹, 鈴木 真吾¹, 石河 泰明¹	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工 1. 東理大先進工 1. 名大未来研 1. 北陸先端大 1. 埼玉大理工研 1. 北陸先端大 1. Tokyo Tech 1. 北陸先端大 1. 名大院工, 2. 東北大院流体研, 3. 東北大院工
3/16(9:00 9:15 9:30 9:45 10:00 10:15 16.3 > 3/17(13:00) 13:15	サジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨 E 16a-D215-3 奨 16a-D215-4 16a-D215-5 16a-D215-6 リコン系太陽電池/ (Fri.) 9:30 - 11:30 17a-PA05-1 17a-PA05-3 17a-PA05-4 E 17a-PA05-5 17a-PA05-6 17a-PA05-7 (Fri.) 13:00 - 17:45 17p-A403-1 17p-A403-2	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレットの電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称下iO₂/PDMS 複合フィルムを用いたトライボ発電出力の改善セルロースを用いた高強度トライボ発電フィルムの作製と評価フッ素樹脂・PDMS混合材料を用いた高出力摩擦帯電型発電シート Bulk、thin-film and other silicon-based solar cells ボスター講演 (Poster Presentation) PA会場(Room PA) 異なる基板温度で堆積した Cat-CVDSiN₂膜を有する p型結晶 Si 太陽電池モジュールの電圧誘起劣化 導電性高分子 SELFTRON®H/n-Si接合太陽電池 ベイズ最適化を適用した Cat-CVD i-a-Si のパッシベーション性能の向上 MPATでのSi ウェハ表面の異方性エッチングにおける薬液の回転速度によるテクスチャサイズの変化 Optimization of 2-step deposition process of i-a-Si:H passivation layer deposited by facing target sputtering TNPCon 試料の μ-PCD マッピングにおける異常パターンの出現 水素化アモルファスシリコン / 結晶シリコンへテロ構造の解析に向けた反応性力場分子動力学法による数値シミュレーション研究 口頭講演 (Oral Presentation) A403 会場(Room A403) 封止材を使用しないモジュールにおける結晶 Si 太陽電池のレーザーカット端面が電気的特性に与える影響高熱伝導性材料による結晶シリコン太陽電池モジュール動作時の昇温抑止効果	○ (M1) 杉本 澪貴¹, 川島 康介¹, 李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○ 小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 滝田 隆仁¹, 大河內 一輝¹, 生野 孝¹ ○ 原 航平¹, 長澤 倫太郎¹, 滝田 隆仁¹, 周 青陽¹, 生野 孝¹ ○ 松永 正広¹, 大野 雄高¹ ○ (M2) 石川 凌一¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ 佐藤 亮汰¹, 伊達 仁基¹, 石川 良¹, 上野 啓司¹, 白井 肇¹ ○ (M1) 大橋 亮太¹, 沓掛 健太朗², Huynh Thi Cam Tu¹, 大平 圭介¹ ○ (M1) Yang Pengyu¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ (Shasha Li¹, Shinsuke Miyajima¹ ○ (D) Wen Yuli¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ (M1) 井上 和磨¹, 上根 直也²³, 後藤 和泰¹, 黒川 康良¹, 徳増 崇², 字佐美 徳隆¹ ○ (M2) 佐藤 滉太¹, 鈴木 真吾¹, 石河 泰明¹ ○ (傍鳥 靖¹, 下方 英弘¹, 岩城 幸志郎¹, 大平 圭介²	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工 1. 東理大先進工 1. 名大未来研 1. 北陸先端大 1. 埼玉大理工研 1. 北陸先端大 1. Tokyo Tech 1. 北陸先端大 1. 名大院工, 2. 東北大院流体研, 3. 東北大院工 1. 青学大理工 1. 岐阜大工学部, 2. 北陸先端大
3/16(9:00 9:15 9:30 9:45 10:00 10:15 16.3 > 3/17(13:00)	サジーハーベスティ (Thu.) 9:00 - 10:30 16a-D215-1 奨 16a-D215-2 奨 E 16a-D215-3 受 16a-D215-4 16a-D215-5 16a-D215-6 リコン系太陽電池/ (Fri.) 9:30 - 11:30 17a-PA05-1 17a-PA05-3 17a-PA05-4 E 17a-PA05-5 17a-PA05-6 17a-PA05-7 (Fri.) 13:00 - 17:45 17p-A403-1	ドロマイト焼成微細化とその効果 ング / Energy Harvesting 口頭講演 (Oral Presentation) D215 会場(Room D215) MEMS振動発電応用に向けた自己組織化エレクトレットの電気特性に関する検討 プラズマ処理によるフッ素樹脂の電荷安定性向上 Utilization of coupled oscillation in 2DOF-MEMS piezoelectric vibration energy harvester for impulsive force 非対称TiO₂/PDMS 複合フィルムを用いたトライボ発電出力の改善 出力の改善 と評価 フッ素樹脂・PDMS混合材料を用いた高出力摩擦帯電型発電シート Bulk、thin-film and other silicon-based solar cells ボスター講演 (Poster Presentation) PA会場(Room PA)異なる基板温度で堆積した Cat-CVDSiNュ膜を有する p型結晶 Si 太陽電池モジュールの電圧誘起劣化 導電性高分子 SELFTRON®H/n-Si 接合太陽電池 ベイズ最適化を適用した Cat-CVD i-a-Si のパッシベーション性能の向上 MPATでのSi ウェハ表面の異方性エッチングにおける薬液の回転速度によるテクスチャサイズの変化 Optimization of 2-step deposition process of i-a-Si:H passivation layer deposited by facing target sputtering TNPCの試料のμ-PCDマッピングにおける異常パターンの出現 水素化アモルファスシリコン / 結晶シリコンヘテロ構造の解析に向けた反応性力場分子動力学法による数値シミュレーション研究 口頭講演 (Oral Presentation) A403 会場(Room A403)封止材を使用しないモジュールにおける結晶 Si 太陽電池のレーザーカット端面が電気的特性に与える影響高熱伝導性材料による結晶シリコン太陽電池モジュール	○ (M1) 杉本 澪貴¹, 川島 康介¹, 李 睿宸¹, 栢口 英之², 栗原 啓輔², 石井 久夫², 田中 有弥³, 山根 大輔¹ ○ 小玉 拓海¹, 西野 実沙¹, 今嶋 航世¹, 遠藤 勝義¹, 山村 和也¹, 大久保 雄司¹ ○ (D) Aphayvong Sengsavang¹, Shuichi Murakami², Norifumi Fujimura¹, Takeshi Yoshimura¹ ○ (M1) 周 青陽¹, 滝田 隆仁¹, 大河內 一輝¹, 生野 孝¹ ○ 原 航平¹, 長澤 倫太郎¹, 滝田 隆仁¹, 周 青陽¹, 生野 孝¹ ○ 松永 正広¹, 大野 雄高¹ ○ (M2) 石川 凌一¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ 佐藤 亮汰¹, 伊達 仁基¹, 石川 良¹, 上野 啓司¹, 白井 肇¹ ○ (M1) 大橋 亮太¹, 沓掛 健太朗², Huynh Thi Cam Tu¹, 大平 圭介¹ ○ (M1) Yang Pengyu¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ (Shasha Li¹, Shinsuke Miyajima¹ ○ (D) Wen Yuli¹, Huynh Thi Cam Tu¹, 大平 圭介¹ ○ (M1) 井上 和磨¹, 上根 直也²³, 後藤 和泰¹, 黒川 康良¹, 徳増 崇², 字佐美 徳隆¹ ○ (M2) 佐藤 滉太¹, 鈴木 真吾¹, 石河 泰明¹ ○ (傍鳥 靖¹, 下方 英弘¹, 岩城 幸志郎¹, 大平 圭介²	1. 立命館大, 2. 千葉大, 3. 群馬大 1. 阪大院工 1. Osaka Metropolitan Univ., 2. ORIST 1. 東理大先進工 1. 東理大先進工 1. 名大未来研 1. 北陸先端大 1. 埼玉大理工研 1. 北陸先端大 1. Tokyo Tech 1. 北陸先端大 1. 名大院工, 2. 東北大院流体研, 3. 東北大院工 1. 青学大理工

1.新潟大自然, 2.新潟大カーポンセンター

17p-A403-4 片面封止結晶 Si 太陽電池モジュールにおける電圧誘起劣 \bigcirc (M1)秦 い明 1 ,米本 旭 1 ,増田 淳 1,2

13:45

化現象

		化現象		
14:00	17p-A403-5	佐賀県鳥栖市において屋外曝露された高効率結晶Si系太 陽電池モジュールの屋内測定結果の年次推移(III)	〇千葉 恭男¹, 佐藤 梨都子¹, 崔 誠佑¹, 秋富 稔¹, 石井 徹之², 增田 淳³	1. 産総研, 2. 電中研, 3. 新潟大学
14:15	17p-A403-6	建材一体型太陽電池における高効率加飾技術III	\bigcirc (B) 久保田 聡 1 , 足立 零生 1 , 徐 志豪 2 , 齋 均 2 , 近藤	1.東工大物質, 2.産総研
14:30	奨 17p-A403-7	建材一体型太陽電池 (BIPV) における高効率加飾技術IV	道雄 1,2 , 和田 裕之 1 〇足立 零生 1 , 久保田 聡 1 , 徐 志豪 2 , 齋 均 2 , 近藤 道 1,2 , 和田 裕之 1	1. 東工大物質, 2. 産総研
14:45		休憩/Break	же , 11 II II / II / I	
15:00	<u> </u>	多結晶Siの転位密度に対する界面形状と成長時間の影響 に関する統計的調査	宇佐美 徳隆 1	1.名大院工, 2.理研 AIP, 3.名大院情報
15:15	17p-A403-9	On-the-fly 機械学習力場を用いた Si:H/c-Si 界面の分子動力学シミュレーション	○ (M1) 仙波 貴行¹, 旭 良司¹, 陣内 亮典²	1.名大工, 2.豊田中研
15:30	奨 17p-A403-10	ガチンミュレーション 単結晶 Si ウェーハのテクスチャによる三次元柔軟性への 影響	\bigcirc (M1) 井手 康貴¹, 西原 達平¹.², 中村 京太郎³, 大下 祥雄³, 河津 知之⁴, 長井 俊樹⁴, 山田 昇⁵, 小林 勇人⁵, 小椋 厚志¹.6	
5:45	E 17p-A403-11	Clarifying the effects of nanostructured porosity of silicon on the band gap and band alignment: a computational study	Panus Sundarapura $^{\rm l}$, Manabu Ihara $^{\rm l}$, \bigcirc Sergei Manzhos $^{\rm l}$	1.Tokyo Tech
6:00	奨 17p-A403-12	ベイズ最適化を援用したシリコン量子ドット積層構造の 高品質化と太陽電池応用	〇熊谷 風雅 1 ,後藤 和泰 1 ,加藤 慎也 2 ,宮本 聡 1 ,沓掛 健太朗 3 ,字佐美 徳隆 1 ,黒川 康良 1	1.名大院工, 2.名工大院工, 3.理研AIP
6:15	将 17n-A403-13	休憩/Break 2段階水素プラズマ処理によるシリコンナノ結晶/酸化シ	○ 松目 優去 ¹	1 名大院工 2 車大生研
0.50	关 17p-11403-13	リコン複合膜のパッシベーション性能向上	良 ¹ ,福谷克之 ² ,宇佐美徳隆 ¹	1. 石八帆工,2. 宋八王明
6:45	17p-A403-14	TiO _x /SiO _y /結晶Siヘテロ構造におけるAl成膜後のパッシベーション性能に及ぼすLiF層の効果	○深谷 昌平¹, 後藤 和泰¹, 松井 卓矢², 齋 均², 黒川 康 良¹, 宇佐美 徳隆¹	1.名大院工, 2.産総研 GZR
7:00	奨 17p-A403-15	透明導電膜の成膜による結晶シリコンへのプロセスダ メージの評価		1. 明治大理工, 2. 学振特別研究員 DC, 3. 名古屋大学, 4. 豊田工業大学, 5. 明治大MREL
7:15	17p-A403-16	超極薄 Al ドープ SiO_x 膜により誘起した反転層のフロントエミッタ型 n 型結晶 Si 太陽電池への応用	○中島 寛記¹, Huynh Thi Cam Tu¹, 大平 圭介¹	1.北陸先端大
7:30	17p-A403-17	コロイダルリソグラフィ法とナノインプリント法による 近赤外光に特化した光閉じ込め構造の作製	〇木股 佑斗 1 ,後藤 和泰 1 ,宮本 聡 1 ,黒川 康良 1 ,宇佐 美 徳隆 1	1. 名大院工
		リッド太陽電池、13.9 化合物太陽電池、16.3 シリコン系太	陽電池のコードシェアセッション / Code-sharing Se	ssion of 12.5 & 13.9 & 16.3
3/18(3:00		口頭講演 (Oral Presentation) A408会場(Room A408) 直列二端子ペロブスカイト/シリコンタンデム太陽電池 の電流整合設計	○上出 健仁¹, 高遠 秀尚¹	1. 産総研
3:15	18p-A408-2	【注目講演】ベロブスカイト/シリコンタンデム太陽電池 の1000時間光耐久性	○塩川美雪 ^{1.7} , 平野 樹 ¹ , 北村 武史 ² , 廣谷太佑 ⁴ , 野 村 大志郎 ⁴ , 林 雅博 ³ , 野村 隆利 ³ , 中村 雅規 ⁶ , 平見 朋 之 ⁶ , 早瀬 修二 ² , 齋 均 ³ , 松井 卓矢 ³ , 五反田 武志 ^{1.7}	
13:30	18p-A408-3	人工光合成反応のための電圧整合ペロブスカイト/結晶 シリコンタンデム太陽電池モジュール	○竹田 康彦¹, 山中 健一¹, 森川 健志¹, 加藤 直彦¹	1. 豊田中研
13:45	18p-A408-4	PEDOT:PSS/n-Si 接合を下部素子とした FA0.9Cs0.1Pbl3ペロプスカイト系モノリシック 2 接合太 陽電池の作製		1. 埼玉大理工研
14:00	And To A A A A A A A A A A A A A A A A A A	休憩/Break		4.77.1. 0.77.1.
14:15	奨 E 18p-A408-5	Optimization of the Morphological Structure of Spin-Coated on p-GaAs Substrates for Perovskite/ GaAs-based Photon Up-conversion Solar Cells	○ (D)Hambalee Mahamu ¹ , Matthias Bourzier ² , Shigeo Asahi ¹ , Takashi Kita ¹	1.Kobe Univ., 2.INSA Lyon
14:30	18p-A408-6	ペロブスカイトタンデムセル用薄型へテロ接合Siボトムセルの作製(2)	○齊藤 公彦¹, 宍戸 寛崇¹, 石川 亮佑¹	1. 東京都市大総研
14:45	E 18p-A408-7	~表面テクスチャの適用~ Optimization of wide-bandgap perovskite to improve the		1.Uni. of Electr.Comm., 2.Uni. of Tokyo
15:00	18p-A408-8	performance of all perovskite tandem solar cells Perovskite-perovskite タンデム用途に向けた Voc~1.4V	Hiroshi Segawa², Shuzi Hayase¹ ○白井 康裕¹, カダカ ビ ドゥラバ¹, 柳田 真利¹, 宮野	1.物材研
		のトップセル材料の開発	健次郎1	
		anocarbon Technology はプログラム冒頭にございます。		
		ポスター講演 (Poster Presentation) PA 会場(Room PA)		
	15a-PA01-1	MWNT 成長における高分子炭素源の候補材料評価〜PEトPETの比較〜	○中村 有理¹, 栗原 佑典¹, 小松 裕明¹, 生野 孝¹	1. 東理大先進工
		とPETの比較〜 各種不均一触媒を用いたプラスチックからSWNTへの変		1. 東理大先進工
	15a-PA01-2	とPETの比較~ 各種不均一触媒を用いたプラスチックからSWNTへの変 換 カーボンフォームとカーボンナノチューブから成るナノ	○栗原 佑典¹, 中村 有理¹, 小松 裕明¹, 生野 孝¹	1. 東理大先進工
	15a-PA01-2 15a-PA01-3	とPETの比較~ 各種不均一触媒を用いたプラスチックからSWNTへの変換 カーボンフォームとカーボンナノチューブから成るナノカーボンハイブリッド構造体の作製 鉄内包カーボンナノチューブ/セルロースナノファイ	 ○栗原 佑典¹,中村 有理¹,小松 裕明¹,生野 孝¹ ○杉山 萌梨¹,サラマ カマル²,才田 隆広¹²,成塚 重 弥¹,丸山 隆浩¹² 	1. 東理大先進工
	15a-PA01-2 15a-PA01-3 15a-PA01-4	とPETの比較~ 各種不均一触媒を用いたプラスチックからSWNTへの変換 カーボンフォームとカーボンナノチューブから成るナノカーボンハイブリッド構造体の作製 鉄内包カーボンナノチューブ/セルロースナノファイバー複合シートの作製 その場 XAFS 測定による単層カーボンナノチューブ 成長	 ○栗原 伯典¹, 中村 有理¹, 小松 裕明¹, 生野 孝¹ ○杉山 萌梨¹, サラマ カマル², 才田 隆広¹², 成塚 重 弥¹, 丸山 隆浩¹² ○高崎 廉大¹, 佐藤 英樹¹, 藤原 裕司¹ ○柄澤 周作¹, サラマ カマル², 才田 隆広¹², 成塚 重 	 1. 東理大先進工 1. 名城大理工, 2. 名城大ナノマテ研 1. 三重大院工
	15a-PA01-2 15a-PA01-3 15a-PA01-4 15a-PA01-5	とPETの比較~ 各種不均一触媒を用いたプラスチックからSWNTへの変換 カーボンフォームとカーボンナノチューブから成るナノカーボンハイブリッド構造体の作製 鉄内包カーボンナノチューブ/セルロースナノファイバー複合シートの作製 その場 XAFS 測定による単層カーボンナノチューブ 成長メカニズムの解明: Ir 触媒と Pt 触媒の比較 CNTネットワークの配向性制御CNTネットワークの配	 ○栗原 佑典¹, 中村 有理¹, 小松 裕明¹, 生野 孝¹ ○杉山 萌梨¹, サラマ カマル², 才田 隆広¹², 成塚 重弥¹, 丸山 隆浩¹² ○高崎 廉大¹, 佐藤 英樹¹, 藤原 裕司¹ ○柄澤 周作¹, サラマ カマル², 才田 隆広¹², 成塚 重弥¹, 丸山 隆浩¹² ○福田 紀香¹, 殿内 規之¹², 澁谷 泰蔵¹², 田中 朋¹², 	 東理大先進工 名城大理工, 2. 名城大ナノマテ研 三重大院工 名城大理工, 2. 名城大ナノマテ研
	15a-PA01-2 15a-PA01-3 15a-PA01-4 15a-PA01-5 15a-PA01-6	とPETの比較~ 各種不均一触媒を用いたプラスチックからSWNTへの変換 カーボンフォームとカーボンナノチューブから成るナノカーボンハイブリッド構造体の作製 鉄内包カーボンナノチューブ/セルロースナノファイバー複合シートの作製 その場 XAFS 測定による単層カーボンナノチューブ 成長メカニズムの解明: Ir 触媒と Pt 触媒の比較	 ○栗原 佑典¹, 中村 有理¹, 小松 裕明¹, 生野 孝¹ ○杉山 萌梨¹, サラマ カマル², 才田 隆広¹², 成塚 重 弥¹, 丸山 隆浩¹² ○高崎 廉大¹, 佐藤 英樹¹, 藤原 裕司¹ ○柄澤 周作¹, サラマ カマル², 才田 隆広¹², 成塚 重 弥¹, 丸山 隆浩¹² ○福田 紀香¹, 殿内 規之¹², 澁谷 泰蔵¹², 田中 朋¹², 宮崎 孝¹², 宮本 俊江¹², 金折 恵², 弓削 亮太¹² 	 東理大先進工 名城大理工, 2. 名城大ナノマテ研 三重大院工 名城大理工, 2. 名城大ナノマテ研
	15a-PA01-2 15a-PA01-3 15a-PA01-4 15a-PA01-5 15a-PA01-6 15a-PA01-7	とPETの比較~ 各種不均一触媒を用いたプラスチックからSWNTへの変換 カーボンフォームとカーボンナノチューブから成るナノカーボンハイブリッド構造体の作製 鉄内包カーボンナノチューブ/セルロースナノファイバー複合シートの作製 その場 XAFS 測定による単層カーボンナノチューブ 成長メカニズムの解明: Ir 触媒と Pt 触媒の比較 CNTネットワークの配向性制御CNTネットワークの配向性制御 EB照射および熱処理による Csoナノワイヤの電気・構造的変化	 ○栗原 佑典¹, 中村 有理¹, 小松 裕明¹, 生野 孝¹ ○杉山 萌梨¹, サラマ カマル², 才田 隆広¹²², 成塚 重弥¹, 丸山 隆浩¹² ○高崎 廉大¹, 佐藤 英樹¹, 藤原 裕司¹ ○柄澤 周作¹, サラマ カマル², 才田 隆広¹², 成塚 重弥¹, 丸山 隆浩¹² ○福田 紀香³, 殿内 規之¹², 澁谷 泰蔵¹², 田中 朋¹², 宮崎 孝¹², 宮本 俊江¹², 金折 恵², 弓削 亮太¹² ○(M2) 村野 海渡¹, 相川 慎也¹, 塚越 一仁² 	 東理大先進工 名城大理工, 2. 名城大ナノマテ研 三重大院工 名城大理工, 2. 名城大ナノマテ研 日本電気, 2. 産総研 工学院大工, 2. 物材研
	15a-PA01-2 15a-PA01-3 15a-PA01-4 15a-PA01-5 15a-PA01-6 15a-PA01-7	とPETの比較~ 各種不均一触媒を用いたプラスチックから SWNT への変換 カーボンフォームとカーボンナノチューブから成るナノカーボンハイブリッド構造体の作製 鉄内包カーボンナノチューブ/セルロースナノファイバー 複合シートの作製 その場 XAFS 測定による単層カーボンナノチューブ 成長 メカニズムの解明: Ir 触媒と Pt 触媒の比較 CNT ネットワークの配向性制御 CNT ネットワークの配向性制御 EB 照射および熱処理による C_{60} ナノワイヤの電気・構造	○栗原 伯典¹, 中村 有理¹, 小松 裕明¹, 生野 孝¹ ○杉山 萌梨¹, サラマ カマル², 才田 隆広¹², 成塚 重 弥¹, 丸山 隆浩¹² ○高崎 廉大¹, 佐藤 英樹¹, 藤原 裕司¹ ○柄澤 周作¹, サラマ カマル², 才田 隆広¹², 成塚 重 弥¹, 丸山 隆浩¹² ○福田 紀香¹, 殿内 規之¹², 澁谷 泰蔵¹², 田中 朋¹², 宮崎 孝¹², 宮本 俊江¹², 金折 恵², 弓削 亮太¹² ○(M2) 村野 海渡¹, 相川 慎也¹, 塚越 一仁² ○大元 幹人¹, 西留 比呂幸¹, 内田 健人², 枝 淳子¹, 大 久保 瞳¹, 上治 寛¹, 蓬田 陽平¹, 田中 耕一郎², 柳 和	 東理大先進工 名城大理工, 2. 名城大ナノマテ研 三重大院工 名城大理工, 2. 名城大ナノマテ研 日本電気, 2. 産総研 工学院大工, 2. 物材研
	15a-PA01-2 15a-PA01-3 15a-PA01-4 15a-PA01-5 15a-PA01-6 15a-PA01-7 15a-PA01-8	とPETの比較~各種不均一触媒を用いたプラスチックからSWNTへの変換 カーボンフォームとカーボンナノチューブから成るナノカーボンハイブリッド構造体の作製 鉄内包カーボンナノチューブ/セルロースナノファイバー複合シートの作製 その場 XAFS 測定による単層カーボンナノチューブ 成長メカニズムの解明: Ir 触媒と Pt 触媒の比較 CNTネットワークの配向性制御CNTネットワークの配向性制御 EB 照射および熱処理による Cωナノワイヤの電気・構造的変化 キラルな単層カーボンナノチューブにおける高次高調波発生の円二色性	○栗原 佑典¹, 中村 有理¹, 小松 裕明¹, 生野 孝¹ ○杉山 萌梨¹, サラマ カマル², 才田 隆広¹², 成塚 重 弥¹, 丸山 隆浩¹² ○高崎 廉大¹, 佐藤 英樹¹, 藤原 裕司¹ ○柄澤 周作¹, サラマ カマル², 才田 隆広¹², 成塚 重 弥¹, 丸山 隆浩¹² ○福田 紀香¹, 殿内 規之¹², 澁谷 泰蔵¹², 田中 朋¹², 宮崎 孝¹², 宮本 俊江¹², 金折 恵², 弓削 亮太¹² ○(M2) 村野 海渡¹, 相川 慎也¹, 塚越 一仁² ○大元 幹人¹, 西留 比呂幸¹, 内田 健人², 枝 淳子¹, 大 久保 瞳¹, 上治 寛¹, 蓬田 陽平¹, 田中 耕一郎², 柳 和 宏¹	 東理大先進工 名城大理工, 2. 名城大ナノマテ研 三重大院工 名城大理工, 2. 名城大ナノマテ研 日本電気, 2. 産総研 工学院大工, 2. 物材研
	15a-PA01-2 15a-PA01-3 15a-PA01-4 15a-PA01-5 15a-PA01-6 15a-PA01-7 15a-PA01-8	とPETの比較~各種不均一触媒を用いたプラスチックからSWNTへの変換 カーボンフォームとカーボンナノチューブから成るナノカーボンハイブリッド構造体の作製 鉄内包カーボンナノチューブ/セルロースナノファイバー複合シートの作製 その場 XAFS 測定による単層カーボンナノチューブ 成長メカニズムの解明: Ir 触媒と Pt 触媒の比較 CNTネットワークの配向性制御CNTネットワークの配向性制御 EB 照射および熱処理による C ₆₀ ナノワイヤの電気・構造的変化 キラルな単層カーボンナノチューブにおける高次高調波発生の円二色性 レーザ熱転写法によりブラスチックフィルムに形成した MWNT配線のキャリア伝導メカニズムに関する考察 ELF法で分離した長尺化半導体型カーボンナノチューブ	 ○栗原 佑典¹, 中村 有理¹, 小松 裕明¹, 生野 孝¹ ○杉山 萌梨¹, サラマ カマル², 才田 隆広¹², 成塚 重弥¹, 丸山 隆浩¹² ○高崎 廉大¹, 佐藤 英樹¹, 藤原 裕司¹ ○柄澤 周作¹, サラマ カマル², 才田 隆広¹², 成塚 重弥¹, 丸山 隆浩¹² ○福田 紀香¹, 殿内 規之¹², 澁谷 泰蔵¹², 田中 朋¹², 宮崎 孝¹², 宮本 俊江¹², 金折 恵², 弓削 亮太¹² ○(M2) 村野 海渡¹, 相川 慎也¹, 塚越 一仁² ○大元 幹人¹, 西留 比呂幸¹, 内田 健人², 枝 淳子¹, 大 久保 瞳¹, 上治 寛¹, 蓬田 陽平¹, 田中 耕一郎², 柳 和 宏¹ ○(B) 松浪 隆寛¹, 杉田 洋介¹, 小松 裕明¹, 生野 孝¹ 	 東理大先進工 名城大理工, 2. 名城大ナノマテ研 三重大院工 名城大理工, 2. 名城大ナノマテ研 日本電気, 2. 産総研 工学院大工, 2. 物材研 都立大理, 2. 京大理 東理大先進工
	15a-PA01-2 15a-PA01-3 15a-PA01-4 15a-PA01-5 15a-PA01-6 15a-PA01-7 15a-PA01-8 15a-PA01-9	とPETの比較~各種不均一触媒を用いたプラスチックからSWNTへの変換 カーボンフォームとカーボンナノチューブから成るナノカーボンハイブリッド構造体の作製 鉄内包カーボンナノチューブ/セルロースナノファイバー複合シートの作製 その場 XAFS 測定による単層カーボンナノチューブ 成長メカニズムの解明: It 触媒と Pt 触媒の比較 CNTネットワークの配向性制御CNTネットワークの配向性制御 EB 照射および熱処理による Cωナノワイヤの電気・構造的変化 キラルな単層カーボンナノチューブにおける高次高調波発生の円二色性 レーザ熱転写法によりブラスチックフィルムに形成した MWNT配線のキャリア伝導メカニズムに関する考察 ELF法で分離した長尺化半導体型カーボンナノチューブの抵抗温度係数の評価 SiC 上エビタキシャルグラフェン成長機構の第一原理計	 ○栗原 佑典¹, 中村 有理¹, 小松 裕明¹, 生野 孝¹ ○杉山 萌梨¹, サラマ カマル², 才田 隆広¹², 成塚 重弥¹, 丸山 隆浩¹² ○高崎 廉大¹, 佐藤 英樹¹, 藤原 裕司¹ ○柄澤 周作¹, サラマ カマル², 才田 隆広¹², 成塚 重弥¹, 丸山 隆浩¹² ○福田 紀香¹, 殿内 規之¹², 澁谷 泰蔵¹², 田中 朋¹², 宮崎 孝¹², 宮本 俊江¹², 金折 恵², 弓削 亮太¹² ○(M2) 村野 海渡¹, 相川 慎也¹, 塚越 一仁² ○大元 幹人¹, 西留 比呂幸¹, 内田 健人², 枝 淳子¹, 大久保 瞳¹, 上治 寛¹, 蓬田 陽平¹, 田中 耕一郎², 柳 和 宏¹ ○(B) 松浪 隆寛¹, 杉田 洋介¹, 小松 裕明¹, 生野 孝¹ ○宮本 俊江¹², 田中 朋¹², 宮崎 孝¹², 金折 恵², 福田 紀香¹, 渋谷 明信¹², 弓削 亮太¹² 	 東理大先進工 名城大理工, 2. 名城大ナノマテ研 三重大院工 名城大理工, 2. 名城大ナノマテ研 日本電気, 2. 産総研 工学院大工, 2. 物材研 都立大理, 2. 京大理 東理大先進工
	15a-PA01-2 15a-PA01-3 15a-PA01-4 15a-PA01-5 15a-PA01-6 15a-PA01-7 15a-PA01-8 15a-PA01-10 15a-PA01-10	とPETの比較~各種不均一触媒を用いたプラスチックからSWNTへの変換 カーボンフォームとカーボンナノチューブから成るナノカーボンフォームとカーボンナノチューブから成るナノカーボンハイブリッド構造体の作製 狭内包カーボンナチューブ/セルロースナノファイバー複合シートの作製 その場 XAFS 測定による単層カーボンナノチューブ成長メカニズムの解明: Ir 触媒と Pt 触媒の比較 CNTネットワークの配向性制御CNTネットワークの配向性制御 EB照射および熱処理によるCωナノワイヤの電気・構造的変化 キラルな単層カーボンナノチューブにおける高次高調波発生の円二色性 レーザ熱転写法によりブラスチックフィルムに形成した MWNT配線のキャリア伝導メカニズムに関する考察 ELF法で分離した長尺化半導体型カーボンナノチューブの抵抗温度係数の評価 SiC 上エビタキシャルグラフェン成長機構の第一原理計算による研究 —ステップとC原子吸着の関係—極微細構造を有するNiバターンの凝集現象を用いたサ	○栗原 伯典¹, 中村 有理¹, 小松 裕明¹, 生野 孝¹ ○杉山 萌梨¹, サラマ カマル², 才田 隆広¹², 成塚 重 弥¹, 丸山 隆浩¹² ○高崎 廉大¹, 佐藤 英樹¹, 藤原 裕司¹ ○柄澤 周作¹, サラマ カマル², 才田 隆広¹², 成塚 重 弥¹, 丸山 隆浩¹² ○福田 紀香¹, 殿内 規之¹², 澁谷 泰蔵¹², 田中 朋¹², 宮崎 孝¹², 宮本 俊江¹², 金折 恵², 弓削 亮太¹² ○(M2) 村野 海渡¹, 相川 慎也¹, 塚越 一仁² ○大元 幹人¹, 西留 比呂幸¹, 内田 健人², 枝 淳子¹, 大 久保 瞳¹, 上治 寛¹, 蓬田 陽平¹, 田中 耕一郎², 柳 和 宏¹ ○(B) 松浪 隆寛¹, 杉田 洋介¹, 小松 裕明¹, 生野 孝¹ ○宮本 俊江¹², 田中 朋¹², 宮崎 孝¹², 金折 恵², 福田 紀香¹, 渋谷 明信¹², 弓削 亮太¹²	1. 東理大先進工 1. 名城大理工, 2. 名城大ナノマテ研 1. 三重大院工 1. 名城大理工, 2. 名城大ナノマテ研 1. 日本電気, 2. 産総研 1. 工学院大工, 2. 物材研 1. 都立大理, 2. 京大理 1. 東理大先進工 1.NEC, 2. 産総研
	15a-PA01-2 15a-PA01-3 15a-PA01-4 15a-PA01-5 15a-PA01-6 15a-PA01-7 15a-PA01-8 15a-PA01-10 15a-PA01-11 15a-PA01-12	とPETの比較~各種不均一触媒を用いたプラスチックからSWNTへの変換 カーボンフォームとカーボンナノチューブから成るナノカーボンフォームとカーボンナノチューブから成るナノカーボンハイブリッド構造体の作製 鉄内包カーボンナチューブ/セルロースナノファイバー複合シートの作製 その場 XAFS 測定による単層カーボンナノチューブ成長メカニズムの解明: Ir 触媒と Pt 触媒の比較 CNTネットワークの配向性制御CNTネットワークの配向性制御 EB照射および熱処理によるCωナノワイヤの電気・構造的変化 キラルな単層カーボンナノチューブにおける高次高調波発生の円二色性 レーザ熱転写法によりプラスチックフィルムに形成した MWNT配線のキャリア伝導メカニズムに関する考察 ELF法で分離した長尺化半導体型カーボンナノチューブの抵抗温度係数の評価 SiC 上エビタキシャルグラフェン成長機構の第一原理計算による研究ーステップとC原子吸着の関係一	○栗原 伯典¹, 中村 有理¹, 小松 裕明¹, 生野 孝¹ ○杉山 萌梨¹, サラマ カマル², 才田 隆広¹², 成塚 重 弥¹, 丸山 隆浩¹² ○高崎 廉大¹, 佐藤 英樹¹, 藤原 裕司¹ ○柄澤 周作¹, サラマ カマル², 才田 隆広¹², 成塚 重 弥¹, 丸山 隆浩¹² ○福田 紀香¹, 殿内 規之¹², 遠谷 泰蔵¹², 田中 朋¹², 宮崎 孝¹², 宮本 俊江¹², 金折 恵², 弓削 亮太¹² ○(M2) 村野 海渡¹, 相川 慎也¹, 塚越 一仁² ○大元 幹人¹, 西留 比呂幸¹, 内田 健人², 枝 淳子¹, 大人保 瞳¹, 上治 寛¹, 蓬田 陽平¹, 田中 耕一郎², 柳 和 宏¹ ○(B) 松浪 隆寛¹, 杉田 洋介¹, 小松 裕明¹, 生野 孝¹ ○宮本 俊江¹², 田中 朋¹², 宮崎 孝¹², 金折 恵², 福田 紀香¹, 渋谷 明信¹², 弓削 亮太¹² ○(M1) 福田 槙哉¹, 影島 博之¹	1. 東理大先進工 1. 名城大理工, 2. 名城大ナノマテ研 1. 三重大院工 1. 名城大理工, 2. 名城大ナノマテ研 1. 日本電気, 2. 産総研 1. 工学院大工, 2. 物材研 1. 都立大理, 2. 京大理 1. 東理大先進工 1. NEC, 2. 産総研 1. 島根大院自然科学

15a-PA01-14	c、m面サファイア上でのグラフェンCVD成長メカニズ		1. 関学大理工
45 70445	ムの比較	治樹」	4 Or to Lamber
	減圧CVDによるAIN基板上へのグラフェンの直接成長 乱層・多層グラフェンの化学気相成長における成長テン	○長村 皓平¹, 柳瀬 優太¹, 丸山 隆浩¹, 成塚 重弥¹ ○(M1) 亀井 翔太¹, 姚 瑶¹, 井ノ上 泰輝¹, 小川 友以²,	1. 名城大理工 1. 阪大院工, 2.NTT物性基礎研
	プレートの影響	高村 真琴 ² , 谷保 芳孝 ² , 小林 慶裕 ¹	
15a-PA01-17	六方晶窒化ホウ素フレーク上へのグラフェン層の直接成 長	邊 賢司 ³, 谷口 尚 ³, 花尻 達郎 ¹.², 前川 透 ¹.², 根岸 良	1. 東洋大理工, 2. 東洋大 BNC, 3. 物質材料研究機構
15a-PA01-18	グラフェンナノウォール成長におけるプラズマ電子密度	太 ^{1,2} ○長谷場 峻吾 ¹	1.中部大工
	との相関	2 11 2 2	
15a-PA01-19	Caをインターカレーションした CVD 二層グラフェンの 作製と電気特性	○大津 柏紀子¹, Solís-Fernández Pablo², 蒲 江³, Lin Yung-Chang⁴, 松永 貴子², 松本 里香⁵, 末永 和知⁶, 竹 延 大志³, 吾郷 浩樹¹²	
15a-PA01-20	IrO_2 担持 N ドープグラフェン触媒 OER 活性に対する担体サイズの効果	Joshi Prerna¹, ○原 正則¹, Yadav Rohit¹, De Silva Kanishka¹, 吉村 雅満¹	1. 豊田工大
15a-PA01-21	m面サファイア基板上でのグラフェンの減圧 CVD 成長 3- ヘキシン分圧依存性	○(M2)三田 和輝 ¹ , 福西 康寛 ¹ , 柳瀬 優太 ¹ , 丸山 隆 浩 ¹ , 成塚 重弥 ¹	1. 名城大理工
15a-PA01-22	ナノグラフェン上での長方形状構造を呈するSTM像の第 一原理計算に基づく考察	○李君寰¹, 稲垣 耕司¹, 孫 栄硯¹, 山村 和也¹, 有馬 健太¹	1. 阪大院工
15a-PA01-23	グラフェンの微細パターニングと光吸収増強効果	○林 賢二郎¹, 須田 章一¹, 阿曽 広之¹, 乗松 正明¹, 片	1. 富士通
104 11101 20	7 7 7 - 1 7 PANNE	岡真紗子 ¹ ,山下裕泰 ¹ ,松宮康夫 ¹ ,角田浩司 ¹ ,近藤大雄 ¹ ,佐藤信太郎 ¹	A 111 12 702
15a-PA01-24	ジグザグ グラフェン ナノメッシュの熱伝導	○横澤 峻元¹,鎌田 雅博¹,越智 太亮¹,松井 朋裕¹	1.アンリツ先端研
15a-PA01-25	パーシステントホモロジーを利用した CVD グラフェンの		1.産総研
F 15 DA01 97	移動度と表面ラフネスの相関関係の解析	O(D)N I' C I. IV I' C I M	111 ' 77 1 1
E 15a-PA01-26	Electronic-structure tuning of multilayer graphene by a perpendicular electric field and stacking arrangement	○ (D)Nadia Sultana¹, Yanlin Gao¹, Mina Maruyama¹, Susumu Okada¹	1.Univ. Tsukuba
15a-PA01-27	エタノールガス雰囲気の高温加熱還元による酸化グラフェンからの乱層積層した多層グラフェンの合成	〇山下 朋晃 1 , 和賀 恵太 1 , 鵜飼 智文 2 , 黒須 俊治 2 , 花 尻 達郎 1,2 , 前川 透 1,2 , 根岸 良太 1,2	1.東洋大理工, 2.東洋大 バイオ・ナノエレクトロニクス 研究センター
E 15a-PA01-28	First-principles Study on Strain-induced Change of		1.Dept. of Finemechanics , Tohoku Univ, 2.Dept. of
	Adsorption Behaviors of NO ₂ Molecules on Graphene	Suzuki³, Hideo Miura³	Physics, Beijing University of Science and Technology, 3.Fracture and Reliability Research Institute (FRRI), Tohoku Univ
15a-PA01-29	SiO ₂ 基板疎水化によるロバストなグラフェン電界効果トランジスタバイオセンサ	〇中野 友美 ¹ , 牛場 翔太 ¹ , 宮川 成人 ¹ , 品川 歩 ¹ , 小野 尭生 ^{2.3} , 金井 康 ^{2.4} , 谷 晋輔 ¹ , 木村 雅彦 ¹ , 松本 和彦 ²	
15a-PA01-30	櫛歯電極導入によるグラフェン素子電気特性の改善	○須田章一¹,乗松正明¹,片岡真紗子¹,阿曽広之¹, 林賢二郎¹,近藤大雄¹,佐藤信太郎¹	
15a-PA01-31	電子線照射によるグラフェンの電気特性への影響	乘松 正明¹,片岡 真紗子¹,阿曽 広之¹,須田 章一¹,林 賢二郎¹,○近藤 大雄¹,佐藤 信太郎¹	1.富士通
15a-PA01-32	グラフェンpn接合アンテナ構造による光検出素子の作製	〇佐藤 遥大 1 , 李 恒 2 , 高橋 典華 3 , 森山 悟士 1 , 河野 行	
15a-PA01-33	と評価 レジストフリーグラフェン転写方法の開発	雄 ^{2,3,4} , 渡邊 賢司 ⁵ , 谷口尚 ⁵ , 藤方潤一 ⁶ , 岩崎拓哉 ⁵ ○阿曽広之 ¹ , 伏見直樹 ¹ , 須田章一 ¹ , 林賢二郎 ¹ , 近	
E 15a-PA01-34	Improvement of the gas sensitivity of a CNT/graphene	藤大雄¹, 佐藤 信太郎¹ ○Xiangyu Qiao¹, Yuto Hirose¹, Meng Yin¹, Ken	1.Tohoku Univ.
	hybrid structure sensor by the application of strain	Suzuki ¹ , Hideo Miura ¹	
E 15a-PA01-35	Spin-mechatronics device based on controllable mass gapped Dirac cone of graphene in a Ni/hBN-graphene-hBN/Ni magnetic junction.	○ (PC)Yusuf Wicaksono¹, Halimah Harfah¹, Gagus K. Sunnardianto², Muhammad A. Majidi³, Koichi Kusakabe⁴	1.Osaka Univ, 2.BRIN Indonesia, 3.Univ. Indonesia, 4.Hyogo Univ.
15° BAO1 36	ALD成長WS。薄膜のサイクル数に応じた組成変化	○福島 崇史¹, リム ホン エン¹, 上野 啓司¹	1. 埼玉大院理工
15a-PA01-36	ALD 放長 WS ₂ 海膜のサイクル数に応した組成変化		
15a-PA01-37	-	○吉田 考希¹, リム ホン エン¹, 上野 啓司¹	1.埼玉大院理工
	MoO₃薄膜のTe化による多層MoTe₂相転移制御	○村中 柊都¹, 星 裕介¹	1.東京都市大学
	WTe_2 ナノワイヤの合成と熱電特性評価	○島田 敏宏¹, Gao Zhefan¹, 横倉 聖也¹, 長浜 太郎¹	1.北大工
15a-PA01-40	${ m Ar/O_2}$ キャリアガスを用いた窒化物半導体上への ${ m MoS_2}$ の CVD成長	○河瀬 流星¹, 流石 新生¹, Rong Kaipeng¹, Kuddus Abdul², 三宅 秀人³, 荒木 努¹, 毛利 真一郎¹	1. 立命館大理工, 2. 立命館大R-GIRO, 3. 三重大工
15a-PA01-41	気相成長 WOx ナノワイヤからの小径 $WSe2$ ナノチューブ の合成	○(B) 伊原 茜¹, 永野 麻衣¹, 蓬田 陽平¹, 上治 寬¹, 柳 和宏¹	1.都立大
15a-PA01-42	紫外レーザーを用いた多環芳香族化合物の空間選択的多 量化	○森田 賢¹, 井村 考平²	1.早大先進理工, 2.早大院理工
15a-PA01-43	MoS_2 ナノシートを用いた気相中アシストシリコンエッチング	\bigcirc (M1) 山本 快知 1 , 窪田 航 1 , 宇都宮 徹 1 , 一井 崇 1 , 杉村 博之 1	1.京大院工
15a-PA01-44	層状物質の厚い膜に存在する単層分の厚さの違いを検知 する手法	〇服部 吉晃 1 ,谷口 尚 2 ,渡邊 賢司 2 ,北村 雅季 1	1.神戸大院工, 2.物材機構
15a-PA01-45	ドナー性分子/2次元半導体へテロ構造における低温下で の特異な伝導挙動	○松山 圭吾 1.2, 藤村 紀文 2, 桐谷 乃輔 1	1. 東大院総合, 2. 阪公大院工
15a-PA01-46	パラフィン被膜による MoS_2 , WS_2 , $MoSe_2$, WSe_2 の高発光化	〇小林 尭史 1 , 中原 隆宏 $^{2.3}$, 土肥 徹次 1 , 藤村 紀文 2 , 桐谷 乃輔 3	1.中央院理工, 2. 阪公大院工, 3. 東大院総合
15a-PA01-47	二軸歪み単層遷移金属ダイカルコゲナイドの光学特性	○(M2)岩熊 高志¹, 星 裕介¹	1.都市大
	hBN の表面ラフネスがhBN/単層WSe2/hBN構造の励起		1.都市大, 2.NIMS
15a-PA01-49	子ダイナミクスに与える影響 リン含有非対称分子によるTMDCに対する電子供給メカ	○四谷 祥太郎 ^{1,2} , 吉村 武¹, 藤村 紀文¹, 桐谷 乃輔 ²	1. 阪公大院工, 2. 東大院総合
	ニズムの考察 接触面積制御型の非破壊電気コンタクト用ソフトプロー		1. 物材機構, 2. 鈴鹿高専
	ブ		
	層状セレン化ガリウムによる光検出器アレイの作製 Reduction of I_d - V_g hysteresis in SiO_2/MoS_2 n-FET by insertion of h-BN interfacial layer	○浦上法之 ^{1,2} , 中蔵 真也 ¹ , 橋本 佳男 ^{1,2} ○ JIAQUAN FENG ¹ , TIANSHUN XIE ¹ , NOBUYOKI AOKI ¹ , MENGNAN KE ¹	1.信州大工, 2.信州大 先鋭材料研 1.chiba university
15a-PA01-53	分子吸着ドーピングと表面酸化による WSe_2 の局所キャ	\bigcirc (B) 四方 沢弥 1 , 稲田 貢 1 , 谷口 尚 2 , 渡邊 賢司 2 , 上	1. 関西大システム理工, 2. 物材機構, 3. 埼玉大院理工
15a-PA01-54	リア制御 反応性蒸着酸化アルミニウム膜による黒リンFETの大気	野 啓司³, 山本 真人¹ ○吉峯 夕貴¹, 小田 太一¹, 稲田 貢¹, 山本 真人¹	1.関西大システム理工
15a-PA01-55	安定化 1T-VSe ₂ の表面酸化膜を用いた抵抗変化メモリの作製	○(B)中村 優太¹, 稲田 貢¹, 谷 弘詞¹, 上野 啓司², 山	1.関西大システム理工, 2.埼玉大院理工
15a-PA01-56	二次元WSe₂の自己制限酸化膜を利用したメモリの作製	本 真人¹ ○(B)寒川 雄斗¹, 稲田 貢¹, 上野 啓司², 山本 真人¹	1.関西大システム理工, 2.埼玉大院工

17.1 カー	-ボンナノチューブ -	、 、他のナノカーボン材料 / Carbon nanotubes & other nar	nocarbon materials	
	hu.) 9:00 - 11:30	口頭講演 (Oral Presentation) B309会場 (Room B309)		
9:00	16a-B309-1	同心へテロ構造のための外層カーボンナノチューブの高	○井ノ上 泰輝¹,清水 一理¹,小林 慶裕¹	1.阪大工
9:15	16a-B309-2	結晶性合成 直径制御を目指したハイエントロピー合金触媒からの SWCNT合成	○松岡 就 ¹ , サラマ カマル ² , 才田 隆広 ^{1,2} , 丸山 隆 広 ^{1,2}	1.名城大理工, 2.名城大ナノマテ研
9:30	16a-B309-3	高効率可視光発光カーボンナノオニオンの新規合成およびLEDへの応用	<i>(-</i> 1	1.名工大セラ研
9:45	E 16a-B309-4	Synthesis of SWCNTs and Graphene 3D hybrid structures		1.Meijo Univ.
10:00	16a-B309-5	by ACCVD 繊維状カーボンナノホーン集合体ネットワークの電気伝 導特性	Maruyama¹ ○田中 朋 ^{1,2} , 弓削 亮太 ^{1,2}	1.日本電気, 2.産総研
10:15 10:30	16a-B309-6	休憩/Break CNT線材の電気抵抗率低減に向けた導電機構の検証	〇杉原 和樹 1 , 小泉 正治 1 , 山崎 悟志 1 , 児玉 高志 2 , 千足 昇平 2	1. 古河電工, 2. 東大工
10:45 11:00	16a-B309-7 16a-B309-8	単一構造カーボンナノチューブの共鳴ラマン散乱 高温アニールによるCNT構造および伝導メカニズム変	○片浦 弘道¹,都築 真由美¹,田中 丈士¹ ○森本 崇宏¹,小橋 和文¹,稲葉 エ¹,山崎 悟志²,岡崎	1. 産総研ナノ材 1. 産総研, 2. 古河電工
11:15	16a-B309-9	化 ¹³ C同位体標識を用いたCNT成長中の直径変化	俊也¹ ○榊 優樹¹, 岸部 義也¹, 鄭 サムエル¹, 藤森 利彦², 赤 田 圭史¹, 藤田 淳一¹	1. 筑波大数理, 2. 住友電工
3/16(TI	hu.) 13:00 - 18:15	口頭講演 (Oral Presentation) B309会場 (Room B309)	山 主人,除山 仔	
13:00	16p-B309-1	ナノ粒子の粒径制御による VA-CNT の構造制御および Fe, Co, Ni 混合ナノ粒子を用いた VA-CNT 成長	〇奥貫 航星 1 ,櫻井 翔平 1 ,飯田 真由 1 ,圭祐 伊藤 2 ,横 山 幸星 2 ,串田 正人 3	1.千葉大院融, 2.千葉大工, 3.千葉大院工
13:15	16p-B309-2	その場 XAFS 測定による単層カーボンナノチューブ成長中の 鉄族金属触媒の化学状態の解明	○柄澤 周作 ¹ , サラマ カマル ² , 才田 隆広 ^{1,2} , 成塚 重弥 ¹ , 丸山 隆浩 ^{1,2}	1.名城大理工, 2.名城大ナノマテ研
13:30	16p-B309-3	不活性雰囲気における単層カーボンナノチューブの高温		1. 阪大院工
13:45	16p-B309-4	安定性 CNT成長構造に及ぼす触媒堆積時及びCVD炉内残存大 気の効果	○沢田 侑斗¹, 亀岡 伸義¹, 神生 龍一¹, 古田 寛¹.²	1.高知工科大学, 2.総研ナノテク C
14:00	E 16p-B309-5	気の効果 Assistive effects of carbon feedstock and etchant on defect healing of carbon nanotubes by thermal process	Manaka Maekawa ¹ , Taiki Inoue ¹ , Yoshihiro	1.Osaka Univ. Appl Phys
14:15	16p-B309-6	塩化鉄を用いた単層 CNT の乾式精製におけるメカニズム 考察	Kobayashi¹ ○齋藤 毅¹, 桒原 有紀¹, Nasrin Fahmida¹, 田渕 光 春¹, 片浦 弘道¹, 弓削 亮太², 野田 優³	1. 産総研, 2.NEC, 3. 早稲田大
14:30	16p-B309-7	カーボンナノチューブ複合紙アクチュエータの電解液の		1.横国大理工
14:45	E 16p-B309-8	粘度改善による性能向上検討 Hydrogen-Substituted Graphdiyne Encapsulated Cu ₂ O Nanowires for Electrochemical Applications	○ (P)Jeganathan Chellamuthu¹, Hibiki Mitsuboshi¹, Hikaru Yamamoto¹, Masanori Hara¹, Kenta Kokado¹,	
15:00	16p-B309-9	ゲル電解液を導入した色素増感型太陽電池紙の光電変換 効率の改善検討	Masamichi Yoshimura ¹ ○ (M2)KOU YI ¹ , 大矢 剛嗣 ¹	1. 横国大院理工
15:15 15:30	16p-B309-10	休憩/Break 熱電発電紙の性能向上のための使用CNT/パルプ最適量	〇島本 優樹 1 ,新井 皓也 2 ,矢野 雅大 2 ,大矢 剛嗣 1	1. 横国大院理工, 2. 三菱マテリアル
15:45	奨 16p-B309-11	検討 ホウ素 - ブレンステッド酸ドーバントによる単層カーボ ンナノチューブのP型化と高効率熱電発電デバイスの開	○田中 直樹 ¹ , 浜砂 碧 ¹ , 藤ヶ谷 剛彦 ^{1,2,3}	1. 九大院工, 2. 九大WPI-I2CNER, 3. 九大CMS
16:00	16p-B309-12	発 カーボンナノチューブ複合紙を用いた蒸散型熱電発電紙 の多段構造検討	○亀川 雄大¹, 新井 皓也², 矢野 雅大², 大矢 剛嗣¹	1. 横国大院理工, 2. 三菱マテリアル
16:15	16p-B309-13	単層カーボンナノチューブへの通電加熱と化学ドービン グによる熱電特性制御	○(M1)太田 航大朗¹,緒方 啓典 ^{1,2,3}	1. 法政大院理工研, 2. 法政大生命科学, 3. 法政大マイクロ・ナノ研
16:30 16:45		導電性ペーストを用いたペルチェ糸の性能向上検討 カーボンナノチューブ複合紙を用いた水素ガスセンサの	○山辺 柾斗 1 , 新井 皓也 2 , 矢野 雅大 2 , 大矢 剛嗣 1 ○久保 竣太郎 1 , 新井 皓也 2 , 矢野 雅大 2 , 大矢 剛嗣 1	1. 横国大院理工, 2. 三菱マテリアル 1. 横国大理工, 2. 三菱マテリアル
17:00	16p-B309-16	大きさの違いによる応答性評価 各種フルオロスマネンによるカーボンナノチューブへの キャリアドーブ効果の評価	博², 高燕林³, 丸山 実那³, 岡田 晋³, 片浦 弘道⁴, 大野	1.名大工, 2.阪大工, 3.筑波大数理, 4.産総研, 5.名大未来研
17:15	16p-B309-17	カーボンナノチューブ複合紙を用いたペーパートランジ スタへの蒸着型ドービング手法による性能向上検討	雄高 ^{1.5} ○足立原 海斗 ¹ , 大矢 剛嗣 ¹	1. 横国大院理工
17:30	E 16p-B309-18	Study on Variability of Carbon Nanotube Thin-film Transistor-based CMOS Differential Amplifiers	○ (M1)Zhongrui Wang¹, Haruki Uchiyama¹, Yutaka Ohno¹.²	1.Nagoya Univ., 2.IMaSS, Nagoya Univ.
17:45	16p-B309-19		○小平 弘樹¹, 大矢 剛嗣¹	1.横国大理工
18:00	16p-B309-20	自己整合プロセスによる非対称ゲート構造カーボンナノ チューブ薄膜トランジスタの作製	○(M1) 堀 秀汰¹, 内山 晴貴¹, 片浦 弘道², 大野 雄 高¹.3	1. 名大工, 2. 産総研, 3. 名大未来研
	ラフェン / Graphen	е		
3/17(I 9:00		口頭講演 (Oral Presentation) B309 会場 (Room B309) 有機 Cu を用いた減圧 CVD による r面サファイア上のグ		1. 名城大理工
9:15	17a-B309-2	ラフェン直接低温成長 m面サファイア基板上に減圧CVD成長したグラフェンの 面内配向性	山隆浩¹, 成塚 重弥¹ ○(M1) 柳瀬 優太¹, 三田 和輝¹, 福西 康寛¹, 長村 皓 平¹, 丸山隆浩¹, 成塚 重弥¹	1.名城大理工
9:30	17a-B309-3	面内配向性 リアルタイム観察による CVD グラフェンの成長過程の 解析		1.NTT 物性科学基礎研
9:45	17a-B309-4	解析 hBN/グラフェンヘテロ構造CVD成長におけるエッジ終 端機構	○影島 博之¹, Wang Shengnan², 日比野 浩樹³	1. 島根大, 2.NTT物性科学基礎研, 3. 関西学院大
10:00 10:15	17a-B309-5 17a-B309-6	多層グラフェンの層交換成長における合金触媒効果 大気圧Ar中でバッファー層を形成したn型及び半絶縁性	 ○伊藤 玲音¹,鈴木 大成¹,末益 崇¹,都甲 薫¹ ○前田 文彦¹,高村 真琴²,日比野 浩樹³ 	1. 筑波大学 1. 福工大工, 2.NTT 物性基礎研, 3. 関西学院大工
10:30	17a-B309-7	SiC(0001)の内殻準位光電子分光 ラマン分光法の裏面適用によるプロセス中のグラフェン		1.東北大通研
10:45	17a-B309-8	膜質評価 ラジカル開始剤を用いた親水性GNRの作製と電気特性		1. 九工大生命体, 2. 九工大Neumorph センター
11:00	17a-B309-9	グラフェン -TiO₂光触媒の耐久性	*	1.名古屋工大院
11:15	17a-B309-10	光電子制御プラズマ処理によるグラフェンの修飾	Deshmukh¹, 本田 光裕¹, 市川 洋¹ 〇鷹林 将¹, 福田 旺土¹, 塚嵜 琉太¹, 古賀 永¹, 山口 尚	1.有明高専, 2.ロスアラモス国立研究所, 3.東北大学 多
			登², 小川 修一³, 高桑 雄二³, 津田 泰孝⁴, 吉越 章隆⁴	元研, 4. 日本原子力研究開発機構

3/170 13:00	(Fri.) 13:00 - 18:00 招 17p-B309-1	口頭講演 (Oral Presentation) B309 会場(Room B309) 「第 44 回論文奨励賞受賞記念講演」 二層 - 二層グラフェン/hBN 超格子素子のキャリア輸送特	〇岩崎 拓哉 ¹ , 守田 佳史 ² , 中払 周 ¹ , 若山 裕 ¹ , 渡辺 一郎 ¹ , 津谷 大樹 ¹ , 渡邊 賢司 ¹ , 谷口 尚 ¹ , 森山 悟 十 ³	1. 物材機構, 2. 群馬大, 3. 東京電機大
13:15	Е 17р-В309-2	性 Cavity-enhanced photo-thermoelectric effect in Landau-quantized graphene	±° ○ Sabin Park¹, Rai Moriya¹, Kenjiro Hayashi², Naoki Fushimi², Yijin Zhang¹, Satoru Masubuchi¹, Kenji Watanabe², Takashi Taniguchi³, Daiyu Kondo², Shintaro Sato², Tomoki Machida¹.⁴	1.IIS Univ. Tokyo, 2.Fujitsu, 3.NIMS, 4.CREST-JST
13:30	奨 17p-B309-3	hBN-二層グラフェンへテロ構造を用いたバレーホール 効果の観測	○ (M2) 新宅 哲平¹, カリクンナン アフサル¹, 赤堀 誠志¹, 渡邊 賢治², 谷口 尚², 水田 博¹	1.北陸先端大, 2.物質材料研
13:45	奨 17p-B309-4	折り畳みグラフェン/h-BN素子の作製と磁場反転接合の 実現		1. 東大生研, 2. 物材機構, 3. CREST - JST
14:00	17p-B309-5	ナノ・フレーク状グラフェンの表面電位分布評価 (その1)		1. 金沢工大
14:15	17p-B309-6	ナノ・フレーク状グラフェンの表面電位分布評価(その2)		1. 金沢工大
14:30	17p-B309-7	グラフェンにおけるゲート電圧駆動 UV 光酸化反応の顕 微XPS分析		1.物材機構, 2.東京理科大, 3.JST さきがけ, 4.大阪公立大, 5.東大
14:45 15:00	17p-B309-8 17p-B309-9	反磁性力で湾曲するグラフェンカンチレバーの安定形状 Carrier dimensionality control of multilayer in-plane heterostructure of BN-C	○ (M1) 前渕 一徳 ¹, 盛谷 浩右 ¹, 乾 徳夫 ¹ ○ (M1) Hui Zhang ¹, Mina Maruyama ¹, Yanlin Gao ¹, Susumu Okada ¹	1.兵県大工
15:15 15:30	17p-B309-10	相互貫入構造を有する共有結合有機骨格物質の電子物性 休憩/Break	○岡田晋¹,高燕林¹,丸山実那¹	1. 筑波大数理
15:45	招 17p-B309-11	「第53回講演奨励賞受賞記念講演」 グラフェン発光素子による高空間分解赤外分光	〇中川 鉄馬 1,2 , 志村 惟 1 , 深澤 佑 1 , 西崎 亮 1 , 侯 野 眞一朗 1 , 大矢 秀真 1 , 牧 英之 1,3	1. 慶大理工, 2. 早大材研, 3. 慶大スピントロニクス
16:00		MEMS構造を用いた非冷却グラフェン赤外線検出器	○福島 昌一郎 1 , 嶋谷 政彰 1 , 岩川 学 1 , 小川 新平 1	1.三菱電機株式会社
16:15 16:30		Type-II超格子/グラフェンダイオード赤外線検出器 グラフェン遠赤外エミッタを用いた材料判別	○福島 昌一郎¹, 嶋谷 政彰¹, 小川 新平¹ ○(M1) 久原 拓真¹, 片岡 大治¹, 大野 恭秀¹, 永瀬 雅 夫¹	1. 三菱電機株式会社 1. 徳島大学
16:45	17p-B309-15	【注目講演】グラフェンの量子トンネル効果による水素同位体分離		1. 原子力機構, 2. 北大, 3. 阪大, 4. 東大
17:00	E 17p-B309-16	Zeolite functionalized graphene FET E-nose for selective detection of volatile organic compounds	•	1.Univ. of Tokyo
17:15	奨 E 17p-B309-17	Ppt Level Detection of Acetone in Air atmosphere using Graphene Surface Acoustic Wave Gas Sensor	○ (D)Haolong Zhou¹, Ganesh Ramaraj Sankar¹, Hiroyasu Yamahara¹, Hitoshi Tabata¹	1.University of Tokyo
17:30	奨 17p-B309-18	エラストマーナノシートを用いた歪み印加グラフェン共 振質量センサの作製	○加藤 源基 1 ,新野 謙 1 ,斎藤 優人 2 ,藤枝 俊宣 2 ,崔 容俊 1 ,野田 俊彦 1 ,澤田 和明 1 ,高橋 一浩 1	1. 豊橋技科大工, 2. 東工大
17:45 17.3 層	奨 17p-B309-19 採物質 / Layered m	VGA グラフェン中波長赤外線イメージセンサ aterials	〇嶋谷 政彰 1 ,福島 昌一郎 1 ,岩川 学 1 ,小川 新平 1	1.三菱電機
3/16	(Thu.) 9:00 - 11:30	口頭講演 (Oral Presentation) B414会場 (Room B414)		
9:00	招 16a-B414-1	「第53回講演奨励賞受賞記念講演」 マイクロリアクタ内の閉じ込め空間制御による遷移金属	○橋本 龍季 ¹ , 三澤 賢明 ¹ , 鶴田 健二 ¹ , 宮田 耕充 ² , 林 靖彦 ¹ , 鈴木 弘朗 ¹	1. 岡大院自然, 2. 都立大理
9:15	16a-B414-2	ダイカルコゲナイドのミリスケール化と面内へテロ成長 準安定相WS ₂ の三角形型結晶成長とその成長機構考察	○岡田 光博¹, 久保 利隆¹, 林 永昌¹, 岡田 直也¹, 張 文	1. 産総研, 2. 阪大
9:30	奨 16a-B414-3	Fin構造への低温有機金属化学気相成長法によるWS ₂ の	馨 ¹ , 末永 和知 ^{1,2} , 山田 貴壽 ¹ , 入沢 寿史 ¹	1. 明治大理工, 2. 明大 MREL, 3. 気相成長 (株), 4. 東工大
9:45	奨 E 16a-B414-4	成膜 Deterministic synthesis of SnS and SnS2 by chemical vapor deposition	若林整 ⁴ , 横川 凌 ^{1,2} , 澤本 直美 ^{1,2} , 小椋 厚志 ^{1,2} ○ (M1)Kazuki Koyama ¹ , Takamichi Miyazaki ¹ , Takeshi Odagawa ¹ , Chaoliang Zhang ² , Shutaro	1.Grad. Sch. of Eng., Tohoku Univ., 2.FRIS, Tohoku Univ., 3.CSIS, Tohoku Univ., 4.FRID, Tohoku Univ.,
10:00	奨 16a-B414-5	自己触媒VLS成長によるGaSナノベルトの作製	Karube¹, Makoto Kohda¹.³,⁴,⁵ ○遠藤 由大¹, 関根 佳明¹, 谷保 芳孝¹	5.QUARC, QST 1.NTT物性研
10:15	奨 16a-B414-6	その場観測プラズマ原子置換法によるTMDヤヌス化反 応における気相内活性種効果の解明	○中條 博史 1,2 , 青木 颯馬 1 , 岩本 裕太 1 , 金子 俊郎 1 , 加藤 俊顕 1	1.東北大院工, 2.(株)KOKUSAI ELECTRIC
10:30 10:45	奨 16a-B414-7 16a-B414-8	Orientation Control of Reactive Sputtering Grown MoS ₂ Ag(111) 薄膜上でのゲルマネン偏析のその場LEEM 観察	○ (D)Myeongok Kim ^{1, 2} , Yoshitaka Okada ^{1, 2} ○日比野 浩樹 ¹ , 大田 晃生 ² , 影島 博之 ³ , 柚原 淳司 ²	1.Eng. UTokyo, 2.RCAST UTokyo 1. 関学大工, 2. 名大院工, 3. 島根大院自然
11:00	16a-B414-9	ミスト CVD 法による MoS ₂ の作製と膜特性3		1.高知工大シスエ, 2.高知工大総研
11:15	E 16a-B414-10	Synthesis of Few-layer 2D Transition Metal- Dichalcogenides for Electronics and	○ (P)Abdul A Kuddus¹, Kojun Yokoyama², Shinichiro Mouri¹, Hajime Shirai²	1.Ritsumeikan Univ., 2.Saitama Univ.
3/16(Thu.) 13:00 - 17:15	Optoelectronics: A Prospective of Mist CVD 口頭講演 (Oral Presentation) B414 会場(Room B414)		
13:00 13:15	16p-B414-1 奨 16p-B414-2	簡易剥離装置の作製と MoS_2 の転写率に関する考察表面電気化学反応を用いた大面積単層 MoS_2 単離手法の	○小林 尭史 1 , 土肥 徹次 1 , 桐谷 乃輔 2 ○望月 陸 $^{1.2}$, 吉村 武 1 , 藤村 紀文 1 , 桐谷 乃輔 2	1.中央院理工, 2.東大院総合 1.阪公大院工, 2.東大院総合
13:30	奨 16p-B414-3	原理討究 走査型非線形誘電率顕微鏡によるSiO ₂ 上機械剥離MoS ₂	○石塚 太陽 1.2, 山末 耕平 2	1. 東北大院工, 2. 東北大通研
13:45	奨 16p-B414-4	の局所 DLTS 測定 コンダクティブ AFM による C ドープ単層 h-BN 内のグラ		1.東大工, 2.NIMS
14:00	奨 16p-B414-5	フェンドメイン観察 圧電応答顕微鏡による強誘電 SnS薄膜の面内分極ドメイ	村 知紀 ¹ , 谷口 尚 ² , 渡邊 賢司 ² , 長汐 晃輔 ¹ ○來村 颯樹 ¹ , 名苗 遼 ¹ , 張 益仁 ^{1,2} , 西村 知紀 ¹ , 長汐	1. 東大工, 2. 理研
14:15	16p-B414-6	ンの観察 X線照射によるMoS ₂ の結晶相転移機構解明に向けた研究		1.東大院工, 2.宇宙研
14:30	16p-B414-7	ニューラルネットワークポテンシャルを用いた薄膜WS ₂ の原子構造の解析		1.東大工, 2.東工大工
14:45 15:00	奨 16p-B414-8	hBN封止単層遷移金属ダイカルコゲナイド励起子の2次 非線形光学応答 休憩/Break	〇高橋伸弥', 草場哲', 渡邊 賢司', 谷口尚', 柳和宏', 田中耕一郎 ^{1,4}	1. 京大院理, 2. 物材機構, 3. 東京都立大院理, 4. 京大 iCeMS
15:15	16p-B414-9	体悪/Break 単層MoS₂におけるバレー流のスプリットゲート制御	○福田 和紀¹, 横井 和史¹, 高橋 慶¹, 渡邊 賢治², 谷口尚², 柯 梦南¹, 青木 伸之¹	1. 千葉大物質, 2. 物材機構
15:30	E 16p-B414-10	Gate Defined Josephson junctions in monolayer WTe_2	Randle Michael¹, Masayuki Hosoda², Russell Deacon¹, Manabu Ohtomo², Kenji Watanabe³, Takashi Taniguchi³, Shota Okazaki⁴, Takao Sasagawa⁴, Kenichi Kawaguchi², Shintaro Sato², ○	1.RIKEN, 2.Fujitsu, 3.NIMS, 4.TIT
15:45	16p-B414-11	共鳴トンネル効果を用いたツイスト 2 層 WSe_2 の価電子帯 Γ 点バンドの検出	Koji Ishibashi¹ ○木下 圭¹, 守谷 頼¹, 岡崎 尚太², 張 奕勁¹, 增渕 覚¹, 渡邊 賢司³, 谷口 尚³, 笹川 崇男², 町田 友樹¹.⁴	1. 東大生研, 2. 東工大フロンティア研, 3. 物材機構, 4.CREST-JST
16:00	16p-B414-12	α相セレン化インジウムの電気的特性	○尾崎 匠¹,浦上 法之¹²,橋本 佳男¹²	1.信州大工, 2.信州大 先鋭材料研

10:30	E 17a-B414-7	EOT scaling of top-gate MoS_2 FET below 1 nm	○ (D)Li Shuhong¹, Tomonori Nishimura¹, Kosuke Nagashio¹	1.Univ. of Tokyo
10:15	奨 17a-B414-6	二硫化モリブデン電界センサにおける電界センシングの 観測	\bigcirc (M2) 九鬼 滉大 1 , カリクンナン アフサル 1 , 工藤 剛史 2 , 圓山 武志 2 , 水田 博 1	1.北陸先端科学技術大学院大学, 2.音羽電機工業株式会社
10:00	17a-B414-5	レーザー誘起ドービング技術を用いた高性能 TFET の作 製	○謝 天順¹, 柯 梦南¹, 上野 啓司², 青木 伸之¹	1. 千葉大工, 2. 埼玉大工
9:45	奨 17a-B414-4	表面偏析によるBi 薄膜化を利用したBi/Au コンタクト WSe ₂ FET の p 型動作	○中島隆一¹, 西村知紀¹, 上野啓司², 長汐晃輔¹	1. 東京大工, 2. 埼玉大
9:30	17a-B414-3	2次元層状物質を材料とした垂直積層型へテロ構造チャネルの電界効果トランジスタにおける電気特性および光 応答性	○和泉廣樹¹, 高岡 毅², 安藤 淳³, Md. Nasiruddin¹, 坂下 晃輔¹, 佐藤 碧¹, 岡田 光博³, 久保 利隆³, 米田 忠 弘²	1. 東北大院理, 2. 東北大多元研, 3. 産総研
9:15	17a-B414-2	Doping behavior of tetracyanoquinodimethane (TCNQ) and 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) on the MoS_2 -FET through microfluidic approach		
9:00	17a-B414-1	スパッタWS₂膜へのCl₂プラズマ処理によるシート抵抗 低減	也¹,若林整¹	1.東工大
3/17(Fri.) 9:00 - 10:45	子状態変調 口頭講演 (Oral Presentation) B414 会場 (Room B414)		
17:00	16p-B414-16	スマネン分子吸着による遷移金属カルコゲン化合物の電	〇丸山 実那¹, 岡田 晋¹	1. 筑波大数理
16:45	16p-B414-15	CoBHTの電子状態における歪み効果の理論的研究	○ (M1) 西込 健人¹, 熊谷 明哉², 塚越 一仁³, 若林 克 法¹	1. 関学大理工, 2. 東北大 AIMS, 3.NIMS
16:30	E 16p-B414-14	Energetics and electronic properties of Janus WSSe		1.University of Tsukuba
16:15	16p-B414-13	グラフェン/C-doped h-BN接合における欠陥アシストトンネル過程	○ 測毛 懷太', 注 恐基', 不下 主', 小野守 桃子', 張 奕 勁¹, 增渕 覚¹, 守谷 頼¹, 渡邊 賢司², 谷口 尚², 町田 友 樹¹.3	1. 果人生研, 2. 初村候柄, 3.CRES1-JS1

devic	es"			
		はプログラム冒頭にございます。		
		ギャップ酸化物半導体材料・デバイス」/ Joint Session K "	Wide bandgap oxide semiconductor materials and o	devices"
3/15((Wed.) 9:15 - 12:00	口頭講演 (Oral Presentation) E102会場 (Room E102)		
:15	15a-E102-1	静電噴霧堆積法により堆積したNiO薄膜の電気特性の制御	○大久保 慶人¹, 友野 恵介¹, 庄司 拓真¹, 杉山 睦¹.²	1.東理大 理工, 2.東理大 総研
:30	15a-E102-2	連続組成傾斜RS-MgZnO薄膜の成長	〇大塚 知紀 1 , 菊池 瑛嗣 2 , 服部 太政 1 , 荒木 努 1 , 金子 健太郎 2	1. 立命館大理工, 2. 立命館大総研, 3. 京大院工
:45	15a-E102-3	ZnO 薄膜のスパッタ誘起結晶欠陥に及ぼす Zn 供給の効果	〇山田 容士 ¹ , 白數 柊也 ² , 舩木 修平 ¹	1. 島根大総理工, 2. 島根大自然
0:00	15a-E102-4	大気圧低温プラズマで製膜する透明導電性薄膜ZnOの低 抵抗化における水蒸気添加の影響	○細谷 宣佳¹, 山本 雅史¹, 須崎 嘉文², 鹿間 共一¹	1.香川高専, 2.香川大学
0:15	15a-E102-5	岩塩構造酸化マグネシウム亜鉛薄膜の真空紫外領域での 光電流スペクトル(II)	〇日下 皓也¹, 高坂 亘¹, 小川 広太郎¹², 金子 健太郎³, 山口 智広¹, 本田 徹¹, 藤田 静雄⁴, 尾沼 猛儀¹	1. 工学院大学, 2. オーク製作所, 3. 立命館大学, 4. 京者学
0:30		休憩/Break		
0:45	15a-E102-6	透明導電膜 W 添加 ${\rm In_2O_3}$ 薄膜特性へのポストアニール効 果	 ○ (PC)Palani Rajasekaran¹, 岡田 悠悟², 前原 誠², 北 見 尚久¹², 小林 信太郎³, 稲葉 克彦³, 牧野 久雄¹, 木 下 公男², 山本 哲也¹ 	1.高知工科大総研, 2.住友重機械(株), 3. (株) リガ
1:00	奨 15a-E102-7	エアロゾルデポジション法で作製した酸化亜鉛薄膜の熱 処理による電気特性変化に関する研究	○鄭 雨萌¹,鳥山 翔生¹,佐藤 祐喜¹,吉門 進三¹	1. 同志社大
1:15	奨 15a-E102-8	ミストCVD法によるIII族ドーブ岩塩構造MgZnO薄膜 成長	〇松田 真樹 1 , 小川 広太郎 2 , 太田 優一 3 , 山口 智広 1 , 金子 健太郎 4 , 藤田 静雄 5 , 本田 徹 1 , 尾沼 猛儀 1	1. 工学院大, 2. オーク製作所, 3. 都産技研, 4. 立命館大 5. 京大院工
1:30	奨 15a-E102-9	反応性イオンエッチングを行ったZnO表面の時間分解 フォトルミネッセンス及びX線光電子分光評価	○粕谷 拓生¹, 嶋 紘平¹, 秩父 重英¹	1. 東北大多元研
1:45	奨 E 15a-E102-10	Mechanism of Nitrogen Doping of Zinc Oxide Nanoparticles by Arc Plasma and Study of Their p-type Characteristics	○ (D)RAJ DEEP¹, Takuma Akazawa¹, Toshiyuki Yoshida¹, Yasuhisa Fujita¹	1.Shimane University
/15/\	Med) 13·30 = 18·15	口頭講演 (Oral Presentation) E102会場 (Room E102)		
3:30		「第53回講演奨励賞受賞記念講演」 三次元集積型強誘電体デバイスへ向けた三元系非晶質酸 化物半導体材料	〇髙橋 崇典 1, 上沼 睦典 1, 小林 正治 2, 浦岡 行治 1	1.奈良先端大, 2.東京大学
3:45	招 E 15p-E102-2	[The 7th Thin Film and Surface Physics Division Young Researcher Award Speech] Heterogeneous metal oxide channel structure for ultra-high sensitivity phototransistor with modulated operating conditions	○ KuanJu Zhou ¹ , Keisuke Ide ² , Takayoshi Katase ² , Toshio Kamiya ^{2,3} , TingChang Chang ¹	1.National Sun Yat-Sen Univ, 2.MSL Tokyo Tech, 3.MDX Tokyo Tech
4:00	15p-E102-3	In ₂ O ₃ (ZnO) ₃ のバルク単結晶の育成及びその輸送特性	○漆間 由都¹, 井上 禎人¹, 加瀬 直樹¹, 宮川 宣明¹	1. 東理大理
4:15	15p-E102-4	高背圧下でのPLDによる高移動度In ₂ O ₃ 薄膜作製	○曲 勇作 ¹ , ゲディア プラシャント ¹ , 楊 卉 ^{1.2} , 張 雨 橋 ³ . 松尾 保孝 ¹ , 太田 裕道 ¹	1.北大電子研, 2.北京交通大, 3.江蘇大
4:30	E 15p-E102-5	Thin Film Transistors with High-Mobility ${\rm In_2O_3}$ Thin Films that Fabricated under High-Base Pressure as Active Layers	○ Prashant Ghediya¹, Yusaku Magari¹, Hui Yang¹.², Yuqiao Zhang³, Yasutaka Matsuo¹, Hiromichi Ohta¹	1.RIES-Hokkaido Univ., 2.Beijing Jiaotong Univ., 3. Jiangsu Univ.
4:45	E 15p-E102-6	Metal–semiconductor transition of hydrogen-doped ${\rm In_2O_3}$ via solid-phase crystallization.	○XIAOQIAN WANG¹, Mamoru Furuta¹	1.Kochi Univ. of Tech.
5:00	15p-E102-7	スパッタリングにより作製した In_5GaZnO_{10} 薄膜トランジスタの特性評価	○中野渡 俊喜¹, 渡邉 悠太¹, 服部 吉晃¹, 北村 雅季¹	1. 神戸大院工
5:15		休憩/Break		
5:30	奨 E 15p-E102-8	Ferroelectric HfO_2 - ZrO_2 Gated Transparent $InSnZnO_x$ Thin Film Memories	○ (D)Hui Yang¹.², Prashant Ghediya¹, Yuqiao Zhang³, Yasutaka Matsuo¹, Yusaku Magari¹, Hiromichi Ohta¹	1.RIES-Hokkaido Univ., 2.Beijing Jiaotong Univ., 3. Jiangsu Univ.
5:45	奨 15p-E102-9	加熱イオン注入法によるアモルファス InGaZnO薄膜の シート抵抗値低減の検討		1.日新イオン機器
6:00		In-Ga-O薄膜トランジスタにおける電気的特性の組成比 及び熱処理温度依存性		1.奈良先端大
6:15		X 線光電子分光によるルチル型 $Sn_{1-x}Ge_xO_2$ 薄膜のバンド端エネルギー評価		1.東大院理, 2.お茶大理, 3.都立大院理
6:30	奨 15p-E102-12	【注目講演】 $TiO_2(110)$ 基板上ルチル型 SnO_2 の選択成長	○ (D) 高根 倫史¹, 大島 孝仁², 田中 勝久¹, 金子 健太郎³	1. 京大, 2. 物材研, 3. 立命館大
6:45		休憩/Break		

17:00				
17:15	•	The R[O2]% Ratio Effect on the Optical Properties of AgxO Thin Films Grown by RFM-Sputtering	○ (DC)Xiaojiao Liu¹, Tatsuya Yasuoka¹, Li Liu², Toshiyuki Kawaharamura¹.²	1.Kochi Univ. of Tech., 2.Res. Inst.
	奨 15p-E102-14	α -Ga ₂ O ₃ /rh-ITO 構造のヘテロエピタキシャル成長と深 紫外フォトディテクタの試作	○ (DC) 島添 和樹¹, 西中 浩之¹, 加藤 貴広¹, 谷口 陽子¹, 鐘ケ江 一考¹, 吉本 昌広¹	1.京都工繊大
7:30	奨 E 15p-E102-15	Killer Defects Responsible for Leakage Current in HVPE (001) β -Ga2O3 SBD Observed by Emission Microscopy and Synchrotron X-ray Topography		1.Saga Univ., 2.Novel Crystal Technology
7:45	奨 15p-E102-16	(011) 面方位 HVPE β 型酸化ガリウムショットキーバリ	○(B)大坪優斗¹,スダーンセイリープ¹,佐々木公平²,倉又朗人²,嘉数誠¹	1.佐賀大学, 2. (株) ノベルクリスタルテクノロジー
3:00	招 15p-E102-17	「第44回論文奨励賞受賞記念講演」	○神野 莉衣奈¹, 金子 健太郎¹, 藤田 静雄¹	1.京都大学
/16(T	Thu) 10·30 - 12·00	サファイア基板上 α -(Al _x Ga _{1.x}) ₂ O ₃ 薄膜の熱的安定性 口頭講演 (Oral Presentation) E102 会場(Room E102)		
):30	,	ミスト CVD法による (001) β -Ga ₂ O ₃ 薄膜のホモエピタ キシャル成長	〇上田 遼 1 , 西中 浩之 1 , 永岡 達司 2 , 三宅 裕樹 2 , 吉本 昌広 1	1.京工繊大, 2. ミライズテクノロジーズ
0:45	16a-E102-2	臭素化合物を用いた p型 α -(Ir,Ga) $_2$ O $_3$ 混晶薄膜の高速成長		1. 京大院工, 2. 立命館大総研, 3. 立命館大理工
1:00	16a-E102-3	ミストCVD反応炉内におけるミスト液滴の状態		1. 高知工大 シスエ, 2. 総研
1:15	E 16a-E102-4	Depth profile of Nb in anatase ${\rm Ti}_{1-x}{\rm Nb}_x{\rm O}_2$ thin films grown by mist chemical vapor deposition method	○ (D)Han XU¹, Tomohito Sudare¹,⁴, Yumie Miura¹,⁴, Ryo Nakayama¹,⁴, Ryota Shimizu¹, Naoomi Yamada²,	
1:30	16a-E102-5		Kentaro Kaneko³, Taro Hitosugi¹.⁴ ○山本拓実¹, 田口 義士¹, 山田 梨詠¹, 永井 裕己¹, 関	1.工学院大
1:45	16a-E102-6	$-In_2O_3$ の成長機構に関する検討 Mist CVD法により成長した α $-In_2O_3$ 薄膜の低キャリア	口 敦 1 ,尾沼 猛儀 1 ,本田 徹 1 ,山口 智広 1 〇田口 義士 1 ,山寺 真理 1 ,山本 拓実 1 ,林 佑哉 1 ,村山	1. 工学院大, 2. 立命館大, 3. 京都大
		濃度化と MOSFET 製作	衛 1 , 小川 広太郎 1 , 本田 徹 1 , 尾沼 猛儀 1 , 金子 健太郎 2 , 相川 真也 1 , 藤田 静雄 3 , 山口 智広 1	
		口頭講演 (Oral Presentation) E102会場 (Room E102)		A Li A Ab L may a second
3:30	16p-E102-1	ミスト CVD 法による ScAlMgO $_4$ 基板上 Ga_2O_3 成長の成長 温度依存性	○加藤 颯真¹, 山下 修平¹, 和田 邑一¹, 高根 倫史³, 山藤 祐人¹, 城川 潤二朗¹, 松倉 誠⁴, 小島 孝広⁴, 四戸孝⁵, 出浦 桃子², 金子 健太郎³, 荒木 努¹	
3:45	16p-E102-2	(001) FZ成長 ε -GaFeO ₃ 基板上にミスト CVD 成長した κ -(In ₈ Ga ₁₋₃) ₂ O ₃ 薄膜中の欠陥の TEM 評価		1. 明治大, 2. 京都工繊大, 3. 金沢工大
4:00	16p-E102-3	準粒子自己無撞着GW法による酸化ガリウムの電子構造と誘電特性		1.金沢大
4:15	16p-E102-4	垂直ブリッジマン法で育成した β - Ga_2O_3 の線状ボイドの評価		1.信州大工
4:30	16p-E102-5	マスクレス手法による α -Ga ₂ O ₃ の転位密度低減	○大島 祐一¹, 安藤 裕之², 四戸 孝²	1.物材機構, 2.FLOSFIA
4:45	16p-E102-6	ラマン分光によるサファイア基板上選択成長 α - Ga_2O_3 の 相転移温度の面内依存性の評価		1. 東大総合, 2. 岡山大
5:00 5:15	16p-E102-7	α -Ga ₂ O ₃ /Al ₂ O ₃ 超格子のバンド構造解析 休憩/Break	○河村 貴宏¹, 秋山 亨¹	1. 三重大院工
5:30	E 16p-E102-8	Transient Photocapacitance Spectroscopy of Deep-levels in (001) β -Ga ₂ O ₃	○ (DC)Fenfen Fenda Florena¹, Aboulaye Traore¹, Takeaki Sakurai¹	1.Univ. of Tsukuba
5:45	16p-E102-9	β - Ga_2O_3 多光子励起過程を利用した β - Ga_2O_3 の時間分解フォトルミネッセンス分光	西河 巴賀 1 ,〇谷川 智之 1 ,本田 啓人 1 ,後藤 健 2 ,村上 尚 2 ,熊谷 義直 2 ,田中 敦之 3 ,本田 善央 3 ,天野 浩 3 ,上	1. 阪大院工, 2. 農工大, 3. 名大 IMaSS
6:00	16p-E102-10	(001) 面 β -Ga ₂ O ₃ 基板に対する異方性 HCl ガスエッチン	向井 正裕¹, 片山 竜二¹ ○大島 孝仁¹, 大島 祐一¹	1.物材研
6:15	E 16p-E102-11	Improvement in Electrical Properties of Ga ₂ O ₃ Schottky Barrier Diodes by Nitrogen Radical Treatment	○ Zhenwei Wang¹, Takahiro Kitada¹.², Sandeep Kumar¹, Masataka Higashiwaki¹.²	1.NICT, 2.OMU
6:30	16p-E102-12	加熱 β -Ga ₂ O ₃ 基板上に電子ビーム蒸着によって形成した NiO 薄膜		1. 石巻専修大理工
3/17	(Fri.) 9:30 - 11:30	ポスター講演 (Poster Presentation) PB 会場(Room PB)		
0, 21		スパッタエピタキシー法によるZnO単結晶層の成長(VI)		1. 東京電機大工
	17a-PB01-2	RFマグネトロンスパッタ法による酸化ガリウム薄膜の作製と評価に関する研究		1. 同志社大院理工
	17a-PB01-3	石英ガラス基板上に成膜したCu ₂ O薄膜の配向変化	吉田 朱里², 舩木 修平¹, ○山田 容士¹	1. 島根大総理工, 2. 島根大自然
	17a-PB01-4	粉末ターゲットを用いたスパッタリング法による Ga_2O_3 薄膜の成長	○及川 篤弥¹, 藤田 実樹¹, 永露 大希², 松本 凛太郎², 牧本 俊樹²	1.一関高専, 2.早大理工
	17 DD01 F		桑原 翔太¹, 佐藤 祐喜¹, 大鉢 忠¹, ○吉門 進三¹	1.同志社大理工
	17a-PB01-5	と評価に関する研究		1. 17.011.7.41.
	17a-PB01-6	と評価に関する研究 ゾル-ゲル法による低抵抗Al添加ZnO透明導電膜の作製	○安部 功二¹, 久保田 佑¹	1.名工大
	17a-PB01-6 17a-PB01-7	と評価に関する研究 ゾル・ゲル法による低抵抗 Al添加 ZnO 透明導電膜の作製 β -Ga ₂ O ₃ (-201) 表面における Ni 粒子の生成および成長 の UHV 観察	○安部 功二¹, 久保田 佑¹ ○(M1) 竹本 利々子¹, 岡田 有史¹, 角野 広平¹	1.名工大1.京工繊大工芸
	17a-PB01-6 17a-PB01-7 17a-PB01-8	と評価に関する研究 ゾル・ゲル法による低抵抗 A I添加 Z nO透明導電膜の作製 β - G a $_2$ O $_3$ (- 2 01) 表面における N i 粒子の生成および成長 の U HV 観察 T セチルアセトナート化した亜鉛原料水溶液を用いた T 面サファイア基板上酸化亜鉛薄膜のミスト T CVD 成長	○安部 功二¹, 久保田 佑¹ ○(M1) 竹本 利々子¹, 岡田 有史¹, 角野 広平¹ ○宇野 和行¹, 西岡 恵¹	1.名工大 1.京工機大工芸 1.和歌山大システム工
	17a-PB01-6 17a-PB01-7 17a-PB01-8 17a-PB01-9	と評価に関する研究 ゾル・ゲル法による低抵抗 Al添加 ZnO 透明導電膜の作製 β - Ga $_2$ O $_3$ (-201) 表面における Ni 粒子の生成および成長 の UHV 観察 アセチルアセトナート化した亜鉛原料水溶液を用いた a 面サファイア基板上酸化亜鉛薄膜のミスト CVD 成長 N2 および Ar/H2 アニールによる SnOx 薄膜の還元状態の比較	 ○安部 功二¹, 久保田 佑¹ ○(M1) 竹本 利々子¹, 岡田 有史¹, 角野 広平¹ ○宇野 和行¹, 西岡 恵¹ ○渡辺 幸太郎¹,川口 拓真¹,山口 智広¹,尾沼 猛儀¹,本田 徹¹,相川 慎也¹ 	1.名工大 1.京工繊大工芸 1.和歌山大システムエ 1.工学院大工
	17a-PB01-6 17a-PB01-7 17a-PB01-8 17a-PB01-9 17a-PB01-10	と評価に関する研究 ゾル-ゲル法による低抵抗 A 1添加 Z nO 透明導電膜の作製 β - G a $_2$ O $_3$ (- 2 01) 表面における N 1粒子の生成および成長 の U HV 観察 アセチルアセトナート化した亜鉛原料水溶液を用いた a 面サファイア基板上酸化亜鉛薄膜のミスト C VD 成長 N 2 および A r/H2 r 2 r 2 r 3 r 4 r 5 r 6 r 7 r 7 r 8 r 8 r 9	 ○安部 功二¹, 久保田 佑¹ ○(M1) 竹本 利々子¹, 岡田 有史¹, 角野 広平¹ ○宇野 和行¹, 西岡 恵¹ ○渡辺 幸太郎¹, 川口 拓真¹, 山口 智広¹, 尾沼 猛儀¹, 本田 徹¹, 相川 慎也¹ ○(B) 深作 和寿¹, 相場 康平¹, 大越 康晴¹, 吉田 道之², 中根 茂行³, 名嘉 節³, 石井 聡¹ 	1.名工大 1.京工繊大工芸 1.和歌山大システムエ 1.工学院大工 1.電機大理工, 2.岐阜大, 3.物材機構
	17a-PB01-6 17a-PB01-7 17a-PB01-8 17a-PB01-9 17a-PB01-10	と評価に関する研究 ゾル・ゲル法による低抵抗 A 1添加 Z nO 透明導電膜の作製 β - G a $_2$ O $_3$ (- 2 O $_1$) 表面における N 1粒子の生成および成長 の U HV 観察 アセチルアセトナート化した亜鉛原料水溶液を用いた a 面サファイア基板上酸化亜鉛薄膜のミスト C VD 成長 $N2$ および A r/ $H2$ アニールによる S nO x 薄膜の還元状態の比較 水熱合成 Z n G a $_2$ O $_4$ + Z 2粒子を用いた薄膜の作製と評価 β - G a $_2$ O $_3$ 単結晶におけるラマンスペクトルの温度依存性	○安部 功二¹, 久保田 佑¹ ○(M1) 竹本 利々子¹, 岡田 有史¹, 角野 広平¹ ○字野 和行¹, 西岡 恵¹ ○渡辺 幸太郎¹, 川口 拓真¹, 山口 智広¹, 尾沼 猛儀¹, 本田 徹¹, 相川 慎也¹ ○(B) 深作 和寿¹, 相場 康平¹, 大越 康晴¹, 吉田 道之², 中根 茂行³, 名嘉 節³, 石井 聡¹ ○古本 航¹, 前田 一誠¹, 伊佐治 楓¹, 蓮池 紀幸¹, 一色 俊之¹, 小林 健二²	1.名工大 1.京工繊大工芸 1.和歌山大システム工 1.工学院大工 1.電機大理工, 2.岐阜大, 3.物材機構 1.京工繊大, 2.日立ハイテク
	17a-PB01-6 17a-PB01-7 17a-PB01-8 17a-PB01-9 17a-PB01-10 17a-PB01-11	と評価に関する研究 ゾル・ゲル法による低抵抗 A I添加 Z nO 透明導電膜の作製 β - G a $_2$ O $_3$ (- 2 O $_1$) 表面における N I 粒子の生成および成長 の U HV 観察 アセチルアセトナート化した亜鉛原料水溶液を用いた a 面 サファイア基板上酸化亜鉛薄膜のミスト C VD 成長 N 2 および A r/ H 2 アニールによる S nO $_x$ 薄膜の還元状態の比較 水熱合成 Z n G a $_2$ O $_4$ + $/$ 粒子を用いた薄膜の作製と評価 β - G a $_2$ O $_3$ 単結晶におけるラマンスベクトルの温度依存性 ミスト C VD 法による A IO $_x$ TiO $_2$ 合金膜及び積層膜の作製 A r/ N $_2$ 混合ガス中スバッタリングで堆積した S nO $_x$ 薄膜に	○安部 功二¹, 久保田 佑¹ ○(M1) 竹本 利々子¹, 岡田 有史¹, 角野 広平¹ ○宇野 和行¹, 西岡 恵¹ ○渡辺 幸太郎¹, 川口 拓真¹, 山口 智広¹, 尾沼 猛儀¹, 本田 徹¹, 相川 慎也¹ ○(B) 深作 和寿¹, 相場 康平¹, 大越 康晴¹, 吉田 道之², 中根 茂行³, 名嘉 節³, 石井 聡¹ ○古本 航¹, 前田 一誠¹, 伊佐治 楓¹, 蓮池 紀幸¹, 一色 俊之¹, 小林 健二² ○横山 工純¹, 范 文博¹, 白井 肇¹ ○(M1) 川口 拓真¹, 渡辺 幸太郎¹, 永井 裕己¹, 山口	1.名工大 1.京工繊大工芸 1.和歌山大システム工 1.工学院大工 1.電機大理工, 2.岐阜大, 3.物材機構 1.京工繊大, 2.日立ハイテク 1.埼玉大理工
	17a-PB01-6 17a-PB01-7 17a-PB01-8 17a-PB01-9 17a-PB01-10 17a-PB01-11 17a-PB01-12	と評価に関する研究 ゾル・ゲル法による低抵抗 Al 添加 ZnO 透明導電膜の作製 β ・ Ga_2O_3 (-201) 表面における Ni 粒子の生成および成長の UHV 観察 アセチルアセトナート化した亜鉛原料水溶液を用いた a 面サファイア基板上酸化亜鉛薄膜のミスト CVD 成長 $N2$ および $Ar/H2$ アニールによる $SnOx$ 薄膜の還元状態の比較 水熱合成 $ZnGa_2O_4$ ナノ粒子を用いた薄膜の作製と評価 β ・ Ga_2O_3 単結晶における \overline{g} ラマンスペクトルの温度依存性 ミスト \overline{g} における \overline{g} で推積した \overline{g} を所以 \overline{g} における \overline{g}	○安部 功二¹, 久保田 佑¹ ○(M1) 竹本 利々子¹, 岡田 有史¹, 角野 広平¹ ○字野 和行¹, 西岡 恵¹ ○渡辺 幸太郎¹, 川口 拓真¹, 山口 智広¹, 尾沼 猛儀¹, 本田 徹¹, 相川 慎也¹ ○(B) 深作 和寿¹, 相場 康平¹, 大越 康晴¹, 吉田 道之², 中根 茂行³, 名嘉 節³, 石井 聡¹ ○古本 航¹, 前田 一誠¹, 伊佐治 楓¹, 蓮池 紀幸¹, 一色 俊之¹, 小林 健二² ○横山 工純¹, 范 文博¹, 白井 肇¹ ○(M1) 川口 拓真¹, 渡辺 幸太郎¹, 永井 裕己¹, 山口智広¹, 尾沼 猛儀¹, 本田 徹¹, 相川 慎也¹ ○(B) 相場 康平¹, 深作 和寿¹, 大越 康晴¹, 中根 茂	1.名工大 1.京工繊大工芸 1.和歌山大システム工 1.工学院大工 1.電機大理工, 2.岐阜大, 3.物材機構 1.京工繊大, 2.日立ハイテク 1.埼玉大理工
	17a-PB01-6 17a-PB01-7 17a-PB01-8 17a-PB01-9 17a-PB01-10 17a-PB01-11 17a-PB01-12 17a-PB01-13	と評価に関する研究 ゾル・ゲル法による低抵抗 Al 添加 ZnO 透明導電膜の作製 β - Ga_2O_3 (- 201) 表面における Ni 粒子の生成および成長の UHV 観察 アセチルアセトナート化した亜鉛原料水溶液を用いた a 面サファイア基板上酸化亜鉛薄膜のミスト CVD 成長 $N2$ および $Ar/H2$ アニールによる SnO_X 薄膜の還元状態の比較 水熱合成 $ZnGa_2O_4$ ナノ粒子を用いた薄膜の作製と評価 β - Ga_2O_3 単結晶におけるラマンスペクトルの温度依存性 ミスト CVD 法による AlO_x TiO_2 合金膜及 U 積層膜の作製 Ar/N_2 混合ガス中スバッタリングで堆積した SnO_x 薄膜における N_2 濃度の影響	○安部 功二¹, 久保田 佑¹ ○(M1) 竹本 利々子¹, 岡田 有史¹, 角野 広平¹ ○字野 和行¹, 西岡 恵¹ ○渡辺 幸太郎¹, 川口 拓真¹, 山口 智広¹, 尾沼 猛儀¹, 本田 徹¹, 相川 慎也¹ ○(B) 深作 和寿¹, 相場 康平¹, 大越 康晴¹, 吉田 道之², 中根 茂行³, 名嘉 節³, 石井 聡¹ ○古本 航¹, 前田 一誠¹, 伊佐治 楓¹, 蓮池 紀幸¹, 一色 俊之¹, 小林 健二² ○横山 工純¹, 范 文博¹, 白井 肇¹ ○(M1) 川口 拓真¹, 渡辺 幸太郎¹, 永井 裕己¹, 山口 智広¹, 尾沼 猛儀¹, 本田 徹¹, 相川 慎也¹ ○(B) 相場 康平¹, 深作 和寿¹, 大越 康晴¹, 中根 茂行², 名嘉 節², 石井 聡¹ ○小林 翔¹, 渡辺 幸太郎¹, 川口 拓真¹, 石田 哲也¹, 相	1.名工大 1.京工機大工芸 1.和歌山大システムエ 1.工学院大工 1.電機大理工, 2.岐阜大, 3.物材機構 1.京工機大, 2.日立ハイテク 1.埼玉大理工 1.工学院大工 1.電機大理工, 2.物材機構
	17a-PB01-6 17a-PB01-7 17a-PB01-8 17a-PB01-9 17a-PB01-10 17a-PB01-11 17a-PB01-12 17a-PB01-13 17a-PB01-14	と評価に関する研究 ゾルーゲル法による低抵抗 Al 添加 ZnO 透明導電膜の作製 β - Ga_2O_3 (-201) 表面における Ni 粒子の生成および成長 の UHV 観察 アセチルアセトナート化した亜鉛原料水溶液を用いた a 面サファイア基板上酸化亜鉛薄膜のミスト CVD 成長 $N2$ および $Ar/H2$ アニールによる $SnOx$ 薄膜の還元状態の比較 水熱合成 $ZnGa_2O_4$ ナノ粒子を用いた薄膜の作製と評価 β - Ga_2O_3 単結晶におけるラマンスペクトルの温度依存性 ミスト CVD 法による AlO_a , TiO_2 合金膜及び積層膜の作製 Ar/N_2 混合ガス中スバッタリングで堆積した SnO_a 薄膜における D_2 濃度の影響 ブルーゲル合成 $ZnGa_2O_4$ 膜の発光特性に前駆体の D_2 形 D_2 展開気中でスバッタ成膜した D_2 薄膜の特性評価 D_2 表別気中でスバッタ成膜した D_2 薄膜の特性評価	○安部 功二¹, 久保田 佑¹ ○(M1) 竹本 利々子¹, 岡田 有史¹, 角野 広平¹ ○宇野 和行¹, 西岡 恵¹ ○渡辺 幸太郎¹, 川口 拓真¹, 山口 智広¹, 尾沼 猛儀¹, 本田 徹¹, 相川 慎也¹ ○(B) 深作 和寿¹, 相場 康平¹, 大越 康晴¹, 吉田 道之², 中根 茂行³, 名嘉 節³, 石井 聡¹ ○古本 航¹, 前田 一誠¹, 伊佐治 楓¹, 蓮池 紀幸¹, 一色 俊之¹, 小林 健二² ○横山 工純', 范 文博¹, 白井 肇¹ ○(M1) 川口 拓真¹, 渡辺 幸太郎¹, 永井 裕己¹, 山口 智広¹, 尾沼 猛儀³, 本田 徹¹, 相川 慎也¹ ○(B) 相場 康平¹, 深作 和寿¹, 大越 康晴¹, 中根 茂行², 名嘉 節³, 石井 聡² ○小林 翔¹, 渡辺 幸太郎¹, 川口 拓真¹, 石田 哲也¹, 相川 慎也¹	1.名工大 1.京工繊大工芸 1.和歌山大システムエ 1.工学院大工 1.電機大理工,2.岐阜大,3.物材機構 1.京工繊大,2.日立ハイテク 1.埼玉大理工 1.工学院大工 1.電機大理工,2.物材機構 1.工学院大工
	17a-PB01-6 17a-PB01-7 17a-PB01-8 17a-PB01-9 17a-PB01-10 17a-PB01-11 17a-PB01-12 17a-PB01-13 17a-PB01-14 17a-PB01-15	と評価に関する研究 ゾル・ゲル法による低抵抗 A 1添加 Z nO 透明導電膜の作製 β - G a $_2$ O $_3$ (- 2 O $_1$) 表面における N 1粒子の生成および成長 の U HV 観察 アセチルアセトナート化した亜鉛原料水溶液を用いた a 面サファイア基板上酸化亜鉛薄膜のミスト C VD 成長 $N2$ および A r/ $H2$ アニールによる S nOx 薄膜の還元状態の比較 水熱合成 Z n G a $_2$ O $_4$ ナノ粒子を用いた薄膜の作製と評価 β - G a $_2$ O $_3$ 単結晶における \overline{J} マンスペクトルの温度依存性 ミスト \overline{J} CVD 法による \overline{J} Alo \overline{J} Cの、薄膜の影響 ゾルーゲル合成 \overline{J} Cn \overline{J} Cn \overline{J} Cn \overline{J} Ca \overline{J} Cn	○安部 功二¹, 久保田 佑¹ ○(M1) 竹本 利々子¹, 岡田 有史¹, 角野 広平¹ ○字野 和行¹, 西岡 恵¹ ○渡辺 幸太郎¹, 川口 拓真¹, 山口 智広¹, 尾沼 猛儀¹, 本田 徹¹, 相川 慎也¹ ○(B) 深作 和寿¹, 相場 康平¹, 大越 康晴¹, 吉田 道之², 中根 茂行³, 名嘉 節³, 石井 聡¹ ○古本 航¹, 前田 一誠¹, 伊佐治 楓¹, 蓮池 紀幸¹, 一色 俊之¹, 小林 健二² ○横山 工純¹, 范 文博¹, 白井 肇¹ ○(M1) 川口 拓真¹, 渡辺 幸太郎¹, 永井 裕己¹, 山口 智広¹, 尾沼 猛儀¹, 本田 徹¹, 相川 慎也¹ ○(B) 相場 康平¹, 深作 和寿¹, 大越 康晴¹, 中根 茂行², 名嘉 節², 石井 聡¹ ○小林 翔¹, 渡辺 幸太郎¹, 川口 拓真¹, 石田 哲也¹, 相	1.名工大 1.京工繊大工芸 1.和歌山大システムエ 1.工学院大工 1.電機大理工, 2.岐阜大, 3.物材機構 1.京工繊大, 2.日立ハイテク 1.埼玉大理エ 1.工学院大工 1.電機大理工, 2.物材機構 1.工学院大工 1.電機大理工, 2.物材機構 1.工学院大
	17a-PB01-6 17a-PB01-7 17a-PB01-8 17a-PB01-9 17a-PB01-10 17a-PB01-11 17a-PB01-13 17a-PB01-14 17a-PB01-15 17a-PB01-15	と評価に関する研究 ゾル・ゲル法による低抵抗 A 1添加 Z nO 透明導電膜の作製 β - G a $_2$ O $_3$ (- 2 O $_1$) 表面における N 1粒子の生成および成長 の U HV 観察 アセチルアセトナート化した亜鉛原料水溶液を用いた a 面サファイア基板上酸化亜鉛薄膜のミスト C VD 成長 $N2$ および A r/ $H2$ アニールによる S nO x 薄膜の還元状態の比較 水熱合成 Z n G a $_2$ O $_4$ ナノ粒子を用いた薄膜の作製と評価 β - G a $_2$ O $_3$ 単結晶におけるラマンスペクトルの温度依存性 ミスト C VD 法による A 1O $_a$, T 1O $_a$ 2 合金膜及び積層膜の作製 A r/ N_2 混合ガス中スパッタリングで堆積した S nO $_a$ 、薄膜における N_2 濃度の影響 ゾルーゲル合成 Z n G a $_a$ O $_4$ 膜の発光特性に前駆体の P Hが 及ぼす影響 A r/ H_2 雰囲気中でスパッタ成膜した S nO $_a$ 薄膜の特性評価 硫黄蒸気輸送アニールを用いた S nS 薄膜の作製と評価	○安部 功二¹, 久保田 佑¹ ○(M1) 竹本 利々子¹, 岡田 有史¹, 角野 広平¹ ○字野 和行¹, 西岡 恵¹ ○渡辺 幸太郎¹, 川口 拓真¹, 山口 智広¹, 尾沼 猛儀¹, 本田 徹¹, 相川 慎也¹ ○(B) 深作 和寿¹, 相場 康平¹, 大越 康晴¹, 吉田 道之², 中根 茂行³, 名嘉 節³, 石井 聡¹ ○古本 航¹, 前田 一誠¹, 伊佐治 楓¹, 蓮池 紀幸¹, 一色 俊之¹, 小林 健二² ○横山 工純¹, 范文 樗¹, 白井 肇¹ ○(M1) 川口 拓真¹, 渡辺 幸太郎¹, 永井 裕己¹, 山口智広¹, 尾沼 猛儀¹, 本田 徹¹, 相川 慎也¹ ○(B) 相場 康平¹, 深作 和寿¹, 大越 康晴¹, 中根 茂行², 名嘉 節², 石井 聡¹ ○小林 翔¹, 渡辺 幸太郎¹, 川口 拓真¹, 石田 哲也¹, 相川 慎也¹ ○波邊 大輝¹, 渡辺 幸太郎¹, 川口 拓真¹, 相川 慎也¹ ○水野 立揮¹, 杉山 弘樹¹, 村中 司¹, 鍋谷 暢一¹, 松本 俊¹	1.名工大 1.京工繊大工芸 1.和歌山大システム工 1.工学院大工 1.電機大理工, 2.岐阜大, 3.物材機構 1.京工繊大, 2.日立ハイテク 1.埼玉大理工 1.工学院大工 1.電機大理工, 2.物材機構 1.工学院大工 1.電機大理工, 2.物材機構 1.工学院大

17a-PB01-20	熱処理不要な In_2O_3 系 TFT 実現に向けた B ドーピング	〇山寺 真理¹, 木菱 完太¹, 野寺 歩夢¹, 熊本 勇紀¹, 森峻¹, 相川 慎也¹	1.工学院大
17a-PB01-21	La ドープ In 2 O 3 薄膜トランジスタ特性の測定環境依存	○小林 亮太¹, 野寺 歩夢¹, 相川 慎也¹	1. 工学院大
17a-PB01-22	イオン注入による酸化物 TFT の閾値電圧制御	○酒井 敏彦¹, 藤原 将喜¹, 東 大介¹, 安東 靖典¹, 松尾 大輔², 宇井 利昌², 安田 圭佑², 山根 裕也², 立道 潤 $-$ ²	1.日新電機, 2.日新イオン機器
	PEDOT:PSS/ZnOナノロッド/GZOへテロ接合素子の電 圧 - 電流特性におけるヒステリシス特性 \sim サイクル数依存性 \sim	○寺迫智昭¹, 矢木 正和², 山本 哲也³	1. 愛媛大院理工, 2. 香川高専, 3. 高知工科大総研
	a面サファイア基板上にミスト CVD 成長した酸化ガリウム薄膜による MSM型光検出器の基本特性	○山岡 敬嗣¹, 宇野 和行¹	1.和歌山大学システム工
17a-PB01-25	(010) 面 β -Ga ₂ O ₃ 基板に対する異方性 HCl ガスエッチン	○大島 孝仁¹, 大島 祐一¹	1.物材研

	114 1 101 20	圧・電流特性におけるヒステリシス特性 ~ サイクル数依		1. 交及八位上上,3. 日川同寺,5. 回州上下门八师时
	17a-PB01-24	存性 ~ a面サファイア基板上にミストCVD成長した酸化ガリウ ム薄膜によるMSM型光検出器の基本特性	〇山岡 敬嗣 1 , 宇野 和行 1	1.和歌山大学システム工
	17a-PB01-25	(010) 面 β -Ga ₂ O ₃ 基板に対する異方性 HCl ガスエッチン	○大島 孝仁¹, 大島 祐一¹	1. 物材研
		_グ フォノンエンジニアリング」/ Joint Session	M "Phonon Engineering"	
		はプログラム冒頭にございます。 ンエンジニアリング』/ Joint Session M "Phonon Enginee	ring"	
3/16(ポスター講演 (Poster Presentation) PA 会場 (Room PA)		1.NAIST
	E 10p-FAII-1	Highly Thermally Conductive Freestanding CNT/Polymer Composite Film with Aligned CNTs Fabricated via Direct Ink Writing		1.INAIS1
	16p-PA11-2	配向した単一カイラリティ単層カーボンナノチューブ薄 膜の熱電変換特性	〇安倍 陸斗 $^{1},$ 朝鳥 祥史朗 $^{1},$ 蓬田 陽平 $^{1},$ 上治 $\mathbb{g}^{1},$ 柳 和宏 1	1.都立大理
3/17 9:15		口頭講演 (Oral Presentation) D511会場 (Room D511) 全固体電気化学熱トランジスタ	楊 倩¹, ジョ ヘジュン², 卞 志平¹, 吉村 充生³, イ ジュ	1 业土桂起 9 业土量之延 9 业土工 4 癸山土物理
).13	174-D311-1	王団隆地双北丁宗ドブランハグ		5. 東大総研
9:30	奨 17a-D511-2	全固体熱トランジスタ特性に及ぼす固体電解質厚さの影 響	\bigcirc (B) 吉村 充生 1 , 楊 倩 2 3 , 卞 志平 2 , ジョ ヘジュン 4 , 太田 裕道 4	1.北大工, 2.北大院情報, 3.江蘇大(中国), 4.北大電子研
9:45	奨 E 17a-D511-3	Active Layer for Solid-State Electrochemical Thermal Transistors I: $SrCoO_x - SrFeO_x \ solid \ solutions$	○ (D)Zhiping Bian¹, Qian Yang², Mitsuki Yoshimura³, Joonhyuk Lee⁴, Hyoungjeen Jeen⁴, Jinghuang Lin⁵, Bin Feng⁵, Yuichi Ikuhara⁵, Hai Jun Cho⁴, Hiromichi Ohta⁴	1.IST-Hokudai, 2.Jiangsu U., 3.EngHokudai, 4.Pusan Nat'l U., 5.U. Tokyo, 6.RIES-Hokudai
0:00	E 17a-D511-4	Active Layer for Solid-State Electrochemical Thermal Transistors II: $SrCoO_x - SrRuO_x$ solid solutions	○ (D)Zhiping Bian¹, Hiromichi Ohta²	1.IST-Hokudai, 2.RIES-Hokudai
0:15	17 DE11 5	休憩/Break	○子如中山 △フ 歩か 七雨 サユ エユ ニナ・	1 陌上陸甘琳了 9 辺地古市
0:30		秩序 - 秩序転移を用いた有機系熱スイッチ材料における スイッチング温度制御 ナノビラー間隔を変化させた Si-nanopillar/SiGe _{0.3} 複合膜	〇石部 貴史¹, 金子 達哉¹, 赤羽 英夫¹, 小村 元憲², 中村 芳明¹	
0:45	17a-D511-6	アノビリー画際を変化させたSi-nanopiliar/SiGe _{0.3} 複合膜の光ヘテロダイン光熱変位法によるキャリアライフタイム評価		1. 呂呵人, 2. 子振特別研究員 DC, 3. 果北人流忰研, 4. NYCU
1:00	奨 E 17a-D511-7	Manipulating superelastic and ferroelastic deformation by cocrystal designing with the choice of coformers: crystal packing and thermal diffusivity analysis		1.Yokohama City Univ., 2.Tokyo Institute of Tech.
1:15	17a-D511-8	多層グラフェンのラマンスペクトルの温度依存性と光学 フォノン温度	〇劉 鋭安 1 , カリクンナン アフサル 1 , 宮田 全展 1 , 水田 博 1 , 小矢野 幹夫 1	1.北陸先端大
1:30	17a-D511-9	ローンペアを持たないAg-P化物Ag ₆ Si ₆ Sn ₄ P ₁₂ の非調和 フォノン	○宮田 全展 ¹ , 阿部 大介 ¹ , 小矢野 幹夫 ¹	1.北陸先端大
3/17 3:15		口頭講演 (Oral Presentation) D511会場 (Room D511) 高 Ge組成バルク SiGe における局在振動モードラマンス ベクトルの温度依存性	○横川 凌 ^{1,2} , 寿川 尚 ¹ , 荒井 康智 ³ , 米永 一郎 ⁴ , 小椋 厚志 ^{1,2}	1. 明大理工, 2. 明大 MREL, 3. JAXA, 4. 東北大学
3:30	17p-D511-2	分子動力学法による SiGe, GeSn, SiSn 混晶の低エネル ギー局在フォノンモードの解析	○並木大輔¹,山中湧司¹,渡邉孝信¹	1.早大理工
3:45	17p-D511-3	異種酸化物界面の欠陥密度と界面熱抵抗の関係:分子動力学による解析	○渡辺 留久人¹, 渡邉 孝信¹, 山中 湧司¹	1.早大理工
4:00	奨 17p-D511-4	UV ラマン分光法を用いた絶縁膜/SOI界面近傍の熱伝導		
4:15	17p-D511-5	特性評価 低誘電率層間絶縁膜材料と金属配線の界面熱抵抗の評価	椋 厚志 ^{1,2} ○ (M1) 曹 志 ¹ , 徐 茂 ² , 詹 天卓 ³ , 渡邉 孝信 ¹	院工 1.早大理工, 2.東工大, 3.東洋大
4:30		休憩/Break		
4:45	奨 17p-D511-6		○安達 真樹¹,藤田 利晃¹	1.三菱マテリアル
5:00	17p-D511-7	Si ウェハーベースセンサーアレイデザインによる SiNx 薄膜の面内熱拡散率測定	○ (D) 森川 淳子 ', ジャン フェリックス ² , 劉 芽久 哉 ³ , ウ シャン タン ² , インゲブラント スヴェン ²	1.東工大物質, 2.アーヘン工科大, 3.産総研
5:15	17p-D511-8	カルコゲンー窒素原子間接触により形成された2次元分子ネットワークの熱輸送特性		1. 東工大, 2. 産総研, 3. 北大
5:30	17p-D511-9	ハロゲン原子間接触により2次元分子層が積層した有機 単結晶における熱物性量評価とそのハロゲン種依存性	〇田能 広都 1 ,村木 亮介 1 ,竹原 陵介 1 ,劉 芽久哉 2 ,庄 子 良晃 1 ,森川 淳子 1 ,福島 孝典 1	1. 東工大, 2. 産総研
5:45	17p-D511-10	電子線改質されたグラフェンのフォノン輸送の分子動力 学解析 (2)	○吉田 健二¹, 植村 拓¹, 安田 雅昭¹	1. 阪公大院工
6:00 6:15	奨 E 17p-D511-11	休憩/Break Reexamine the criteria of phonon Poiseuille flow in graphite and its observation reaching 90 K	○ (P)Huang Xin¹, Yangyu Guo¹, Yunhui Wu¹, Satoru Masubuchi¹, Kenji Watanabe², Takashi Taniguchi², Zhongwei Zhang¹, Sebastian Volz¹, Tomoki Machida¹, Masahiro Nomura¹.³	1.Univ. of Tokyo, 2.NIMS, 3.LIMMS
6:30	E 17p-D511-12	Impact of nanopillars on phonon and thermal transport in silicon membranes	○ (P)Roman Anufriev¹, Daisuke Ohori², Yunhui Wu¹, Ryoto Yanagisawa¹, Laurent Jalabert¹,³, Seiji Samukawa²,⁴, Masahiro Nomura¹,³	1.IIS Univ. of Tokyo, 2.IFS, Tohoku University, 3. LIMMS CNRS, 4.NYCU
6:45	奨 17p-D511-13	表面フォノンボラリトン導波モードによる輻射サーマル ダイオード	〇金ピョンギ ¹ , Jalabert Laurent ^{1,2} , Ordonez- Miranda Jose ^{1,2} , 立川 冴子 ¹ , Coral Maelie ¹ , Wu Yunhui ¹ , Anufriev Roman ¹ , Volz Sebastian ^{1,2} , 野村 政 宏 ¹	1.東大, 2.LIMMS
17:00	奨 17p-D511-14	シリコン薄膜におけるコヒーレント音響フォノン減衰の 温度依存性のフェムト秒分光測定	○宮永 惟¹, 張 亜¹	1.農工大工
17:15	17p-D511-15	和装柄フォノニック結晶のバンド構造の検討	○小河原 陽平¹, 金 ビョンギ¹, 野村 政宏¹	1. 東大生研

3/12				
9:00		口頭講演 (Oral Presentation) D511会場(Room D511) 「第53回講演奨励賞受賞記念講演」	○許 斌¹, 永廣 怜平¹, 塩見 淳一郎¹	1.東大工
9:15	18a-D511-2	3次元ネック構造によるシリコン熱電材料の高性能化 キャビティフリー・マイクロ熱電デバイスの大規模集積		1.早大理工, 2.成蹊大学, 3.産総研
9:30	18a-D511-3	化(1) キャビティフリー・マイクロ熱電デバイスの大規模集積	サン ¹ , 柏崎 翼 ¹ , 保科 拓海 ¹ , 黒崎 天彩美 ¹ , 新井 崇平 ¹ , 空閑 敬大 ¹ , 三嶋 真雄紀 ¹ , 鄭 仁暢 ¹ ○ 新井 崇平 ¹ 三嶋 直雄紀 ¹ 和崎 翌 ¹ 保科 拓海 ¹ か	1 早大理工 2 産総研
		化(2) スケーリング効果	木 武雄1,2,渡邉 孝信1	
9:45	18a-D511-4	キャビティフリー・マイクロ熱電デバイスの大規模集積 化(3) 導熱路構造が発電性能に与える影響	○空閑敬大 ¹ , 柏崎 翼 ¹ , 新井 崇平 ¹ , 松木 武雄 ^{1,2} , 渡 邉 孝信 ¹	1.早大理工, 2. 産総研
10:00	奨 E 18a-D511-5	Large-scale Integration of Cavity-free Micro Thermoelectric Device (4) Sensitivity for Heat Flux	○ (DC)Md MehdeeHasan Mahfuz¹, Motohiro Tomita², Takeo Matsuki³, Takanobu Watanabe¹	1.Waseda Univ., 2.Seikei Univ., 3.AIST
10:15 10:30	18a-D511-6	休憩/Break 配線用遮断器の端子ねじ緩みによる異常加熱時の熱流束 の計測	○竹村 祐人¹, 黑崎 天彩美¹, 池田 孝根², 孫 如凱³, 玉田 崇³, 渡邉 孝信¹	1.早大理工, 2. 三井不動産, 3. 関電工
10:45	18a-D511-7	単層カーボンナノチューブ熱電特性の温度・キャリア注 入依存性の統一的理解		1. 都立大理
11:00	奨 18a-D511-8	浸漬による CNT 紡績糸への N-DMBI ドーピングの最適化	\bigcirc (M1) 中堀 慎也 1 , 亀高 諄 1 , 田中 佑一郎 1 , 鈴木 弘 朗 1 , 西川 亘 1 , A. K. K. K. Kyaw 2 , 林 靖彦 1	1. 岡山大学, 2. 南方科技大学
11:15	奨 E 18a-D511-9	Machine learning model for interfacial thermoelectric properties of bulk-2D-bulk heterostructures	○ (D)Yifei Li¹, Junichiro Shiomi¹	1.UTokyo
11:30	18a-D511-10	極小格子熱伝導度を示す化合物半導体Ag _{4.5} Te ₃ の熱電物性	○武藤 正憲¹,平田 圭佑¹,竹内 恒博¹,松波 雅治¹	1. 豊田工大工
		構造・現象、3.11 ナノ領域光科学・近接場光学、合同セッ	ションMのコードシェアセッション / Code-sharing S	Session of 3.10 & 3.11 & M
3/16 9:15		口頭講演 (Oral Presentation) E502 会場 (Room E502) フォトニクスの視点から開拓する半導体熱流制御技術	○野村 政宏¹	1. 東大生研
9:15		銀薄膜より高い太陽光反射率を持つ多層膜を用いた日中 放射冷却		
9:45	奨 16a-E502-3	放射冷却素材を用いて過冷却度を増大させた蒸気圧縮冷 凍サイクルの検討II	〇大杉 亮輔 $^{1.2}$, 若林 努 1 , 甲坂 朋也 2 , 杉本 雅行 1 , 末 光 真大 $^{1.2}$	1.大阪ガス, 2.SPACECOOL
10:00	16a-E502-4	フォノン共鳴波長近傍におけるパッシブ近接場計測モデル	○佐久間 涼子¹, 林 冠廷², 梶原 優介².3	1.東大工, 2.東大生研, 3.JST さきがけ
10:15	E 16a-E502-5	Bistable control of phase transition of an optomechanical SSH chain by radiation pressure	○ Feng Tian ¹ , Satoshi Iwamoto ^{1, 2}	1.RCAST, Univ. of Tokyo, 2.IIS, Univ. of Tokyo
10:30	E 16a-E502-6	休憩/Break Analysis of governing thermal radiation efficiency via GaAs/Au micro-stripe structures	○ (D)Hnin LaiLai Aye¹, Bojin Lin¹, Haruki Orito¹, Ikuya Suzuki¹, Bei Ma¹, Yoshihiro Ishitani¹	1.Chiba Univ.
11:00	16a-E502-7	光照射下で自己成長する銀樹状構造	\bigcirc 菱井 有莉 1 , 並木 潮美 1 , 大久保 貴広 1 , 狩野 旬 1 , 紀 和 利彦 1 . 庄司 暁 2 , 武安 伸幸 1	1. 岡山大, 2. 電通大
11:15	16a-E502-8	透明反射遮熱フィルムに向けた酸化物半導体ナノ粒子薄 膜の赤外メタマテリアル制御		1. 東大工, 2. 三菱マテリアル, 3. 宇都宮大学, 4. 科学技術 研究所
11:30	16a-E502-9	プラズモニック共振器を用いたダイヤモンドNVナノ レーザーの検討	○佐藤 大地¹, 勝見 亮太¹, 飛沢 健¹, 鳴瀬 駿¹, 高田 晃 佑¹, 河合 健太¹, 八井 崇¹	
11:45	16a-E502-10	プラズモニック金ナノ粒子における超高速偏光分解近赤		1 熱十工 2 電流十樓却用工 2 東十枷件缸
	100 2002 10	外発光分光	剛 ² , 谷 峻太郎 ³ , 小林 洋平 ³	1. 肝人工, 2. 电超人旧報建工, 3. 宋人初往如
	セッションN「	^{外発光分光} インフォマティクス応用」/ Joint Session N	剛 ² , 谷 峻太郎 ³ , 小林 洋平 ³	1. 肝人工, 4. 电週入旧報生工, 5. 果入彻단斯
シンポ	セッションN「 ジウムのプログラム	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。	剛 ² , 谷 峻太郎 ³ , 小林 洋平 ³	1. 肝入上, 2. 电週入情報生上, 5. 果入彻吐岍
シンポ 合同セ	セッションN「 ジウムのプログラム ッションN「インフ	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 ォマティクス応用」/ Joint Session N "Informatics"	剛 ² , 谷 峻太郎 ³ , 小林 洋平 ³ "Informatics"	1. 肝入上, 4. 电地入旧報生上, 5. 果入物任研
シンポ 合同セ	セッションN「 ジウムのプログラム ッションN「インフ ((Fri.) 9:30 - 11:30 17a-PB02-1	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。	剛 ² , 谷 峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹	1. (株式会社デンソー 1. 物材機構
シンポ 合同セ	セッションN「 ジウムのプログラム ッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 ォマティクス応用」/ Joint Session N "Informatics" ポスター講演 (Poster Presentation) PB 会場(Room PB; 実測値との誤差を目的関数とした構造最適化手法の開発	剛 ² , 谷 峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 猿山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大 ¹ , 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 富田 広人 ² , 孫 澤旭 ² , 盛喜 琢也 ² , Varun K. Kushwaha ³ , 桜庭 裕	1. 株式会社デンソー 1. 物材機構
シンポ 合同セ	セッションN「 ジウムのプログラム ッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 オマティクス応用』/ Joint Session N "Informatics" ボスター講演 (Poster Presentation) PB 会場(Room PB: 実測値との誤差を目的関数とした構造最適化手法の開発 バーシステント図を使ったイオン伝導度予測モデルの構築 マルチモーダル・マルチスケール解析を用いた	剛 ² , 谷 峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 猿山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大 ¹ , 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 富田 広人 ² ,	 株式会社デンソー 物材機構 東理大先進工, 2.NAIST, 3.NIMS
シンポ 合同セ	セッションN「 ジウムのプログラム ッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 オマティクス応用」/ Joint Session N "Informatics" ボスター講演 (Poster Presentation) PB 会場 (Room PB) 実測値との誤差を目的関数とした構造最適化手法の開発バーシステント図を使ったイオン伝導度予測モデルの構築 ダマルチモーダル・マルチスケール解析を用いた Co2MnGa1xGexの機能寄与因子の網羅的探索 ベき乗則に従うスペクトルの解析 機械学習を用いた顕微ラマンスペクトルの高速解析手法	剛 ² , 谷 峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 猿山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大 ¹ , 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 富田 広人 ² , 孫 澤旭 ² , 盛喜 琢也 ² , Varun K. Kushwaha ³ , 桜庭 裕弥 ³ , 岩崎 悠真 ³ , 小嗣 真人 ¹ ○柳生 進二郎 ¹ , 松本 明善 ¹ , 松波 成行 ¹ , 西島 元 ¹ , 伴野 信哉 ¹ , 石井 秋光 ¹ , 吉武 道子 ¹ , 長田 貴弘 ¹	 株式会社デンソー 物材機構 東理大先進工, 2.NAIST, 3.NIMS 物材機構 東理大先進工, 2.NIMS, 3.JAEA, 4.JST さきがけ,
シンポ 合同セ	セッションN「 ジウムのプログラム ッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 オマティクス応用』/ Joint Session N "Informatics" ボスター講演 (Poster Presentation) PB会場 (Room PB) 実測値との誤差を目的関数とした構造最適化手法の開発 バーシステント図を使ったイオン伝導度予測モデルの構築 マルチモーダル・マルチスケール解析を用いた Co ₂ MnGa _{1-x} Ge _x の機能寄与因子の網羅的探索 べき乗則に従うスペクトルの解析	剛 ² , 谷 峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 豫山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大 ¹ , 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 富田 広人 ² , 孫 澤旭 ² , 盛喜 琢也 ² , Varun K. Kushwaha ³ , 桜庭 裕 弥 ³ , 岩崎 悠真 ³ , 小嗣 真人 ¹ ○柳生 進二郎 ¹ , 松本 明善 ¹ , 松波 成行 ¹ , 西島 元 ¹ , 件 野信哉 ¹ , 石井 秋光 ³ , 吉武 道子 ¹ , 長田 貴弘 ¹ ○(B) 後藤 陸 ^{1,2} , 吉成 朝子 ^{1,2} , 鈴木 誠也 ^{2,3,4} , 安藤 康伸 ⁵ , 松村 太郎次郎 ⁵ , 小嗣 真人 ¹ , 永村 直佳 ^{1,2,4}	 株式会社デンソー 物材機構 東理大先進工, 2.NAIST, 3.NIMS 物材機構
シンポ 合同セ	セッションN「 ジウムのプログラム ッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3	外発光分光	剛 ² , 谷峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 猿山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大 ¹ , 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 富田 広人 ² , 孫澤旭 ² , 盛喜 琢也 ² , Varun K. Kushwaha ³ , 桜庭 裕弥 ³ , 岩崎 悠真 ³ , 小嗣 真人 ¹ ○柳生 進二郎 ¹ , 松本 明善 ¹ , 松波 成行 ¹ , 西島 元 ¹ , 伴野信哉 ¹ , 石井 秋光 ¹ , 吉武 道子 ¹ , 長田 貴弘 ¹ ○(B) 後藤 陸 ^{1,2} , 吉成 朝子 ^{1,2} , 鈴木 誠也 ^{2,3,4} , 安藤康伸 ³ , 松村 太郎次郎 ³ , 小嗣 真人 ¹ , 永村 直住 ^{1,2,4} ○(B) 中野 陽斗 ¹ , 望月 出海 ² , 岩本 晴道 ¹ , 木下 直希 ¹ , 星 健夫 ^{1,2}	 株式会社デンソー 物材機構 東理大先進工, 2.NAIST, 3.NIMS 物材機構 東理大先進工, 2.NIMS, 3.JAEA, 4.JST さきがけ, 5.AIST
シンポ 合同セ	セッションN「 ジウムのプログラム ッションN「インフ ('Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3 17a-PB02-4 17a-PB02-6 17a-PB02-7	外発光分光	剛 ² , 谷峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 猿山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大, 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 宮田 広人 ² , 深澤旭 ² , 盛喜 琢也 ² , Varun K. Kushwaha ³ , 校庭 裕弥 ³ , 岩崎 悠真 ³ , 小嗣 真人 ¹ ○柳生 進二郎 ¹ , 松本 明善 ¹ , 松波 成行 ¹ , 西島 元 ¹ , 伴野信哉 ¹ , 石井 秋光 ¹ , 吉武 道子 ¹ , 長田 貴弘 ¹ ○(B) 後藤 陸 ^{1,2} , 吉成 朝子 ^{1,2} , 鈴木 誠也 ^{2,3,4} 安藤康伸 ⁵ , 松村 太郎次郎 ⁵ , 小嗣 真人 ¹ , 永村 直佳 ^{1,2,4} ○(B) 中野陽斗 ¹ , 望月 出海 ² , 岩本 晴道 ¹ , 木下 直希 ¹ , 星 健夫 ^{1,2} ○チャン 修太郎 ¹ , Arpita Varadwaj ¹ , 小嗣 真人 ¹ ○岡博之 ¹ , 石井 真史 ¹ ○(B) 眞野 幸希 ¹ , 沓掛 健太朗 ^{2,5} , 丹野 航太 ³ , 中野	 株式会社デンソー 物材機構 東理大先進工, 2.NAIST, 3.NIMS 物材機構 東理大先進工, 2.NIMS, 3.JAEA, 4.JST さきがけ, 5.AIST 鳥取大工, 2.KEK 物構研低速陽電子 東理大先進工 物材機構 名大工, 2.理研AIP, 3.東北大金研, 4.東北大院工, 5.名
シンボ 合同セ 3/17	セッションN「 ジウムのプログラム ッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3 17a-PB02-4 17a-PB02-5 17a-PB02-6 17a-PB02-7 17a-PB02-7	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 オマティクス応用」/ Joint Session N "Informatics" ポスター講演 (Poster Presentation) PB 会場 (Room PB, 実測値との誤差を目的関数とした構造最適化手法の開発 ボーシステント図を使ったイオン伝導度予測モデルの構築 マルチモーダル・マルチスケール解析を用いた Co ₂ MnGa _{1-x} Ge _x の機能寄与因子の網羅的探索 べき乗則に従うスペクトルの解析 機械学習を用いた顕微ラマンスペクトルの高速解析手法の開発とグラフェンの層数同定 全反射高速陽電子回折(TRHEPD)実験における多波条件向けデータ解析手法 ポロフェンの軟 X線吸収スペクトルのシミュレーションと機械学 I W 表別で表別である。 と機械学習 を用いた対象の収入ペクトルのシミュレーションと機械学 I W 表別で表別である。	剛 ² , 谷 峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 猿山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大, 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 富田 広人 ² , 深澤旭 ² , 盛喜 琢也 ² , Varun K. Kushwaha ³ , 桜庭 裕弥 ³ , 岩崎 悠真 ³ , 小嗣 真人 ¹ ○柳生 進二郎 ¹ , 松本 明善 ¹ , 松波 成行 ¹ , 西島 元 ¹ , 伴野信哉 ¹ , 石井 秋光 ¹ , 吉武 道子 ¹ , 長田 貴弘 ¹ ○(B) 後藤 隆 ^{1,2} , 吉成 朝子 ^{1,2} , 鈴木 誠也 ^{3,3,4} 安藤康伸 ⁵ , 松村 太郎次郎 ⁵ , 小嗣 真人 ¹ , 永村 直佳 ^{1,2,4} ○(B) 中野 陽斗 ¹ , 望月 出海 ² , 岩本 晴道 ¹ , 木下 直希 ¹ , 星 健夫 ^{1,2} ○チャン修太郎 ¹ , Arpita Varadwaj ¹ , 小嗣 真人 ¹	 株式会社デンソー 物材機構 東理大先進工, 2.NAIST, 3.NIMS 物材機構 東理大先進工, 2.NIMS, 3.JAEA, 4.JST さきがけ, 5.AIST 鳥取大工, 2.KEK 物構研低速陽電子 東理大先進工 物材機構
シンボ 合同セ 3/17	セッションN「 ジウムのプログラム ッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3 17a-PB02-4 17a-PB02-5 17a-PB02-6 17a-PB02-7 17a-PB02-7 17a-PB02-9 (Fri.) 13:00 - 17:15	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 オマティクス応用」/ Joint Session N "Informatics" ポスター講演 (Poster Presentation) PB 会場 (Room PB, 実測値との誤差を目的関数とした構造最適化手法の開発 バーシステント図を使ったイオン伝導度予測モデルの構築 マルチモーダル・マルチスケール解析を用いた Co ₂ MnGa _{1-x} Ge _x の機能寄与因子の網羅的探索 べき乗則に従うスペクトルの解析 機械学習を用いた顕微ラマンスペクトルの高速解析手法 の開発とグラフェンの層数同定 全反射高速陽電子回折 (TRHEPD) 実験における多波条件 向けデータ解析手法 ボロフェンの軟X線吸収スペクトルのシミュレーションと機械学習 機械による論文PDFの表からの材料データ抽出 量子アニーリングを用いたプロセス最適化の検討 口頭講演 (Oral Presentation) A401 会場 (Room A401) ニューラルネットポテンシャルを用いた LLZO における	剛 ² , 谷峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 猿山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大 ¹ , 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 富田 広人 ² , 孫澤旭 ² , 盛喜 琢也 ² , Varun K. Kushwaha ³ , 桜庭 裕弥 ³ , 岩崎 悠真 ³ , 小嗣 真人 ¹ ○(神生 進二郎 ¹ , 松本 明善 ¹ , 松波 成行 ¹ , 西島 元 ¹ , 伴野信哉 ¹ , 石井 秋光 ¹ , 吉武 道子 ¹ , 長田 貴弘 ¹ ○(B) 後藤 陸 ^{1,2} , 吉成 朝子 ^{1,2} , 鈴木 誠也 ^{2,3,4} , 安藤康伸 ⁵ , 松村 太郎次郎 ³ , 小嗣 真人 ¹ , 木下 直希 ¹ , 星 健夫 ^{1,2} ○チャン 修太郎 ¹ , Arpita Varadwaj ¹ , 小嗣 真人 ¹ ○(B) 眞野 幸希 ¹ , 沓掛 健太朗 ^{2,5} , 丹野 航太 ³ , 中野 倖太 ³ , 丸山 伸伍 ⁴ , 宇治原 徽 ^{1,5} ○西川 武一郎 ¹ , 吉田 孝史 ¹ , 堀川 裕史 ¹ , 李 根 ¹ , 礒脇	 株式会社デンソー 物材機構 東理大先進工, 2.NAIST, 3.NIMS 物材機構 東理大先進工, 2.NIMS, 3.JAEA, 4.JST さきがけ, 5.AIST 鳥取大工, 2.KEK物構研低速陽電子 東理大先進工 物材機構 名大工, 2.理研AIP, 3.東北大金研, 4.東北大院工, 5.名大未来研
シンポ 合同セ 3/17	セッションN「 ジウムのプログラム ッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3 17a-PB02-4 17a-PB02-5 17a-PB02-6 17a-PB02-7 17a-PB02-8 17a-PB02-9 (Fri.) 13:00 - 17:15 17p-A401-1	外発光分光	剛 ² , 谷峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 猿山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大 ¹ , 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 富田 広人 ² , 孫澤旭 ² , 盛喜 琢也 ² , Varun K. Kushwaha ³ , 桜庭 裕弥 ³ , 岩崎 悠真 ³ , 小嗣 真人 ¹ ○柳佳 進二郎 ¹ , 松本 明善 ¹ , 松波 成行 ¹ , 西島 元 ¹ , 伴野信哉 ¹ , 石井 秋光 ¹ , 吉武 道子 ¹ , 長田 貴弘 ¹ ○(B) 後藤 陸 ^{1,2} , 吉成 朝子 ^{1,2} , 鈴木 誠也 ^{2,3,4} , 安藤 康仲 ⁵ , 松村 太郎次郎 ⁵ , 小嗣 真人 ¹ , 永村 直佳 ^{1,2,4} ○(B) 中野 陽斗 ¹ , 望月 出海 ² , 岩本 晴道 ¹ , 木下 直希 ¹ , 星 健夫 ^{1,2} ○チャン 修太郎 ¹ , Arpita Varadwaj ¹ , 小嗣 真人 ¹ ○(B) 眞野 幸希 ¹ , 沓掛 健太朗 ^{2,5} , 丹野 航太 ³ , 中野 倖太 ³ , 丸山 伸伍 ⁴ , 宇治原 徽 ^{1,5} ○西川 武一郎 ¹ , 吉田 孝史 ¹ , 堀川 裕史 ¹ , 李 根 ¹ , 礒脇 洋介 ¹ , 原田 康宏 ¹ , 永井 佑紀 ^{2,3} , 板倉 充洋 ²	 株式会社デンソー 物材機構 東理大先進工, 2.NAIST, 3.NIMS 物材機構 東理大先進工, 2.NIMS, 3.JAEA, 4.JST さきがけ, 5.AIST 鳥取大工, 2.KEK物構研低速陽電子 東理大先進工 物材機構 名大工, 2.理研AIP, 3.東北大金研, 4.東北大院工, 5.名大未来研
シンボ 合同セ 3/17 13:00	セッションN「 ジウムのプログラム ッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3 17a-PB02-4 17a-PB02-5 17a-PB02-6 17a-PB02-7 17a-PB02-8 17a-PB02-9 (Fri.) 13:00 - 17:15 17p-A401-1	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 オマティクス応用』/ Joint Session N "Informatics" ボスター講演 (Poster Presentation) PB 会場 (Room PB) 実測値との誤差を目的関数とした構造最適化手法の開発 バーシステント図を使ったイオン伝導度予測モデルの構築 マルチモーダル・マルチスケール解析を用いた Co ₂ MnGa _{1-x} Ge _x の機能寄与因子の網羅的探索 べき乗則に従うスペクトルの解析 機械学習を用いた顕微ラマンスペクトルの高速解析手法の開発とグラフェンの層数同定 全反射高速陽電子回折 (TRHEPD) 実験における多波条件向けデータ解析手法 ボロフェンの軟 X線吸収スペクトルのシミュレーションと機械学習機械による論文 PDFの表からの材料データ抽出 量子アニーリングを用いたプロセス最適化の検討 ロ頭講演 (Oral Presentation) A401 会場 (Room A401) ニューラルネットボテンシャルを用いた LLZO における イオン伝導率の評価 機械学習を用いたイオン化ボテンシャル・電子親和力の	剛 ² , 谷峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 猿山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大 ¹ , 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 富田 広人 ² , 孫澤旭 ² , 盛喜 琢也 ² , Varun K. Kushwaha ³ , 桜庭 裕弥 ³ , 岩崎 悠真 ³ , 小嗣 真人 ¹ ○柳生 進二郎 ¹ , 松本 明善 ¹ , 松波 成行 ¹ , 西島 元 ¹ , 伴野信哉 ¹ , 石井 秋光 ¹ , 吉武 朝子 ^{1,2} , 鈴木 誠也 ^{2,2,4} , 安藤康 ⁶ , 松村 太郎次郎 ⁵ , 小嗣 真人 ¹ , 永村 直佳 ^{1,2,4} ○(B) 中野 陽斗 ¹ , 望月 出海 ² , 岩本 睛道 ¹ , 木下 直希 ¹ , 星健夫 ^{1,2} ○チャン 修太郎 ¹ , Arpita Varadwaj ¹ , 小嗣 真人 ¹ ○岡 博之 ¹ , 石井 真史 ¹ ○(B) 真野 幸希 ¹ , 杏掛 健太朗 ^{2,5} , 丹野 航太 ³ , 中野 倖太 ³ , 丸山 伸伍 ⁴ , 宇治原 徹 ^{1,5} ○西川 武一郎 ¹ , 吉田 孝史 ¹ , 堀川 裕史 ¹ , 李 根 ¹ , 礒脇 洋介 ¹ , 原田 康宏 ¹ , 永井 佑紀 ^{2,3} , 板倉 充洋 ² ○清原 慎 ^{1,2} , 高橋 亮 ¹ , 日沼 洋陽 ³ , 大場 史康 ¹	 株式会社デンソー 物材機構 東理大先進工, 2.NAIST, 3.NIMS 物材機構 東理大先進工, 2.NIMS, 3.JAEA, 4.JST さきがけ, 5.AIST 鳥取大工, 2.KEK物構研低速陽電子 東理大先進工 物材機構 名大工, 2.理研AIP, 3.東北大金研, 4.東北大院工, 5.名大未来研 (株)東芝, 2.原子力機構, 3.理研AIP
シンポ 合同セ 3/17 13:00 13:15	セッションN「 ジウムのプログラム ッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3 17a-PB02-4 17a-PB02-5 17a-PB02-6 17a-PB02-7 17a-PB02-7 17a-PB02-9 (Fri.) 13:00 - 17:15 17p-A401-1 17p-A401-2	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 オマティクス応用』/ Joint Session N "Informatics" ボスター講演 (Poster Presentation) PB 会場 (Room PB, 実測値との誤差を目的関数とした構造最適化手法の開発バーシステント図を使ったイオン伝導度予測モデルの構築 マルチモーダル・マルチスケール解析を用いた Co ₂ MnGa _{1-x} Ge _x の機能寄与因子の網羅的探索 べき乗則に従うスペクトルの解析 機械学習を用いた顕微ラマンスペクトルの高速解析手法の開発とグラフェンの層数同定 全反射高速陽電子回折(TRHEPD)実験における多波条件向けデータ解析手法 ボロフェンの軟X線吸収スペクトルのシミュレーションと機械学習機械による論文PDFの表からの材料データ抽出量子アニーリングを用いたプロセス最適化の検討 口頭講演 (Oral Presentation) A401 会場 (Room A401) ニューラルネットボテンシャルを用いた LLZO におけるイオン伝導率の評価 機械学習を用いたイオン化ポテンシャル・電子親和力の予測	剛 ² , 谷峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 猿山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大 ¹ , 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 富田 広人 ² , 孫澤旭 ³ , 盛喜 琢也 ² , Varun K. Kushwaha ³ , 桜庭 裕弥 ³ , 岩崎 悠真 ³ , 小嗣 真人 ¹ ○御生 進二郎 ¹ , 松本 明善 ¹ , 松波 成行 ¹ , 西島 元 ¹ , 伴 野信哉 ¹ , 石井 秋光 ¹ , 吉武 道子 ¹ , 長田 貴弘 ¹ ○(B) 後藤 陸 ^{1,2} , 吉成 朝子 ^{1,2} , 鈴木 誠也 ^{2,3,4} , 安藤康伸 ⁵ , 松村 太郎次郎 ⁵ , 小嗣 真人 ¹ , 永村 直佳 ^{1,2,4} ○(B) 中野陽斗 ¹ , 望月 出海 ² , 岩本 晴道 ¹ , 木下 直希 ¹ , 星健夫 ^{1,2} ○チャン 修太郎 ¹ , Arpita Varadwaj ¹ , 小嗣 真人 ¹ ○岡博之 ¹ , 石井 真史 ¹ ○(B) 眞野 幸希 ¹ , 沓掛 健太朗 ^{2,5} , 丹野 航太 ³ , 中野倖太 ³ , 丸山 伸伍 ⁴ , 宇治原 徹 ^{1,5} ○西川 武一郎 ¹ , 吉田 孝史 ¹ , 堀川 裕史 ¹ , 李根 ¹ , 礒脇洋介 ¹ , 原田 康宏 ¹ , 永井 佑紀 ^{2,3} , 板倉 充洋 ² ○清原 慎 ^{1,2} , 高橋 亮 ¹ , 日沼 洋陽 ³ , 大場 史康 ¹ 宋 鵬 ¹ , 川口 真理 ¹ , 鱒渕 友治 ² , 奥村 健司 ¹ , 中野 晃 佑 ¹ , 前園 涼 ¹ , ○本郷 研太 ³	1. 株式会社デンソー 1. 物材機構 1. 東理大先進工, 2.NAIST, 3.NIMS 1. 物材機構 1. 東理大先進工, 2.NIMS, 3.JAEA, 4.JST さきがけ, 5.AIST 1. 鳥取大工, 2.KEK 物構研低速陽電子 1. 東理大先進工 1. 物材機構 1. 名大工, 2.理研AIP, 3. 東北大金研, 4. 東北大院工, 5. 名大未来研 1. (株) 東芝, 2.原子力機構, 3.理研AIP 1. 東工大, 2. 東北大, 3. 産総研
シンポ 合同セ 3/17 13:00 13:15 13:30 13:45	セッションN「ジウムのプログラム ッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3 17a-PB02-4 17a-PB02-5 17a-PB02-6 17a-PB02-7 17a-PB02-7 17a-PB02-9 (Fri.) 13:00 - 17:15 17p-A401-1 17p-A401-3 奨 17p-A401-4	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 オマティクス応用』/ Joint Session N "Informatics" ポスター講演 (Poster Presentation) PB 会場 (Room PB, 実測値との誤差を目的関数とした構造最適化手法の開発 バーシステント図を使ったイオン伝導度予測モデルの構築 マルチモーダル・マルチスケール解析を用いた Co ₂ MnGa _{1-x} Ge _x の機能寄与因子の網羅的探索 べき乗則に従うスペクトルの解析 機械学習を用いた顕微ラマンスペクトルの高速解析手法の開発とグラフェンの層数同定 全反射高速陽電子回折 (TRHEPD) 実験における多波条件向けデータ解析手法 ボロフェンの軟 X線吸収スペクトルのシミュレーションと機械学習 機械による論文 PDFの表からの材料データ抽出量子アニーリングを用いたプロセス最適化の検討 口頭講演 (Oral Presentation) A401 会場 (Room A401) ニューラルネットボテンシャルを用いた LLZO におけるイオン伝導率の評価機械学習を用いたイオン化ボテンシャル・電子親和力の予測 金属カルボジイミド高圧相の進化論的構造探索 グラフェン上の多様な結合種を予測可能な機械学習モデルの開発 結晶構造に着目した日射遮蔽材料開発	剛 ² , 谷峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 猿山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大 ¹ , 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 富田 広人 ² , 孫澤旭 ³ , 盛喜 琢也 ² , Varun K. Kushwaha ³ , 桜庭 裕弥 ³ , 岩崎 悠真 ³ , 小嗣 真人 ¹ ○御生 進二郎 ¹ , 松本 明善 ¹ , 松波 成行 ¹ , 西島 元 ¹ , 伴 野信哉 ¹ , 石井 秋光 ¹ , 吉武 道子 ¹ , 長田 貴弘 ¹ ○(B) 後藤 陸 ^{1,2} , 吉成 朝子 ^{1,2} , 鈴木 誠也 ^{2,3,4} , 安藤康伸 ⁵ , 松村 太郎次郎 ⁵ , 小嗣 真人 ¹ , 永村 直佳 ^{1,2,4} ○(B) 中野陽斗 ¹ , 望月 出海 ² , 岩本 晴道 ¹ , 木下 直希 ¹ , 星健夫 ^{1,2} ○チャン 修太郎 ¹ , Arpita Varadwaj ¹ , 小嗣 真人 ¹ ○岡博之 ¹ , 石井 真史 ¹ ○(B) 眞野 幸希 ¹ , 沓掛 健太朗 ^{2,5} , 丹野 航太 ³ , 中野倖太 ³ , 丸山 伸伍 ⁴ , 宇治原 徹 ^{1,5} ○西川 武一郎 ¹ , 吉田 孝史 ¹ , 堀川 裕史 ¹ , 李根 ¹ , 礒脇洋介 ¹ , 原田 康宏 ¹ , 永井 佑紀 ^{2,3} , 板倉 充洋 ² ○清原 慎 ^{1,2} , 高橋 亮 ¹ , 日沼 洋陽 ³ , 大場 史康 ¹ 宋 鵬 ¹ , 川口 真理 ¹ , 鱒渕 友治 ² , 奥村 健司 ¹ , 中野 晃 佑 ¹ , 前園 涼 ¹ , ○本郷 研太 ³	 株式会社デンソー 物材機構 東理大先進工, 2.NAIST, 3.NIMS ・物材機構 東理大先進工, 2.NIMS, 3.JAEA, 4.JST さきがけ, 5.AIST 1.鳥取大工, 2.KEK 物構研低速陽電子 1.東理大先進工 1.物材機構 1.名大工, 2.理研AIP, 3.東北大金研, 4.東北大院工, 5.名大未来研 1. (株)東芝, 2.原子力機構, 3.理研 AIP 1.東工大, 2.東北大, 3.産総研 1.北陸先端大情報, 2.北大工, 3.北陸先端大情報基盤
シンポ 合同セ 3/17 13:00 13:15 13:30	セッションN「ジウムのプログラム ッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3 17a-PB02-4 17a-PB02-5 17a-PB02-6 17a-PB02-7 17a-PB02-8 17a-PB02-9 (Fri.) 13:00 - 17:15 17p-A401-1 17p-A401-2 17p-A401-3 奨17p-A401-4	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 オマティクス応用』/ Joint Session N "Informatics" ボスター講演 (Poster Presentation) PB 会場 (Room PB) 実測値との誤差を目的関数とした構造最適化手法の開発 バーシステント図を使ったイオン伝導度予測モデルの構築 マルチモーダル・マルチスケール解析を用いた Co ₂ MnGa _{1-x} Ge _x の機能寄与因子の網羅的探索 べき乗則に従うスペクトルの解析 機械学習を用いた顕微ラマンスペクトルの高速解析手法の開発とグラフェンの層数同定 全反射高速陽電子回折 (TRHEPD) 実験における多波条件向けデータ解析手法 ボロフェンの軟X線吸収スペクトルのシミュレーションと機械学習機械による論文PDFの表からの材料データ抽出量子アニーリングを用いたプロセス最適化の検討 ロ頭講演 (Oral Presentation) A401 会場 (Room A401) ニューラルネットボテンシャルを用いた LLZO におけるイオン伝導率の評価 機械学習を用いたイオン化ボテンシャル・電子親和力の予測 金属カルボジイミド高圧相の進化論的構造探索 グラフェン上の多様な結合種を予測可能な機械学習モデルの開発 結晶構造に着目した日射遮蔽材料開発 体態/Break 材料化学の知識に基づくセラミックス材料の特徴量エン	剛 ² , 谷峻太郎 ³ , 小林 洋平 ³ "Informatics" ○屋内 一馬 ¹ , 小野 泰輔 ¹ ○上杉 文彦 ¹ , 橋本 綾子 ¹ , 石井 真史 ¹ ○(B) 猿山 直明 ¹ , Alexandre Lira Foggiatto ¹ , 山崎 貴大 ¹ , 松下 智裕 ² , 橋本 由介 ² , 川村 聡太 ² , 宮田 広人 ² , 孫澤旭 ² , 盛喜 琢也 ² , Varun K. Kushwaha ³ , 桜庭 裕弥 ³ , 岩崎 悠真 ³ , 小嗣 真人 ¹ ○柳生 進二郎 ¹ , 松本 明善 ¹ , 松波 成行 ¹ , 西島 元 ¹ , 伴野信哉 ¹ , 石井 秋光 ¹ , 吉武 道子 ¹ , 長田 貴弘 ¹ ○(B) 後藤 陸 ^{1,2} , 吉成 朝子 ^{1,2} , 鈴木 誠也 ^{2,3,4} , 安藤 康伸 ⁵ , 松村 太郎次郎 ⁵ , 小嗣 真人 ¹ , 永村 直佳 ^{1,2,4} ○(B) 中野 陽斗 ¹ , 望月 出海 ² , 岩本 晴道 ¹ , 木下 直希 ¹ , 星 健夫 ^{1,2} ○チャン 修太郎 ¹ , Arpita Varadwaj ¹ , 小嗣 真人 ¹ ○岡 博之 ¹ , 石井 真史 ¹ ○(B) 眞野 幸希 ¹ , 沓掛 健太朗 ^{2,5} , 丹野 航太 ³ , 中野 倖太 ³ , 丸山 伸伍 ⁴ , 宇治原 徹 ^{1,5} ○西川 武一郎 ¹ , 吉田 孝史 ¹ , 堀川 裕史 ¹ , 李 根 ¹ , 礒脇 洋介 ¹ , 原田 康宏 ¹ , 永井 佑紀 ^{2,3} , 板倉 充洋 ² ○清原 慎 ^{1,2} , 高橋亮 ¹ , 日沼 洋陽 ³ , 大場 史康 ¹ 宋 鵬 ¹ , 川口 真理 ¹ , 鱒渕 友治 ² , 奥村 健司 ¹ , 中野 晃 佑 ¹ , 前園 涼 ¹ , ○本郷 研太 ³ ○(M1) 西尾 健人 ¹ , 柴田 基洋 ^{1,2} , 溝口 照康 ^{1,2}	 株式会社デンソー 物材機構 東理大先進工, 2.NAIST, 3.NIMS 物材機構 東理大先進工, 2.NIMS, 3.JAEA, 4.JST さきがけ, 5.AIST 鳥取大工, 2.KEK物構研低速陽電子 東理大先進工 物材機構 名大工, 2.理研AIP, 3.東北大金研, 4.東北大院工, 5.名大未来研 (株) 東芝, 2.原子力機構, 3.理研 AIP 東工大, 2.東北大, 3.産総研 北陸先端大情報, 2.北大工, 3.北陸先端大情報基盤 東大工, 2.東大生研
シンポ 合同セ 3/17 13:00 13:15 14:00 14:15 14:30 14:45	セッションN「ジウムのプログラムッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3 17a-PB02-5 17a-PB02-6 17a-PB02-7 17a-PB02-7 17a-PB02-9 (Fri.) 13:00 - 17:15 17p-A401-1 17p-A401-2 17p-A401-3 奨 17p-A401-5 17p-A401-6 17p-A401-7	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 オマティクス応用」/ Joint Session N "Informatics" ポスター講演 (Poster Presentation) PB 会場 (Room PB, 実測値との誤差を目的関数とした構造最適化手法の開発 祭 マルチモーダル・マルチスケール解析を用いた Co ₂ MnGa _{1-x} Ge _x の機能寄与因子の網羅的探索 ベき乗則に従うスペクトルの解析 機械学習を用いた顕微ラマンスペクトルの高速解析手法 の開発とグラフェンの層数同定 全反射高速陽電子回折(TRHEPD)実験における多波条件向けデータ解析手法 ポロフェンの軟X線吸収スペクトルのシミュレーションと機械学習機械による論文PDFの表からの材料データ抽出量子アニーリングを用いたプロセス最適化の検討 口頭講演 (Oral Presentation) A401 会場 (Room A401) ニューラルネットボテンシャルを用いた LLZO におけるイオン伝導率の評価機械学習を用いたイオン化ボテンシャル・電子親和力の予測 金属カルボジイミド高圧相の進化論的構造探索 グラフェン上の多様な結合種を予測可能な機械学習モデルの開発 結晶構造に着目した日射遮蔽材料開発 休憩/Break 材料化学の知識に基づくセラミックス材料の特徴量エンジニアリングと常誘電材料の比誘電率の特性予測酸化物の格子誘電率の機械学習モデルの構築	剛², 谷峻太郎³, 小林洋平³ "Informatics" ○屋内 一馬¹, 小野 泰輔¹ ○上杉文彦¹, 橋本 綾子¹, 石井 真史¹ ○(B) 豫山 直明¹, Alexandre Lira Foggiatto¹, 山崎貴大¹, 松下 智裕², 橋本 由介², 川村 聡太², 宮田 広人², 孫澤旭², 盛喜 琢也², Varun K. Kushwaha³, 桜庭 裕³, ²邑崎 悠真³, 小嗣 真人¹ ○柳生 進二郎¹, 松本 明善², 松波 成行¹, 西島元¹, 伴野信哉¹, 石井 秋光¹, 吉武 道子¹, 長田 貴弘¹ ○(B) 後藤 陸¹², 吉成 朝子¹², 鈴木 誠也³³³, 女藤康伸⁵, 松村 太郎次郎⁵, 小嗣 真人¹, 永村 直佳¹²²⁴ ②(B) 中野陽斗¹, 望月 出海², 岩本 晴道¹, 木下 直希¹, 星健夫¹² ○千 × 少修太郎¹, Arpita Varadwaj¹, 小嗣 真人¹ ○岡博之¹, 石井 真史¹ ○(B) 眞野 幸希¹, 沓掛 健太朗²⁵⁵, 丹野 航太³, 中野倖太³, 丸山 伸伍⁴, 宇治原 徹¹⁵ ○西川 武一郎¹, 吉田 孝史¹, 堀川 裕史¹, 李根¹, 礒脇洋介¹, 原田 康宏¹, 永井 佑紀²³, 板倉 充洋² ○清原 慎¹², 高橋 亮¹, 日沼 洋陽³, 大場 史康¹ 宋鵬¹, 川口 真理¹, 鱒渕 友治², 奥村 健司¹, 中野 晃佑¹, 前國 涼¹, ○本郷 研太³ ○(M1) 西尾 健人¹, 柴田 基洋¹², 溝口 照康¹² ○吉田智大¹ ○尾崎 仁亮¹, 池田 潤¹	 1.株式会社デンソー 1.物材機構 1.東理大先進工, 2.NAIST, 3.NIMS 1.物材機構 1.東理大先進工, 2.NIMS, 3.JAEA, 4.JST さきがけ, 5.AIST 1.鳥取大工, 2.KEK 物構研低速陽電子 1.東理大先進工 1.物材機構 1.名大工, 2.理研AIP, 3.東北大金研, 4.東北大院工, 5.名大未来研 1. (株)東芝, 2.原子力機構, 3.理研AIP 1.東工大, 2.東北大, 3.産総研 1.北陸先端大情報, 2.北大工, 3.北陸先端大情報基盤 1.東工工, 2.東大生研 1.住友金属鉱山 1.株式会社村田製作所 1.村田製作所
シンポ 合同セ 3/17 13:00 13:15 13:30 13:45 14:00 14:15 14:30	セッションN「ジウムのプログラムッションN「インフ (Fri.) 9:30 - 11:30 17a-PB02-1 17a-PB02-2 17a-PB02-3 17a-PB02-5 17a-PB02-6 17a-PB02-7 17a-PB02-7 17a-PB02-9 (Fri.) 13:00 - 17:15 17p-A401-1 17p-A401-2 17p-A401-3 奨 17p-A401-5 17p-A401-6 17p-A401-7	外発光分光 インフォマティクス応用」/ Joint Session N はプログラム冒頭にございます。 オマティクス応用」/ Joint Session N "Informatics" ポスター講演 (Poster Presentation) PB 会場 (Room PB, 実測値との誤差を目的関数とした構造最適化手法の開発 バーシステント図を使ったイオン伝導度予測モデルの構築 マルチモーダル・マルチスケール解析を用いた Co ₂ MnGa _{1-x} Ge _x の機能寄与因子の網羅的探索 べき乗則に従うスペクトルの解析 機械学習を用いた顕微ラマンスペクトルの高速解析手法の開発とグラフェンの層数同定 全反射高速陽電子回折 (TRHEPD) 実験における多波条件向けデータ解析手法 ボロフェンの軟 X線吸収スペクトルのシミュレーションと機械学習機械による論文 PDFの表からの材料データ抽出量子アニーリングを用いたプロセス最適化の検討 口頭講演 (Oral Presentation) A401 会場 (Room A401) ニューラルネットボテンシャルを用いた LLZO におけるイオン伝導率の評価機械学習を用いたイオン化ボテンシャル・電子親和力の予測金属カルボジイミド高圧相の進化論的構造探索 グラフェン上の多様な結合種を予測可能な機械学習モデルの開発 結晶構造に着目した日射遮蔽材料開発 体想/Break 材料化学の知識に基づくセラミックス材料の特徴量エンジニアリングと常誘電材料の比誘電率の特性予測		1.株式会社デンソー 1.物材機構 1.東理大先進工, 2.NAIST, 3.NIMS 1.物材機構 1.東理大先進工, 2.NIMS, 3.JAEA, 4.JST さきがけ, 5.AIST 1.鳥取大工, 2.KEK物構研低速陽電子 1.東理大先進工 1.物材機構 1.名大工, 2.理研AIP, 3.東北大金研, 4.東北大院工, 5.名大未来研 1. (株)東芝, 2.原子力機構, 3.理研 AIP 1.東工大, 2.東北大, 3.産総研 1.北陸先端大情報, 2.北大工, 3.北陸先端大情報基盤 1.東大工, 2.東大生研 1.住友金属鉱山 1.株式会社村田製作所 1.村田製作所 1.物材機構, 2.筑波大

15:30	奨 17p-A401-10	自己教師あり深層距離学習を用いた結晶構造からの材料 コンセプト学習	〇鈴木 雄太 1 , 谷合 竜典 2 , 斉藤 耕太郎 3,4 , 牛久 祥 孝 2 , 小野 寛太 4,5	1. トヨタ自動車, 2.OMRON SINIC X, 3. ランデフト, 4.大阪大工, 5.高エネ研
15:45	NS 17 A 401 11	休憩/Break	○(B) 佐々木 蓮¹, 岡田 智悠¹, 望月 祐樹¹, 松井 弘之¹	1 JUK-L DOPI
16:00 16:15	17p-A401-12	AI 支援型分子設計システムにおける光学特性予測 超伝導材料に関する文献情報抽出における転移点データ の解釈	三井 堅斗¹, ○旭 良司¹	1.名大工
16:30		マテリアルキュレーション®支援システムの事例	○吉武 道子¹	1.物材機構
16:45	E 17p-A401-14	Discussing domain adaptation in TDM: from superconductors to large magnets research	○ Luca Foppiano¹, Masashi Ishii¹	1.MDBG, NIMS
17:00	17p-A401-15	学術論文から薄膜合成最適プロセス条件を抽出する	〇小林 成 1 , 桑代 法和 2 , 伊藤 史朗 2 , 桜井 大 2 , 一杉 太郎 1,3	1. 東工大物質理工, 2. 長瀬産業, 3. 東大院理
		口頭講演 (Oral Presentation) A401会場 (Room A401)		
9:00 9:15		機械学習を活用した輝度ヒストグラム解析による RHEED強度振動評価 有機高分子材料分析に向けた機械学習による炭素K吸収	郎次郎3, 小嗣 真人1, 永村 直佳1.2.4	1. 理科大先進工, 2. 物材研, 3. 産総研, 4.JST さきがけ 1. 東大生研
		端 ELNES/XANES の形状予測の検討		
9:30	18a-A401-3	ギガピクセルイメージング XAFS の計測と基礎データ解析	野 寛太1	
9:45	18a-A401-4	機械学習を用いたギガピクセルイメージング XAFS データの解析	○(B) 伊藤 優成¹, 武市 泰男¹, 日野 英逸², 小野 寛太¹	1. 阪大工, 2. 統数研
10:00	18a-A401-5	オートエンコーダ技術による XRD ピークのレレバンシ同 定	○前園 涼¹, 内村 慶舟², 本郷 研太³	1.北陸先端大情報, 2.北陸先端大マテ, 3.北陸先端大情社基セ
10:15		休憩/Break		
10:30	18a-A401-6	薄膜X線回折とX線反射率を組み合わせたベイズ解析	○(DC)崎下 雄稀¹,鍋島 冬樹¹,前田 京剛¹,福島 孝治¹²	1. 東大院総合, 2. 東大先進
10:45	18a-A401-7	粉末 X 線回折とラマン分光を用いた全自動定量分析システムの開発	○大川内 雅人¹, 武市 泰男¹, 中島 優作¹, 羽合 孝文¹, 小野 寛太¹	1.阪大工
11:00	18a-A401-8	脳波を用いたブレインマシンインタフェースによるコン		1. 茨城高専
11:15		ピュータアプリケーション制御 PN Body-Tied SOI-FET の NN モデル化での G _m の考慮	○中田 賢吾¹, 森 貴之¹, 井田 次郎¹	1. 金沢工大
		口頭講演 (Oral Presentation) A401会場 (Room A401)	○(P) (All + - <	4 支押 1. 0 四 1. 1. 24 0 之柳 1. 24 4 位 4 1. 24 5 17116
13:00		拡張型ランダウ自由エネルギーモデルによる無方向性電 磁鋼板の磁化反転過程の解析	春¹, 山崎 貴大¹, 大林 $-$ 平², 平岡 裕章³, 五十嵐 康 彦⁴, 水鳥 雄太⁴, Sepehri Hossein⁵, 大久保 忠勝⁵, 小嗣 真人¹	
13:15	奨 18p-A401-2	鉄損解析のためのリアルタイム高速磁区構造計測システムの開発と機械学習応用	○長岡 竜之輔 ¹ , 增澤 賢 ¹ , Alexandre Foggiatto ¹ , 三俣 千春 ¹ , 山崎 貴大 ¹ , 大林 一平 ² , 平岡 裕章 ³ , 小嗣 真 人 ¹	1. 東理大先進工, 2. 岡山大, 3. 京都大
13:30	E 18p-A401-3	Analysis of Massive Molecular Dynamics Simulation Based on Topological Data Analysis	○ Xichan Gao¹, Kazuto Akagi¹	1.Tohoku Univ.
13:45	18p-A401-4	アモルファス状材料の特徴量抽出と物性予測	○石田 真彦 ^{1,2} , 内田 紀行 ¹	1. 産総研, 2.NEC
14:00		深層学習による多結晶型超伝導体微細組織の相識別	〇西谷 慶輝 1 ,細川 貴弘 1 ,平林 由宇 1 ,伊加 遥河 1 ,長谷川 友大 1 ,德田 進之介 1 ,嶋田 雄介 2 ,山本 明保 1	
14:15 14:30	18p-A401-6	多結晶材料における結晶欠陥発生予測モデルの構築と解析 休憩/Break	〇原 京 ϵ^1 , 小鳥 拓人 2 , 沓掛 健太朗 3 , 工藤 博 ϵ^2 , 宇 佐美 徳隆 1	1. 名大工, 2. 名大情報, 3. 理研 AIP
14:45	18p-A401-7	連立微分方程式で記述される半導体プロセスシミュレーションの機械学習	佐藤 陸彌¹, ○沓掛 健太朗², 原田 俊太¹, 出川 美穂¹, ; 宇治原 徹¹, 3	1. 名大院工, 2. 理研 AIP, 3. 名大未来研
15:00	18p-A401-8	パワートランジスタにおける特性ばらつきの母集団推定	○福本 晴花¹, 中村 洋平¹, 安田 雅浩¹, 宮前 義範¹, 奥 良彰¹, 中原 健¹	1. ローム
15:15	奨 18p-A401-9	fracDMD: 非整数階解析学を応用した動的モード分解手法		1.東京エレクトロン(株)
15:30	18p-A401-10	特徴量選択を用いた機械学習モデルによるパターン倒壊 抑制可能な昇華材料の探索	- 11	1.SCREEN ホールディングス, 2.SCREEN アドバンスト システムソリューションズ
15:45	18p-A401-11	ニューラルネットワークモデルと説明可能AI を用いたト	○岡本 國美¹,北川 雅之¹,宮前 義範¹, 奥 良彰¹,中原	
16:00	18p-A401-12	ロイダルコイルの構造最適化 機械学習を活用したCr-Si-N薄膜の抵抗温度係数最適化	健¹ ○(M2)木村 武史¹,相田彩花²,原浩之²,秋池 良²,召田 雅実²,小林 成¹,田村 亮³⁴,清水 亮太¹,一杉 太郎¹.⁵	
16:15	18p-A401-13	自律実験のための粉体粉砕ロボットシステムの開発と評 価	24.	1.総研大 高エネ, 2. 阪大院工, 3.OMRON SINIC X
		$\exists u / Code ext{-sharing session}$		
シンポシ	ジウムのプログラム	はプログラム冒頭にございます。	/ナンビー/ - 節のコーピン・フレーン・ハイクー	having Socian of 22.0.7.4.07.5
		・加速器ビーム分析、7.4 量子ビーム界面構造計測、7.5 イロ頭講演 (Oral Presentation) D519会場 (Room D519)	「カラビーム一般のコートンェアセッション / Code-s	naming Session of 2.3 & 7.4 &7.5
9:00		室化ガリウム半導体における単一イオンヒット検出条件の検討	○藤田 泰樹 ^{1,2} , 佐藤 真一郎 ² , 出来 真斗 ³ , 渡邊 浩 崇 ⁴ , 新田 州吾 ⁴ , 本田 善央 ⁴ , 天野 浩 ^{3,4} , 土田 秀次 ¹	1. 京大院工, 2. 量研, 3. 名大VBL, 4. 名大IMaSS
9:15	奨 16a-D519-2	Au-Siイオン照射で形成されるSiO₂表面のナノ構造を利		1. 滋賀県立大院工, 2. 滋賀県立大工
9:30	16a-D519-3	用したAuナノ粒子の形成 イオン照射による銀ナノ粒子凝集体のプラズモン吸収帯 の尖鋭化とVOC蒸気応答性の向上	○(M1)渡邉謙吾¹,小谷祐太¹,高廣克己¹	1. 京工繊大
9:45	奨 16a-D519-4	低速 Ar 照射 Si 基板上 Au 蒸着による Au ナノワイヤ成長モ	○(DC)水谷仁美¹,山本春也²,高廣克己¹	1.京工繊大, 2.量研機構高崎
10:00	16a-D519-5	デルの構築 SiのイオンビームスパッタとAu蒸着によるAuナノワイ	○(B) 西畠 佳汰¹, 水谷 仁美¹, 高廣 克己¹	1.京工繊大
10:15	16a-D519-6	ヤの低温成長 イオンビーム分析法を用いた電極/固体電解質界面のリ	○土屋 文¹, 小寺 拓¹, 鈴木 耕拓², 佐々木 知子³	1. 名城大理工, 2. 若狭湾エネ研, 3. 東北大金研
10:30		チウム濃度分布その場測定 ガラス円筒面チャネルによりガイドされた Ar ⁶⁺ イオン	○高橋 遼平¹, 風祭 佑弥¹, 關 誠晃¹, 高山 祐仁², 杉本	1. 東洋大院理工, 2. 東洋大理工
10:45		ビームの運動エネルギー分布 休憩/Break	奈々², 本橋 健次¹.²	
11:00	16a-D519-8	サイズと価数が異なる液滴イオンによるスパッタ特性	○二宮 啓¹,常木 誠之助¹,チェン リーチュイン¹,平	1.山梨大工
11:15	16a-D519-9	Arクラスターによりスパッタされたベンジルビリジニウ	岡賢三¹ 徳 泰成¹, ○盛谷 浩右¹, 乾 徳夫¹	1. 兵庫県立大工
11:30	16a-D519-10	ム分子の内部エネルギーの評価 Ar-GCIBスパッタリングによる有機高分子損傷の分子量	○(B)杉本 萌紀¹, 瀬木 利夫², 松尾 二郎²	1. 京大工, 2. 京大院工
		依存性		

11:45	奨 16a-D519-11	反応性ガス吸着と O ₂ -GCIB を用いた Ni バターンエッチ ング	○作田 昂大¹, 竹内 雅耶¹, 豊田 紀章¹	1.兵庫県立大工
12:00	奨 16a-D519-12	中性クラスタービーム照射とVUV光を用いた金属膜の ALE	○田中 秀幸¹, 竹内 雅耶¹, 豊田 紀章¹	1.兵庫県大工
12:15	16a-D519-13	O ₂ -GCIBとアセチルアセトンによるSiNx膜原子層エッチングプロセスの反応機構の検討	○竹內 雅耶¹, 藤原 怜輝¹, 山下 大晴¹, 豊田 紀章¹	1.兵庫県立大工
12:30		斜入射中性子を照射したInP基板から放出される ¹¹⁵ Inガンマ線の入射角度依存性	〇山崎 大 1 , 水沢 まり 2 , 盛合 敦 1 , 武田 全康 1 , 松江 秀 明 1 , 桜井 健次 3	1.原子力機構, 2.総合科学研究機構, 3.物材機構
14:30		口頭講演 (Oral Presentation) D519会場 (Room D519) 高速クラスターイオンビーム照射による自立グラフェン 膜からの二次電子放出	○(M1)宇野鳴記¹,間嶋拓也¹,斉藤学¹,土田秀次¹	1.京都大院工
14:45	16p-D519-2	イオンビームによる液相水中で起こるヌクレオチド分子 の損傷過程	○土田 秀次¹, 手塚 智哉¹, 大田 哲郎¹, 秀嶋 雄登¹, 間嶋 拓也¹, 斉藤 学¹	1.京大院工
15:00	16p-D519-3	イオンビーム誘起発光分析・イメージングを用いた粒子 線微細加工(PBW)微細加工領域のその場観察技術		1.群馬大, 2.量研
15:15	奨 16p-D519-4	ラジオクロミックフィルムを用いたマイクロメートル空間分解能の線量計測手法の開発		1. 九大院総理工, 2. 量研 関西研, 3. 量研 放医研
15:30 15:45	奨 16p-D519-5	半導体レーザを用いた有機物のためのレーザーアプレーション・AMS ¹⁴ C測定システムの開発 体憩/Break	\bigcirc (DC) 南谷 史菜 1 , 大森 貴之 2 , 山崎 孔平 2 , 尾嵜 大 真 2 , 米田 穰 2	1.東大新領域, 2.東大博物館
16:00	16p-D519-6	加速器質量分析法による長半減期放射性セシウム135の 高感度検出試験	○笹 公和 ^{1,2} , 椎根 大輔 ² , 高橋 努 ¹ , 松村 万寿美 ¹ , 坂 口 綾 ²	1. 筑波大加速器, 2. 筑波大数物
16:15		超小型 AMS 開発の現状	○神野 智史¹, 松原 章浩², 藤田 奈津子¹, 木村 健二¹	
16:30	16p-D519-8	中赤外光周波数コムと光フィードバック量子カスケード レーザーを用いたキャビティリングダウン分光に基づく 放射性炭素分析法の開発		1.名古屋大, 2.東京大, 3.産総研
16:45	奨 E 16p-D519-9	Speciation distribution of iodine isotopes (127 I and 129 I) in the Beaufort, Chukchi, and Bering Seas	○ (P)Yuanzhi Qi¹, Qiuyu Yang¹, Takeyasu Yamagata¹, Hisao Nagai¹.², Yuichiro Kumamoto³	1.The Univ. of Tokyo, 2.Nihon Univ., 3.JAMSTEC
17:00	16p-D519-10	樹木年輪の ¹⁴ C分析による19世紀の太陽活動の調査	○三宅 芙沙¹, 箱崎 真隆², 早川 尚志¹, Lukas Wacker³	1.名古屋大, 2.国立歷史民俗博物館, 3.ETH Zurich
17:15 17:30	16p-D519-11	休憩/Break 共振器強化型高感度レーザー吸収分光に基づく ⁹⁰ Sr分析 のためのSrO分子近赤外域振動 - 回転遷移観測	〇寺林 稜平 1 ,宮部 昌文 2 ,長谷川 秀 $-^1$	1. 東大院工, 2.JAEA
17:45	16p-D519-12	共鳴イオン化二次中性粒子質量分析による多元素・同位		1.名古屋大,2.工学院大
18:00	16p-D519-13	体分析のための 波長可変レーザーシステムの開発 東京大学 MALT の現状 – 2023 年春 -	真人 ² , 坂本 哲夫 ² , 富田 英生 ¹ 〇山形 武靖 ¹ , 徳山 裕憲 ¹ , 土屋 陽子 ¹ , 戸谷 美和子 ¹ ,	1.東大MALT
18:15	16p-D519-14	山形大学に導入した高感度加速器質量分析装置の現状 VI	Qi Yuanzhi ¹ , 松崎 浩之 ¹ ○武山 美麗 ¹ , 森谷 透 ¹ , 櫻井 敬久 ² , 宮原 ひろ子 ³ , 大 山 幹成 ⁴ , 斉藤 久子 ⁵ , 門叶 冬樹 ^{1,2}	1.山形大AMSセンター, 2.山形大理, 3.武蔵美, 4.東北 大植物園, 5.千葉大法医
18:30		都市大タンデムの現状 (2022年度) 材料、3.13 光制御デバイス・光ファイバーのコードシェア	○羽倉尚人¹,渡部創²,佐藤 真一郎³	1.都市大, 2.原子力機構, 3.量研
	(Thu.) 13:00 - 15:00	口頭講演 (Oral Presentation) A305会場 (Room A305)	-	
13:00		「第53回講演奨励賞受賞記念講演」 Si-SiO ₂ -Si 水平スロット導波路による広帯域光発生	〇里 亮介 ^{1,2} , 高 磊 ² , 山本 宗継 ² , Cong Guangwei ² , 山田 浩治 ² , 北 智洋 ¹	
13:15 13:30		メタマテリアル導波路による非線形光活性化関数 E/Oイコライザ搭載LiNbO₃広帯域光変調器	○本多 祥大 1 , 雨宮 智宏 2 ○岡橋 宏佑 1 , 高野 真悟 1 , 清水 亮 1 , 山口 祐也 2 , Dat Pham 2 , 山本 直克 2 , 赤羽 浩一 2 , 菅野 敦史 2,3 , 川西 哲 也 2,4	1. ソニーグループ, 2. 東工大 1. 住友大阪セメント, 2.NICT, 3. 名工大, 4. 早稲田大
13:45	16p-A305-4	(Pb,La)(Zr,Ti)O ₃ (PLZT) 光変調器における DC ドリフト抑制	〇原 英生 1 , 阿部 峻祐 1 , 城市 知輝 1 , 關 淳 1 , 增田 伸 1	1.アドバンテスト研究所
14:00	16p-A305-5	PPLN導波路によるカスケード SFG/OPA方式光パラメ トリック増幅	〇岸本 直 1 , 逵本 吉朗 1 , 和久井 健太郎 1 , 藤原 幹生 1 , 関根 徳彦 1	1.情通機構
14:15 14:30	16p-A305-6 16p-A305-7	QPM素子としての水晶の特性検討 ペロブスカイト半導体を用いた太陽光励起レーザの検討	○石月 秀貴 ^{1,2} , 平等 拓範 ^{1,2} ○渡邊 蒼大 ¹ , 安藤 啓之 ¹ , 阪口 大生 ¹ , 中村 大介 ² , 五	1. 理化学研究所, 2. 分子科学研究所 1. 中大理工, 2. 東大工, 3. 東大先端研
14:45	16p-A305-8	pn埋込構造を有する半絶縁性InP基板上InGaAsP-MQW		1.NTT 先デ研, 2.NTT DIC
[CS.3]	】3.10 フォトニック権	DFBレーザ 構造・現象、3.11 ナノ領域光科学・近接場光学、合同セッ	_史人 ¹ ション M のコードシェアセッション / Code-sharing :	Session of 3.10 & 3.11 & M
3/16	(Thu.) 9:15 - 12:00	口頭講演 (Oral Presentation) E502会場 (Room E502)		
9:15 9:30	16a-E502-1 16a-E502-2	フォトニクスの視点から開拓する半導体熱流制御技術 銀薄膜より高い太陽光反射率を持つ多層膜を用いた日中 放射冷却	○野村 政宏¹○石井 智¹.².³, エルナンデス ダビーッド¹, タンジャヤニコラウス¹², 長尾 忠昭¹.⁴	1. 東大生研 1. 物材機構, 2. 筑波大, 3.JST さきがけ, 4. 北大
9:45	奨 16a-E502-3	放射冷却素材を用いて過冷却度を増大させた蒸気圧縮冷 凍サイクルの検討II		1.大阪ガス, 2.SPACECOOL
10:00	16a-E502-4	フォノン共鳴波長近傍におけるパッシブ近接場計測モデル	○佐久間 涼子¹, 林 冠廷², 梶原 優介².3	1. 東大工, 2. 東大生研, 3.JST さきがけ
10:15	E 16a-E502-5	Bistable control of phase transition of an optomechanical SSH chain by radiation pressure	○ Feng Tian¹, Satoshi Iwamoto¹.²	1.RCAST, Univ. of Tokyo, 2.IIS, Univ. of Tokyo
10:30 10:45	E 16a-E502-6	休憩/Break Analysis of governing thermal radiation efficiency via GaAs/Au micro-stripe structures	○ (D)Hnin LaiLai Aye¹, Bojin Lin¹, Haruki Orito¹, Ikuya Suzuki¹, Bei Ma¹, Yoshihiro Ishitani¹	1.Chiba Univ.
11:00	16a-E502-7	光照射下で自己成長する銀樹状構造	\bigcirc 菱井 有莉 1 ,並木 潮美 1 ,大久保 貴広 1 ,狩野 旬 1 ,紀 和 利彦 1 ,庄司 暁 2 ,武安 伸幸 1	1. 岡山大, 2. 電通大
11:15	16a-E502-8	透明反射遮熱フィルムに向けた酸化物半導体ナノ粒子薄 膜の赤外メタマテリアル制御	〇松井 裕章 1 ,庄司 美穂 2 ,日向野 怜子 2 ,依田 秀彦 3 ,藤田 明希 4	1. 東大工, 2. 三菱マテリアル, 3. 宇都宮大学, 4. 科学技術研究所
11:30		プラズモニック共振器を用いたダイヤモンドNVナノ	○佐藤 大地¹, 勝見 亮太¹, 飛沢 健¹, 鳴瀬 駿¹, 高田 晃	1. 豊橋技科大
11.50	16a-E502-9	レーザーの検討	佑¹,河合健太¹,八井崇¹	
11:45			佑¹,河合健太¹,八井崇¹ ○杉田篤史¹,室井堅森¹,末元 徽²,浅原 彰文²,奥野剛²,谷峻太郎³,小林洋平³	1. 静大工, 2. 電通大情報理工, 3. 東大物性研
11:45 [CS.4]	16a-E502-10 】3.10 フォトニック権	レーザーの検討 プラズモニック金ナノ粒子における超高速偏光分解近赤 外発光分光 構造・現象、3.12 半導体光デバイスのコードシェアセッシ	〇杉田 篤史¹, 室井 堅森¹, 末元 徹², 浅原 彰文², 奥野 剛², 谷 峻太郎³, 小林 洋平³	1. 静大工, 2. 電通大情報理工, 3. 東大物性研
11:45 [CS.4]	16a-E502-10] 3.10 フォトニック标 (Fri.) 13:30 - 16:15	レーザーの検討 プラズモニック金ナノ粒子における超高速偏光分解近赤 外発光分光	〇杉田 篤史 1 , 室井 堅森 1 , 末元 徹 2 , 浅原 彰文 2 , 奥野 剛 2 , 谷 峻太郎 3 , 小林 洋平 3 $_3$ $>$ $/$ Code-sharing Session of 3.10 & 3.12	1. 静大工, 2. 電通大情報理工, 3. 東大物性研
11:45 [CS.4] 3/17 13:30	16a-E502-10] 3.10 フォトニック标 (Fri.) 13:30 - 16:15	レーザーの検討 プラズモニック金ナノ粒子における超高速偏光分解近赤 外発光分光 構造・現象、3.12 半導体光デバイスのコードシェアセッシ 口頭講演 (Oral Presentation) A303 会場(Room A303)	〇杉田 篤史 1 , 室井 堅森 1 , 末元 徹 2 , 浅原 彰文 2 , 奥野 剛 2 , 谷 峻太郎 3 , 小林 洋平 3 $_3$ $>$ $/$ Code-sharing Session of 3.10 & 3.12	1. 京大院工

14:00 14:15 F	1	フォトニック結晶レーザーの位相変調方式の提案	○井上 卓也¹, 森田 遼平¹, De Zoysa Menaka¹, 石崎 賢司¹, 石村 昇太², 西村 公佐², 高橋 英憲², 釣谷 剛 宏², 鈴木 正敏²³, 野田 進¹	1. 京大院工, 2.KDDI総合研究所, 3. 早大理工
	E 17p-A303-4	1060 Ci1 1- I W1 VCCEI	A , A I L L A , A L L	
14:30		for over 2km Standard 1300nm SMF Transmission	○ (D)Chang Ge¹, Xiaodong Gu¹, Fumio Koyama¹	1.Tokyo Tech.
	17p-A303-5	InP系二重格子フォトニック結晶レーザーの高温単一 モード動作	○伊藤 友樹 ^{1,2} 、河野 直哉 ^{1,2} 、青木 健志 ^{1,2} 、藤井 康 祐 ^{1,2} 、高田 賢志 ^{1,2} 、吉永 弘幸 ^{1,2} 、藤原 直樹 ^{1,2} 、小笠原 誠¹、田中 礼¹、八木 英樹¹、柳沢 昌輝¹、吉田 昌宏²、井 上 卓也²、メーナカ デゾイサ²、石崎 賢司²、野田 進²	1.住友電工, 2.京大院工
14:45 15:00	17p-A303-6	休憩/Break 二次元微小共振器の表面ラフネスが共振器モードに与える影響	○福嶋 丈浩¹, 廣田 哲也¹	1.岡山県立大情報工
15:15	17p-A303-7	る影音 様々な形状のビームが発生可能な複合変調フォトニック 結晶レーザーのワット級動作	○坂田 諒一¹, 石崎 賢司¹, 井上 卓也¹, 趙 海如¹, 今村 陽¹, De Zoysa Menaka¹, 野田 進¹	1. 京大院工
15:30	17p-A303-8	多波長スローライト面発光レーザアレイを用いた非機械 式光偏向器 II		1. 東工大未来研
15:45	17p-A303-9	高効率Siスローライト回折格子ピームスキャナの実験的 観測	○陶山 実之¹, 馬場 俊彦¹	1. 横国院工
16:00	17p-A303-10		○小川 健志¹, De Zoysa Menaka¹, 十鳥 雅弘¹, 江本 渓¹-², 小泉 朋朗¹-², 井上 卓也¹, 石崎 賢司¹, 野田 進¹	1.京大工, 2.スタンレー電気
	.) 9:00 - 12:00	、7.6 原子・分子線およびビーム関連新技術のコードシェプロ顕講演 (Oral Presentation) D519 会場(Room D519) 光触媒ルチルTiO ₂ 上で水素ガス生成中のボーラロントン	アセッション / Code-sharing Session of 6.5 & 7.6	1.東大生研
9:15 奨	€ 18a-D519-2	ネル現象 アナターゼ型TiO ₂ (001) 表面への超音速NO 分子線の照 射	○勝部 大樹¹, 大野 真也², 金 庚民³, 津田 泰孝⁴, 稲見 栄一⁵. 吉越 章隆⁴. 阿部 真之³	1. 理研, 2. 横浜国大院工, 3. 阪大院基礎工, 4. 原子力機構, 5. 高知工大
		Rutile TiO ₂ (110) 上 Pentacene の分子配向	○ (M1) 杉江 知輝', 滝沢 優 ¹ ○ (D) YUHUA TSAI ^{1,2} , Yoshiyuki Yamashita ^{1,2}	1.立命館大 1.NIMS, 2.Kyushu Univ.
10:00	18a-D519-5	4H-SiC(0001) CVD単層グラフェンのドメイン境界の可視化	○大野 真也 1 ,青栁 良英 1 ,長門 諒浩 1 ,藤田 凌太 1 ,松 井 文彦 2	1. 横国大院理工, 2. 分子研
10:15 10:30 F	E 18a-D519-6	休憩/Break Observation of Electronic States in Sb-doped ZrTe₅	○ (M2)Muhammad Frassetia Lubis¹, Takuto Nakamura¹.², Chen Yitong¹, Hiroki Sugihara¹, Kiyohisa Tanaka³, Myung-Hwa Jung⁴, Shin-ichi Kimura¹.².³	1.Department of Physics, Osaka Univ., 2.Graduate School of Frontier Biosciences, Osaka Univ., 3.Institute for Molecular Sci., 4.Department of Physics, Sogang Univ.
0:45 奨	€ 18a-D519-7	硫化サマリウムの光誘起非線形バンドシフトと価数転移		1. 阪大理, 2. 阪大生命, 3. 東大物性研, 4. 東大特別教授
11:00 奨	廷 18a-D519-8	CoPc/γ'-Fe ₄ N有機-無機ハイブリッド界面における電子軌道依存磁気結合	〇 $(M1)$ 小野 広喜 ¹ , 梅田 佳孝 ¹ , 山本 航平 ³ , 石山 修 ³ , 横山 利彦 ³ , 水口 将輝 ^{1,2} , 宮町 俊生 1,2	1. 名大院工, 2. 名大未来研, 3. 分子研
11:15	18a-D519-9			1.分子研, 2.基礎科学研究院, 3.浦項加速器研究所, 4.減項工大
11:30	18a-D519-10	準大気圧光電子分光における環境帯電補償効果の試料位 置依存性	〇鈴木 哲 1 ,竹中 研人 2 ,高原 光司 1 ,住田 弘祐 3	1.兵庫県大高度研, 2.兵庫県大院理, 3.マツダ (株)
11:45	18a-D519-11	低速原子散乱分光法による SrF ₂ (111) 表面原子の観察	〇福田 浩昭 1 , 譚 ゴオン 1 , 大賀 友瑛 2 , 松田 晃史 2 , 吉本 護 2 , 梅澤 憲司 1	1.大阪公立大学, 2.東工大
(CS.6) 8.3 13.6		クノロジー、9.2 ナノ粒子・ナノワイヤ・ナノシート、13.	6 ナノ構造・量子現象・ナノ量子デバイスのコードシ	ェアセッション / Code-sharing Session of 8.3 & 9.2 d
		口頭講演 (Oral Presentation) A202会場 (Room A202) 「第53回講演奨励賞受賞記念講演」 GaAs/InGaAs/GaAs コアマルチシェルナノワイヤ共振器 における軸対称偏光ビームの生成	〇国本 大雅 ^{1,2} , 原 真二郎 ^{1,2} , 本久 順一 ^{1,2}	1. 北大情報科学院, 2. 量集センター
13:15	18p-A202-2	半導体ナノワイヤレーザへの集束イオンビーム加工とそのダメージ抑制	〇滝口 雅人 $^{1.2}$, 章 国強 $^{1.2}$, 佐々木 智 2 , 舘野 功太 $^{1.2}$, John Caleb 2 , 小野 真証 $^{1.2}$, 角倉 久史 $^{1.2}$, 新家 昭彦 $^{1.2}$, 納富 雅也 $^{1.2.3}$	1.NTT NPC, 2.NTT 物性研, 3.東工大理
13:30	18p-A202-3	ナノギャップ電極と結合した単一PbS量子ドットの電気 伝導特性		1. 東北工大, 2. 東大生産研, 3. 東北大通研, 4. 理研 CEMS, 5. 東京農工大, 6. 東大院工
	E 18p-A202-4	Visible-Photoluminescent Silicon Quantum Dots via a Novel and Facile Mechanochemical Reaction of Hydrogen Silsesquioxane	\bigcirc Yunzi Xin $^{\rm l}$, Yuping Xu $^{\rm l}$, Kunihiko Kato $^{\rm l}$, Takashi Shirai $^{\rm l}$	1.Nagoya Inst. Technol. ACRC
14:00 14:15	18p-A202-5	休憩/Break 炭素ナノウォール構造体の電界放出特性と電界分布シ	○原尻 駿吾¹, Huang Lei¹, 堤井 君元¹	1.九大総理工
14:30 奨	廷 18p-A202-6	ミュレーション ダイヤモンドナノ粒子で修飾したナノウォール構造体の 電界放出特性と電界分布シミュレーション	○原尻 駿吾¹, Huang Lei¹, 堤井 君元¹	1. 九大総理工
14:45 F	E 18p-A202-7	電が成出行社と電子が中シミュレーション Integration of surface engineered silicon quantum dots in formamidinium lead iodide perovskite solar cells	○ Svrcek Vladimir¹, Calum McDonald¹, Dilli Babu Padmanaban², Ruairi McGlynn², Ankur Kambley², Bruno Alessi¹, Davide Mariotti², Takuya Matsui¹	1.AIST Tsukuba, 2.Ulster University
15:00 奨	€ 18p-A202-8	メカノケミカル反応による H_xWO_3 /カーボン複合ナノ粒子合成と光触媒応用		1.名工大セラ研
		リッド太陽電池、13.9 化合物太陽電池、16.3 シリコン系太 口頭講演 (Oral Presentation) A408会場(Room A408)	陽電池のコードシェアセッション / Code-sharing Se	ssion of 12.5 & 13.9 & 16.3
3/18(Sat.) 13:00	18p-A408-1	山頭齲漢 (Urai Presentation) A408 会場(Room A408) 直列二端子ペロプスカイト/シリコンタンデム太陽電池 の電流整合設計	○上出 健仁¹, 高遠 秀尚¹	1.産総研
13:15	18p-A408-2	【注目講演】ベロブスカイト/シリコンタンデム太陽電池 の1000時間光耐久性	○塩川美雪 ^{1.7} , 平野 樹 ¹ , 北村 武史 ² , 廣谷 太佑 ⁴ , 野村 大志郎 ⁴ , 林雅博 ⁵ , 野村 隆利 ⁵ , 中村 雅規 ⁶ , 平見 朋 之 ⁶ , 早瀬修二 ² 斎 均 ⁵ , 松井 卓矢 ³ , 五反田 武志 ^{1.7}	
13:30	18p-A408-3	人工光合成反応のための電圧整合ペロブスカイト/結晶 シリコンタンデム太陽電池モジュール		1. 豊田中研
13:45	18p-A408-4	PEDOT:PSS/n-Si 接合を下部素子とした FA0.9Cs0.1Pbl3ペロブスカイト系モノリシック 2 接合太 陽電池の作製 体憩/Break	○ (M2) 鵜飼 隆一¹, 石川 良¹, 白井 肇¹	1. 埼玉大理工研

14:15	奨 E 18p-A408-5	Optimization of the Morphological Structure of Spin-Coated on p-GaAs Substrates for Perovskite/ GaAs-based Photon Up-conversion Solar Cells	○ (D)Hambalee Mahamu¹, Matthias Bourzier², Shigeo Asahi¹, Takashi Kita¹	1.Kobe Univ., 2.INSA Lyon
14:30	18p-A408-6	ベロブスカイトタンデムセル用薄型へテロ接合 Si ボトムセルの作製(2) ~表面テクスチャの適用~	○齊藤 公彦¹, 宍戸 寬崇¹, 石川 亮佑¹	1. 東京都市大総研
14:45	E 18p-A408-7	Optimization of wide-bandgap perovskite to improve the performance of all perovskite tandem solar cells	○ (PC)Gaurav Kapil ^{1,2} , Takeru Bessho ² , Qing Shen ¹ , Hiroshi Segawa ² , Shuzi Hayase ¹	1.Uni. of Electr.Comm., 2.Uni. of Tokyo
15:00	18p-A408-8	Perovskite-perovskite タンデム用途に向けた Voc ~ 1.4V のトップセル材料の開発	〇白井 康裕 1 , カダカ ビ ドゥラバ 1 , 柳田 真利 1 , 宮野 健次郎 1	1.物材研
[CS.8]	12.6 ナノバイオテ	クノロジー、12.7 医用工学・バイオチップのコードシェア	/ Code-sharing Session of 12.6 & 12.7	
3/16((Thu.) 9:00 - 12:00	口頭講演 (Oral Presentation) A307会場 (Room A307)		
9:00	16a-A307-1	金・酸化セリウム混合ナノ粒子からなる二次元シートを 利用した高感度プラズモニックセンサーの開発	\bigcirc (B) 林 結華 1 , 相田 裕輝 2 , 梶野 祐 1 , 有馬 祐 1 , 横 哲 2 , 成 基明 2 , 笘居 高明 2 , 阿尻 雅 2 , 玉田 薫 $^{1.2}$	1. 九大先導研, 2. 東北大
9:15	16a-A307-2	アミロイド性タンパク質 αシヌクレインの高感度特異的 検出用LSPRナノ構造基板と表面固定化脂質膜の評価	○(B)木村 悠人¹, 紙谷 虎太郎¹, 高橋 悠矢¹, 安永 一 真¹, Werner Carl Frederik¹, 武田 実¹, 福澤 理行¹, 野 田 実¹	1.京工繊大
9:30	16a-A307-3	マイクロ流路中での疾患マーカー生体ナノ物質の光濃縮 検出	〇小森 弘稀 $^{1.2.3}$,藤原 佳奈 $^{1.2.3}$,勝間田 麻美 $^{1.2}$,高木 裕美子 $^{1.2}$,田村 守 $^{2.4}$,中瀬 生彦 $^{1.2}$,床波 志保 $^{2.3}$,飯田 琢也 $^{1.2}$	1.大阪公立大院理, 2.大阪公立大LAC-SYS研, 3.大阪公立大院工, 4. 阪大院基礎工
9:45	16a-A307-4	レーザ分子線堆積法によるナノメータ平坦 DNA 固体薄膜の創製とメタノール検知センサへの応用		1. 東大院新領域, 2. 物材機構, 3. 神奈川大, 4. エスシーティー (株)
10:00	E 16a-A307-5	Wearable and stretchable strain sensors for intraocular ocular pressure measurement	○ (M2C)Hanzhe Zhang¹, Te Xiao¹, Azhari Saman¹, Takeo Miyake¹	1.Waseda Univ.
10:15		休憩/Break		
10:30	16a-A307-6	SARS-CoV-2中和抗体活性と抗酸化活性をモニタリング する電気化学バイオセンサー	○民谷 栄一 ^{1,2} , 大崎 脩仁 ^{1,3} , 土橋 朋子 ⁴ , 牛島 ひろ み ⁴ , 槻木 恵一 ⁵	1.産総研フォトバイオ OIL, 2.阪大産研, 3.阪大工, 4. BDT 社, 5.神奈川歯科大
10:45	16a-A307-7	温度制御機構を組み込んだ半導体化学センサシステムに よる微生物代謝の定量評価の試み	渡邊 翼¹, ○宮本 浩一郎¹, Werner Carl Frederik², 吉信 達夫¹	1. 東北大工, 2. 京都工芸繊維大
11:00	16a-A307-8	3-Glycidyloxypropyltrimethoxysilane による酸化インジウム TFT表面への probe 修飾と DNA 検出	○高橋 元気¹, 呉 維東¹, 廣瀬 大亮¹, Biyani Manish¹, 高村 禅¹	1.北陸先端大
11:15	奨 16a-A307-9	臨床応用に向けた非増幅RNA検出装置の開発	○飯田 龍也¹, 安藤 潤¹, 篠田 肇¹, 渡邉 力也¹	1. 理研 開拓研究本部
11:30	奨 16a-A307-10	チオビスベンゼンチオール誘導体を賦与した有機トラン ジスタによる過酸化水素検出	〇大代 晃平 1 , 張 亦婧 1 , 佐々木 由比 1 , 田中 光 2 , 上野 芳敬 2 , 南 豪 1	1. 東大生研, 2. 東洋紡
11:45	奨 E 16a-A307-11	Thermally drawn microelectronic fibers for all-in-one sweat sensing	○ (M2)Jingxuan Wu¹, Yuichi Sato², Yuanyuan Guo²	1.Tohoku Univ., 2.Tohoku FRIS.